当前位置:文档之家› CP1H脉冲控制G伺服速度,模拟量控制G伺服扭矩

CP1H脉冲控制G伺服速度,模拟量控制G伺服扭矩

CP1H脉冲控制G伺服速度,模拟量控制G伺服扭矩
CP1H脉冲控制G伺服速度,模拟量控制G伺服扭矩

脉冲信号控制伺服电机转速,模拟量控制扭矩一.脉冲信号控制伺服电机转速

1.实验设备

○1.CP1H-XA40DT-D

○2.R88M-G20030H-Z

○3.R88D-GT02H-Z

○4.XW2Z-100J-B24

○5.XW2B-50G5

2.设备接线

○1.CP1H脉冲输出接线

○2.G伺服脉冲输入接线

3.参数设定

○1.G伺服参数设置

Pn02=0 (位置控制)

Pn41=0 (根据指令脉冲方向旋转电机)

Pn42=1 (脉冲模式:正转脉冲/反转脉冲)

○2.PLC设置

使用脉冲输出0

4.实验过程

○1.实验使用CP1H脉冲输出0控制一路伺服电机运动,G伺服CN1端子4和6分别接CP1H的100.00和100.02;XW2Z-100J-B24两端分别连接驱动器和XW2B-50G5接线端子;

○2.在程序中使用SPED指令控制脉冲的方向和个数,使用INI指令使电机停止;

○3.由于电机有正,反转两个方向,因此需使用两条SPED指令,以及去反指令

二.模拟量控制电机扭矩

1.实验设备

○1.CP1H-XA40DT-D

○2.R88M-G20030H-Z

○3.R88D-GT02H-Z

○4.XW2Z-100J-B24

○5.XW2B-50G5

2.设备接线

○1.CP1H模拟量接线

○2.连接G伺服驱动器CN1,端子16,17,18接线

3.参数设定

○1.伺服参数Pn03=0;

○2.Pn5C=10 (模拟量与扭矩的比例值);

PLC内置A/D,D/A设置为-10V~+10V输出输入,分辨率为6000

4.实验过程

○1.伺服驱动器CN1端子16和18分别接CP1H的模拟量输出+,-;模拟量为-10V~+10V,17接模拟量地;

○2.将模拟量输出0接入模拟量输入0中,使用+10V~-10V的模拟量量程,其中0V~+10V控制电机正转时扭矩,-10V~0V控制电机反转时扭矩,模拟量量程为6000。

○3.由于电机有正,反转两个方向,因此需使用两条SPED指令,以及取反指令,同时输出正,负两种模拟量信号。

5.实验结果

设定伺服比例值为0%~100%,面板显示扭矩值,根据给定的模拟量以及电机额定扭矩比例换算,当模拟量输出变化,电机的转矩限制也随之变化。

张力控制原理介绍

第二章 张力控制原理介绍 2.1 典型收卷张力控制示意图 2

2.2 张力控制方案介绍 对张力的控制有两个途径,一是可控制电机的输出转矩,二是控制电机转速,对应这两个途径,MD330设计了两种张力控制模式。 1、开环转矩控制模式 开环是指没有张力反馈信号,变频器仅靠控制输出频率或转矩即可达到控制目的,与开环矢量或闭环矢量无关。转矩控制模式是指变频器控制的是电机的转矩,而不是频率,输出频率是跟随材料的速度自动变化。 根据公式F=T/R(其中F为材料张力,T为收卷轴的扭矩,R为收卷的半径),可看出,如果能根据卷径的变化调整收卷轴的转矩,就可以控制材料上的张力,这就是开环转矩模式控制张力的根据,其可行性还有一个原因是材料上的张力只来源于收卷轴的转矩,收卷轴的转矩主要作用于材料上。 MD系列变频器在闭环矢量(有速度传感器矢量控制)下可以准确地控制电机输出转矩,使用这种控制模式,必须加装编码器(变频器要配PG卡)。 2、与开环转矩模式有关的功能模块: 1)张力设定部分:用以设定张力,实际使用中张力的设定值应与所用材料、卷曲成型的要求等实际情况相对应,需由使用者设定。张力锥度可以控制张力随卷径增加而递减,用于改善收卷成型的效果。 2)卷径计算部分:用于计算或获得卷径信息,如果用线速度计算卷径需用到线速度输入功能部分,如果用厚度累计计算卷径需用到厚度累计计算卷径相关参数功能部分。 3)转矩补偿部分:电机的输出转矩在加减速时有一部分要用来克服收(放)卷辊的转动惯量,变频器中关于惯量补偿部分可以通过适当的参数设置自动地根据加减速速率进行转矩补偿,使系统在加减速过程中仍获得稳定的张力。摩 3

伺服电机原理及选型.

什么是伺服电机? 伺服电机:是在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。伺服电机是可以连续旋转的电-机械转换器。作为液压阀控制器的伺服电机,属于功率很小的微特电机,以永磁式直流伺服电机和并激式直流伺服电机最为常用。 伺服电机的作用:伺服电机可使控制速度,位置精度非常准确。 伺服电机的分类:直流伺服电机和交流伺服电机。 直流伺服电机的输出转速与输入电压成正比,并能实现正反向速度控制。具有起动转矩大,调速范围宽,机械特性和调节特性的线性度好,控制方便等优点,但换向电刷的磨损和易产生火花会影响其使用寿命。近年来出现的无刷直流伺服电机避免了电刷摩擦和换向干扰,因此灵敏度高,死区小,噪声低,寿命长,对周围电子设备干扰小。 直流伺服电机的输出转速/输入电压的传递函数可近似视为一阶迟后环节,其机电时间常数一般大约在十几毫秒到几十毫秒之间。而某些低惯量直流伺服电机(如空心杯转子型、印刷绕组型、无槽型的时间常数仅为几毫秒到二十毫秒。 小功率规格的直流伺服电机的额定转速在3000r/min以上,甚至大于 10000r/min。因此作为液压阀的控制器需配用高速比的减速器。而直流力矩伺服电机(即低速直流伺服电机可在几十转/分的低速下,甚至在长期堵转的条件下工作,故可直接驱动被控件而不需减速 直流伺服电机分为有刷和无刷电机。 有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷,产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。

无刷电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。控制复杂,容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护,效率很高,运行温度低,电磁辐射很小,长寿命,可用于各种环境。 交流伺服电机也是无刷电机,分为同步和异步电机,目前运动控制中一般都用同步电机,它的功率范围大,可以做到很大的功率。大惯量,最高转动速度低,且随着功率增大而快速降低。因而适合做低速平稳运行的应用。 交流伺服电机的工作原理 伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数。 交流伺服电机和无刷直流伺服电机在功能上有什么区别? 交流伺服要好一些,因为是正弦波控制,转矩脉动小。直流伺服是梯形波。但直流伺服比较简单,便宜。 永磁交流伺服电动机 20世纪80年代以来,随着集成电路、电力电子技术和交流可变速驱动技术的发展,永磁交流伺服驱动技术有了突出的发展,各国著名电气厂商相继推出各自的交流伺服电动机和伺服驱动器系列产品并不断完善和更新。交流伺服系统已成为当代高性能伺服系统的主要发展方向,使原来的直流伺服面临被淘汰的危机。90年代以后,世界各国已经商品化了的交流伺服系统是采用全数字控制的正弦波电动机伺服驱动。交流伺服驱动装置在传动领域的发展日新月异。永磁交流伺服电动机同直流伺服电动机比较,主要优点有: ⑴无电刷和换向器,因此工作可靠,对维护和保养要求低。 ⑵定子绕组散热比较方便。

台达位置与扭矩模式伺服电机文档

一.扭矩模式 1.说明:此扭矩模式是用于外部控制器控制输入给伺服器的电 压来实现电机扭矩大小的输出。 2.接线:将控制器控制的能输出可变电压的引脚直接连接到 CN1的18引脚,将控制器的GND与伺服器CN1的19脚连接 3.参数设定: P2-15,P2-16,P2-17都设定为0,消除初始状态下AL013 的预警状态。 P1-01:03,将电机设定为转矩模式 P1-02:01,速度限制,电机在没有负载的情况下会转很快 P1-07:500,设置电机加减速的时间,减少通电与断电的时 对于轴与外设的冲击 P1-09=设定电机最高转速 P2-12:00,将TCM0设定为0 P2-13:00,将TCM1设定为0 P2-12与P2-13的作用是将扭矩的命令设定为外部电压来控 制。详情见数据手册144页设定速度,当不设定此项时,电 机只有力矩,没有转速 P1-41:200,表示输入5V模拟电压,达到100%额定转矩 P2-10:01,启动电机 当此时电机不转时,重启伺服器即可。(建议重启) 要关闭电机则将P2-10设定为00,并保存,然后将开关关闭

并重启即可完成电机的关闭。 二.位置模式 1.说明:当前位置模式是通过外部控制器输出的PWM来控制伺 服电机的位置以及速度,其中PWM频率控制电机速度,PWM 的个数与P1-44与P1-45的结合控制电机的具体位置。使用 的脉冲输入为开集极NPN设备输入,电源为内部24v电源。 2.接线: 上图中的白线是控制器的脉冲输出线,用于输出PWM,蓝色线是控制 板的GND的连接线,用于控制器与伺服器的共地作用。 上图是伺服器CN1的接线,其中褐色线是CN1的41引脚, 其中的PWM信号是控制器的PWM输出的引脚串接一个电阻通 过一个NPN三极管之后连接到CN1的引脚。其中控制器的 pwm输出引脚连接NPN三极管的基极,三极管的发射极连接 CN1 的14脚(COM-),集电极连接到41引脚。35引脚与17 引脚需要短接,CN1的COM-也就是14引脚必须要与控制器 的GND连接,否则电机将不会转动。在位置模式下将伺服电 机的GND(19脚)与控制器的GND单独连接,电机将不会转 动。其他的线的连接方式见数据手册67页C3-1 3.设定: P2-15,P2-16,P2-17都设定为0,消除初始状态下AL013 的预警状态。 P1-00:02,表示脉冲+方向控制方式

张力控制变频收卷的控制原理(汇编)

张力控制变频收卷的控制原理本文主要介绍了张力控制变频收卷的控制原理,此技术能够使得在纺织行业中收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 一. 前言 : 用变频器做恒张力控制的实质是闭环矢量控制,即加编码器反馈。对收卷来说,收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。同时在不同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间、加速、减速、停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 二.张力控制变频收卷在纺织行业的应用及工艺要求 2.1 传统收卷装置的弊端 纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基本上是一年左右。而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客户带来了很多的不便。尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统。 2.2 张力控制变频收卷的工艺要求

(1)在收卷的整个过程中都保持恒定的张力。张力的单位为:牛顿或公斤力。 (2)在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。 (3)在加速、减速、停止的状态下也不能有上述情况出现。 (4)要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。 2.3 张力控制变频收卷的优点 (1)张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿。 (2)使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加;张力锥度计算公式的应用;转矩补偿的动态调整等等。 (3)卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。并且在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值。 (4)因为收卷装置的转动惯量是很大的,卷径由小变大时。如果操作人员进行加速、减速、停车、再激活时很容易造成爆纱和松纱的现象,将直接导致纱的质量。而进行了变频收卷的改造后,在上述各种情况下,收卷都很稳定,张力始终恒定。而且经过PLC的处理,在特定的动态过程,加入一些动态的调整措施,使得收卷的性能更好。 (5)在传统机械传动收卷的基础上改造成变频收卷,非常简便而且造价低,基本上不需对原有机械进行改造。改造周期小,基本上两三天就能安装调试完成。

伺服电机控制速度运行规划图

伺服电机控制速度运行规划图 1、这个图是伺服电机位置控制速度运行规划图,图上每一个点的高度表示这个时刻电机的运行速度; 2、这个图不是运动控制轨迹图; 3、这个伺服电机位置控制速度图说明位置控制过程,伺服电机由启动、加速、匀速、减速、停车几个运行速度部分,完成一个位置控制过程。 4、伺服电机的一个位置控制过程,有上电启动到停车,是一个连续转动的过程,不是脉冲步进进式前进的,编码器的反馈脉冲只是记录了运转过程电机的速度和角位移;: 5、伺服电机的启动指令、加速指令、减速指令、停车指令,是PLC计数器、比较器运算得出的; 6、例如:指令脉冲数-编码器反馈脉冲数/电子齿轮比=0 ,PLC输出端输出停车指令,变频调速机构完成制动停车! 7、所以大家不要认为,PLC发脉冲电机转,不发就不转,发得快就转得快,发的慢就转的慢,好像PLC发脉冲控制着电机转动;

8、伺服电机的速度v单位是:指令脉冲数/秒,或者是:编码器反馈脉冲数/电子齿轮比·秒; 9、速度曲线图所围的面积=指令脉冲数=编码器反馈脉冲数/电子齿轮比; 10、伺服电机速度的上限可以这样计算,电机速度的上限(r/s)×周指令脉冲数=PLC计数脉冲额定频率; 11、伺服电机速度的上限可以这样计算,电机速度的上限(r/s)=PLC计数脉冲额定频率×电子齿轮比/编码器解析度;

12、伺服电机运行速度可以设定,必须小于上限速度,即电机速度(r/s)<PLC计数脉冲额定频率/周指令脉冲数; 13、伺服电机速度不设定,也可以默认为电子齿轮比、编码器解析度、PLC计数脉冲额定频率确定的上限速度; 14、减速曲线下方三角形的面积=减速位置; 15、 t3 - t2 为减速时间; 16、加、减速时间的设定和变频器一样;

什么是张力控制

什么是张力控制? 最佳答案 1.什么是张力控制:所谓的张力控制,通俗点讲就是要能控制电机输出多大的力,即输出多少牛顿。反应到电机轴即能控制电机的输出转距。 2.真正的张力控制不同于靠前后两个动力点的速度差形成张力的系统,靠速度差来调节张力的实质是对张力的PID控制,要加张力传感器。而且在大小卷启动、停止、加速、减速、停车时的调节不可能做到象真正的张力控制的效果,张力不是很稳定。肯定会影响生产出产品的质量。 用变频器做恒张力控制的实质是死循环矢量控制,即加编码器反馈。对收卷来说,收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。同时在不同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间,加速,减速,停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 二.张力控制变频收卷在纺织行业的应用及工艺要求 1.传统收卷装置的弊端 纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基本上是一年左右。而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客户带来了很多的不便。尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统。 2.张力控制变频收卷的工艺要求 * 在收卷的整个过程中都保持恒定的张力。张力的单位为:牛顿或公斤力。 * 在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。 * 在加速、减速、停止的状态下也不能有上述情况出现。 * 要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。 3.张力控制变频收卷的优点 * 张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿. * 使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加; 张力锥度计算公式的应用;转矩补偿的动态调整等等. * 卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。并且

伺服电机的三种控制方式

选购要点:伺服电机的三种控制方式 伺服电机速度控制和转矩控制都是用模拟量来控制的,位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求以及满足何种运动功能来选择。接下来,松文机电为大家带来伺服电机的三种控制方式。 如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。 就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。 对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用伺服电机。 一般说驱动器控制的好不好,每个厂家的都说自己做的最好,但是现在有个比较直观的比较方式,叫响应带宽。当转矩控制或者速度控制时,通过脉冲发生器给他一个方波信号,使电机不断的正转、反转,不断的调高频率,示波器上显示的是个扫频信号,当包络线的顶点到达最高值的70.7%时,表示已经失步,此时的频率的高低,就能显示出谁的产品牛了,一般的电流环能作到1000Hz以上,而速度环只能作到几十赫兹。 换一种比较专业的说法: 1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。 应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。 2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。

张力控制解释

张力控制变频收卷的控制原理 2007年7月23日 中国工业设备网 本文主要介绍了张力控制变频收卷的控制原理,此技术能够使得在纺织行业中收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 一. 前言 : 用变频器做恒张力控制的实质是闭环矢量控制,即加编码器反馈。对收卷来说,收卷的卷经是由小到大变化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。同时在不同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间、加速、减速、停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 二.张力控制变频收卷在纺织行业的应用及工艺要求 2.1 传统收卷装置的弊端 纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基本上是一年左右。而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客户带来了很多的不便。尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统。 2.2 张力控制变频收卷的工艺要求

(1)在收卷的整个过程中都保持恒定的张力。张力的单位为:牛顿或公斤力。 (2)在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。 (3)在加速、减速、停止的状态下也不能有上述情况出现。 (4)要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。 2.3 张力控制变频收卷的优点 (1)张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿。 (2)使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加;张力锥度计算公式的应用;转矩补偿的动态调整等等。 (3)卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。并且在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值。 (4)因为收卷装置的转动惯量是很大的,卷径由小变大时。如果操作人员进行加速、减速、停车、再激活时很容易造成爆纱和松纱的现象,将直接导致纱的质量。而进行了变频收卷的改造后,在上述各种情况下,收卷都很稳定,张力始终恒定。而且经过PLC的处理,在特定的动态过程,加入一些动态的调整措施,使得收卷的性能更好。 (5)在传统机械传动收卷的基础上改造成变频收卷,非常简便而且造价低,基本上不需对原有机械进行改造。改造周期小,基本上两三天就能安装调试完成。 (6)克服了机械收卷对机械磨损的弊端,延长机械的使用寿命。方便维护设备。

台达位置与扭矩模式伺服电机文档

台达ASD-B2伺服ECMA-C20401GS电机控制文档 一.扭矩模式 1.说明:此扭矩模式是用于外部控制器控制输入给伺服器的电 压来实现电机扭矩大小的输出。 2.接线:将控制器控制的能输出可变电压的引脚直接连接到 CN1的18引脚,将控制器的GND与伺服器CN1的19脚连 接 3.参数设定: P2-15,P2-16,P2-17都设定为0,消除初始状态下AL013 的预警状态。 P1-01:03,将电机设定为转矩模式 P1-02:01,速度限制,电机在没有负载的情况下会转很快 P1-07:500,设置电机加减速的时间,减少通电与断电的时 对于轴与外设的冲击 P1-09=设定电机最高转速 P2-12:00,将TCM0设定为0 P2-13:00,将TCM1设定为0 P2-12与P2-13的作用是将扭矩的命令设定为外部电压来控 制。详情见数据手册144页6.4.1 P2-14:14,设定速度,当不设定此项时,电机只有力矩,没有 转速 P1-41:200,表示输入5V模拟电压,达到100%额定转矩

P2-10:01,启动电机 当此时电机不转时,重启伺服器即可。(建议重启) 要关闭电机则将P2-10设定为00,并保存,然后将开关关闭 并重启即可完成电机的关闭。 二.位置模式 1.说明:当前位置模式是通过外部控制器输出的PWM来控制 伺服电机的位置以及速度,其中PWM频率控制电机速度, PWM的个数与P1-44与P1-45的结合控制电机的具体位置。 使用的脉冲输入为开集极NPN设备输入,电源为内部24v 电源。 2.接线:

上图中的白线是控制器的脉冲输出线,用于输出PWM,蓝色线是控制板的GND的连接线,用于控制器与伺服器的共地作用。 上图是伺服器CN1的接线,其中褐色线是CN1的41引脚, 其中的PWM信号是控制器的PWM输出的引脚串接一个 1.5K电阻通过一个NPN三极管之后连接到CN1的引脚。其

PLC控制伺服电机的方法

伺服电机的PLC控制方法 以松下Minas A4系列伺服驱动器为例,介绍PLC控制伺服电机的方法。伺服电机有三种控制模式:速度控制,位置控制,转矩控制{由伺服电机驱动器的Pr02参数与32(C-MODE)端子状态选择},本章简要介绍位置模式的控制方法 一、按照伺服电机驱动器说明书上的"位置

控制模式控制信号接线图"连接导线 3(PULS1),4(PULS2)为脉冲信号端子,PULS1连接直流电源正极(24V电源需串连2K左右的电阻),PULS2连接控制器(如PLC 的输出端子)。 5(SIGN1),6(SIGN2)为控制方向信号端子,SIGN1连接直流电源正极(24V电源需串连2K左右的电阻),SIGN2连接控制器(如PLC的输出端子)。当此端子接收信号变化时,伺服电机的运转方向改变。实际运转方向由伺服电机驱动器的P41,P42这两个参数控制。 7(com+)与外接24V直流电源的正极相连。 29(SRV-0N),伺服使能信号,此端子与外接24V直流电源的负极相连,则伺服电机进入使能状态,通俗地讲就是伺服电机已经准备好,接收脉冲即可以运转。 上面所述的六根线连接完毕(电源、编

码器、电机线当然不能忘),伺服电机即可根据控制器发出的脉冲与方向信号运转。其他的信号端子,如伺服报警、偏差计数清零、定位完成等可根据您的要求接入控制器。构成更完善的控制系统。 二、设置伺服电机驱动器的参数。 1、Pr02----控制模式选择,设定Pr02参数为0或是3或是4。3与4的区别在于当32(C-MODE)端子为短路时,控制模式相应变为速度模式或是转矩模式,而设为0,则只为位置控制模式。如果您只要求位置控制的话,Pr02设定为0或是3或是4是一样的。 2、Pr10,Pr11,Pr12----增益与积分调整,在运行中根据伺服电机的运行情况相应调整,达到伺服电机运行平稳。当然其他的参数也需要调整(Pr13,Pr14,Pr15,Pr16,Pr20也是很重要的参数),在您不太熟悉前只调整这三个参数也

速度控制与张力控制

速度控制与张力控制 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

张力控制 1.什么是张力控制:所谓的张力控制,通俗点讲就是要能控制电机输出多大的力,即输出多少牛顿。反应到电 机轴即能控制电机的输出转距。 2. 3. 2.真正的张力控制不同于靠前后两个动力点的速度差形成张力的系统,靠速度差来调节张力的实质是对张力 的PID控制,要加张力传感器。而且在大小卷启动、停止、加速、减速、停车时的调节不可能做到象真正的张力控制的效果,张力不是很稳定。肯定会影响生产出产品的质量。 4. 5.用变频器做恒张力控制的实质是死循环矢量控制,即加编码器反馈。对收卷来说,收卷的卷经是由小到大变 化的,为了保证恒张力,所以要求电机的输出转距要由小到大变化。同时在不同的操作过程,要进行相应的转距补偿。即小卷启动的瞬间,加速,减速,停车,大卷启动时,要在不同卷经时进行不同的转距补偿,这样就能使得收卷的整个过程很稳定,避免小卷时张力过大;大卷启动时松纱的现象。 6. 7.二.张力控制变频收卷在纺织行业的应用及工艺要求 8. 9.1.传统收卷装置的弊端 10.纺织机械如:浆纱机、浆染联合机、并轴机等设备都会有收卷的环节。传统的收卷都是采用机械传动,因为 机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基本上是一年左右。而且经常要维护,维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给客户带来了很多的不便。尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动系统。 11. 12.2.张力控制变频收卷的工艺要求 13.* 在收卷的整个过程中都保持恒定的张力。张力的单位为:牛顿或公斤力。 14.* 在启动小卷时,不能因为张力过大而断纱;大卷启动时不能松纱。 15.* 在加速、减速、停止的状态下也不能有上述情况出现。 16.* 要求将张力量化,即能设定张力的大小(力的单位),能显示实际卷径的大小。 17. 18.3.张力控制变频收卷的优点 19.* 张力设定在人机上设定,人性化的操作,单位为力的单位:牛顿. 20.* 使用先进的控制算法:卷径的递归运算;空心卷径激活时张力的线性递加; 21.张力锥度计算公式的应用;转矩补偿的动态调整等等. 22.* 卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。并且 23.在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值。 24.* 因为收卷装置的转动惯量是很大的,卷径由小变大时。如果操作人员进行加速、 25.减速、停车、再激活时很容易造成爆纱和松纱的现象,将直接导致纱的质量。 26.而进行了变频收卷的改造后,在上述各种情况下,收卷都很稳定,张力始终恒 27.定。而且经过PLC的处理,在特定的动态过程,加入一些动态的调整措施, 28.使得收卷的性能更好。 29.* 在传统机械传动收卷的基础上改造成变频收卷,非常简便而且造价低,基本 30.上不需对原有机械进行改造。改造周期小,基本上两三天就能安装调试完成。 31.* 克服了机械收卷对机械磨损的弊端,延长机械的使用寿命。方便维护设备。 32.

伺服电机转速控制

伺服电机转速的PLC控制 [摘要]利用西门子PLC输出的模拟量、伺服控制器完成了对伺服电机转速精准的控制。提高了系统控制的可靠性和精确度。满足了工业现场的需要。 [关键词]伺服系统;PLC;模拟量 1.引言 伺服电机在自动控制系统中用作执行元件,它将接收到的控制信号转换为轴的角位移或角速度输出。通常的控制方式有三种: ①通讯方式,利用RS232或RS485方式与上位机进行通讯,实现控制; ②模拟量控制方式,利用模拟量的大小和极性来控制电机的转速和方向; ③差分信号控制方式,利用差分信号的频率来控制电机速度。 简单、方便的实现对伺服电机转速的精确控制是工业控制领域内的一个期望目标,本文主要研究如何利用PLC输出的模拟量实现对伺服电机的速度较为精准的控制。 2.控制系统电路 控制装置选用西门子S7-200系列PLC CPU224XPCN,这种型号的PLC除了带有输入输出点外。还有1个模拟量输入点和1个模拟量输出点,这一型号PLC所具有的模拟量模块,能够满足控制伺服电机的需要。触摸屏选用西门子触摸屏,型号为TP177B。 具体控制方案如图l所示,触摸屏是人机对话接口,最初的指令信息要从这里输入。输入的信息通过通讯端口传送到PLC。经运算后,PLC输出模拟量,并连接到伺服控制器的模拟量输入端口。伺服控制器对接收到的模拟量进行内部运算,而后驱动伺服电机达到相应的转速。伺服电机通过测速元件将转速信息反馈到伺服控制器,形成闭环系统,实现转速稳定的效果。 图1 控制方案 方案中的伺服电机,设计工作转速范围为500~6000RPM,精度要求为±3RPM。 3.控制过程 在触摸屏中设置一个对话框,可输入4位数值,然后将此对话框中的数据属性设置成对应PLC中的整形变量数据(如VW310)。目的是当在对话框中输人数值后,电机就能够达到与该 数值相同的速度。 PLC输出的模拟量是0~10V,对应的整形数据是0~32000;而伺服电机的输入模拟量是0~l0V。对应的转速是0-6500 RPM。由于这些数值都是理论上的,并且最终希望得到的还是输

伺服驱动器参数设置方法

伺服驱动器参数设置方法 在自动化设备中,经常用到伺服电机,特别是位置控制,大部分品牌的伺服电机都有位置控制功能,通过控制器发出脉冲来控制伺服电机运行,脉冲数对应转的角度,脉冲频率对应速度(与电子齿轮设定有关),当一个新的系统,参数不能工作时,首先设定位置增益,确保电机无噪音情况下,尽量设大些,转动惯量比也非常重要,可通过自学习设定的数来参考,然后设定速度增益和速度积分时间,确保在低速运行时连续,位置精度受控即可。 1.位置比例增益:设定位置环调节器的比例增益。设置值越大,增益越高,刚度越大,相同频率指令脉冲条件下,位置滞后量越小。但数值太大可能会引起振荡或超调。参数数值由具体的伺服系统型号和负载情况确定。 2.位置前馈增益:设定位置环的前馈增益。设定值越大时,表示在任何频率的指令脉冲下,位置滞后量越小位置环的前馈增益大,控制系统的高速响应特性提高,但会使系统的位置不稳定,容易产生振荡。不需要很高的响应特性时,本参数通常设为0表示范围:0~100% 3.速度比例增益:设定速度调节器的比例增益。设置值越大,增益越高,刚度越大。参数数值根据具体的伺服驱动系统型号和负载值情况确定。一般情况下,负载惯量越大,设定值越大。在系统不产生振荡的条件下,尽量设定较大的值。 4.速度积分时间常数:设定速度调节器的积分时间常数。设置值越小,积分速度越快。参数数值根据具体的伺服驱动系统型号和负载情况确定。一般情况下,负载惯量越大,设定值越大。在系统不产生振荡的条件下,尽量设定较小的值。 5.速度反馈滤波因子:设定速度反馈低通滤波器特性。数值越大,截止频率越低,电机产生的噪音越小。如果负载惯量很大,可以适当减小设定值。数值太大,造成响应变慢,可能会引起振荡。数值越小,截止频率越高,速度反馈响应越快。如果需要较高的速度响应,可以适当减小设定值。 6.最大输出转矩设置:设置伺服驱动器的内部转矩限制值。设置值是额定转矩的百分比,任何时候,这个限制都有效定位完成范围设定位置控制方式下定位完成脉冲范围。本参数提供了位置控制方式下驱动器判断是否完成定位的依据,当位置偏差计数器内的剩余脉冲数小于或等于本参数设定值时,驱动器认为定位已完成,到位开关信号为ON,否则为OFF。 在位置控制方式时,输出位置定位完成信号,加减速时间常数设置值是表示电机从0~2000r/min的加速时间或从2000~0r/min的减速时间。加减速特性是线性的到达速度范围设置到达速度在非位置控制方式下,如果伺服电机速度超过本设定值,则速度到达开关信号为ON,否则为 OFF。在位置控制方式下,不用此参数。与旋转方向无关。 7.手动调整增益参数 调整速度比例增益KVP值。当伺服系统安装完后,必须调整参数,使系统稳定旋转。首先调整速度比例增益KVP值.调整之前必须把积分增益KVI及微分增益KVD调整至零,然后将KVP值渐渐加大;同时观察伺服电机停止时足否产生振荡,并且以手动方式调整KVP参数,观察旋转速度是否明显忽快忽慢.KVP值加大到产生以上现象时,必须将KVP值往回调小,使振荡消除、旋转速度稳定。此时的KVP值即初步确定的参数值。如有必要,经KⅥ和KVD调整后,可再作反复修正以达到理想值。 调整积分增益KⅥ值。将积分增益KVI值渐渐加大,使积分效应渐渐产生。由前述对积分控制的介绍可看出,KVP值配合积分效应增加到临界值后将产生振荡而不稳定,如同KVP值一样,将KVI值往回调小,使振荡消除、旋转速度稳定。此时的KVI值即初步确定的参数值。

伺服电机及选型完整版

伺服电机及选型 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

伺服电机 伺服电机(servomotor)是指在伺服系统中控制机械元件运转的发动机。伺服电机可以控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,可把所收到的转换成电动机轴上的角位移或输出。 “伺服”一词源于希腊语“奴隶”的意思,“伺服电机”可以理解为绝对服从控制信号指挥的电机:在控制信号发出之前,转子静止不动,当控制信号发出时,转子立即转动;当控制信号消失时,转子能即时停转。因此伺服电机指的是随时跟随命令进行动作的一种电机,是以其工作性质命名的。 伺服主要靠脉冲来定位,伺服电机接收到一个脉冲就会旋转一个脉冲对应的角度,从而实现位移。伺服本身带有编码器,具备发出脉冲的功能,所以伺服电机每旋转一个角度,就会发出对应数量的脉冲。等于是把电机旋转的详细信息反馈回去,形成闭环。这样的话,系统就会知道发了多少脉冲给电机,同时又收了多少脉冲回来,这样就能很精准的控制电机的转动,实现非常精准的定位。 一、伺服电机分类 1、直流伺服 结构简单控制容易。但从实际运行考虑,直流伺服电动机引入了机械换向装置,成本高,故障多,维护困难,经常因碳刷产生的火花影响生产,会产生电磁干扰。而且碳刷需要维护更换。机械换向器的换向能力,也限制了电动机的容量和速度。2、交流伺服 分为永磁同步伺服电机和异步伺服电机。目前运动控制基本都用同步电机。 永磁同步伺服电机内部的转子是永磁铁,驱动器控制的U/V/W三相电形成电磁场,转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。伺服电机的精度决定于编码器的精度(线数)。特点如下: 1、控制速度非常快,从启动到额定转速只需几毫秒;而相同情况下异步电机却需要几秒钟。 2、启动扭矩大,可以带动大惯量的物体进行运动。 ? 3、功率密度大,相同功率范围下相比异步电机可以把体积做得更小、重量做得更轻。 ? 4、运行效率高。 ? 5、可支持低速长时间运行。 ? 6、断电无自转现象,可快速控制停止动作。 7、控制和响应性能比异步伺服电机高很多。 二、伺服电机计算 、电机转矩 电机转矩,简单的说,就是转动的力量的大小。也就是电机可以发出多大的力,转矩是一种力矩,力矩在物理中的定义是: 力矩= 力×力臂 这里的力臂就可以看成电机所带动的物体的转动半径。如果电机转矩太小,就带不动所要带的物体,也就是感觉电机的“劲”不够大。 假设我们是采用滚珠丝杆使工件做平行移动: 假设:

伺服电机的PLC控制

伺服电机的PLC控制方法 以我司KSDG系列伺服驱动器为例,介绍PLC控制伺服电机的方法。 伺服电机有三种控制模式:速度控制,位置控制,转矩控制{由伺服电机驱动器的Pr02参数与32(C-MODE)端子状态选择},本文简要介绍位置模式的控制方法 一、按照伺服电机驱动器说明书上的"位置控制模式控制信号接线图"连接导线3(PULS1), 4(PULS2)为脉冲信号端子,PULS1连接直流电源正极(24V电源需串连2K左右的电阻),PULS2连接控制器(如PLC的输出端子)。5(SIGN1),6(SIGN2)为控制方向信号端子,SIGN1连接直流电源正极(24V电源需串连2K左右的电阻),SIGN2连接控制器(如PLC的输出端子)。当此端子接收信号变化时,伺服电机的运转方向改变。实际运转方向由伺服电机驱动器的P41,P42这两个参数控制。7(com+)与外接24V直流电源的正极相连。29(SRV-0N),伺服使能信号,此端子与外接24V 直流电源的负极相连,则伺服电机进入使能状态,通俗地讲就是伺服电机已经准备好,接收脉冲即可以运转。上面所述的六根线连接完毕(电源、编码器、电机线当然不能忘),伺服电机即可根据控制器发出的脉冲与方向信号运转。其他的信号端子,如伺服报警、偏差计数清零、定位完成等可根据您的要求接入控制器构成更完善的控制系统。 二、设置伺服电机驱动器的参数。 1、Pr02----控制模式选择,设定Pr02参数为0或是3或是4。3与4的区别在于当32(C-MODE)端子为短路时,控制模式相应变为速度模式或是转矩模式,而设为0,则只为位置控制模式。如果您只要求位置控制的话,Pr02设定为0或是3或是4是一样的。 2、Pr10,Pr11,Pr12----增益与积分调整,在运行中根据伺服电机的运行情况相应调整,达到伺服电机运行平稳。当然其他的参数也需要调整(Pr13,Pr14,Pr15,Pr16,Pr20也是很重要的参数),在您不太熟悉前只调整这三个参数也可以满足基本的要求. 3、Pr40----指令脉冲输入选择,默认为光耦输入(设为0)即可。也就是选择3(PULS1),4(PULS2),5(SIGN1),6(SIGN2)这四个端子输入脉冲与方向信号。 4、Pr41,Pr42----简单地说就是控制伺服电机运转方向。Pr41设为0时,Pr42设为3,则5(SIGN1),6(SIGN2)导通时为正方向(CCW),反之为反方向(CW)。Pr41设为1时,Pr42设为3,则5(SIGN1),6(SIGN2)断开时为正方向(CCW),反之为反方向(CW)。(正、反方向是相对的,看您如何定义了,正确的说法应该为CCW,CW). 5、Pr46,Pr4A,Pr4B----电子齿轮比设定。此为重要参数,其作用就是控制电机的运转速度与控制器发送一个脉冲时电机的行走长度。其公式为:伺服电机每转一圈所需的脉冲数=编码器分辨率×Pr4B/(Pr46×2^Pr4A)伺服电机所配编码器如果为:2500p/r5线制增量式编码器,则编码器分辨率为10000p/r如您连接伺服电机轴的丝杆间距为20mm,您要做到控制器发送一个脉冲伺服电机行走长度为一个丝(0.01mm)。 计算得知:伺服电机转一圈需要2000个脉冲。(每转一圈所需脉冲确定了,脉冲频率与伺服电机的速度的关系也就确定了)三个参数可以设定为:Pr4A=0,Pr46=10000,Pr4B=2000,约分一下则为:Pr4A=0,Pr46=100,Pr4B=20。从上面的叙述可知:设定Pr46,Pr4A,Pr4B这三个参数是根据我们控制器所能发送的最大脉冲频率与工艺所要求的精度。在控制器的最大发送脉冲频率确定后,工艺精度要求越高,则伺服电机能达到的最大速度越低。做好上面的工作,编制好PLC程序,我们就可以控制伺服运转了。

伺服电机的三种控制方式有哪些

伺服电机是在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。在不同场景下,伺服电机的控制方式各有不同,在进行选择之前你需要先了解伺服电机是三种控制方式各有其特点,下面小编就给大家介绍一下伺服电机的三种控制方式。 伺服电机控制方式有脉冲、模拟量和通讯控制这三种 1、伺服电机脉冲控制方式 在一些小型单机设备,选用脉冲控制实现电机的定位,应该是最常见的应用方式,这种控制方式简单,易于理解。基本的控制思路:脉冲总量确定电机位移,脉冲频率确定电机速度。都是脉冲控制,但是实现方式并不一样: 第一种,驱动器接收两路(A、B路)高速脉冲,通过两路脉冲的相位差,确定电机的旋转方向。如上图中,如果B相比A相快90度,为正转;那么B相比A相慢90度,则为反转。运行时,这种控制的两相脉冲为交替状,因此我们也叫这样的控制方式为差分控制。具有差分的特点,那也说明了这种控制方式,控制脉冲具有更高的抗干扰能力,在一些干扰较强的应用场景,优先选用这种方式。但是这种方式一个电机轴需要占用两路高速脉冲端口,对高速脉冲口紧张的情况,比较尴尬。

第二种,驱动器依然接收两路高速脉冲,但是两路高速脉冲并不同时存在,一路脉冲处于输出状态时,另一路必须处于无效状态。选用这种控制方式时,一定要确保在同一时刻只有一路脉冲的输出。两路脉冲,一路输出为正方向运行,另一路为负方向运行。和上面的情况一样,这种方式也是一个电机轴需要占用两路高速脉冲端口。 第三种,只需要给驱动器一路脉冲信号,电机正反向运行由一路方向IO信号确定。这种控制方式控制更加简单,高速脉冲口资源占用也最少。在一般的小型系统中,可以优先选用这种方式。 2、伺服电机模拟量控制方式 在需要使用伺服电机实现速度控制的应用场景,我们可以选用模拟量来实现电机的速度控制,模拟量的值决定了电机的运行速度。模拟量有两种方式可以选择,电流或电压。电压方式,只需要在控制信号端加入一定大小的电压即可。实现简单,在有些场景使用一个电位器即可实现控制。但选用电压作为控制信号,在环境复杂的场景,电压容易被干扰,造成控制不稳定;电流方式,需要对应的电流输出模块。但电流信号抗干扰能力强,可以使用在复杂的场景。

张力控制

力控制变频收卷方案 1.传统收卷装置的弊端 纺织机械如:浆纱机、浆然联合机等设备都会有收卷的环节。传统的收卷都是采用机械传动,因为机械的同轴传动对于机械的磨损是非常严重的,据了解,用于同轴传动部分的机械平均寿命基本上是一年。而且经常要维护, 维护的时候也是非常麻烦的,不仅浪费人力而且维护费用很高,给很多客户带来了很多不便。尤其是纺织设备基本上是开机后不允许中途停车的,如发生意外情况需要停车会造成很大的浪费。在这种情况下,张力控制变频收卷开始逐渐取代传统的机械传动。 2.张力控制变频收卷的优点 * 张力设定在人机上设定,人性化的操作。 * 使用先进的控制算法:卷径的递归运算;空心卷径启动时张力的线性递加;张力锥度计算公式的应用;转矩补偿的动态调整等等. * 卷径的实时计算,精确度非常高,保证收卷电机输出转矩的平滑性能好。并且在计算卷径时加入了卷径的递归运算,在操作失误的时候,能自己纠正卷径到正确的数值。 *因为收卷装置的转动惯量是很大的,卷径由小变大时。如果操作人员进行加速、减速、停车、再启动时很容易造成爆纱和松纱的现象,将直接导致纱的质量。而进行了变频收卷的改造后,在上述各种情况下,收卷都很稳定,张力始终恒定。而且经过PLC的处理,在特定的动态过程,加入一些动态的调整措施,使得收卷的性能更好。 * 在传统机械传动收卷的基础上改造成变频收卷,非常简便而且造价低,基本上不需对原有机械进行改造。改造周期小,基本上两三天就能安装调试完成。 * 克服了机械收卷对机械磨损的弊端,延长机械的使用寿命。方便维护设备。 二. 变频收卷系统构成 1.系统框图

2.变频收卷的控制原理 * 卷径的计算原理:根据V1=V2来计算收卷的卷径。因为V1=ω1*R1,V2=ω2*Rx.因为在相同的时间内由测长辊走过的纱的长度与收卷收到的纱的长度是相等的。即 L1/Δt=L2/ΔtΔn1*C1=i*Δn2*C2(Δn1---单位时间内牵引电机运行的圈数、Δn2---单位时间内收卷电机运行的圈数、C1---测长辊的周长、C2---收卷盘头的周长、i---减速比) Δn1*π*D1=Δn2*π*D2/iD2=Δn1*D1*i/Δn2,因为Δn2=ΔP2/P2(ΔP2---收卷编码器产生的脉冲数、P2---收卷编码器的线数).Δn1=ΔP1/P1取Δn1=1,即测长辊转一圈,由霍尔开关产生一个信号接到PLC.那么D2=D1*i*P2/ΔP2,这样收卷盘头的卷径就得到了. * 收卷的动态过程分析 要能保证收卷过程的平稳性,不论是大卷、小卷、加速、减速、停车、启动都能保证张力的恒定.需要进行转矩的补偿.整个系统要启动起来,首先要克服静摩擦力所产生的转矩,简称静摩擦转矩,静摩擦转矩只在启动的瞬间起作用;正常运行时要克服滑动摩擦力产生的滑动摩擦转矩,滑动摩擦转矩在运行当中一直都存在,并且在低速、高速时的大小是不一样的。需要进行不同大小的补偿,系统在加速、减速、停车时为克服系统的惯量,也要进行相应的转矩补偿,补偿的量与运行的速度也有相应的比例关系.在不同车速的时候,补偿的系数是不同的。即加速转矩、减速转矩、停车转矩、启动转矩;克服了这些因素,还要克服负载转矩,通

相关主题
文本预览
相关文档 最新文档