当前位置:文档之家› 第六章 电力系统暂态稳定分析

第六章 电力系统暂态稳定分析

第六章 电力系统暂态稳定分析
第六章 电力系统暂态稳定分析

第六章电力系统暂态稳定分析

6.1概述

在正常的稳态运行情况下,电力系统中各发电机组输出的电磁转矩和原动机输入的机械转矩平衡,因此所有发电机转子速度保持恒定。但是电力系统经常遭受到一些大干扰的冲击,例如发生各种短路故障,大容量发电机、大的负荷、重要输电设备的投入或切除等等。在遭受大的干扰后,系统中除了经历电磁暂态过程以外,也将经历机电暂态过程。事实上,由于系统的结构或参数发生了较大的变化,使得系统的潮流及各发电机的输出功率也随之发生变化,从而破坏了原动机和发电机之间的功率平衡,在发电机转轴上产生不平衡转矩,导致转子加速或减速。一般情况下,干扰后各发电机组的功率不平衡状况并不相同,加之各发电机转子的转动惯量也有所不同、使得各机组转速变化的情况各不相同。这样,发电机转子之间将产生相对运动,使得转子之间的相对角度发生变化,而转子之间相对角度的变化又反过来影响各发电机的输出功率,从而使各个发电机的功率、转速和转子之间的相对角度继续发生变化。

与此同时,由于发电机端电压和定子电流的变化,将引起励磁调节系统的调节过程;由于机组转速的变化,将引起调速系统的调节过程;由于电力网络中母线电压的变化,将引起负荷功率的变化;网络潮流的变化也将引起一些其他控制装置(如SVC、TCSC、直流系统中的换流器)的调节过程,等等。所有这些变化都将直接或间接地影响发电机转抽上的功率平衡状况。

以上各种变化过程相互影响,形成了一个以各发电机转子机械运动和电磁功率变化为主体的机电暂态过程。

电力系统遭受大干扰后所发生的机电暂态过程可能有两种不同的结局。—种是各发电机转子之间的相对角度随时间的变化呈摇摆(或振荡)状态,且振荡幅值逐渐衰减,各发电机之间的相对运动将逐渐消失,从而系统过渡到一个新的稳态运行情况,各发电机仍然保持同步运行。这时,我们就称电力系统是暂态稳定的。另—种结局是在暂态过程中某些发电机转子之间始终存在着相对运动,使得转子间的相对角度随时间不断增大、最终导致这些发电机失去同步。这时称电力系统是暂态不稳定的。当一台发电机相对于系统中的其他机失去同步时,其转子将以高于或低于需要产生系统频率下电势的速度运行,旋转的定子磁场(相应于

系统频率)与转子磁场之间的滑动将导致发电机输出功率、电流和电压发生大幅度摇摆,使得一些发电机和负荷被迫切除,严重情况下甚至导致系统曲解列或瓦解。

电力系统正常运行的必要条件是所有发电机保持同步。因此,电力系统在大干扰下的稳定性分桥,就是分析遭受大干扰后系统中各发电机维持同步运行的能力,常称为电力系统的暂态稳定分析。

上述对电力系统的暂态稳定分析通常仅涉及系统在短期内(约10s之内)的动态行为,然而有时我们还必须分析系统的中期(10s直至几分钟)和长期(几分钟直至几十分钟)动态行为,这就涉及到电力系统的中期和长期稳定性分析。

中期和长期稳定性主要关注在遭受到严重破坏时电力系统的动态响应。当电力系统遭受到严重破坏时,将导致系统的电压、频率和潮流发生重大偏移,因此必然涉及到一些在短期暂态稳定分析时未曾考虑的慢过程、控制及保护的行为。对电压和频率发生大的偏移起作用的装置,其响应过程从几秒(如发电机控制与保护装置的响应)到几分钟(如原动机能量供应系统和负载电压调节器等装置的响应)。

进行长期稳定性分析的重点是与大范围系统破坏同时发生的较慢的、持续时间长的现象。以及由此引起的发电机与负荷的有功功率和无功功率显著的持续性失配。这些现象包括:锅炉的动态,水轮机的进水口和水管功态,自动发电控制(AGC),电厂和输电系统的控制与保护,变压器饱和,负荷和网络的非正常频率效应等。长期稳定通常关心系统对特大干扰的响应,这些干扰不属于正常系统设计准则的预想事故。在这种情况下,可能引发连锁事故及系统被分离成几个孤立的子系统。这时稳定分析要回答的问题是如何在负荷损失的情况下各孤岛能达到可以接受的平衡状态。

中期响应是指短期响应向长期响应的过渡。中期稳定研究的重点是各机之间的同步功率振荡,包括一些慢现象以及可能的大的电压和频率偏移[4]。

电力系统遭受大干扰是人们所不希望的,但事实上又是无法避免的。系统在遭受大干扰后失去稳定的后果往往非常严重,甚至是灾难性的。事实上电力系统遭受到的各种大干扰,诸如短路故障.大容量发电机、大的负荷、重要输电设备的投入或切除等都是以一定的概率随机地发生,因此系统的设计、运行方式的

制定总是需要保证系统在合理选择的预想事故下能够保持稳定,而不能要求电力系统能承受所有干扰的冲击。由于各国对系统稳定性的要求不同,因此对预想事故的选择也就有不同的标准。我国对系统稳定性的要求反映在《电力系统安全稳定导则》[3]中。

判断电力系统在预想事故下能否稳定运行,需要进行暂态稳定分析。当系统不稳定时。还需要研究提高系统稳定的有效措施;当系统发生重大稳定破坏事故时,需要进行事故分析,找出系统的薄弱环节,并提出相应的对策。

下面首先讨论电力系统暂态稳定分析所用全系统数学模型的构成[1,2,4,6,25]。 在电力系统稳定分析中,各元件所采用的数学模型,不但与稳定分析结果的正确性直接相关,而且对稳定分析的复杂性有很大的影响。因此,选用适当的数学模型描述各元件的特性,使得稳定分析的结果满足合理的精度要求并且计算简单,是电力系统稳定分析中一个至关重要的问题。对于包含众多发电机、输电线路、负荷及各种控制装置的实际电力系统.考虑到任何冲击后果的复杂性,使得各元件的建模遇到很大的困难。所幸的是,各种现象时间常数的明显差别允许我们把注意力集中在影响暂态过程的关键元件和所研究区域。

在进行电力系统稳定分析时,由于在遭受干扰后电力网络的电磁暂态过程衰减很快,因此忽略其暂态过程是合理的。采用这种简化后,电力网络的模型中就仅包含代数方程。另外,在发电机定子电压方程中,d ρψ和q ρψ反映了定子绕组本身的暂态过程,忽略这两项,意味着忽略了定子中的直流分量,因此定子中仅包合基频电气分量,定子电压方程也就变成代数方程。很明显,同时忽略发电机定子和电力网络的暂态过程,能够使得定子电压方程和网络方程保持一致,即均为代数方程,且仅包含基频电气分量,因而可以用稳态关系式描述,这样做显然还使全系统微分方程的数目大大减少,从而可提高系统稳定分析的效率。由于系统中所有的电气量在交流系统中是基波交流分量的有效值,故可用相量描述(用大写字母表示);在直流系统中是直流分量的平均值。描述各元件电压、电流关系的方程都为代数方程(和潮流计算中的稳态方程相同);由于系统中动态元件的存在,一些电气量表现出一定的动态特性。因此,在遭受干扰后,电力系统经历的整个暂态过程可以看成是各时刻的稳态量(正弦交流量)按一定动态特性的过渡,这时系统中的电压、电流、功率能够发生突变。这就是电力系统稳定分析

常用的准稳态模型(Quasi-steady state Model)。

图6—1给出了用于电力系统稳定分析的全系统数学模型的构架。由图6—1可以看出,全部电力系统的表达式包括描述同步发电机、与同步发电机相关的励磁系统和原动机及其调速系统、负荷、其他动态装置等动态元件的数学模型及电力网络的数学模型。很明显,系统中的所有动态元件是相互独立的,是电力网络将它们联系在一起。

整个系统的模型在数学上可以统一描述成如下一般形式的微分-代数方程组:

式中:x表示微分方程组中描述系统动态特性的状态变量;y表示代数方程组中系统的运行参量。

微分方程组(6—1)主要包括:

(1)描述各同步发电机暂态和次暂态电势变化规律的微分方程。

(2)描述各同步发电机转子运动的摇摆方程。

(3)描述同步发电机组中励磁调节系统动态特性的微分方程。

(4)描述同步发电机组中原动机及其调速系统动态特性的微分方程。

(5)描述各感应电动机和同步电动机负荷动态特性的微分方程。

(6)描述直流系统整流器和逆变器控制行为的微分方程。

(7)描述其他动态装置(如SVC、TCSC等FACTS元件)动态特性的微分方程。

而代数方程组(6—2)主要包括:

(1)电力网络方程,即描述在公共参考坐标系x-y下节点电压与节点注入电流之间的关系。

(2)各同步发电机定子电压方程(建立在各自的d-q坐标系下)及d-q坐标系与x-y坐标系间联系的坐标变换方程。

(3)各自流线路的电压方程。

(4)负荷的电压静态持性方程等。

根据对计算结果精度要求的不同,可依据所研究问题的性质,本着抓住重点、忽略次因素的原则使用相应复杂程度的元件数学模型。

目前,电力系统暂态稳定分析方法基本分为两种。第一种方法是数值积分方法,又称间接法[26~32],其基本思想是用数值积分方法求出描述受扰运动微分方程组的时间解,然后用各发电机转子之间相对角度的变化判断系统的稳定性。数值积分法由于可以适应各种不同详细程度的元件数学模型.且分析结果准确、可靠,所以得到了广泛的实际应用,并一直作为一种标准方法来考察其他分析方法的正确性和精度。目前,利用数值积分法进行电力系统暂态稳定分析已经相当成熟,并已有许多商业性程序相继问世。如我国电力科学研究院编制的《交直流电力系统综合计算程序》,由BPA根据美国WSCC标准开发的暂态稳定分析程序。PTI开发的PSSE,美国EPRI的ETMSP,TRACTEBEL/EDF开发的EUROSTAG,巴西CEPEL的ANATEM及联邦德国的VISTA程序[30]和比利时的STAG程序[31]等。这些程序除可用于分析故障后转子的摇摆过程外,还可用于各种动态行为分析,它们已成为规划和运行人员进行离线暂态稳定分析、安全备用配置、输电功率极限估计的有力工具。

另一种方法是直接法,它不需要求解微分方程组,而是通过构造一个类似于“能量”的标量函数,即李雅普诺夫函数,并通过检查该函数的时变性来确定非线性系统的稳定性质,因此它是一种定性的方法。由于构造李雅普诺夫函数比较困难,因此目前电力系统暂态稳定分析的直接法仅限于比较简单的数学模型,或用暂态能量函数近似李雅普诺夫函数,因此其分析结果尚不能令人完全满意。

本章首先介绍暂态稳定分析中全系统数学校型的构成和微分-代数方程组的数值求解方法,然后叙述各动态元件与电力网络的连接以及网络操作及故障的处理方法。接着对简单模型和带有FACTS元件的详细模型下的电力系统暂态稳定

分析算法分别进行了详细论述。最后介绍暂态稳定分析的直接法。

6.2 暂态稳定分析数值求解方法[25]

电力系统的暂态稳定分析可以归结为微分-代数方程组的初值问题。本节我们首先介绍常微分方程的数值解法,然后讨论微分-代数方程组的数值解法,最后给出暂态稳定分析的基本流程。

6.2.1 常微分方程的数值解法[1,14~16]

1. 基本概念

考虑一阶微分方程

一般地讲,上式中f 是x 、t 的非线性函数。在很多工程实际问题中,函数f 中不显含时间变量f ,因此往往表现为以下的形式:

在电力系统稳定计算中,所有微分方程都不显含时间变量t 。

当式(6-4)中的f 为t 的线性函数时,可以很容易地得到微分方程解的解析表达式。例如,对微分方程式

可以求出它的通解为

式中:A 为积分常数。式(6-6)表示了一个曲线族。

根据初始条件00)(x t x =可以确定x 随t 变化规律的一条曲线。例如,当1)0(=x 时,从式(6-6)即可确定积分常数1=A ,这样就得到了确定的解(或积分曲线)

工程实际问题所表现出来的微分方程比较复杂,其函数往往是多元非线性的,因此一般不能用解析的形式求出像式(6—6)那样的通解,而只能用数值解法。

即从已知的初始状态(0t t =,0x x =)开始,利用某种数值积分公式离散地逐点求出时间序列nh t t n +=0,1=n ,2,…(h 为步长)相对应的函数的近似值:n x 。对微分方程的这种数值解法称为逐步积分法。

以下我们以欧拉法为例子说明逐步积分法的基本概念。

设一阶微分方程式(6-3)在:。00=t 、00)(x t x =时的准确解为

这一函数曲线,即微分方程式(6-3)通过点(0,x 0)的积分曲线如图6-2所示。

欧拉法又称为欧拉切线法或欧拉折线法。它的基本思想是将积分曲线用折线来代替,而每段直线的斜率都由该段的初值代入式(6-3)求得。具体推算步骤如下:

对于第一段,在点(0,x 0)处曲线的斜率为

将第一段曲线用斜率为

dt dx 的直线段来代替,则可以求出h t =1(h 为步长)时x 的增量为

因此在h t =1处,x 芙蓉近似值应为

对于第二段,积分曲线将用另一段直线来代替,其斜率由该段的初值[即该段的起始点(1t ,1x )]代入式(6-3)而得,即

这样便可以求出在h t 22=处x 的近似值

如图6-2所示。这样继续下去又可以推算出3t 处函数近似值d x ,等等。一般.对于第n+1点函数值的递推公式为

现在我们来分析利用这个递推公式由(t n ,x n )点推算(t n+1,x n+1)时带来的误差。为此可把积分函数式(6—8)在该点展开为泰勒级数

式中:'n x 、"n x …分别为积分函数对自变量t 的一阶导数、二阶导数……在n t t =点

的值。n ξ为区间[t n ,t n+1]中的某一数,)(r n

x ξ为泰勒级数的余项。当取r =2时,式(6-10)变为

或者写成

这里'n ξ仍为区间[t n ,t n+1]中的某一数,一般n n ξξ≠'。

显然,忽略式(6-12)中余项!

22

22'h dt x d n ξ以后就得到欧拉法的递推公式(6-9)。因此,在由n 点推算n+1点函数值时所引起的误差为

设整个计算的区间[0,t m ]内,),(dt

d '22t x f x =的最大值为M ,则误差E n+1应满足

式中:M 值与步长h 的选择无关。式(6-13)、式(6-14)中的误差E n+1是由n 点推算n 十1点函数值时引起的误差,称为局部截断误差。欧拉法的局部截断误差与h 2成比例,通常说它的局部截断误差是)(2h o 阶的。

应该指出,在计算1+n x 以前,n x 也是用同一递推公式求得的,所以n x 本身就有误差,因此在用式(6-9)计算1+n x 时,除了忽略余项而引起的局部截断误差以外,还应加上n x 误差的影响。这个误差叫做全局截断误差或简称截断误差,因此,由于欧拉法递推公式不精确而引起的误差要比式(6-13)、式(6-14)所表示的局部截断误差大。可以证明,欧拉法的全局截断误差是和步长h 成比例的,或者说它是)(h o 阶的。

由以上讨论可以看出,为了减小欧拉法的计算误差,应该选择较小的步长h 。但绝不能由此得到步长愈小则计算误差愈小的结论,因为在以上的讨论中,我们完全没有考虑计算机本身由于有效位数的限制而引起的舍入误差。当取较小步长h 时,将使运算量成反比地增加,从而使舍入误差的影响加大。如图6-3所示,图中min h 为最小误差所对应的步长,因此,我们不能单单用缩小步长的方法来减小误差。当计算精度要求较高时,必须选择更完善的计算方法。

在以上欧拉法的计算过程中,当计算t n+1点的函数值时,仅需利用它的前一点t n 处的函数值,这种方法称为单步法。本节介绍的方法都属于这一类。与此对应的是多步法(或多值法),这类方法的精确度较高,它在推算t n+1点的函数值x n+1时需要利用前而几点的数据:()n n x t ,,()11,--n n x t ,…,()11,+-+-k n k n x t 。

2. 改进欧拉法 在应用欧拉法时,由各时段始点计算出的导数值),(n n n

t x f dt dx =被用于[t n ,t n+1]的整个时段,即代替积分曲线的各折线段的斜率仅由相应时段的始点决定,因而给计算造成较大的误差。如果各折线段斜率取该时段始点导数值与终点导数值的平均值,我们就可以期望得到比较精确的计算结果。改进欧拉法就是根据这个原则提出来的计算方法。

对于一阶微分方程式(6-3),设给定初值为00=t 时00)(x t x =,以下介绍改进欧拉法的具体步骤。

为了求h t =1时的函数值1x ,首先用欧拉法求1x 的近似值

式中:

当)0(1x 由式(6-15)求得以后,即可将1t ,)0(1x 代入式(6-3)求出该时段末导数的近似值

然后就可以用0dt dx 和)0(1

dt dx 的平均值来求1x 改进值

这样求得的)1(1x 比单纯用欧拉法求得的)0(1x 更接近微分方程的正确解1x ,其几何解释如图6-4所示。

当由()n n x t ,点推算()11,++n n x t 点时,递推公式的一般形式为

由式(6-17)中第二式及第四式消去n x ,可将第四式改写为

式中:

这样,也可以把改进欧拉法的递推公式归结为以下形式:

当应用式(6-19)计算1+n x 时,其形式与)0(1+n x 的公式具有相向的形式,

因此可以简化程序,并且在求得)0(1+n x 以后不必再记忆n x ,因此也节省了内存单元。

以下讨论改进欧拉法递推公式的局部截断误差。

为此,仍需要利用式(6-l0)的泰勒级数展开式

式中:!33

"'

"h x n ξ为泰勒级的余项。 改进欧拉法递推公式(6-17)中第四式可以改写为

将式(6-17)中第一式代入上式,可得

把上式中右端第三项按泰勒级数展开:

因为

所以

将上式代入式(6-21)中,则得

再把上式与式(6-20)相减,可知

因此,改进欧拉法的局部截断误差)(3h o 阶。同样可以证明改进欧拉法的全局截断误差是)(2h o 阶的。

【例6-1】 用改进欧拉法求解微分方程

其初值为00=t ,10=x 。

【解】 步长取0.2。计算结果见下表:

这一微分方程的准确解为

当t=1时,x=1.732 05,故误差为

改进欧拉法也可以用来求解一阶微分方程组。例如,对于微分方程组

其初始值为0t ,0x ,0y 。当选定步长h 以后,对于第一时段可以求出变量的近似值为

式中:

再由h t 1,)0(1x ,)0(1y 求出

这样,函数在t点的值应为

式中:

以此类推。

由递推公式(6-17)可以看出,改进欧拉法计算一个时段所需要的运算过比欧拉法大一倍,但是如果步长一样,改进欧拉法的计算精确度却比欧拉法高。如上所述,改进欧拉法的截断误差是)

o阶的,而欧拉法是)

(2h

o阶的。如图6-5所

(h

示,当容许误差为1ε时,改进欧拉法容许步长'1h 和欧拉法步长1h 相差不大,在这种情况下,用改进欧拉法的运算量比欧拉法要大。当容许误差为2ε时,改进欧

拉法的容许步长'2h 比欧拉法步长2h 相对大得多,显然当2'22h h >时,改进欧拉法

的总运算量比欧拉法要小。

3. 龙格-库塔法

改进欧拉法用[t n ,t n+1]区间两点的导数(或斜率)推算1+n x ,拟合了积分函数泰勒级数的前三项,从而使局部截断误差达到了)(3h o 阶。这就启发人们去考虑:是合可利用[t n ,t n+1]区间上更多点的导数去推算1+n x ,以便拟台泰勒级数更多的项数?结论是肯定的。龙格-库塔法就是基于这种原理建立起来的微分方程数值解法。最常用的是四阶龙格-库塔法,这种方法用[t n ,t n+1]区间四个点的导数去推算1+n x ,从而拟合了泰勒级数的前五项:

因此,它的局部截断误差是)(5h o 阶的.其全局截断误差是)(4h o 阶的。

对于一阶微分方程式(6-3),当利用四阶龙格-库塔法求解时,可以利用递推公式

求出1x ,2x ,3x ,…。

【例6-2】 用四阶龙格-库塔法求解例6-1中的一阶微分方程

【解】 步长取2.0=h 。计算过程及结果如下表所示:

=

x,

.1

=

t时732141

和准确解相比,其误差为

和例6-1相比精确度提高很显著。

应用龙格-库塔法也可以求解一阶微分方程组。例如,对于式(6-23)所示的微

分方程,可按以下递推公式进行计算:

式中:

龙格-库塔法的精度较高,但运算量较大,为欧拉法的4倍。目前,当精度要求较高时,已逐步趋向于采用运算量较小的多步法来代替龙格-库塔法。龙格-库塔法往往只作为多步法起步时的一种辅助计算方法。

4. 隐式积分法

微分方程数值解法可以分为显式解法与隐式解法两大类。目前所介绍的方法都属于显式解法。分析它们的计算公式(6-9)、式(6-17)、式(6-24)即可看出,这些公式等号右端都是已知量,因此利用这些递推公式可以直接计算出相应时段终点的函数值1+n x 。与此不同,微分方程的隐式解法不是给出递推公式,而是首先把微分方程化为差分方程,然后利用求解差分方程的方法确定函数值1+n x 。

现在我们来介绍隐式梯形积分法。

对于微分方程式(6-3),当n t 处函数值n x 已知时,可以按下式求出h t t n n +=+1处的函数值1+n x :

上式中的定积分相当于求图6—6中阴影部分的面积。当步长h 足够小时,函数

),(t x f 在n t 到1+n t 之间的曲线可以近似地用直线来代替,如图中虚线所示。这样,阴影部分的面积就近似为梯形ABCD 的面积,因此式(6-25)可以改写为

这就是隐式梯形积分法的差分方程。

显然,在这种情况下已不能简单地利用递推运算求出1+n x ,因为式(6-26)等号的右端也含有待求量1+n x 。这时必须对式(6-26)采用求解代数方程式的方法去计算1+n x 。

一般地说,微分方程隐式解法的特点就是把微分方程的求解问题转换成一系列代数方程的求解过程。例如,当初始值0t 、0x 给定时,根据式(6-25)可以得到第一时段的差分方程式

上式中只有1x 为未知数,因而利用求解代数方程式的方法即可求得1x 。当1t 、1x 已知后由式(6-26)又可得到第二时段的差分方程式

由上式又可解出2x ,以此类推。

如果我们把),(n n t x f 和),(11++n n t x f 理解为积分曲线在[t n ,t n+1]区间始点和终点的斜率,那么就有理由把隐式梯形积分法称为隐式改进欧拉法,也就是说,差分方程式(6-26)可以理解为改进欧拉法的隐式解法。实际上,隐式解法不限于改进欧拉法,前面介绍的欧拉法、龙格-库塔法以至多步法都可以采取隐式解法。例如,把欧拉法的递推公式(6-9)改为

即把[t n ,t n+1]区间始点的导数值'n x 改为终点的导数值'1+n x ,我们就得到了隐式欧

拉法。式(6-27)就是隐式欧拉法的差分方程。

差分方程式(6-26)、式(6-27)可能是非线性的,因为微分方程式(6-3)中给山的函数)t x f ,(可能是非线性的,因此,隐式解法比显式解法的求解过程要复杂一些。 顺便指出,隐式梯形积分法的截断误差可以解释为是由于以梯形面积代替阴影部分面积引起的(见图6-6)。利用前面介绍的方法同样可以证明差分方程(6-26)的局部截断误差也是)(3h o 阶的。

隐式解法相对于显式解法来说的优点是可以来取较大的步长。这个问题涉及到微分方程数值解的稳定性问题,读者可参看有关文献。我们在这里只用一个简单的例子来直观地说明这个问题。

设有一阶微分方程

初值为0=t 时10=x 。

对于这个微分方程,不难求出她的解析解为

这是一个按指数曲线衰减很快的函数,如图6-7所示。

当步长取025.0=h 时,用欧拉法计算结果如下表所示:

电力系统暂态分析要点总结

第一章 1.短路的概念和类型 概念:指一切不正常的相与相与地(对于中性点接地的系统)之间发生通路或同一绕组之间的匝间非 正常连通的情况。类型:三相短路、两相短路、两相接地短路、单相接地短路。 2.电力系统发生短路故障会对系统本身造成什么危害? 1)短路故障是短路点附近的支路中出现比正常值大许多倍的电流,由于短路电流的电动力效应,导体间将产生巨大的机械应力,可能破坏导体和它们的支架。 2)比设备额定电流大许多倍的短路电流通过设备,会使设备发热增加,可能烧毁设备。 3)短路电流在短路点可能产生电弧,引发火灾。 4)短路时系统电压大幅度下降,对用户造成很大影响。严重时会导致系统电压崩溃,造成电网大面积停电。 5)短路故障可能造成并列运行的发电机失去同步,破坏系统稳定,造成大面积停电。这是短路故障的最严重后果。 6)发生不对称短路时,不平衡电流可能产生较大的磁通在邻近的电路内感应出很大的电动势,干扰附近的通信线路和信号系统,危及设备和人身安全。 7)不对称短路产生的负序电流和电压会对发电机造成损坏,破坏发电机的安全,缩短发电机的使用寿命。3.同步发电机三相短路时为什么进行派克变换? 目的是将同步发电机的变系数微分方程式转化为常系数微分方程式,从而为研究同步发电机的运行问 题提供了一种简捷、准确的方法。 4.同步发电机磁链方程的电感系数矩阵中为什么会有变数、常数或零? 变数:因为定子绕组的自感系数、互感系数以及定子绕组和转子绕组间的互感系数与定子绕组和转子绕 组的相对位置θ角有关,变化周期前两者为π,后者为2π。根本原因是在静止的定子空间有旋转的转子。 常数:转子绕组随转子旋转,对于其电流产生的磁通,其此路的磁阻总不便,因此转子各绕组自感系数 为常数,同理转子各绕组间的互感系数也为常数,两个直轴绕组互感系数也为常数。 零:因为无论转子的位置如何,转子的直轴绕组和交轴绕组永远互相垂直,因此它们之间的互感系数 为零。 5.同步发电机三相短路后,短路电流包含哪些分量?各按什么时间常数衰减? 1)定子短路电流包含二倍频分量、直流分量和交流分量;励磁绕组的包含交流分量和直流分量;D轴 阻尼绕组的包含交流分量和直流分量;Q轴阻尼包含交流分量。 2)定子绕组基频交流分量、励磁绕组直流分量和阻尼绕组直流分量在次暂态时按Td’’和Tq’’衰减,在暂 态情况下按Td’衰减;定子绕组的直流分量、二倍频分量和励磁绕组交流分量按Ta衰减。 6.用物理过程分析同步发电机三相短路后各绕组短路电流包含哪些分量? 短路前,定子电流为iwo,转子电流为ifo;三相短路时,定子由于外接阻抗减小,引起一个强制交流 分量△iw,定子绕组电流增大,相应电枢反应磁链增大。励磁绕组为保持磁链守恒,将增加一个直流分 量△ifɑ,其切割定子使定子产生交流分量△iw’。 定子绕组中iwo,iw,iw’不能守恒,所以必产生一个脉动直流,可将其分解为恒定直流分量和二倍频 交流分量。由于励磁绕组切割定子绕组磁场,因此励磁绕组与定子中脉动直流感应出一个交变电流△ifw。 又因为D轴阻尼与励磁回路平行,所以同样含有交流分量和直流分量。 由于假设定子回路电阻为零,定子基频交流只有直轴方向电枢反应因此Q轴绕组中只有基频交流分量 而没有直流分量。 第四章 1.额定转速同为3000转/分的汽轮发电机和水轮发电机,哪一个启动比较快? 水轮发电机启动较快。 2.水轮机的转动惯量比汽轮机大好几倍,为什么惯性时间常数Tj比汽轮机小? 水轮机极对数多于汽轮机的极对数,由n=60f/p得水轮机的额定转速小于汽轮机的转速,又因为惯性时 间常数为Tj=2.74GD2n2/(1000S B),所以T正比于n2,所以水轮机的Tj比汽轮机小。 3.什么是电力系统稳定性?什么是电力系统静态稳定、暂态稳定?区别? (1)电力系统稳定性:指当电力系统在某一运行状态下突然受到某种干扰后,能否经过一定时间后又

电力系统暂态分析试卷(B卷)

长沙理工大学拟题纸 课程编号 003023 拟题教研室(或老师)签名 马士英 教研室主任签名 课程名称(含档次) 电力系统暂态分析(B 卷) 专业层次(本、专) 本科 专 业 电气工程及其自动化 考试方式(开、闭卷) 闭卷 一、判断题(下述说法是否正确,在你认为正确的题号后打“√”,错误的打“×”,每小题2分, 共20分) 1、从严格的意义上讲,电力系统总是处于暂态过程之中。 ( ) 2、无限大电源的频率保持不变,而电压却随着负荷的变化而变化,负荷越大,电源的端电压 越低。 ( ) 3、不管同步发电机的类型如何,定子绕组与转子绕组之间互感系数都是变化的。 ( ) 4、对称分量法只能用于线性电力系统不对称故障的分析计算。 ( ) 5、派克变换前后,发电机气隙中的磁场保持不变。 ( ) 6、具有架空地线的输电线路,架空地线的导电性能越强,输电线路的零序阻抗越大。( ) 7、不对称短路时,发电机机端的零序电压最高。 ( ) 8、同步发电机转子的惯性时间常数J T 反映了转子惯性的大小。 ( ) 9、短路计算时的计算电抗是以发电机的额定容量为基准的电抗标幺值。 ( ) 10、切除部分负荷是在电力系统静态稳定性有被破坏的危机情况下,采取的临时措施。( ) 二、单项选择题(在每小题的三个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。每小题3分,共30分) 1、短路电流最大有效值出现在( )。 A 、短路发生后约半个周期时; B 、短路发生瞬间; C 、短路发生后约1/4周期时。 2、利用对称分量法分析计算电力系统不对称故障时,应选( )相作为分析计算的基本相。 A 、故障相; B 、特殊相; C 、A 相。 3、关于不对称短路时短路电流中的各种电流分量,下述说法中正确的是( )。 A 、短路电流中除正序分量外,其它分量都将逐渐衰减到零; B 、短路电流中除非周期分量将逐渐衰减到零外,其它电流分量都不会衰减; C 、短路电流中除非周期分量将逐渐衰减到零外,其它电流分量都将从短路瞬间的起始值衰减到 其稳态值。 4、不管电力系统发生什么类型的不对称短路,短路电流中一定存在( )。 A 、正序分量、负序分量和零序分量; B 、正序分量和负序分量; C 、零序分量。 5、在简单电力系统中,如某点的三序阻抗021∑∑∑==Z Z Z ,则在该地点发生不同类型短路故障 时,按对发电机并列运行暂态稳定性影响从大到小排序,应为( )。 A 、单相接地短路、两相短路、两相短路接地、三相短路; B 、三相短路、两相短路接地、两相短路、单相接地短路; C 、两相短路、两相短路接地、单相接地短路、三相短路。 共3页第1页

电力系统暂态分析期末复习重点

1、无限大功率电源的特点是什么?无限大功率电源供电情况下,发生三相短路时,短路电流中包含有哪些电流分量,这些电流分量的变化规律是什么? 答:无限大功率电源的特点是频率恒定、端电压恒定;短路电流中包含有基频交流分量(周期分量)和非周期分量;周期分量不衰减,而非周期分量从短路开始的起始值逐渐衰减到零。 2、中性点直接接地电力系统,发生概率最高的是那种短路?中性点直接接地电力系统发生概率最高的是单相接地短路;对电力系统并列运行暂态稳定性影响最大是三相短路。 3、输电线路装设重合闸装置为什么可以提高电力系统并列运行的暂态稳纵向故障 纵向故障指电力系统断线故障(非全相运行),它包括一相断线和两相断线两种形式。 2、负序分量 是三相同频不对称正弦量的分量之一其特点是三相辐值相等频率相同、相位依次相差1200、相序为C -B -A -C 。 4、转移阻抗 转移阻抗是在经网络等效变换消去除短路点和电源节点后,所得网形网络中电源节点与短路点之间的连接阻抗。 5、同步发电机并列运行的暂态稳定性 答:同步发电机并列运行的暂态稳定性指受到大干扰作用后,发电机保持同步运行的能力,能则称为暂态稳定,不能则称为暂态不稳定。 6、等面积定则 答:在暂态稳定的前提下,必有加速面积等于减速面积,这一定则称为等面积定则。 8、在隐极式发电机的原始磁链方程中,那些电感系数是常数?哪些是变化的?变化的原因是什么? 答:在隐极式发电机的原始磁链方程中,转子各绕组的自感系数、转子绕组之间的互感系数、定子绕组的自感系数、定子各绕组之间的互感系数均为常数;定子三相绕组与转子各绕组之间的互感系数是变化的,变化的原因是转子旋转时,定子绕组和转子绕组之间存在相对位置的周期性改变。 9、提高电力系统并列运行静态稳定性的根本措施是什么?具体措施有那些? 答:提高电力系统并列运行静态稳定性的根本措施是缩短“电气距离”,具体的措施有: 1)采用分裂导线2)线路串联电力电容器;3)采用先进的励磁调节装置;4)提高输电线路的电压等级; 5)改善系统结构和选择适当的系统运行方式; 10、简单电力系统同步发电机并列运行暂态稳定的条件是什么? 简单电力系统同步发电机并列运行暂态稳定的条件是受扰运动中加速面积小于最大减速面积。 11、转移电抗与计算电抗有何异同? 答:相同点是:转移电抗和计算电抗都是网络经化简消去除电源点和短路点之外的所有节点后,连接短路点与电源点的电抗标幺值。不同的是:转移电抗是以统一的功率基准值BS 为基准的电抗标幺值;计算电抗是以电源的额定容量NS 为基准的电抗标幺值。 12、简述应用对称分量法计算不对称短路故障处短路电流的步骤。 答:(1)绘制三序等值电路,计算三序等值电路参数; ② 对三序等值电路进行化简,得到三序等效网络(或三序电压平衡方程); ③ 列故障处边界条件方程; ④ 根据边界条件方程绘制复合序网,求取故障处基本相的三序电流分量(或利用三序电压方程和边界条件方程求解故障处基本相三序电流分量) ⑤ 利用对称分量法公式,根据故障处基本相三序电流分量求故障处各相电流。 2、短路的危害 答:短路的主要危害主要体现在以下方面: 1)短路电流大幅度增大引起的导体发热和电动力增大的危害; 2)短路时电压大幅度下降引起的危害; 3)不对称短路时出现的负序电流对旋转电机的影响和零序电流对通讯的干扰。 1、短路电流最大有效值出现在(1)。A 、短路发生后约半个周期时; 2、利用对称分量法分析计算电力系统不对称故障时,应选(2)相作为分析计算的基本相。B 、特殊相 3、关于不对称短路时短路电流中的各种电流分量,下述说法中正确的是(3)。C 、短路电流中除非周期分量将逐渐衰减到零外,其它电流分量都将从短路瞬间的起始值衰减到其稳态值。 4、不管电力系统发生什么类型的不对称短路,短路电流中一定存在(2)。 B 、正序分量和负序分量; 5、在简单电力系统中,如某点的三序阻抗021∑∑∑==Z Z Z ,则在该地点发生不同类型短路故障时,按对发电机并列运行暂态稳定 性影响从大到小排序,应为(2)。B 、三相短路、两相短路接地、两相短路、单相接地短路; 6、发电机-变压器单元接线,变压器高压侧母线上短路时,短路电流冲击系数应取(2)。B 、1.8; 7、电力系统在事故后运行方式下,对并列运行静态稳定储备系数(%)P K 的要求是()。C 、(%)P K ≧10。 8、下述各组中,完全能够提高电力系统并列运行暂态稳定性的一组是(2)。 B 、变压器中性点经小电阻接地、线路装设重合闸装置、快速切除线路故障; 9、对于三相三柱式变压器,其正序参数、负序参数和零序参数的关系是(2)。 B 、正序参数与负序参数相同,与零序参数不同; 10、分析计算电力系统并列运行静态稳定性的小干扰法和分析计算电力系统并列运行暂态稳定性的分段计算法,就其实质而言都是为

电力系统暂态分析重点及答案

单项选择题 1、短路电流最大有效值出现在(1)。A 、短路发生后约半个周期时; 2、利用对称分量法分析计算电力系统不对称故障时,应选(2)相作为分析计算的基本相。B 、特殊相 3、关于不对称短路时短路电流中的各种电流分量,下述说法中正确的是(3)。 C 、短路电流中除非周期分量将逐渐衰减到零外,其它电流分量都将从短路瞬间的起始值衰减到其稳态值。 4、不管电力系统发生什么类型的不对称短路,短路电流中一定存在(2)。 B 、正序分量和负序分量; 5、在简单电力系统中,如某点的三序阻抗021 ∑∑∑==Z Z Z ,则在该地点发生不同类型短路故障时,按对发电机并列运行暂态稳定性影响从 大到小排序,应为(2)。B 、三相短路、两相短路接地、两相短路、单相接地短路; 6、发电机-变压器单元接线,变压器高压侧母线上短路时,短路电流冲击系数应取(2)。B 、1.8; 7、电力系统在事故后运行方式下,对并列运行静态稳定储备系数(%)P K 的要求是(3)。C 、(%)P K ≧10。 8、下述各组中,完全能够提高电力系统并列运行暂态稳定性的一组是(2)。 B 、变压器中性点经小电阻接地、线路装设重合闸装置、快速切除线路故障; 9、对于三相三柱式变压器,其正序参数、负序参数和零序参数的关系是(2)。 B 、正序参数与负序参数相同,与零序参数不同; 10、分析计算电力系统并列运行静态稳定性的小干扰法和分析计算电力系统并列运行暂态稳定性的分段计算法,就其实质 而言都是为了求(1)。A 、t -δ 曲线 1、计算12MW 以上机组机端短路冲击电流时,短路电流冲击系数应取(2)。 B 、1.9; 2、发电机三相电压为:)sin(αω+=t U u m a 、)120sin(0-+=αωt U u m b ,)120sin(0++=αωt U u m c ,如将短路发生时刻 作为时间的起点(0=t ) ,当短路前空载、短路回路阻抗角为800(感性)时,B 相短路电流中非周期分量取得最大值的条件是(2) B 、0110=α; 3、具有阻尼绕组的凸极式同步发电机,机端发生三相短路时,电磁暂态过程中定子绕组中存在(1)。 A 、基频交流分量、倍频分量和非周期分量; 4、中性点直接接地系统中发生不对称短路时,故障处短路电流中(3)。 C 、可能存在,也可能不存在零序分量,应根据不对称短路类型确定。 5、在中性点直接接地的电力系统中,如电力系统某点不对称短路时的正序电抗、负序电抗和零序电抗的关系为)2()1() 0(22∑∑∑==Z Z Z , 则该点发生单相接地短路、两相短路、两相短路接地和三相短路时,按故障处正序电压从大到小的故障排列顺序是(3)。 C 、单相接地短路、两相短路、两相短路接地、三相短路。 6、中性点不接地系统中,同一点发生两相短路和两相短路接地两种故障情况下,故障相电流的大小关系为(1)。 A 、相等; 7、电力系统中,f 点发生两相经过渡阻抗Z f 短路时,正序增广网络中附加阻抗?Z 为(2) B 、f Z Z +∑)2(; 8、电力系统两相断线时的复合序网在形式上与(1)的复合序网相同。A 、单相金属性接地短路; 9、电力系统的暂态稳定性是指电力系统在受到(2)作用时的稳定性。B 、大干扰; 10、切除双回输电线路中的一回,对电力系统的影响是(2)。 B 、既会降低电力系统并列运行的静态稳定性,也会降低电力系统并列运行的暂态稳定性; 判断: 1、变压器中性点经小电阻接地可以提高接地短路情况下电力系统并列运行的暂态稳定性。(√) 2、对称分量法不能用于非线性电力网的不对称短路分析。(√) 3、不管电力系统中性点采用什么样的运行方式,其零序等值电路都是一样的。(╳) 4、在)0()2() 1(∑∑∑==x x x 的情况下,三相短路与单相接地短路时故障相的短路电流相同,因此它们对于电力系统并列运行暂态稳定性的影 响也相同。(╳) 5、输电线路采用单相重合闸与采用三相重合闸相比较,单相重合闸更有利于提高单相接地短路情况下电力系统并列运行的暂态稳定性。(√)

大动态负载对电力系统稳定性的影响分解

1大动态负载对电力系统稳定性的影响 摘要 本文主要研究的是影响电力系统稳定性的关键参数,分析一个拥有无穷大总线系统的单机和一个负载的大型多机系统。为了进一步探讨动态负载对电力系统稳定性的影响,对传统和现代的线性控制器进行了有效性测试,比较了负载变化。本文的分析突出了一个事实,即阻尼对动态负载有实质影响。 介绍 负载在电力系统的电压稳定性中发挥了重要的作用。负载由不同的负载组件以及不断变化的负载组成,由于时间、天气的变化,以及参数的不确定等特性,使它很难被精确地开展模拟负载稳定性的研究。机电振荡和电压振荡对同步发电机的稳定性和系统安全运行的负荷是必要的,因为不安全的系统中可能产生非周期级联干扰或断电,产生严重的后果。近年来世界各地的电网发生了许多停电事故,可以归结于设备出现故障、过载、雷击、或不寻常的操作等原因。 从20世纪20年代开始,对于电力系统工程师来说,负载一直是电力系统安全运行的一个重大挑战。对电源安全的基本要求,他们也进行了多种系统操作的尝试,探寻多种机器的负载、机器的转动惯量和系统外部阻抗决定震荡和阻尼特点,力求减小电压或速度对机械转矩的干扰。基于这种现象,许多评估电力系统的稳定性的技术已经被提出。现在已经有一个被广泛应用于电力行业的稳定器(PSS)。PSS的设计提出了一些改进的方法,具有较大的抗干扰能力。基于傅立叶定律的变换法被认为是研究电力系统安全运行的重要方法。最近,一个协调PSS的设计方法被提出。在其中电力系统主要考虑的是单机无穷大(SMIB)系统或者多机系统和非线性控制技术,用于确保电力系统操作的安全性。一些非线性控制技术也的提出也使单机无穷大总线系统(SMIB)或一个多机系统比传统的线性控制器能获得更好的效果。 大部分文献中提到,提供稳定负载的电力系统被视为恒定阻抗负载。近些年来,研究动态或静态的负载特性对电力系统稳定性的影响、分析合理负载等不同的研究目的备受关注且投入日益巨大。 1《电力和能源系统》44期,(2013)357-363。M.A. Mahmud, M.J. Hossain, H.R. Pota

电力系统暂态稳定实验

电力系统暂态稳定实验 一、实验目的 1 ?通过实验加深对电力系统暂态稳定内容的理解,使课堂理论教学与实践结合,提高学生的感性认识。 2?学生通过实际操作,从实验中观察到系统失步现象和掌握正确处理的措施 3?用数字式记忆示波器测出短路时短路电流的非周期分量波形图,并进行分析。 二、原理与说明 电力系统暂态稳定问题是指电力系统受到较大的扰动之后,各发电机能否继续保持同步运行的问题。在各种扰动中以短路故障的扰动最为严重。 正常运行时发电机功率特性为:P1=( Eo x Uo)x sin S i/X1 ; 短路运行时发电机功率特性为:P2=( Eo x Uo)x sin S 2X2 ; 故障切除发电机功率特性为:P3 =( Eo x Uo)x sin S 3/X3 ; 对这三个公式进行比较,我们可以知道决定功率特性发生变化与阻抗和功角特性有关。而系统保持稳定条件 是切除故障角S c小于S max S max可由等面积原则计算出来。本实验就是基于此原理,由于不同短路状态下,系统阻抗X2不同,同时切除故障线路不同也使X3不同,S max也不同,使对故障切除的时间要求也不同。 同时,在故障发生时及故障切除通过强励磁增加发电机的电势,使发电机功率特性中Eo增加,使S max增加,相应故障切除的时间也可延长;由于电力系统发生瞬间单相接地故障较多,发生瞬间单相故障时采用自动重 合闸,使系统进入正常工作状态。这二种方法都有利于提高系统的稳定性。 三、实验项目与方法 (一)短路对电力系统暂态稳定的影响 1 ?短路类型对暂态稳定的影响 本实验台通过对操作台上的短路选择按钮的组合可进行单相接地短路,两相相间短路,两相接 地短路和三相短路试验。 固定短路地点,短路切除时间和系统运行条件,在发电机经双回线与“无穷大”电网联网运行时,某一回线发生某种类型短路,经一定时间切除故障成单回线运行。短路的切除时间在微机保护装置中设定,同时要设定重合闸是否投切。 在手动励磁方式下通过调速器的增 (减)速按钮调节发电机向电网的出力,测定不同短路运行时能保持系统稳定时发电机所能输出的最大功率,并进行比较,分析不同故障类型对暂态稳定的影响。将实验结果与理论分析结果进行分析比较。P max为系统可以稳定输出的极限,注意观察有功表 的读数,当系统出于振荡临界状态时,记录有功表读数,最大电流读数可以从YHB-川型微机保护 装置读出,具体显示为: GL- 三相过流值 GA- A相过流值

《电力系统分析》期末试卷

2017 — 2018 学年 第 二 学期 机电工程学院(系)15级电气工程及其自动化专业1、2班 《电力系统分析》期末试卷 注意事项: 一、单项选择题。(共50分,每小题2分) 1、下列说法不正确的是( )。 A. 电力系统中性点运行方式主要有中性点直接接地和中性点不接地两种。 B. 中性点直接接地系统一相接地时必须迅速切除三相。 C. 中性点不接地系统中一相接地时可短时间运行,不必迅速切除接地相。 D. 直接接地系统对绝缘水平的要求高,不接地系统对绝缘水平的要求低。 2、架空输电线路全换位的目的是( )。 A. 使三相线路的电阻参数相等 B. 使三相线路的电抗和电纳参数相等

C. 减小线路电抗 D. 减小线路电阻 3、下列说法不正确的是()。 A. 所谓一般线路,是指中等及中等以下长度的线路 B. 短线路是指长度不超过300km的架空线 C. 中长线路是指长度在100~300km之间的架空线路和不超过100km 的电缆线路 D. 长线路指长度超过300km的架空线路和超过100km的电缆线路 4、用来支持或悬挂导线并使导线与杆塔绝缘的器件是( ) 。 A. 杆塔 B. 金具 C. 绝缘子 D. 保护包皮 5、架空输电线路的电抗与导线之间几何平均距离的关系为()。 A. 几何平均距离越大,电抗越大 B. 几何平均距离越大,电抗越小 C. 输电线路的电抗与几何平均距离无关 D. 改变导线之间的几何平均距离可以明显改变线路的电抗 6、双绕组变压器的电抗()。 A. 可由空载损耗计算 B. 可由短路电压百分值计算 C. 可由短路损耗计算 D. 可由空载电流百分值计算 7、电力网络的无备用接线不包括()。 A. 单回路放射式 B. 单回路干线式 C. 单回路链式网络 D. 两端供电网络 8、关于电力系统等值电路参数计算时,变压器变比的选择,下述说法中正确的是()。 A. 精确计算时采用实际变比,近似计算时采用平均额定变比 B. 近似计算时,采用实际变比;精确计算时采用平均额定变比 C. 不管是精确计算还是近似计算均应采用额定变比 D. 不管是精确计算还是近似计算均应采用平均额定变比 9、变压器的运算负荷是()。 A. 变压器付方功率加上变压器阻抗的功率损耗 B. 变压器付方功率加上变压器导纳的功率损耗 C. 变压器副方功率加上变压器阻抗和导纳的功率损耗 D. 在C的基础上,再加上变压器所联线路导纳中的功率 10、三类节点中,只有一个且必须有一个的是()。 A.P-Q节点 B.P-V节点 C.平衡节点 D.都不是 11、对于输电线路,当P2R+Q2X<0时,首端电压与末端电压之间的关系

电力系统暂态分析(第四版)考试重点总结

第一章 电力系统故障分析的基础知识 1.(短路)故障 电力系统中相与相之间或相与地之间的非正常连接 类型 横向故障:短路故障;纵向故障:断线故障 危害 (1)短路时,由于回路阻抗减小及突然短路时的暂态过程,使短路电流急剧增加(短路 点距发电机电气距离愈近,短路电流越大) (2)短路初期,电流瞬时值最大,将引起导体及绝缘的严重发热甚至损坏;同时电气设备 的导体间将受到很大的电动力,可能引起导体或线圈变形以致损坏 (3)引起电网电压降低,靠近短路点处电压下降最多,影响用户用电设备的正常工作 (4)改变电网结构,引起系统中功率分布的变化,从而导致发电机输入输出功率的不平 衡,可能引起并列运行的发电机失去同步,破坏系统稳定,造成系统解列,引起大 面积停电(短路造成的最严重后果) (5)短路不平衡电流产生不平衡磁通,造成对通信系统的干扰 2.标幺值的计算 P6 3.无穷大功率电源 电源的电压和频率保持恒定,内阻抗为零 三相短路电流分量(1)稳态对称交流分量(2)衰减直流分量(衰减时间常数T a =L/R ,空载条件下短 路角满足/α - ? /=90 ? 时,直流分量起始值最大) 短路冲击电流 i M = K M I m ,K M :冲击系数 K M =1~2 短路电流最大有效值 ()2M m M 1-K 212 I +=I ; K M =1.8时,??? ??=252.1m I I M ;K M =1.9时,??? ? ?=262.1m I I M 第二章 同步发电机突然三相短路分析 1.三相短路电流分量 定子侧:直流分量,(近似)两倍基频交流分量,基频交流分量(两个衰减时间常数,暂态T d ''、次暂态T d ')转子侧:直流分量,基频交流分量 (暂态过程中,定子绕组中基频交流分量和转子中直流分量衰减时间常数相同,定子侧直流分 量和转子中基频交流分量衰减时间常数相同) 2.分析中引入的物理量及其物理意义 P27-P34 3.基频交流分量初始值的推导 (1)空载P34(2)负载P41 4.Park 变换 交流量→对称直流分量 将静止的abc 三相绕组中的物理量变换为旋转的dq0等值绕组中的物理量 5.空载短路电流表达式 P68 式(2-131) ()()000000'002t cos 1'12cos 1'12t cos 'θθθ+??? ??--??? ??+-+??????+??? ??-=---a a d T t q d q T t q d q d q T t d q d q a e x x E e x x E x E e x E x E i 6.自动调节励磁装置对短路电流的影响 自动调节励磁装置的动作将会使短路电流的基频交流分量增大,但由于励磁电流的增加是 一个逐步的过程,因而短路电流基频交流分量的初始值不会受到影响 第三章 电力系统三相短路电流的实用计算 1.简单系统短路电流交流分量初始值计算P82 2.计算机计算复杂系统短路电流交流分量初始值的原理及计算过程 P95 3.转移阻抗 即消去中间节点后网形网络中电源与短路点间的连接阻抗 第四章 对称分量法及电力系统元件的各序参数和等值电路 1.对称分量法 将三组不对称电流唯一地分解成三组对称的电流来处理 正序(1):幅值相等,相位相差 ,a 超前b 负序(2):幅值相等,相位与正序相反 零序(0):幅值相位相同 ()()()()()()()()()?????++=++=++=021021021c c c c b b b b a a a a F F F F F F F F F F F F ()()()???? ????????????????=??????????0a 2a 1a 22c b a 1a 1a 111F F F a a F F F

简单电力系统暂态稳定性计算与仿真

中南大学CENTRAL SOUTH UNIVERSITY 本科毕业论文(设计) 论文题目简单电力系统暂态稳定性计算与仿真 学生姓名李妞妞 指导老师 学院中南大学继续教育学院 专业班级电气工程及其自动化2014专升本 完成时间2016年5月1日

毕业论文(设计)任务书 函授站(点): 江西应用工程职业学院继续教育分院专业: 电气工程及其自动化 注:本任务书由指导教师填写并经审查后,一份由学生装订在毕业设计(论文)的封面之后,原件存函授站。

毕业设计(论文)成绩单

摘要 随着电力工业的迅速发展,电力系统的规模日益庞大和复杂,出现的各种故障,会给发电厂以及用户和电厂内的多种动力设备的安全带来威胁,并有可能导致电力系统事故的扩大,从技术和安全上考虑直接进行电力试验可能性很小,迫切要求运用电力仿真来解决这些问题,依据电网用电供电系统电路模型要求,因此,论文利用MATLAB 的动态仿真软件Simulink搭建了单机—无穷大电力系统的仿真模型,能够满足电网可能遇到的多种故障方面运行的需要。 论文以MATLAB R2009b电力系统工具箱为平台,通过SimPowerSyetem 搭建了电力系统运行中常见的单机—无穷大系统模型,设计得到了在该系统发生各种短路接地故障并故障切除的仿真结果。 本文做的主要工作有: (1)Simulink下单机—无穷大仿真系统的搭建 (2)系统故障仿真测试分析 通过实例说明,若将该方法应用到电力系统短路故障的诊断中,快速实现故障的自动诊断、检测,对于提高电力系统的稳定性具有十分重要的意义。 关键词:电力系统;暂态稳定;MATLAB;单机—无穷大;

电力系统暂态稳定性

10 电力系统暂态稳定性 10. 1习题 1) 什么是电力系统暂态稳定性? 2)电力系统大扰动产生的原因是什么? 3)为什么正常、短路、短路切除三种状态各自的总电抗不同?对单机无限大供电系统为什么Ⅰ<Ⅲ<Ⅱ?PⅠ·max>PⅢ·max>PⅡ·max? 4)短路情况下Ⅱ如何计算? 5)什么是加速面积?什么是减速面积?什么是等面积定则? 6)单机无限大供电系统,设系统侧发生三相短路,试问短路时功率极限是多少? 7)什么是极限切除角? 8)若系统发生不对称短路,短路切除后最大可能减速面积大于短路切除前的加速面积,系统能否暂态稳定?若最大可能减速面积小于加速面积发生什么不稳定? 9)分段法中t=0时和故障切除时过剩功率如何确定? 10)写出分段法的计算步骤。 11)为什么说欧拉法是折线法?每段折线如何确定? 12)改进欧拉法在何处做了改进? 13)写出改进欧拉法的计算步骤。 14)用图解说明单相自动重合闸为什么可以提高暂态稳定性? 15)试说明快关汽轮机汽门、连锁切机有何相同与不同? 16)提高电力系统暂态稳定的具体措施有哪些种?原理是什么? 17)提高电力系统暂态稳定的措施在正常运行时是否投入运行? 18)解列点的选择应满足什么要求? 19)异步运行时为什么系统需要有充足的无功功率?什么是振荡中心? 设已知系统短路前、短路时、短路切除后三种情况的以标幺值表示的功角特性曲线:=2、=0.5、=1.5及输入发电机的机械功率=1。 求极限切除角。 20)供电系统如图10- 1所示,各元件参数: 发电机G:P N=240MW,U N=10.5kV,,,X2=0.44,T J =6S,发 电机G电势以E‘表示;变器T1的S N为300MVA,U N为10.5/242kV,X T1=0.14 T2的S N为 280MVA,U N为220/121kV,X T2=0.14电力线路长l=230km每回单位长度的正序电抗X1= 0.42Ω/km,零序电抗X0=4X1。 P=220MW

电力系统暂态分析试卷及答案5套..-共10页

电力系统暂态分析试卷(1) 一、(25分)简答 1.什么是电力系统短路故障?故障的类型有哪些? 2.列出电力系统的各电压等级对应的平均额定电压? 3.同步发电机三相短路时为什么要进行派克变换? 4.分裂电抗的作用是什么? 5.简述运算曲线法计算三相短路电流的步骤。 二、(15分)下图为一无穷大功率电源供电系统,设在K点发生三相短路,如果设计要求 通过电源的冲击电流不得超过30 KA,问并行敷设的电缆线路最多容许几条? (K M=1.8) 三、(15分)某系统接线及各元件参数如上图所示,设在 f 点发生三相短路。若选S B=100 MV A,U B=U av,试计算: (1) 电源G及系统S对f 点的转移电抗x Gf、 x Sf。 (2) 如果根据运算曲线查得t = 0.2 秒时电源G的短路电流标么值为I G02.''=2.6, 则t = 0.2 秒时短路点总电流的有名值是多少? 四、(10分)系统接线如图所示, 当f 点发生不对称接地短路故障时, 试作出相应的各序 等值网络。(略去各元件电阻和所有对地导纳及变压器励磁导纳)

五、(10分)如图所示系统,电抗为归算到统一基准值下的标么值(S B =100MVA ,U B =平均额定 电压),用正序等效定则计算以下各种情况短路时,短路点的A 相正序电流有名值,(1)三相短路;(2)A 相接地短路; 六、(10分)如图所示系统,求发电机电势E q 和静态稳定储备系数K p ?(注:图中参 数为归算到统一基准值下的标么值S B =100MV A ,U B =平均额定电压) 七、(15分)有一简单系统,已知发电机参数2.0='d x ,E? =1.2,原动机功率P T =1.5,线路 参数如图所示,无穷大电源电压000.1∠=c U ,如果开关K 突然合上,电容电抗Xc=0.3 试判断该系统能否保持暂态稳定?

matlab实验电力系统暂态稳定分析

实验三 电力系统暂态稳定分析 电力系统暂态稳定计算实际上就是求解发电机转子运动方程的初值问题,从而得出δ-t 和ω-t 的关系曲线。每台发电机的转子运动方程是两个一阶非线性的常微分方程。因此,首先介绍常微分方程的初值问题的数值解法。 一、 常微分方程的初值问题 (一)问题及求解公式的构造方法 我们讨论形如式(3-1)的一阶微分方程的初值问题 ?? ?=≤≤='00 )(),,()(y x y b x a y x f x y (3-1) 设初值问题(3-1)的解为)(x y ,为了求其数值解而采取离散化方法,在求解区间[b a ,]上取一组节点 b x x x x x a n i i =<<<<<<=+ 110 称i i i x x h -=+1(1,,1,0-=n i )为步长。在等步长的情况下,步长为 n a b h -= 用i y 表示在节点i x 处解的准确值)(i x y 的近似值。 设法构造序列{}i y 所满足的一个方程(称为差分方程) ),,(1h y x h y y i i i i ??+=+ (3-2) 作为求解公式,这是一个递推公式,从(0x ,0y )出发,采用步进方式,自左相右逐步算出)(x y 在所有节点i x 上的近似值i y (n i ,,2,1 =)。 在公式(3-2)中,为求1+i y 只用到前面一步的值i y ,这种方法称为单步法。在公式(3-2)中的1+i y 由i y 明显表示出,称为显式公式。而形如(3-3) ),,,(11h y y x h y y i i i i i ++?+=ψ (3-3) 的公式称为隐式公式,因为其右端ψ中还包括1+i y 。 如果由公式求1+i y 时,不止用到前一个节点的值,则称为多步法。 由式(3-1)可得 dy =dx y x f ),( (3-4) 两边在[i x ,1+i x ]上积分,得

动态电力系统分析复习题

动态电力系统分析复习题 1. 理想电机 (P1) 满足以下假定条件的电机称为理想电机: (1)电机磁铁部分的磁导率为常数,既忽略调磁滞、磁饱和的影响,也不计涡流及集肤作用等的影响。 (2)对纵轴及横轴而言,电机转子在结构上是完全对称的。 (3)定子的3个绕组的位置在空间互相相差120°电角度。3个绕组在结构上完全相同。同时,它们均在气隙中产生正弦形分步的磁动势。 (4)定子及转子的槽及通风沟等不影响电机定子及转子的电感,即认为电机的定子及转子具有光滑的表面。 2. 在同步发电机模型中,一般考虑哪些阻尼绕组 (P2) 在d 轴上的一个等值阻尼绕组D ; 在q 轴上的一个等值阻尼绕组Q 。 3. 列写出发电机abc 和dq0坐标下的电压平衡方程式。 (P3)、(P15) abc 坐标轴下: ??? ??-ψ=-ψ=-ψ=c a c c b a b b a a a a i r p u i r p u i r p u f f f f D D D D Q Q Q Q u p r i u p r i u p + r i ?=ψ+? =ψ+??=ψ? 合并成 ri p u +ψ= 式中 dt d p = ()T Q D f c b a u u u u u u ,,,,,u = ()T Q D f c b a ψψψψψψ=ψ,,,,, ()Q D f c b a r r r r r r diag ,,,,,r = () T Q D f c b a i i i i i i ,,,,,i ---= dq0坐标轴下: ??????-??????+????? ?+??????ψψ=??????fDQ dq fDQ dq i i r r 0S p u u 00dq0fDQ dq0fDQ dq0 式中 ()T d q 00S ,,ψψ-=ωωdq 4. 在同步发电机方程中,采用PARK 变换的目的是什么 (P9) 派克变换可以使我们通过等值变换,立足于d 和q 旋转坐标观察电机的电磁现象,从而能极好地适应转子的旋转以及凸极效应。经派克变换后所得的dq0坐标下的同步电机基本方程中的电感参数均为定常值,大大地有助于分析电机暂态过程的机理及有利于实用计算,从而在电机过渡过程分析及大规模电力系统动态分析中取得了广泛的应用。 5. PARK 变换及逆变换公式 (P12) 完整的经典派克变换: ? ???? ??????????? ???? ???? ---=???? ??????c b a c b a c b a q d f f f f f f 212 12 1sin sin sin cos cos cos 320θθθ θθθ 或记作 abc dq0Df f = 完整的经典派克变换的逆变换: ???? ? ???????????? ???---=??????????0b 1sin cos 1sin cos 1sin cos f f f f f f q d c c b a a c b a θθθθ θθ 或记作 dq0-1abc f D f = 6. 列写出发电机abc 和dq0坐标下的功率方程式。 (P7)、(P18)

电力系统暂态分析考试试题

电力系统暂态分析考试试题 (时间100分钟,满分100分) 一、判断题(下述说法是否正确,在你认为正确的题号后打“√”,错误的打“×”,每小题1分,共10分) 1、分析电力系统并列运行稳定性时,不必考虑负序电流分量的影响。() 2、任何不对称短路情况下,短路电流中都包含有零序分量。() 3、发电机中性点经小电阻接地可以提高和改善电力系统两相短路和三相短路时并列运行的暂态稳定性。() 4、无限大电源供电情况下突然发生三相短路时,短路电流中的周期分量不衰减,非周期分量也不衰减。() 5、中性点直接接地系统中,发生几率最多且危害最大的是单相接地短路。() 6、三相短路达到稳定状态时,短路电流中的非周期分量已衰减到零,不对称短路达到稳定状态时,短路电流中的负序和零序分量也将衰减到零。() 7、短路电流在最恶劣短路情况下的最大瞬时值称为短路冲击电流。() 8、在不计发电机定子绕组电阻的情况下,机端短路时稳态短路电流为纯有功性质。() 9、三相系统中的基频交流分量变换到系统中仍为基频交流分量。() 10、不对称短路时,短路点负序电压最高,发电机机端正序电压最高。() 二、单项选择题(在每小题的三个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。每小题2分,共20分) 1、近似计算法中,变压器的变比应采用()。 A、实际变比; B、额定变比; C、平均额定变比。 2、电力系统一相断线时的复合序网在形式上与()的复合序网相同。 A、单相接地短路; B、两相短路接地; C、两相短路。 3、电力系统的复杂故障是指()。 A、横向故障; B、纵向故障; C、电力系统中不同地点同时发生不对称故障。 4、如三相短路瞬间A相非周期电流起始值为最大值,则B、C两相非周期分量电流起始值()。 A、大小相等,均等于A相非周期分量的一半; B、大小相等,均等于零; C、大小不相等。 5、下图所示网络中,f点发生三相短路时,关于短路点右侧网络中的电流正确的说法是()。 A、不存在电流; B、过渡过程中存在电流; C、电流始终存在。

电力系统暂态分析模拟考试试题

电力系统暂态分析模拟考试试题 (时间100分钟,满分100分) 一、判断题(下述说法是否正确,在你认为正确的题号后打“√”,错误的打“×”,每小题1分,共10分) 1、分析电力系统并列运行稳定性时,不必考虑负序电流分量的影响。() 2、任何不对称短路情况下,短路电流中都包含有零序分量。() 3、发电机中性点经小电阻接地可以提高和改善电力系统两相短路和三相短路时并列运行的暂态稳定性。() 4、无限大电源供电情况下突然发生三相短路时,短路电流中的周期分量不衰减,非周期分量也不衰减。() 5、中性点直接接地系统中,发生几率最多且危害最大的是单相接地短路。() 6、三相短路达到稳定状态时,短路电流中的非周期分量已衰减到零,不对称短路达到稳定状态时,短路电流中的负序和零序分量也将衰减到零。() 7、短路电流在最恶劣短路情况下的最大瞬时值称为短路冲击电流。() 8、在不计发电机定子绕组电阻的情况下,机端短路时稳态短路电流为纯有功性质。() 9、三相系统中的基频交流分量变换到系统中仍为基频交流分量。() 10、不对称短路时,短路点负序电压最高,发电机机端正序电压最高。() 二、单项选择题(在每小题的三个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。每小题2分,共20分) 1、近似计算法中,变压器的变比应采用()。 A、实际变比; B、额定变比; C、平均额定变比。 2、电力系统一相断线时的复合序网在形式上与()的复合序网相同。 A、单相接地短路; B、两相短路接地; C、两相短路。 3、电力系统的复杂故障是指()。 A、横向故障; B、纵向故障; C、电力系统中不同地点同时发生不对称故障。 4、如三相短路瞬间A相非周期电流起始值为最大值,则B、C两相非周期分量电流起始值()。 A、大小相等,均等于A相非周期分量的一半; B、大小相等,均等于零; C、大小不相等。 5、下图所示网络中,f点发生三相短路时,关于短路点右侧网络中的电流正确的说法是()。 A、不存在电流; B、过渡过程中存在电流; C、电流始终存在。 6、同步发电机直轴电抗三者之间的大小关系为()。

电力系统暂态稳定分析方法综述

电力系统暂态稳定分析方法综述 摘要保持电力系统稳定性是电力系统正常运行的基本前提,因此,快速、准确地分析电力系统在扰动下的稳定情况非常重要。本文主要介绍了两大类电力系统暂态稳定分析方法:时域仿真法和直接法,并分析了各自的优缺点。此外还简要介绍了一些暂态稳定分析的其他方法。 关键词暂态稳定分析时域仿真法能量函数法概率评估神经网络 1 引言 电力系统是世界上最复杂的人工系统,由大量不同性质的元件组成,分布范围极广,随时可能受到各种扰动,不稳定因素多,而保持电力系统稳定性是电力系统正常运行的基本要求。近年来,随着系统容量越来越大,输电电压等级逐级升高,高压直流电技术和FACTS技术的广泛应用,更是大大增加了系统的复杂性;另一方面,现代社会对于供电可靠性的要求也越来越高,电力系统一旦发生事故,后果将非常严重。因此,快速、准确地分析电力系统在扰动下的稳定情况显得尤为重要。 电力系统稳定性可以概括的定义为:电力系统能够运行于正常条件下的平衡状态,并在遭受干扰后能够恢复到可容许的平衡状态的特性。一般而言,电力系统稳定性是指功角稳定性或同步稳定性,即电力系统中互联的同步电机保持同步的能力。按照系统所受扰动的大小,功角稳定性可分为静态稳定性和暂态稳定性。本文主要讨论电力系统暂态稳定性的分析方法。所谓暂态稳定性是指电力系统在受到一个大的扰动(如短路、切除大容量发电机或某些负荷的突然变化等)后,能从原来的运行状态(平衡点),不失同步地过渡到新的运行状态,并在新运行状态下稳定地运行。 简单电力系统的暂态稳定分析是较容易的,一般采用等面积定则来判定其暂态稳定性。但对于复杂电力系统而言,由于系统受到扰动后的暂态过程十分复杂,要计算功角随时间变化的曲线要比简单电力系统困难得多。目前关于复杂电力系统暂态稳定分析的基本方法大体可分为两类。一类是时域仿真法,列出描述系统暂态过程的微分方程和代数方程组后,用数值积分的方法进行求解,然后根据发电机转子间相对角度的变化情况来判断稳定性。另一类是直接法,主要是利用李雅普诺夫法构造能量函数进行稳定性判定。此外还有一些其他方法,如基于概率的评估方法、基于人工神经网络的方法等。本文以下各章将对复杂电力系统的各

相关主题
文本预览
相关文档 最新文档