当前位置:文档之家› 第5讲 插值与拟合方法

第5讲 插值与拟合方法

第五章插值与拟合方法

一般插值方法;

样条函数与样条插值方法;

磨光法与B样条函数;

最小二乘拟合方法;

应用案例分析与应用练习.

1.一般问题的提出实际中不知道函数)(x f y =的具体表达式,由实验测量对于i x x =有值),,2,1,0(n i y y i ???==,寻求另一函数)(x φ使满足:)()(i i i x f y x ==φ。

此问题称为插值问题,并称)(x φ为)(x f 的插值函数;n x x x x ,,,,210???称为插值节点;

),,2,1,0()(n i y x i i ???==φ称为插值条件,即)()(i i i x f y x ==φ,且)()(x f x ≈φ。

设函数)(x f y =在1+n 个相异点n x x x x ,,,,210???上的值为n y y y y ,,,,210???,要求一个次数≤n 的代数多项式

n

n n x a x a x a a x P +???+++=2210)( 2. Lagrange

插值公式使在节点i x 上成立),,2,1,0()(n i y x P i i n ???==,称此为

n 次代数插值问题,)(x P n 称为插值多项式。

可以证明n 次代数插值是唯一的。

事实上: 可以得到

j n

j n i i j i n y x x x x x P j i ∑∏==????

???????? ??--=≠00)()( 当1=n 时,有二点一次(线性)插值多项式: 10

1001011)(y x x x x y x x x x x P --+--= 当n =2时,有三点二次(抛物线)插值多项式:

2120210121012002010212)

)(())(())(())(())(())(()(y x x x x x x x x y x x x x x x x x y x x x x x x x x x P ----+----+----= 另外还有著名的Newton 插值和Hermite 插值等。

2. Lagrange 插值公式

二、样条函数与样条插值

定义:设给定区间],[b a 的一个分划b x x x a n =

1. 样条函数的概念

1)在每个子区间),,2,1](,[1n i x x i i ???=-上是 k 次多项式;

2) )(x s 及直到 k -1阶的导数在],[b a 上连续。

则称)(x s 是关于分划△的一个 k 次多项式样条函数,n x x x ,,,10???称为样条节点,121,,,-???n x x x 称为内节点,n x x ,0称为边界节点,全体记作),(k S P ?,称为k 次样条函数空间。

若),()(k S x s P ?∈,则)(x s 是关于△的k 次多项式样条函数。一般形式为: ∑∑=-=+-+=k j n j k j j j

j k x x k j x x s 011)(!!)(βα 其中??

???<≥-=-+j j k

j k j x x x x x x x x ,0,)()(,{}j α和{}j β均为任意常数。

类似地有三次样条: )3,()(!3!3!2)(1

133322103?∈-++++=∑-=+P n j j j S x x x x x x s βαααα 二次样条:对于],[b a 上的分划b x x x a n =

1222102?∈-+++=∑-=+P n j j j S x x x x x s βααα 其中??

???<≥-=-+j j j j x x x x x x x x ,0,)()(2

2

2.

样条函数插值 (1)二次样条插值: 二次样条函数)(2x s 可分为两类插值问题:

1).给定插值节点i x 和相应的函数值),,2,1,0(n i y i ???=,以及端点0x (或n x )处的导数值0'y (或n y '),求)2,()(2?∈P S x s 使得

???==???==)

')('(')(')

,,2,1,0()(20022n n i i y x s y x s n i y x s 或

2.

样条函数插值 (1)二次样条插值: 二次样条函数)(2x s 可分为两类插值问题:

2).给定插值节点i x 和相应的导数值),,2,1,0(n i y i ???=',以及端点0x (或n x )处的函数值0y (或n y ),求)2,()(2?∈P S x s 使得

???==???==)

)(()()

,,2,1,0(')('20022n n i i y x s y x s n i y x s 或

确定三次样条)(3x s 可有三类问题:

1).求)3,()(3?∈P S x s 使满足条件:

内点条件:3()(1,2,,1)i i s x y i n ==???- 边界条件:),0(')(',)(33n j y x s y x s j j j j ===

2).求)3,()(3?∈P S x s 使满足条件:

内点条件:3()(1,2,,1)i i s x y i n ==???-

边界条件:),0('')('',)(33n j y x s y x s j j j j ===

(2)三次样条插值

3).求)3,()(3?∈P S x s 使满足条件:

内点条件:)1,,2,1()(3-???==n i y x s i i

边界条件:3003()()3030(),()(0)(0)(0,1,2)

n n k k s x y s x y s x s x k ==???-=+=?? (2) 三次样条插值

三、B样条函数插值

1. 等距B样条函数

对于任意)(x f 定义步长为1的中心差分算子δ:

)2

1()21()(--+=x f x f x f δ, 则000)2

1()21(+++--+=x x x δ是一个 单位方波函数,记00)(+=Ωx x δ, o

-1/2 O 1/2 x

)(0x Ω

对)(0x Ω进行磨光:

+

+++-+++-+++--+-+=+=??????????? ??--??? ??+=Ω=Ω???

?

)1(2)1(2121)()(1100

212

100212101x x x dt t dt t dt t t dt t x x x x x x x x x -1 o 1x 1)(1x Ω类似地可得: k k j j k j k j k x k C x ++=+??? ??-++-=Ω∑21!)1()(10

1

可以证明:

)(x k Ω是分段 k 次多项式,且具有1-k 阶连续导数,其k 阶导数的间断点为

)1,,2,1,0(2

1+???=+-=k j k j x j , 则)(x k Ω是对应于+∞<

称其为基本样条函数,简称为k 次B样条。

由归纳法可证明:

)(x f 的k 次磨光函数可以表示为 ??? ??+≤≤--Ω=?∞+∞--22

)()(1)(1,h x t h x dt t f h t x h x f k h k 样条节点为)1,,2,1,0(2

1+???=+-=k j k j x j ,即节点是等距的,故)(x k Ω又称为等距B样条函数。

2. 一维等距B样条函数

设已知曲线上一组点()

,j j x y ,其中ih x x i +=0 (0,0,1,2,,)h j n >=???,则相应的样条磨光曲线为 10()n k j k j k

x x s x c j h -=--??=Ω- ???∑ 最常用的是2=k 或3的情况,此时既有较好的精度,又有良好的保凸性。

该样条也可用于近似均匀分划的情形,可能在0x 和n x 处误差大。为保证在0x ,n x 处的精度,可适当向左右延拓几个节点。

3.二维等距B样条函数

如果已知双参数曲面),(y x f z =,且对于二维等距节点()()

τj y ih x y x i i ++=00,,)0,(>τh 上的值为),,2,1,0;,,2,1,0(m j n i z ij ???=???=,则有磨光曲面为: 11

00(,)n m ij k l i k j l x x y y s x y c i j h τ--=-=---????=Ω-Ω- ? ?????∑∑ 其中l k ,可以不同,常用的也是3,2,=l k 的情形,是一种具有良好保凸性的光滑曲面。

已知某函数)(x f y =的一组测试数据

),,2,1)(,(n i y x i i ???=,

要寻求一个函数)(x φ,使)(x φ对

上述测试数据的误差较小,则)()(x f x ≈φ。 。。

。。。

。。。

。x

y o

)

()(x f x y ≈=?),,2,1)(,(n i y x i i ???=1.数据拟合问题的一般提法

插值法和拟合实验报告(数值计算)

插值法和拟合实验报告 一、 实验目的 1.通过进行不同类型的插值,比较各种插值的效果,明确各种插值的优越性; 2.通过比较不同次数的多项式拟合效果,了解多项式拟合的原理; 3.利用matlab 编程,学会matlab 命令; 4.掌握拉格朗日插值法; 5.掌握多项式拟合的特点和方法。 二、 实验题目 1.、插值法实验 将区间[-5,5]10等分,对下列函数分别计算插值节点 k x 的值,进行不同类型 的插值,作出插值函数的图形并与)(x f y =的图形进行比较: ;11)(2x x f += ;a r c t a n )(x x f = .1)(42 x x x f += (1) 做拉格朗日插值; (2) 做分段线性插值; (3) 做三次样条插值. 2、拟合实验 给定数据点如下表所示: 分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数 ),(i i y x 和拟合函数的图形。 三、 实验原理 1.、插值法实验

∏∑∏∏∏∑∑≠==≠=≠=≠=+-==--= =-= ==-=-=----==++==j i j j i i i i i n i i n n j i j j n j i j j i i n j i j j n i i i n i i n n n o i n i i n x x x x x y x l x L x x c n i x x c x x x c x x x x x x x x c y x l x L y x l y x l y x l x L ,00 ,0,0,01100 00 )(l )()() (1 ,1,0, 1)()(l ) ()())(()()()()()()()(, 故, 得 再由,设 2、拟合实验

第五章插值与拟合答案—牟善军

习题5.1: Matlab程序如下: clc,clear x=1:0.5:10; y=x.^3-6*x.^2+5*x-3; y0=y+rand; f1=polyfit(x,y0,1) y1=polyval(f1,x); plot(x,y,'+',x,y1); grid on title('一次拟合曲线'); figure(2); f2=polyfit(x,y0,2) y2=polyval(f2,x); plot(x,y,'+',x,y2); grid on title('二次拟合曲线'); figure(3); f4=polyfit(x,y0,4) y3=polyval(f4,x); plot(x,y,'+',x,y3); grid on title('四次拟合曲线'); figure(4); f6=polyfit(x,y0,6) y4=polyval(f6,x); plot(x,y,'+',x,y4); grid on title('六次拟合曲线'); 计算结果及图如下 f1 = 43.2000 -148.8307 f2 = 10.5000 -72.3000 90.0443

f4 = 0.0000 1.0000 -6.0000 5.0000 -2.3557 f6 = -0.0000 0.0000 -0.0000 1.0000 -6.0000 5.0000 -2.3557 5.2高程数据问题解答如下:matlab程序: clc,clear x0=0:400:5600 y0=0:400:4800 z0=[1350 1370 1390 1400 1410 960 940 880 800 690 570 430 290 210 150 1370 1390 1410 1430 1440 1140 1110 1050 950 820 690 540 380 300 210 1380 1410 1430 1450 1470 1320 1280 1200 1080 940 780 620 460 370 350 1420 1430 1450 1480 1500 1550 1510 1430 1300 1200 980 850 750 550 500

matlab中插值拟合与查表

MATLAB中的插值、拟合与查表 插值法是实用的数值方法,是函数逼近的重要方法。在生产和科学实验中,自变量x与因变量y的函数y = f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。当要求知道观测点之外的函数值时,需要估计函数值在该点的值。 如何根据观测点的值,构造一个比较简单的函数y=φ(x),使函数在观测点的值等于已知的数值或导数值。用简单函数y=φ(x)在点x处的值来估计未知函数y=f(x)在x点的值。寻找这样的函数φ(x),办法是很多的。φ(x)可以是一个代数多项式,或是三角多项式,也可以是有理分式;φ(x)可以是任意光滑(任意阶导数连续)的函数或是分段函数。函数类的不同,自然地有不同的逼近效果。在许多应用中,通常要用一个解析函数(一、二元函数)来描述观测数据。 根据测量数据的类型: 1.测量值是准确的,没有误差。 2.测量值与真实值有误差。 这时对应地有两种处理观测数据方法: 1.插值或曲线拟合。 2.回归分析(假定数据测量是精确时,一般用插值法,否则用曲线拟合)。 MATLAB中提供了众多的数据处理命令。有插值命令,有拟合命令,有查表命令。 2.2.1 插值命令 命令1 interp1 功能一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。各个参量之间的关系示意图为图2-14。 格式 yi = interp1(x,Y,xi) %返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y的内插值决定。参量x指定数据Y的点。若Y为一矩阵,则按Y的每列计算。yi是阶数为length(xi)*size(Y,2)的输出矩阵。 yi = interp1(Y,xi) %假定x=1:N,其中N为向量Y的长度,或者为矩阵Y的行数。 yi = interp1(x,Y,xi,method) %用指定的算法计算插值: ’nearest’:最近邻点插值,直接完成计算;

第4、5讲 插值与拟合 作业参考答案

第四、五讲作业题参考答案 一、填空题 1、拉格朗日插值基函数在节点上的取值是( 0或1 )。 2、当1,1,2x =-,时()034f x =-, ,,则()f x 的二次插值多项式为 ( 2527 633 x x +- )。 3、由下列数据 所确定的唯一插值多项式的次数为( 2次 )。 4、根据插值的定义,函数()x f x e -=在[0,1]上的近似一次多项式1()P x = ( 1(1)1e x --+ ),误差估计为( 18 )。 5、在做曲线拟合时,对于拟合函数x y ax b = +,引入变量变换y =( 1 y ),x =( 1 x )来线性化数据点后,做线性拟合y a bx =+。 6、在做曲线拟合时,对于拟合函数Ax y Ce =,引入变量变换( ln()Y y = )、 X x =和B C e =来线性化数据点后,做线性拟合Y AX B =+。 7、设3()1f x x x =+-,则差商[0,1,2,3]f =( 1 )。 8、在做曲线拟合时,对于拟合函数()A f x Cx =,可使用变量变换(ln Y y =)(ln X x = )和B C e =来线性化数据点后,做线性拟合Y AX B =+。 9、设(1)1,(0)0,(1)1,(2)5,()f f f f f x -====则的三次牛顿插值多项式为 ( 3211 66x x x +-),其误差估计式为( 4()(1)(1)(2),(1,2)24f x x x x ξξ+--∈-) 10、三次样条插值函数()S x 满足:()S x 在区间[,]a b 内二阶连续可导, (),,0,1,2,,,k k k k S x y x y k n ==(已知)且满足()S x 在每一个子区间1[,] k k x x +上是( 三次多项式 )。

第五章数据拟合.

第五章 数据拟合 这就是数据拟合成曲线的思想,简称为曲线拟合(fitting a curve)。根据一组二维数据,即平面上的若干点,要求确定一个一元函数y = f (x ),即曲线,使这些点与曲线总体来说尽量接近, 曲线拟合其目的是根据实验获得的数据去建立因变量与自变量之间有效的经验函数关系,为进一步的深入研究提供线索。本章的目的,掌握一些曲线拟合的基本方法,弄清楚曲线拟合与插值方法之间的区别,学会使用MATLAB 软件进行曲线拟合。 §1 最小二乘法 给定平面上的点(x i, y i ),(i = 1,2,…,n ),进行曲线拟合有多种方法,其中最小二乘法是解决曲线拟合最常用的方法。最小二乘法的原理是: 求 ∑∑==-==n i i i n i i y x f x f 1212])([),(δδ使 达到最小 如图1所示,其中δi 为点(x i ,y i )与曲线y=f (x )的距离。曲线拟合的实际含义是寻求一个函数y=f (x ),使f (x )在某种准则下与所有数据点最为接近,即曲线拟合得最好。最小二乘准则就是使所有散点到曲线的距离平方和最小。拟合时选用一定的拟合函数f (x ) 形式,设拟合函数可由一些简单的“基函数”(例如幂函数,三角函数等等) )(),...,(),(10x x x m ???来线性表示: )(...)()()(1100x c x c x c x f m m ???+++= 图1 曲线拟合示意图 现在要确定系数c 0,c 1,…,c m ,使d 达到极小。为此,将f (x )的表达式代入d 中,d 就成为c 0,c 1,…,c m 的函数,求d 的极小,就可令d 对 c i 的偏导数等于零,于是得到m +1个方程组,从中求解出c i 。通常取基函数为1,x ,x 2,x 3,…,x m ,这时拟合函数f (x )为多项式函数。当m =1时,f (x ) = a + bx ,称为一元线性拟合函数,它是曲线拟合最简单的形式。除此之外,常用的一元曲线拟合函数还有双曲线f (x ) = a + b/x ,指数曲线f (x ) = a e bx 等,对于这些曲线,拟合前须作变量代换,转化为线性函数。

计算方法--插值法与拟合实验

实验三 插值法与拟合实验 一、实验目的 1. 通过本实验学会利用程序画出插值函数,并和原图形相比较 2. 通过本实验学会拟合函数图形的画法,并会求平方误差 二、实验题目 1. 插值效果的比较 实验题目:区间[]5,5-10等分,对下列函数分别计算插值节点k x 的值,进行不同类型的插值,作出插值函数的图形并与)(x f y =的图形进行比较: 2 11)(x x f +=; x x f arctan )(=; 4 41)(x x x f += (1) 做拉格朗日插值; (2) 做三次样条插值. 2. 拟合多项式实验 实验题目:给定数据点如下表所示: 分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数),(i i y x 和拟合函数的图形. 三、实验原理 本实验应用了拉格朗日插值程序、三次样条插值程序、多项式拟合程序等实验原理. 四、实验内容 1(1) figure x=-5:0.2:5; y=1./(1+x.^2); plot(x,y,'r'); hold on %拉格朗日插值 x1=-5:1:5; y1=1./(1+x1.^2); xx=-4.5:0.5:4.5; yy=malagr(x1,y1,xx); plot(xx,yy,'+') %三次样条插值 dy0=1./(1+25); dyn=1./(1+25);

m=maspline(x1,y1,dy0,dyn,xx); plot(xx,m,'ok') 1(2) x=-5:0.2:5; y=atan(x); plot(x,y,'r'); hold on %拉格朗日插值 x1=-5:1:5; y1=atan(x1); xx=-4.5:0.5:4.5; yy=malagr(x1,y1,xx); plot(xx,yy,'+') %三次样条插值 dy0=1./(1+25); dyn=1./(1+25); m=maspline(x1,y1,dy0,dyn,xx); plot(xx,m,'ok') 1(3) x=-5:0.2:5; y=x.^2./(1+x.^4); plot(x,y,'r'); hold on %拉格朗日插值 x1=-5:1:5; y1=x1.^2./(1+x1.^4); xx=-4.5:0.5:4.5; yy=malagr(x1,y1,xx); plot(xx,yy,'+') %三次样条插值 dy0=1./(1+25); dyn=1./(1+25); m=maspline(x1,y1,dy0,dyn,xx); plot(xx,m,'ok') 2. x=[-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5]'; y=[-4.45 -0.45 0.55 0.05 -0.44 0.54 4.55]'; plot(x,y,'or'); hold on %三次多项式拟合 p1=mafit(x,y,3);

数学建模案例分析插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分 段多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。

数值计算插值法与拟合实验

实验报告三 一、实验目的 通过本实验的学习,各种插值法的效果,如多项式插值法,牛顿插值法,样条插值法,最小二乘法拟合(即拟合插值),了解它们各自的优缺点及插值。 二、实验题目 1、 插值效果比较 实验题目:将区间[]5,5-10等份,对下列函数分别计算插值节点k x 的值,进行不同类型的插值,作出插值函数的图形并与)(x f y =的图形进行比较: 211)(x x f +=;x x f arctan )(=;4 2 1)(x x x f +=。 (1) 做拉格朗日插值; (2) 做三次样条插值。 2、 拟合多项式实验 实验题目:给定数据点如下表所示: i x -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 i y -4.45 -0.45 0.55 0.05 -0.44 0.54 4.55 分别对上述数据做三次多项式和五次多项式拟合,并求平方误差,作出离散函数()i i y x ,和拟合函数的图形。 三、实验原理 n 阶拉格朗日插值 设已知n x x x ,,,10 及()()()x L n i x f y n i i ,,,1,0 ==为不超过n 次的多项式,且满足 插值条件()().,,1,0n i y x L i i n ==由对()x L 2的构造经验,可设 ()()()()(),11000 n n n i i i n y x l y x l y x l y x l x L +++==∑= 其中,()()n i x L i ,,1,0 =均为n 次多项式且满足() .,,1,0,, ,0, ,1n j i j i j i x l j i =?? ?≠==不难验 证,这样构造出的()x L n 满足插值条件。因此问题归结为求()()n i x l i ,,1,0 =的表达式。因 ()i j x i ≠是n 次多项式()x l i 的n 个根,故可设

清华大学_计算方法(数学实验)实验2插值与拟合

实验 2 插值与拟合 系班姓名学号 【实验目的】 1、掌握用MATLAB计算拉格朗日、分段线性、三次样条三种插值的方法,改变节点的数目, 对三种插值结果进行初步分析。 2、掌握用MATLAB作线性最小二乘的方法。 3、通过实例学习如何用插值方法与拟合方法解决实际问题,注意二者的联系和区别。 【实验内容】 预备:编制计算拉格朗日插值的M文件: 以下是拉格朗日插值的名为y_lagrl的M文件: function y=y_lagr1(x0,y0,x) n=length(x0);m=length(x); for i=1:m z=x(i); s=0.0; for k=1:n p=1.0; for j=1:n if j~=k p=p*(z-x0(j))/(x0(k)-x0(j)); end end s=p*y0(k)+s; end y(i)=s; end 第1题(d) 选择函数y=exp(-x2) (-2≤x≤2),在n个节点上(n不要太大,如5~11)用拉格朗日、分段线性、三次样条三种插值方法,计算m个插值点的函数值(m要适中,如50~100)。通过数值和图形输出,将三种插值结果与精确值进行比较。适当增加n,在作比较,由此作初步分析。 运行如下程序: n=7;m=61;x=-2:4/(m-1):2; y=exp(-x.^2); z=0*x; x0=-2:4/(n-1):2; y0=exp(-x0.^2); y1=y_lagr1(x0,y0,x); y2=interp1(x0,y0,x); y3=interp1(x0,y0,x,'spline');

[x'y'y1'y2'y3'] plot(x,z,'w',x,y,'r--',x,y1,'b:',x,y2,'m',x,y3,'b') gtext('y=exp(-x^2)'),gtext('Lagr.'),gtext('Piece.-linear.'),gtext ('Spline'), 将三种插值结果y1,y2,y3与精确值y 项比较,显然y1在节点处不光滑,拉格朗日插值出现较大的振荡,样条插值得结果是最好的.增加n 值(使n=11),再运行以上程序,得到的图形如右图所示,比较这两个图可发现,节点增加后,三种插值方法结果的准确度均有所提高,因此可近似地认为:增加节点个数可以提高插值结果的准确程度。 第3题 用给定的多项式,如y=x 3-6x 2+5x-3,产生一组数据(x i ,y i ,i=1,2,…,n ),再在yi 上添加随机干扰(可用rand 产生(0,1)均匀分布随机数,或用randn 产生N (0,1)分布随机数),然后用x i 和添加了随机干扰的y i 作3次多项式拟合,与原系数比较。如果作2或4次多项式拟合,结果如何? 解:2 编制y_2_3.m 文件 n=15; x=0:8/(n-1):8; y=x.^3-6*x.^2+5*x-3; z=0*x; y0=y+rand(1,15); f=polyfit(x,y0,m); r=polyval(f,x) pl2ot(x,z,'k',x,y,'r:'r,'b') 程序及运行结果如下:m=2 ,y_2_3 f = 5.9888 -31.9916 17.6679 m=3 ,y_2_3

插值法与数据拟合法

第七讲插值方法与数据拟合 § 7.1 引言 在工程和科学实验中,常常需要从一组实验观测数据(x i , y i ) (i= 1, 2, …, n) 揭示自变量x与因变量y 之间的关系,一般可以用一个近似的函数关系式y = f (x) 来表示。函数f (x) 的产生办法因观测数据与要求的不同而异,通常可采用两种方法:插值与数据拟合。 § 7.1.1 插值方法 1.引例1 已经测得在北纬32.3?海洋不同深度处的温度如下表: 根据这些数据,我们希望能合理地估计出其它深度(如500米、600米、1000米…)处的水温。 解决这个问题,可以通过构造一个与给定数据相适应的函数来解决,这是一个被称为插值的问题。 2.插值问题的基本提法 对于给定的函数表 其中f (x) 在区间[a, b] 上连续,x0,x1,…,x n为[a, b] 上n + 1个互不相同的点,要求在一个性质优良、便于计算的函数类{P(x)} 中,选出一个使 P(x i ) = y i,i= 0, 1, …, n(7.1.1) 成立的函数P(x) 作为 f (x) 的近似,这就是最基本的插值问题(见图7.1.1)。 为便于叙述,通常称区间[a, b] 为插值区间,称点x0,x1,…,x n为插值节点,称函数类{P(x)} 为插值函数类,称式(7.1.1) 为插值条件,称函数P(x) 为插值函数,称f (x) 为被插函数。求插值函数P(x) 的方法称为插值法。 § 7.1.2 数据拟合 1.引例2 在某化学反应中,已知生成物的浓度与时间有关。今测得一组数据如下: 根据这些数据,我们希望寻找一个y = f (t) 的近似表达式(如建立浓度y与时间t之间的经验公式等)。从几何上看,就是希望根据给定的一组点(1, 4.00),…,(16, 10.60),求函数y = f (t) 的图象的一条拟合曲

计算方法上机作业插值与拟合实验报告

计算方法实验 题目: 班级: 学号: 姓名:

目录 计算方法实验 (1) 1 实验目的 (3) 2 实验步骤 (3) 2.1环境配置: (3) 2.2添加头文件 (3) 2.3主要模块 (3) 3 代码 (4) 3.1主程序部分 (4) 3.2多项式方程部分 (4) 3.3核心算法部分 (8) 3.4数据结构部分 (13) 4运行结果 (19) 4.1拉格朗日插值法运行结果 (19) 4.2牛顿插值法运行结果 (20) 4.3多项式拟合运行结果 (20) 5总结 (21) 拉格朗日插值法 (21) 牛顿插值法 (21) 多项式拟合 (21) 6参考资料 (22)

1 实验目的 1.通过编程对拉格朗日插值法、牛顿插值法以及多项式拟合数据的理解 2.观察上述方法的计算稳定性和求解精度并比较各种方法利弊 2 实验步骤 2.1环境配置: VS2013,C++控制台程序 2.2添加头文件 #include "stdio.h" #include "stdlib.h" #include "stdafx.h" 2.3主要模块 程序一共分成三层,最底层是数据结构部分,负责存储数据,第二层是交互部分,即多项式方程部分,负责输入输出获得数据,最上层是核心的算法部分,负责处理已获得的数据。具体功能如下: ●数据结构部分 数据结构部分是整个程序的最底层,负责存储部分。因方程系数作为数据元素插入和删除操作较少,而顺序表空间利用率大且查看方便,故此程序选用顺序表保存系数。数据结构文件中写的是有关顺序表的所有基本操作以供其他文件调用。本次实验使用列主元高斯消元法作为求解方程组的方法,所以也用了二维顺序表存储数组。综上,数据结构部分文件是前两个试验的文件内容和,稍作修改。 ●常系数微分方程部分 多项式方程部分是程序的第二层,内容主要是常系数微分方程导数的计算和显示菜单部分。 ●算法部分 算法部分分为两个文件,一个是插值部分,一个是拟合部分。 插值部分文件负责有关插值的核心算法,处于整个程序最上层部分,负责拉格朗日插值法和牛顿插值法的具体实现过程。调用方程文件的函数,将获得的数据进行处理运算,将结果返回给方程主函数和输出的第二层。每种方法有两个函数,一个为仅仅实现一次插值的算法,另一个是和方程部分联系的

数值分析实验插值与拟合

《数值分析》课程实验一:插值与拟合 一、实验目的 1. 理解插值的基本原理,掌握多项式插值的概念、存在唯一性; 2. 编写MATLAB 程序实现Lagrange 插值和Newton 插值,验证Runge 现象; 3. 通过比较不同次数的多项式拟合效果,理解多项式拟合的基本原理; 4. 编写MATLAB 程序实现最小二乘多项式曲线拟合。 二、实验内容 1. 用Lagrange 插值和Newton 插值找经过点(-3, -1), (0, 2), (3, -2), (6, 10)的三次插值公式,并编写MATLAB 程序绘制出三次插值公式的图形。 2. 设 ]5,5[,11 )(2 -∈+= x x x f 如果用等距节点x i = -5 + 10i /n (i = 0, 1, 2, …, n )上的Lagrange 插值多项式L n (x )去逼近它。不妨取n = 5和n = 10,编写MATLAB 程序绘制出L 5(x )和L 10(x )的图像。 3. 在某冶炼过程中,根据统计数据的含碳量与时间关系如下表,试求含碳量与时间t 的拟合曲线。

(1) 用最小二乘法进行曲线拟合; (2) 编写MATLAB 程序绘制出曲线拟合图。 三、实验步骤 1. (1) Lagrange 插值法:在线性空间P n 中找到满足条件: ?? ?≠===j i j i x l ij j i , 0,, 1)(δ 的一组基函数{}n i i x l 0)(=,l i (x )的表达式为 ∏ ≠==--= n i j j j i j i n i x x x x x l ,0),,1,0()( 有了基函数{}n i i x l 0)(=,n 次插值多项式就可表示为 ∑==n i i i n x l y x L 0)()( (2) Newton 插值法:设x 0, x 1, …, x n 是一组互异的节点,y i = f (x i ) (i = 0, 1, 2, …, n ),f (x )在处的n 阶差商定义为 1102110] ,,,[],,,[],,,[x x x x x f x x x f x x x f n n n n --= - 则n 次多项式 ) ())(](,,[) )(](,,[)](,[)()(11010102100100----++--+-+=n n n x x x x x x x x x f x x x x x x x f x x x x f x f x N 差商表的构造过程:

插值和拟合参考答案

插值和拟合 实验目的:了解数值分析建模的方法,掌握用Matlab进行曲线拟合的方法,理解用插值法建模的思想,运用Matlab一些命令及编程实现插值建模。 实验要求:理解曲线拟合和插值方法的思想,熟悉Matlab相关的命令,完成相应的练习,并将操作过程、程序及结果记录下来。 实验内容: 一、插值 1.插值的基本思想 ·已知有n +1个节点(xj,yj),j = 0,1,…, n,其中xj互不相同,节点(xj, yj)可看成由某个函数y= f (x)产生; ·构造一个相对简单的函数y=P(x); ·使P通过全部节点,即P (xk) = yk,k=0,1,…, n ; ·用P (x)作为函数f ( x )的近似。 2.用MA TLAB作一维插值计算 yi=interp1(x,y,xi,'method') 注:yi—xi处的插值结果;x,y—插值节点;xi—被插值点;method—插值方法(‘nearest’:最邻近插值;‘linear’:线性插值;‘spline’:三次样条插值;‘cubic’:立方插值;缺省时:线性插值)。注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。 练习1:机床加工问题 机翼断面下的轮廓线上的数据如下表: x 0 3 5 7 9 11 12 13 14 15 y 0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6 用程控铣床加工机翼断面的下轮廓线时 每一刀只能沿x方向和y方向走非常小的一步。 表3-1给出了下轮廓线上的部分数据 但工艺要求铣床沿x方向每次只能移动0.1单位. 这时需求出当x坐标每改变0.1单位时的y坐标。 试完成加工所需的数据,画出曲线. 步骤1:用x0,y0两向量表示插值节点; 步骤2:被插值点x=0:0.1:15; y=interp1(x0,y0,x,'spline'); 步骤3:plot(x0,y0,'k+',x,y,'r') grid on >> x0=[0 3 5 7 9 11 12 13 14 15 ]; >> y0=[0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6 ]; >> x=0:0.1:15;y=interp1(x0,y0,x,'spline');plot(x0,y0,'k+',x,y,'r') grid on

曲线拟合的数值计算方法实验.

曲线拟合的数值计算方法实验 郑发进 2012042020022 【摘要】实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。曲线直线化是曲线拟合的重要手段之一。对于某些非线性的资料可以通过简单的变量变换使之直线化,这样就可以按最小二乘法原理求出变换后变量的直线方程,在实际工作中常利用此直线方程绘制资料的标准工作曲线,同时根据需要可将此直线方程还原为曲线方程,实现对资料的曲线拟合。常用的曲线拟合有最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束。 关键词曲线拟合、最小二乘法拟合、幂函数拟合、对数函数拟合、线性插值、三次样条插值、端点约束 一、实验目的 1.掌握曲线拟合方式及其常用函数指数函数、幂函数、对数函数的拟合。 2.掌握最小二乘法、线性插值、三次样条插值、端点约束等。 3.掌握实现曲线拟合的编程技巧。 二、实验原理 1.曲线拟合 曲线拟合是平面上离散点组所表示的坐标之间的函数关系的一种数据处理方法。用解析表达式逼近离散数据的一种方法。在科学实验或社会活动中,通过实验或观测得到量x与y的一组数据对(X i,Y i)(i=1,2,...m),其中各X i 是彼此不同的。人们希望用一类与数据的背景材料规律相适应的解析表达式,y=f(x,c)来反映量x与y之间的依赖关系,即在一定意义下“最佳”地逼近或拟合已知数据。f(x,c)常称作拟合模型,式中c=(c1,c2,…c n)是一些待定参数。

第五章 插值与最小二乘法

第五章 插值与最小二乘法 5.1 插值问题与插值多项式 实际问题中若给定函数是区间上的一个列表函数 ,如果,且f(x)在区间上是连续的,要求用一个简单的,便于计算的解析表达式在区间上近似f(x),使 (5.1.1) 就称为的插值函数,点称为插值节点,包含插值节点的区间称为插值区间. 通常,其中是一组在上线性 无关的函数族,表示组成的函数空间表示为 (5.1.2) 这里是(n+1)个待定常数,它可根据条件(5.1.1)确定.当 时,表示次数不超过n次的多项式集合, ,此时 (5.1.3) 称为插值多项式,如果为三角函数,则为三角插值,同理还有 分段多项式插值,有理插值等等.由于计算机上只能使用+、-、×、÷运算,故常用的就是多项式、分段多项式或有理分式,本章着重讨论多项式插值及分段多项式插值,其他插值问题不讨论. 从几何上看,插值问题就是求过n+1个点的曲线,使它近似于已给函数,如图5-1所示.

插值法是一种古老的数学方法,它来自生产实践.早在一千多年前,我国科学家在研究历法时就应用了线性插值与二次插值,但它的基本理论却是在微积分产生以后才逐步完善的,其应用也日益广泛.特别是由于计算机的使用和航空、造船、精密机械加工等实际问题的需要,使插值法在理论上和实践上得到进一步发展.尤其是近几十年发展起来的样条(Spline)插值,获得了极为广泛的应用,并成为计算机图形学的基础. 本章主要讨论如何求插值多项式、分段插值函数、三次样条插值、插值多项式的存在唯一性及误差估计等.此外,还讨论列表函数的最小二乘曲线拟合问题与正交多项式. 讲解: 插值多项式就是根据给定n+1个点 ,求一个n次多项式: 使 即 这里是n+1个待定系数,根据n+1个条件得到的方程组是关于参数 的线性方程组。当节点互异时由于系数行列式 所以解是存在唯一的。但直接求解较复杂,也得不到统一的表达式。所以通常求插值多项式不用这种方法,而使用下节给出的基函数方法。 5.2 Lagrange插值 5.2.1 线性插值与二次插值 最简单的插值问题是已知两点及,通过此两点的插值多项式是一条直线,即两点式

Matlab中插值拟合函数汇总和使用说明

Matlab中插值拟合函数汇总和使用说明 命令1 interp1 功能一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。 x:原始数据点 Y:原始数据点 xi:插值点 Yi:插值点 格式 (1)yi = interp1(x,Y,xi) 返回插值向量yi,每一元素对应于参量xi,同时由向量x 与Y 的内插值决定。参量x 指定数据Y 的点。 若Y 为一矩阵,则按Y 的每列计算。yi 是阶数为 length(xi)*size(Y,2)的输出矩阵。 (2)yi = interp1(Y,xi) 假定x=1:N,其中N 为向量Y 的长度,或者为矩阵Y 的行数。(3)yi = interp1(x,Y,xi,method) 用指定的算法计算插值: ’nearest’:最近邻点插值,直接完成计算; ’linear’:线性插值(缺省方式),直接完成计算; ’spline’:三次样条函数插值。对于该方法,命令interp1 调用

函数spline、ppval、mkpp、umkpp。这些命令生成一系列用于分段多项式操作的函数。命令spline 用它们执行三次样条函数插值; ’pchip’:分段三次Hermite 插值。对于该方法,命令interp1 调用函数pchip,用于对向量x 与y 执行分段三次内插值。该方法保留单调性与数据的外形; ’cubic’:与’pchip’操作相同; ’v5cubic’:在MATLAB 5.0 中的三次插值。 对于超出x 范围的xi 的分量,使用方 法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。对其他的方法,interp1 将对超出的分量执行外插值算法。 (4)yi = interp1(x,Y,xi,method,'extrap') 对于超出x 范围的xi 中的分量将执行特殊的外插值法extrap。(5)yi = interp1(x,Y,xi,method,extrapval) 确定超出x 范围的xi 中的分量的外插值extrapval,其值通常取NaN 或0。 例1 1. 2.>>x = 0:10; y = x.*sin(x); 3.>>xx = 0:.25:10; yy = interp1(x,y,xx); 4.>>plot(x,y,'kd',xx,yy) 例2 1.

插值方法与数据拟合

第三章 插值方法与数据拟合 所讨论的问题给复杂的函数 ()f x 找一简单的函数()p x 如多项式、三角函数 等,并让其满足一定的条件,让其近似的取代原函数 ()f x 。 或 有一数据表格,我们需要找一函数取近似的表征该表数据。 §1 拉格朗日(L a g r a n g e )插值 在函数类中多项式具有最简单的性质。 1230123()...n n p x a a x a x a x a x =+++++ 设 ()y f x =在区间[a ,b ]连续的实函数已知在该区间上n +1个不同点i x 的函 数值()1,2,...,i i y f x i n == 或 有数据表有1n +对数据 1,2,...,i i x y i n →= 插值节点 我们需要找一个n 次多项式 1230123()...n n p x a a x a x a x a x =+++++ 使得在这些点上函数值等于插值节点的值。 ()i i y p x = 1、线性插值 已知两个点的函数值:0 011x y x y →→ 做一线性函数使得在两个节点上函数值为节点值。 0011() ()y p x y p x == 函数为:

0011 01 010110 ()()()p x l x y l x y x x x x y y x x x x =+--=+-- 基函数()i l x 为一次函数,且在节点上 1()0j i i j j i x x l x x x =??=?≠?? 几何意义:过两点做直线。按x 变化量平均。 2、抛物线插值 已知三个点的函数值:0 01122x y x y x y →→→ 做二次函数使得在三个节点上函数值为节点值。 001122() ()()y p x y p x y p x === 函数为: 001122 0012 21012010210122021 ()()()()p x l x y l x y l x y x x x x x x x x x x x x y y y x x x x x x x x x x x x =++------=++------ 基函数()i l x 为二次函数,且在节点上 1()0j i i j j i x x l x x x =??=?≠?? 3、拉格朗日插值 已知n +1个点的函数值:0 011,....,n n x y x y x y →→→ 做n 次函数使得在n +1个节点上函数值为节点值。 0011() (),...,()n n y p x y p x y p x === 函数为:

插值与多项式逼近的数组计算方法实验

插值与多项式逼近的数组计算方法实验【摘要】计算机软件中经常要用到库函数,如) (x cos,x e,它们 sin,) (x 是用多项式逼近来计算的。虽然目前最先进的逼近方法是有理函数(即多项式的商),但多项式逼近理论更适于作为数值分析的入门课程。在已知数据具有高精度的情况下,通常用组合多项式来构造过给定数据点的多项式。构造组合多项式的方法有许多种,如线性方程求解、拉格朗日系数多项式以及构造牛顿多项式的方分和系数表。 关键字泰勒级数、拉格朗日插值法、牛顿插值法、帕德逼近 一、实验目的 1.通过具体实验,掌握泰勒级数、拉格朗日插值法、牛顿插值法、帕德逼近的编程技巧。 2.比较各插值方法的优劣并掌握。 二、实验原理 1.泰勒级数 在数学中,泰勒级数(英语:Taylor series)用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得。 如果在点x=x 具有任意阶导数,则幂级数 称为在点x 处的泰勒级数。 =0,得到的级数 在泰勒公式中,取x 称为麦克劳林级数。函数的麦克劳林级数是x的幂级数,那么这种展开

是唯一的,且必然与的麦克劳林级数一致。 2.拉格朗日插值法 如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。这样的多项式称为拉格朗日(插值)多项式。数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数。 在平面上有(x 1,y 1)(x 2,y 2)...(x n ,y n )共n 个点,现作一条函数f (x )使其图像经过这n 个点。 作n 个多项式p i (x),i=1,2,3...,n,使得 最后可得 3.牛顿插值法 插值法利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。如果这特定函数是多项式,就称它为插值多项式。利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式也将发生变化, 这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿插值。 牛顿插值通过求各阶差商,递推得到的一个公式: 10121()()()()()()N N N N P x P x a x x x x x x x x --=+----L 牛顿插值与拉格朗日插值具有唯一性。 4.帕德逼近 它不仅与逼近论中其他许多方法有着密切的关系,而且在实际问题特别是许多物理问题中有着广泛的应用。设是在原点某邻域内收敛的、具有复系数的麦克劳林级数。欲确定一个有理函数,式中,使得前次方的系数为0,即使得 此处约定qk =0(k>n )。虽然所求得的Pm(z)和Qn(z)不惟一,但是比式却总是惟一的。有理函数称为F(z)的(m,n)级帕德逼近,记为(m/n)。由(m/n)所形成的阵列称为帕德表。

相关主题
文本预览
相关文档 最新文档