当前位置:文档之家› 0+基于Matlab的发动机悬置系统的固有频率和主振型计算

0+基于Matlab的发动机悬置系统的固有频率和主振型计算

0+基于Matlab的发动机悬置系统的固有频率和主振型计算
0+基于Matlab的发动机悬置系统的固有频率和主振型计算

结构自振周期

场地土类别、结构自振周期、设计特征周期的概念解读常有众智平台朋友来询问场地土类别与地震力是什么关系,结构自振周期折减对结构的地震力有什么影响,设计特征周期是什么概念,土的卓越周期又是怎么回事,本文结合规范对这些内容进行了整理,对这几个概念的相关关系也做了一些论述,期望与大家一起交流学习,具体综述如下: 一、场地土类别 《建筑抗震设计规范》第4.1.6对场地土类别是这样划分的:建筑的 场地类别,应根据土层等效剪切波速和场地覆盖层厚度按表4.1.6划分为四类,其中Ⅰ类分为Ⅰ0、Ⅰ1两个亚类。当有可靠的剪切波速和覆盖层厚度且其值处于表4.1.6所列场地类别的分界线附近时,应允许按插值方法确定地震作用计算所用的特征周期。 《抗规》第4.1.4条、4.1.5条对场地覆盖层的厚度及图层的等效剪切波束分别作了规定。 相关概念:

场地--工程群体所在地,具有相似的反应谱特征。其范围相当于厂区、居民小区和自然村或不小于1.0km2的平面面积。 与震害的关系:土质愈软覆盖层厚度愈厚,建筑震害愈严重,反之愈轻,软弱土层对地震力具有放大作用。历次大地震的经验表明,同样或相近的建筑,建造于Ⅰ类场地时震害较轻,建造于Ⅲ、Ⅳ类场地震害较重。 规范采取的相应措施:《抗规》第4.1.1条将场地划分为对建筑抗震有利、一般、不利和危险的地段。具体设计时,结构设计师对不利地段,应提出避开要求;当无法避开时应采取有效的措施。对危险地段,严禁建造甲、乙类的建筑,不应建造丙类的建筑。 另外《抗规》第3.3.2、4.1.8,、4.1.9对相关措施提出了严格要求,设计人员不应忽视。 二、结构自振周期 概念: 结构自振周期是结构按某一振型完成一次自由振动所需的时间,是结构本身固有的动力特性,只与自身质量及刚度有关,结构有几个振型就有几个自振周期,一一对应。 应用:

自振周期折减系数

自振周期折减系数 1 概念 由于计算模型的简化和非结构因素的作用,导致多层钢筋混凝土框架结构在弹性阶段的计算自振周期(下简称“计算周期”)比真实自振周期(下简称“自振周期”)偏长。因此,无论是采用理论公式计算还是经验公式计算;无论是简化手算还是采用计算机程序计算,结构的计算周期值都应根据具体情况采用自振周期折减系数(下简称“折减系数”)加以修正,经修正后的计算周期即为设计采用的实际周期(下简称“设计周期”),设计周期=计算周期×折减系数。如果折减系数取值不恰当,往往使结构设计不合理,或造成浪费、或甚至产生安全隐患。诚然,折减系数是钢筋混凝土框架结设计所需要解决的一个重要问题。 2 影响自振周期因素 影响自振周期因素是诸多方面的,加之多层钢筋混凝土框架结构实际工程的复杂性,抗震规范没有、也不可能对折减系数给出一个确切的数值。许多文献中给出,当主要考虑填充墙的刚度影响时,折减系数可0.6~0.7[2];根据填充墙的多少、填充墙开洞情况,其对结构自振周期影响的不同,可取0.50~0.90。这些都是以粘土实心砖为填充墙的经验值,不言而喻,采用不同填充墙体材料的折减系数是不相同的。当采用轻质材料或空心砖作填充墙,当然不应该套用实心砖为填充墙的折减系数。对于粘土实心砖外的其它墙体可根据具体情况确定折减系数。结构计算分析总是要进行简化的,简化程度取决于当时的计算工具;简化是有条件的,而关键是简化模型尽可能符合真实受力模型。多层钢筋混凝土框架结构的计算周期往往与其自振周期有较大出入,笔者认为,此偏差主要来自计算模型的简化,没有计入那些难于准确计算的因素造成的。一分为二的说,没有计入的那些因素,常常使计算周期比自振周期长,在一定条件下也会使计算周期比自振周期短,主要表现为以下几方面: 3 计算周期长的原因 1.填充墙的刚度影响 大多数多层钢筋混凝土框架结构的设计计算中,并没有计算填充墙、装修(饰)材料、支撑、设备等非结构构件的刚度。实际工程中,由于未考虑砖填充墙的刚度常常使计算周期比实测自振周期(下简称“实测周期”)大很多[7].填充墙的影响与填充墙的材料性能、数量、单片墙体长度、墙体完整性(开洞情况)、与框架的连接情况息息相关。定性地说,填充墙的数量多、单片墙体长度大、墙体开洞少且小、与框架连接好,它对框架结构的刚度增加大,反之就小。 我国的框架填充墙的发展趋势是,逐步取消粘土砖(保护粘土资源、能源、环境等的要求),采用多样化轻质填充砌体、轻墙板取而代之。采用不同材料的填充墙,由于填充墙材料的刚度、变形性能、延性的不同,其对结构的空间刚度影响显然不相同。在其它条件相同时,采用轻质填充墙比粘土砖填充墙对结构的刚度影响小。 一般框架结构都要有填充墙,当砖填充墙多,可能会成为影响结构自振周期的主要的直接因素。 2.基坑回填土及混凝土刚性地坪对底层框架柱的侧限作用通常,在计算模型中,多层钢筋混凝土框架结构的底层柱高(计算高度),一般取基顶至一层楼盖顶之间的距离,见下图1.由于基顶至室内、外之间回填土必须严格夯实。例如压

自振频率

h t t p://w e nk u.ba i d u.c o m/v i ew/8003e022*******e4536f61f.ht m l 楼盖竖向自振频率怎么算 Kingckong按:上次发此文时出现个笔误,原文“自振频率=圆频率X2X3.14”是错的,应为“自振频率=圆频率/( 2π)”。因此修改后重新发上来。 一、规范条文引起的思考 1、规范条文引述: 《混凝土结构设计规范》GB50010-2010第3.4.6条:对混凝土楼盖结构应根据使用功能的要求进行竖向自振频率验算,并宜符合下列要求:1)住宅和公寓不宜低于5Hz;2)办公楼和旅馆不宜低于4Hz;)3大跨度公共建筑不宜低于3Hz。 2、新混凝土设计规范提出了验算楼盖楼盖竖向自振频率的要求,并没有提供验算的具体方法,条文说明也只是指出一般情况可用简化方法。执行该规范条文存在困难,具体用什么方法只能由结构设计人查找相关参考资料。

二、实用的资料和方法: 1、PKPM系列软件使用说明书《JCCAD用户手册及技术条件》的附录E提供了“常用结构构件对称型基本自振圆频率计算”,但不知其出处在哪、是否正确,姑且摘录如下作为参考。注意:下面的数据是圆频率,单位是弧度/秒,而自振频率单位是1/秒,自振频率=圆频率/(2π)。

2、用有限元精确计算,如用SAP2000建模计算。 3、2010版的PKPM软件也新增了个“楼盖舒适度计算”的模块。 4、以上第2、3项是需要花费白花花的银两,如果自己或单位财力不够,也可以其他参考资料的简化方法进行手算,如(1)《多层厂房楼盖抗微振设计规范》(GB50190-93)第6.3节(2)冶金部标准《机器动荷载作用下建筑物承重结构的振动计算和隔振设计规程》YBJ55-90附录二 (3)《复杂高层建筑结构设计》(徐陪福,建筑工业出版社,2005年)P44~54 (4)《钢结构设计手册(第三版)》(下册,建筑工业出版社,2004年)P168,适用于组合楼板自振频率的计算 相关阅读1:中华钢结构论坛的帖子“《混凝土结构设计规范》2011培训笔记” https://www.doczj.com/doc/5c6971529.html,/forum/viewthread.php?tid=245669&pid2=1079908&keywords=竖向 自振频率&searchstyle=3&issearch=true#pid1079908

附录F:结构基本自振周期的经验公式

附录F 结构基本自振周期的经验公式 F.1 高耸结构 F.1.1 一般高耸结构的基本自振周期,钢结构可取下式计算的较大值,钢筋混凝土结构可取下式计算的较小值: H T )013.0~007.0(1= (F.1.1) 式中:H ——结构的高度(m)。 F.1.2 烟囱和塔架等具体结构的基本自振周期可按下列规定采用: 1,烟囱的基本自振周期可按下列规定计算: 1)高度不超过60m 的砖烟囱的基本自振周期按下式计算: d H T 2 2 110 22.023.0-?+= (F.1.2-1) 2)高度不超过150m 的钢筋混凝土烟囱的基本自振周期按下式计算: d H T 2 2 110 10.041.0-?+= (F.1.2-2) 3)高度超过150m ,但低于210m 的钢筋混凝土烟囱的基本自振周期按下式计算: d H T 2 2 110 08.053.0-?+= (F.1.2-3) 式中:H ——烟囱高度(m); d ——烟囱1/2高度处的外径(m)。 2,石油化工塔架(图F.1.2)的基本自振周期可按下列规定计算: 图F.1.2 设备塔架的基础形式 (a)圆柱基础塔;(b)圆筒基础塔; (c)方形(板式)框架基础塔;(d)环形框架基础塔 1)圆柱(筒)基础塔(塔壁厚不大于30mm)的基本自振周期按下列公式计算: 当H 2/D 0<700时 2 3 110 85.035.0D H T -?+= (F.1.2-4)

当H 2/D 0≥700时 2 3 110 99.025.0D H T -?+= (F.1.2-5) 式中:H ——从基础底板或柱基顶面至设备塔顶面的总高度(m); D 0——设备塔的外径(m);对变直径塔,可按各段高度为权,取外径的加权平均值。 2)框架基础塔(塔壁厚不大于30mm)的基本自振周期按下式计算: 2 3 110 40.056.0D H T -?+= (F.1.2-6) 3)塔壁厚大于30mm 的各类设备塔架的基本自振周期应按有关理论公式计算。 4)当若干塔由平台连成一排时,垂直于排列方向的各塔基本自振周期T 1可采用主塔(即周期最长的塔)的基本自振周期值;平行于排列方向的各塔基本自振周期T 1可采用主塔基本自振周期乘以折减系数0.9。 F.2 高层建筑 F.2.1 一般情况下,高层建筑的基本自振周期可根据建筑总层数近似地按下列规定采用: 1,钢结构的基本自振周期按下式计算: T 1=(0.10~0.15)n (F.2.1-1) 式中:n ——建筑总层数。 2,钢筋混凝土结构的基本自振周期按下式计算: T 1=(0.05~0.lO)n (F.2.1-2) F.2.2 钢筋混凝土框架、框剪和剪力墙结构的基本自振周期可按下列规定采用: 1,钢筋混凝土框架和框剪结构的基本自振周期按下式计算: 3 2 3 110 53.025.0B H T -?+= (F.2.2-1) 2,钢筋混凝土剪力墙结构的基本自振周期按下式计算: 3 103 .003.0B H T += (F.2.2-2) 式中:H ——房屋总高度(m); B ——房屋宽度(m)。

3.7 结构自振周期的计算

职业技术学院一、能量法计算基本周期 3.7结构自振周期的计算设体系按i振型作自由振动。速度为应用抗震设计反应谱计算地震作用下的结构反应,除砌体结构、底部框架抗震墙砖房和内框架房屋采用底部剪力法不需要计算自振周期外,其余均需计算自振周期。计算方法: 矩阵位移法解特征问题、近似公式、经验公式。t时刻的位移为重力荷载代表值作用下的水平位移解: 例.已知: 求结构的基本周期。G2G1 (1)计算各层层间剪力 (2)计算各楼层处的水平位移 (3)计算基本周期二、等效质量法(折算质量法)将多质点体系用单质点体系代替。多质点体系的最大动能为单质点体系的最大动能为---体系按第一振型振动时,相应于折算质点处的最大位移;---单位水平力作用下顶点位移。重力荷载代表值作用下的水平位移解: 例.已知: 求结构的基本周期。G2G1能量法的结果为T1 0.508s三、顶点位移法对于顶点位移容易估算的建筑结构,可直接由顶点位移估计基本周期。1体系按弯曲振动时抗震墙结构可视为弯曲型杆。无限自由度体系,弯曲振动的运动方程为悬臂杆的特解为振型基本周期为重力作为水平荷载所引起的位移为2体系按剪切振动时框架结构可近似视为剪切型杆。无限自由度体系,剪切杆的的运动方程为悬臂杆的特解为振型基本周期为重力作为水平荷载所引起的位移为3体系按剪弯振动时框架-抗震墙结构可近似视为剪弯型杆。基本周期为四、自振周期的经验公式根据实测统计,忽略填充墙布置、质量分布差异等,初步设计时可按下列公式估算 (1)高度低于25m且有较多的填充墙框架办公楼、旅馆的基本周期

(2)高度低于50m的钢筋混凝土框架-抗震墙结构的基本周期H---房屋总高度;B---所考虑方向房屋总宽度。 (3)高度低于50m的规则钢筋混凝土抗震墙结构的基本周期 (4)高度低于35m的化工煤炭工业系统钢筋混凝土框架厂房的基本周期

自振频率和振型计算方法比较

结构自振频率和振型计算方法及各方法比较 方法一:直接手算法 即通过求解体系自由振动方程组,简单的表达为矩阵式:(K ?w 2m )X =0 式中: K =[k 11k 12k 21 k 22 ?k 1n ? ?? k n1? k nn ];m =[m 1 ?0???0 ? m n ];X =X 1?X n 频率方程为:|K ?w 2m |=0 此法适用于结构自由度为1的情形,当结构自由度多于2或3时,运用此法就显得过于复杂。 方法二:矩阵迭代法 矩阵迭代法又称Stodola 法,它是采用逐步逼近的计算方法来确定结构的频率和振型。 主振型的变形曲线可以看做是结构按照某一频率振动时,其上相应惯性力引起的静力变形曲线。因此,结构按频率w 振动时,其上各质点的位移幅值将分别为: [X 1X 2?X n ]=w 2[δ11δ12δ21 δ22 ?δ1n ?? ? δn1 ? δnn ]|m 100 0?00 m n |[X 1X 2?X n ] 或 X =w 2δmX 实际上 X =w 2K ?1mX 可见柔度矩阵与刚度矩阵是互逆的,即δ=K ?1。 该法的计算步骤:先假定一个振型带入上式等号右边,进行求解后得到w 2和其主振型的第一次近似值;再以第一次近似值代入上式进行计算,则可得到w 2和其主振型的第二次近似值;如此下去,直到前后两次的计算结果接近为止。当一个振型求得后,则可利用振型的正交性,求出较高次的频率和振型。 该法的缺陷:由于在求解高频率及其主振型时,要利用已被求出的较低振型,故计算误差将随着振型的提高而增加。采用该法计算较多自由度的体系频率和振型时,需要列出每一质点 的运动方程,并分别解方程组,因此质点较多时,此法较复杂。 方法三:能量法 适用于求解多自由度体系的基本频率。又称瑞雷法,是根据体系在振动过程中能量守恒的原理导出的,即一个无阻尼的弹性体系在自由振动时,在任意时刻的动能和变形位能之和保持不变。亦即位移最大时的变形位能U max 等于位移最小时的动能T max 。 T max =1 2 w 2∑m i X i 2n i=1 U max =1 2 ∑m i gX i n i=1 T max =U max 得到w =√g ∑m i X i n i=1∑(m i X i 2)n i=1? T = 2πw 运用此法时,要提高精度,可采用迭代法进行计算。即先按照已算的频率算出各质点的相应惯性力,然后按此惯性力计算结构位移,这时得到的曲线为修正后的振型,以此新振型

周期、振型问题

1、《高层规程》3.2.6规定-----结构基本自振周期大致为:框架结构T1=(0.08~0.10)n, 框—剪和框—筒结构T1=(0.06~0.08)n 剪力墙和筒中筒结构T1=(0.05~0.06)n 2、周期比即结构扭转为主的第一自振周期(也称第一扭振周期)Tt 与平动为主的第一自振周期(也称第一侧振周期)T1的比值。周期比主要控制结构扭转效应,减小扭转对结构产生的不利影响,使结构的抗扭刚度不能太弱。因为当两者接近时,由于振动藕连的影响,结构的扭转效应将明显增大。2.2 相关规范条文的控制:[高规]4.3.5条规定,结构扭转为主的第一自振周期Tt与平动为主的第一自振周期T1之比(即周期比),A级高度高层建筑不应大于0.9;B级高度高层建筑、混合结构高层建筑及复杂高层建筑不应大于0.85。[高规]5.1.13条规定,高层建筑结构计算振型数不应小于9,抗震计算时,宜考虑平扭藕连计算结构的扭转效应,振型数不小于15,对于多塔楼结构的振型数不应小于塔楼数的9倍,且计算振型数应使振型参与质量不小于总质量的90%。2.3 电算结果的判别与调整要点: (1).计算结果详周期、地震力与振型输出文件。因SATWE电算结果中并未直接给出周期比,故对于通常的规则单塔楼结构,需人工按如下步骤验算周期比: a)根据各振型的两个平动系数和一个扭转系数(三者之和等于1)判别各振型分别是扭转为主的振型(也称扭振振型)还是平动为主的振型(也称侧振振型)。一般情况下,当扭转系数大于0.5时,可认为该振型是扭振振型,反之应为侧振振型。当然,对某些极为复杂的结构还应结

合主振型信息来进行判断;b)周期最长的扭振振型对应的就是第一扭振周期Tt,周期最长的侧振振型对应的就是第一侧振周期T1;c)计算Tt / T1,看是否超过0.9(0.85)。对于多塔结构周期比,不能直接按上面的方法验算,这时应该将多塔结构分成多个单塔,按多个结构分别计算、分别验算(注意不是在同一结构中定义多塔,而是按塔分成多个结构)。(2).对于刚度均匀的结构,在考虑扭转耦连计算时,一般来说前两个或几个振型为其主振型,但对于刚度不均匀的复杂结构,上述规律不一定存在。总之在高层结构设计中,使得扭转振型不应靠前,以减小震害。SATWE程序中给出了各振型对基底剪力贡献比例的计算功能,通过参数Ratio(振型的基底剪力占总基底剪力的百分比)可以判断出那个振型是X方向或Y方向的主振型,并可查看以及每个振型对基底剪力的贡献大小。(3).振型分解反应谱法分析计算周期,地震力时,还应注意两个问题,即计算模型的选择与振型数的确定。一般来说,当全楼作刚性楼板假定后,计算时宜选择“侧刚模型”进行计算。而当结构定义有弹性楼板时则应选择“总刚模型”进行计算较为合理。至于振型数的确定,应按上述[高规]5.1.13条执行,振型数是否足够,应以计算振型数使振型参与质量不小于总质量的90%作为唯一的条件进行判别。(4).如同位移比的控制一样,周期比侧重控制的是侧向刚度与扭转刚度之间的一种相对关系,而非其绝对大小,它的目的是使抗侧力构件的平面布置更有效、更合理,使结构不致于出现过大(相对于侧移)的扭转效应。即周期比控制不是在要求结构足够结实,而是在要求结构承载布局的合理性。考虑周期比限制以后,

结构自振周期是结构自由振动的周期

predominant period 地震时,从震源发出的地震波在土层中传播时,经过不同性质地质界面的多次反射,将出现不同周期的地震波。若某一周期的地震波与地基土层固有周期相近,由于共振的作用,这种地震波的振幅将得到放大,此周期称为卓越周期。由多层土组成的厚度很大的沉积层,当深部传来的剪切波通过它向地面传播时就会发生多次反射,由于波的叠加而增强,使长周期的波尤为卓越。卓越周期的实质是波的共振,即当地震波的振动周期与地表岩土体的自振周期相同时,由于共振作用而使地表振动加强。巨厚冲积层上低加速度的远震,可以使自振周期较长的高层建筑物遭受破坏的主要原因就是共振。 卓越周期按地震记录统计得到,地基土随软硬程度的不同有不同的卓越周期,可划分为四级:一级——稳定基岩,卓越周期是0.1-0.2s,平均为0.15s。二级——一般土层,卓越周期为0.21-0.4s,平均为0.27s。三级为松软土层,卓越周期在二级和四级之间。四级——为异常松软的土层,卓越周期为0.3-0.7s,平均为0.5s. 自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构本身的动力特性,与结构的高度H、宽度B有关。

基本周期T1:是指结构按基本振型完成一次自由振动所需的时间。 基本振型:单质点体系在谐波的作用下的振型称为基本振型:任一地震波都可以分解为若干谐波的叠加,多质点体系按振型分解法计算地震作用时,可以简化为具有基本振型的等效单质点体系进行分析。而对建筑结构而言,有时又称为主振型,一般是指每个主轴方向以平动为主的第一振型。 高阶振型:相对于低阶振型而言。一般来说,低阶振型对结构振动的影响要大于高阶振型的影响。对一般较规则的建筑物,选择的振型个数可以取其地震作用计算时的质点数(大多数情况下为楼层数),若质点数较多时,根据计算结果可以只取前几个振型(即低阶振型)进行叠加。 特征周期Tg:即建筑场地自身的周期,是建筑物场地的地震动参数,在地震影响系数曲线中,水平段与下降段交点的横坐标,反映了地震震级,震源机制(包括震源深度)、震中距等地震本身方面的影响,同时也反映了场地的特性;如软弱土层的厚度,类型等场地类别等。 在抗震设计规范中,设计特征周期Tg与场地类别有关:场地类别越高(场地越软),Tg越大;地震震级越大、震中距离越远,Tg越大。Tg越大,地震影响系数α的平台越宽,对于高层建筑或大跨度结构,基本周期较大,计算的地震作用越大。

关于多高层建筑自振频率的定性分析

关于多高层建筑自振频率的定性分析 结22 杨戬 2002010376 摘要:本文简要介绍分析了多高层建筑物在地震荷载作用下的结构特点,并利用结构力学求解 器构建了几种力学分析模型对各自的自振频率加以分析,进一步加深对高层建筑物的认识,了 解定性分析的重要意义。 关键词:多层建筑,高层建筑,自振频率,地基 引 言 “把繁琐交给求解器,我们留下创造力。” (一)概述 多高层建筑是当今比较普遍见到的建筑结构形式,这部 分自振频率的分析对于结构抗震计算与设计有着非常重要 的意义。随着科学技术进步与城市规划节约用地的考虑,尤 其是高层建筑结构得到了广泛的发展应用。如今国内高50 层以上,160m以上的建筑已经屡见不鲜。例如53层,高160m 的深圳国际贸易中心,高165m的上海商城,高460m的国际 环球金融中心以及上海的标志——金茂大厦等等(图示为 CCTV新楼)。高层建筑由于层数多、高度高、重量大,因此 对基础-地基-上部结构的整体体系提出了更高的要求。只有 运用合适实际的理论,才能反映出真正准确的受力状态和振 动特征,使高层建筑结构设计更为经济合理。 那么多高层建筑的基底约束形式与自振频率又有哪些 关系?二者的变化规律如何?这就是我们重点要解决的定 性分析内容。 为了解决上述的两个问题,我们将通过对高层建筑物结 构特点分析建立相应的计算模型和求解器分析得出理想的 结论。 (二)用结力求解器分析多高层建筑的自振频率 2.1 高层建筑的结构计算特点 构造复杂多样,为多次超静定体系,考虑空间协调性,自振特性分析计算极为复杂,目前国内外主要沿用传统经典、复杂藕联分析方法,或者一般数值法,所用计算时间和过程比较繁琐。结构的主要特点是有一定的空间对称性,同时混凝土多采用框架结构或者框架剪力墙结构(限于12层以下),钢结构的分析也基本类似。在一定层数以上,各层间有明显的重复性,同时底层剪力一般较大,受力时候需予以注意。 2.2计算模型的建立 为简化达到定性分析目的,采用等效连续板,并且简化为空间各向等效即转为平面问题加以考虑。硬地地基采用基底刚性约束形式,软土地基采用基底近似部分铰接形式,然后利用求解器输入数据进行分析:(建立如下四种不同模型,因结力求解器学生版对单元数有限定,故而高层采用8层)

相关主题
文本预览
相关文档 最新文档