当前位置:文档之家› 空间机械臂动力学奇异点与回避

空间机械臂动力学奇异点与回避

空间机械臂动力学奇异点与回避
空间机械臂动力学奇异点与回避

本文于1996年7月8日收到

3国家自然科学基金重点项目及河北省博士科研基金项目

空间机械臂动力学奇点与回避3

顾晓勤

(河北师范大学机械系?石家庄?050031)

刘延柱

(上海交通大学工程力学系?上海?200030)

摘 要 本文导出空间机械臂非完整约束方程,讨论自由漂浮系统动力学奇点问题,对冗余和非冗余系统分别提出避免奇点的方法,对平面运动情形得到减少奇点出现的工程方法。文中附有算例。

主题词 空间机械臂 动力学 多体动力学

AVO I D ING DY NAM I C SINGULAR IT IES

OF SPACE M AN IPULAT OR

Gu X iaoqin

(H eber N o r m al U niversity ?Sh ijiazhuang ?050031)

L iu Yanzhu

(Shanghai J iao tong U niversity ?Shanghai ?200030)

Abstract T he nonho lonom ic constrains of space m ani pulato r are derived in th is paper .D y 2nam ic sigularities of free 2floating system is discussed ,and reducing area of singularity fo r in 2p lane moving system are p ropo sed .T he num erical si m ulati on examp le is given .

Key words Space m ani pulato r D ynam ics M ultibody dynam ics

1 引 言

空间机械臂可用于卫星释放、回收及空间站的在轨建造维修等。为节省能源机械臂在执行任务时载体姿控系统常暂时关闭。给定负载始末位姿或在惯性空间给出设计轨迹求转铰运动规律时,当广义Jacob i 矩阵奇异则系统出现奇点,无法得到逆问题解。由于漂浮系统奇点与系统动力学特性有关故称动力学奇点。非完整约束使奇点的位置不仅与机械臂转角当前值有关,还由转角的时间历程决定,故动力学奇点是空间机械臂控制中的难点和关

第19卷 第4期1998年10月 宇 航 学 报JOURNAL OF ASTR ONAUT I CS

Vol .19No .4Oct .1998

键点。

Pap adopou lo s 等在文[1]中将广义Jacob i 矩阵中机械臂转角、载体姿态角分离,画出平

面双杆空间机械臂铰空间奇异曲线,并提出减小可能出现动力学奇点区域的方案。文[2]针对自由漂浮系统广义Jacob i 逆矩阵不能由机械臂几何参数确定的特点,提出用机械臂的Jaco 2

b i 矩阵替代方法,并对近似线性方法给以三种改进算法。

本文导出系统的逆问题求解式,指出动力学奇点出现的原因及物理意义。对于冗余自由度系统提出近似回避奇点方法;对冗余系统则提出利用运动学冗余顺利实现设计轨迹的控制算法,对平面运动系统还讨论了减少动力学奇点出现的工程方法。

2 逆问题求解

设系统由载体B 1、机械臂B i (i =2,…,n -1)、抓手和刚体负载B n 以单自由度柱铰组成。以系统质心0c 为基点建立惯性基e 0,以各分体质心0ci 为基点建立连体基e i (i =1,…,n ),设系统初始角动量为零,无外力矩作用,由动量矩原理对0c 点有:

∑n

j =1(J

j Ξj +m j Θj ×Θαj )=0

(1)其中J j 、Ξj 、m j 、Θj (j =1,…,n )分别为B j 的中心惯量张量

、角速度矢量、质量、质心0cj 相对0c 的矢径,利用增广体矢量b ij 可将Θj 表示[3]: Θj =∑n i =1b ij (2)

将载体姿态角Η1k (k =1,2,3)和相应的转轴基矢量p 1相对连体基e 1的投影列阵p 1k (k =

1,2,3)排成列阵Η1=[Η11,Η12,Η13]T 和方阵p 1=[p 11,p 12,p 13],设Ηj 为机械臂相对转角,p j 为相应的转轴基矢量相对连体基e j 的投影列阵,A ij 为e j 的方向余弦矩阵,引入增

广体惯量张量K 3ij ,令I j =

∑n

i =1K 3ij ,记q =(Η2,Η3,…,Ηn )T ,运用多体系统动力学

[3]将式(1)化为:Ηα1=-J a q α J a =(J a 2,J a 3,…,J a n ), J a k =p -11∑n j =1

A

1j I j A j 1-1∑n i =k A 1i I i A ik p k (3) 将(2)式对时间求导,得到负载质心在惯性坐标系中速度: Θαn =J q α(4)其中广义Jacob i 矩阵J =A 01(J 1J a 2-J 2,J 1J a 3-J 3,…,J 1J a n -J n ),J j =A 1j ∑n i =j b υin A ij p j ,b υ

in 为增广体矢量在连体基e i 上的坐标方阵。

对于给定的设计轨迹Θn (t ),由(4)式得到当J 可逆时机械臂转角控制规律:

q (t )=q 0+∫t

0J (q )-1Θαn (t )d t (5)

当空间机械臂系统位形处于q S 使det J (q S )=0时,系统出现奇异现象逆问题无解,由于与广义Jacob i 矩阵与b

υin 有关,而b in 由整个系统质量几何特性确定,故具有动力学特征,而地面机械臂只具运动学奇点。文[4]指出对空间臂当不出现动力学奇点时,几乎所有的地面臂控制方法都可应用。但由于载体的位姿在机械臂工作过程中不断变化,而动量矩守恒方程(3)一般情况下不可积分,故J 不仅与q 当前值有关,还与由q 运动路径及初始值确定的

33第4期顾晓勤等:空间机械臂动力学奇点与回避

Η

1有关,抓手惯性空间坐标与q 不存在一一对应关系。所以动力学奇点在数学上精确讨论求解十分困难,本文从工程观点提出针对性处理方法。

3 避开奇点法

(a )无冗余自由度空间臂系统

动力学奇点的本质是广义Jacob i 矩阵不满秩,在物理上表现为无论机构臂各铰如何运动都无法使负载沿某一方向运动,为此本文认为对无冗余自由度系统只能在奇点附近对设计路径作微小改变以达到控制可实现,对于路径的偏离作者采用反馈控制方法在空间臂系

统通过奇点邻域后逐渐消除。设负载质心设计运动轨迹Θd n ,实际运动轨迹Θn ,规定机械臂

转角规律: q α=J -1[Θαd n -K e ] q αi ≤q αi m q αi =q αi m q αi >q αi m

(6)式中误差e =Θn -Θd n q αm 为机械臂转角最大允许转速,K 为位置反馈增益阵,可选取K =diag

(k 2,k 3,…,k n ),k i >0(i =2,…,n )时运动具有渐近稳定性。

(b )冗余自由度系统

由前面的讨论可知,空间臂处于动力学奇点时,抓手至少失去一个自由度,为使负载严格沿设计轨迹运动,应增加机械臂自由度。设机械非冗余自由度相对转角Ηi ,冗余自由度

相对转角Ηj ,分别记为列阵q Α,q Β,由(4)式: Θα=(J Α,J Β)q αΑq αΒ

(7)当det J Α≠0时,取q αΑ

=J -1ΑΘn 、q αΒ≡0,对于三维6自由度空间机械臂,q Α=(Η2,Η3,Η4)T 代表各臂相对转角,q Β=(Η5,Η6,Η7)T ,J Α及J Β分别为3×3阶分块矩阵

。设第k 步算时det J (k )Α=0,则取控制算法 q α(k )Α=q α(k -1)Αq α(k )Β=J -1Β(Θαn -J (k )Αq α(k )Α

)(8)(c )L yapunov 方法

对于给定负载位姿始末值而对运送路径不作要求时,可运用L yapunov 方法实现避免奇点的路径规划。设Θnf 为负载位姿目标值,设计转角q i (i =2,…,n )的变化规律

q α3=J -1A V (Θnf -Θn ) q αi =q α3i sign (q α3i )q αi m q α3i ≤q αi m q α3i >q αi m

(9)其中A V 为正定常数矩阵。当 q αi ≤q αi m (i =1,…,n -1)时,负载位姿严格按(5)式定义

的曲线运动;当 q αi >q αi m 时,出现回避奇点情行,由于L yapunov 规划方法的渐近稳定性,

此方法可保证最终趋向目标值。

4 减小动力学奇点影响的方法

讨论平面运动情形,设e i 1沿0i 0i +1方向,由方程(2)得负载质心0c 4相对总质心O c 的矢径Θ4,依靠(3)、(4)式计算得到

J 3=1I 1-[b 24sin Η2+b 34sin (Η2+Η3)](I 1-I 2)-b 34sin (Η2+Η3)(I 1-I 3)+b 24sin Η2I 3[b 24co s Η2+b 34co s (Η2+Η3)](I 1-I 2)-b 14I 2b 34co s (Η2+Η3)(I 1-I 3)-(b 14+b 24co s Η2)I 3

(10)

由等效惯量I i (i =1,2,3)定义可知I i 仅是Η2,Η3的函数,与Η1无关

。A 01即e 0基相对e 143 宇航学报第19卷

基的方向余弦阵,det A 01=1,故由(4)、(10)得奇点处det J =det J 3=0。

因J 3中不包括载体姿态角Η1,故奇点在系统转角空间仅由机械臂相对位形q s 决定,一旦载体2机载臂质量几何特性确定,作为非线性方程det J 3(q s )=0定义的曲线Η2-Η3便可

求得。但在抓手惯性坐标空间,Θ4与Η2、Η3及e 1i (Η1)有关,而Η1与Η2、Η3仅存在非完整

约束,故抓手坐标惯性空间与铰空间点无一一对应关系,由q s 不能确定惯性空间中动力学奇点。

(a )机械臂基点与载体质心重合

将空间臂基点O 2安装在载体质心O c 1处,则增广体矢量b 1i =0,代入(10)得到:

det J 3=b 24b 34(I 1-I 2)sin Η3

I 1(11)图1 奇点分布由于I 1≠0(i =1,2,3),I 1-I 2=J 1≠0,故Η3=k Π(k =0,±1)

为动力学奇点。当k =0时,抓手处于工作空间的外缘,如图1中C 1;

当k =±1时处于内缘即C 2。由(2)式计算得到工作半径为r 1=b 24

+b 34,r 2= b 24-b 34 。

(b )打开载体姿态控制系统

对于无冗余自由度空间臂,减少出现奇点的另一方法是对载体进行姿态稳定。令Ηα1≡0,这时系统不受动量矩守恒约束,简化

(10)式得到广义Jacob i 阵,进而求得det J 3=b 24b 34sin Η3,同上面分

析类似,动力学奇点处于图1中C 1、C 2圆上。从物理意义上看,由于A 01(Η1)不变在铰空间确定的动力学奇点可一一映射到抓手惯性

坐标空间,这时空间机械臂系统相当于以O 32为基点(O c O 32=b 1n )、以增广体矢量b jn 为杆

、各转铰基矢量为p j (j =2,…,n )的等价固定基底机械臂S f ,空间臂动力学奇点即系统S f 的运动学奇点。设计负载质心在惯性空间运动轨迹时,只要不达到工作空间的边缘便可顺利实现控制机械臂相对转角。

5 算 例

设无冗余自由度空间机械臂系统质量几何参数为m 1=700kg ,m 2=10kg ,下臂、抓手及负载共计m 3=290kg ,中心主惯量J i 分别为500、30、300kg ?m 2,020c 2=3m ,030c 3=5m ,

0203=6m ,铰O 3至负载质心P 距离5m 。设系统在O C -e 01e 02平面内运动,要求负载质心沿

设计轨迹x +2y =16184运动,起点A (8128,4128),终点B (8116,4122),在C 处遇到动力学奇点,图2为按本文方法得到的转角变化规律,图3为负载质心运动轨迹。6 结 论

空间机械臂系统逆动力学奇点是控制设计中必须考虑的问题,由于自由漂浮系统动量矩守恒这一非完整约束的存在,使动力学奇点在负载惯性空间不能予先确定,往往沿不同工作路径到达同一目标可导致不同结果,本文对冗余自由度系统和非冗余自由度系统分别提出处理方法,对动力学奇点从物理意义及数学概念上给以讨论,为减少动力学奇点的影响,本文提出将机械臂基座安装于载体质心或者打开载体姿态控制系统进行姿态稳定,上述处理方法从工程实践中对空间机械臂逆动力学研究、控制设计具有较高的参考价值。

53第4期顾晓勤等:空间机械臂动力学奇点与回避

图2

 转角变化规律图3 负载质心运动轨迹

考文献1 Papadopoulo s E et al .J .D yn .Sys .,M eas .Cont .,1993,(115):442522 X i F et al .IEEE Int .Conf .Robo t .A uto .,San D iego .Califo rnia ,1994,3460234653 刘延柱1航天器姿态动力学1北京:国防工业出版社,1995:22822934 Karray F et al .N onlinear D ynam ics ,1994(5):7129163 宇航学报第19卷

机械臂运动学

机械臂运动学基础 1、机械臂的运动学模型 机械臂运动学研究的是机械臂运动,而不考虑产生运动的力。运动学研究机械臂的位置,速度和加速度。机械臂的运动学的研究涉及到的几何和基于时间的内容,特别是各个关节彼此之间的关系以及随时间变化规律。 典型的机械臂由一些串行连接的关节和连杆组成。每个关节具有一个自由度,平移或旋转。对于具有n个关节的机械臂,关节的编号从1到n,有n +1个连杆,编号从0到n。连杆0是机械臂的基础,一般是固定的,连杆n上带有末端执行器。关节i连接连杆i和连杆i-1。一个连杆可以被视为一个刚体,确定与它相邻的两个关节的坐标轴之间的相对位置。一个连杆可以用两个参数描述,连杆长度和连杆扭转,这两个量定义了与它相关的两个坐标轴在空间的相对位置。而第一连杆和最后一个连杆的参数没有意义,一般选择为0。一个关节用两个参数描述,一是连杆的偏移,是指从一个连杆到下一个连杆沿的关节轴线的距离。二是关节角度,指一个关节相对于下一个关节轴的旋转角度。 为了便于描述的每一个关节的位置,我们在每一个关节设置一个坐标系,对于一个关节链,Denavit和Hartenberg提出了一种用矩阵表示各个关节之间关系的系统方法。对于转动关节i,规定它的转动平行于坐标轴z i-1,坐标轴x i-1对准从z i-1到z i的法线方向,如果z i-1与z i相交,则x i-1取z i?1×z i的方向。连杆,关节参数概括如下: ●连杆长度a i沿着x i轴从z i-1和z i轴之间的距离; ●连杆扭转αi从z i-1轴到zi轴相对x i-1轴夹角; ●连杆偏移d i从坐标系i-1的原点沿着z i-1轴到x i轴的距离; ●关节角度θi x i-1轴和x i轴之间关于z i-1轴的夹角。

机械臂建模与控制

一、柔性机械臂协调操作柔性负载 1. 建模方法 1) 假设模态法 假设模态法是利用有限个已知模态函数来确定系数的运动规律。连续系统的解可写作全部模态函数的线性组合,若取前n 个有限项作为近似解,则有 ()()1(,)n i i i y x t x q t φ==∑ 其中(),1,2,,i q t i n =L 为广义坐标,(),1,2,i x i n φ=L 应该为系统的实际模态函数,但计算时常近似地代以假设模态,也就是满足部分或者全部边界条件,但不一定满足动力学方程的试函数族。 采用以广义坐标表示的功和能来描述系统的动态性能,所有不做功的力和约束力在这种方法中均不出现,因此最后得到的方程是封闭形式的表达式,提供了关节力矩和关节运动之间的明显解析关系。同时,柔性机械臂由于连杆柔性会在工作过程中产生扭曲变形、轴向变形、和剪切变形,但考虑到机器人连杆的长度总比其截面线径大的多,运行过程中所产生的轴向变形和剪切变形相对于扭曲变形而言非常小。因而在系统的动力学建模过程中通常可以忽略轴向变形和剪切变形的影响,将每个柔性连杆简化为Euler 一Bemuolii 梁来处理。此时,在拉格朗日方程的基础上,采用假设模态法来描述弹性连杆的变形,该方法具有计算量相对少,方法简单,具有系统性和效率高的特点。即将弹性连杆的高阶模态忽略不计,可以得到离散化的维数较低的动力学方程,进而有利于系统的动力学分析和控制器设计。 2) 有限元法 有限元法是一种以计算机辅助分析为手段的,全新的结构分析方法。在利用有限元法进行建模的过程中,柔性物体被离散化为若干个弹性体单元,而这些弹性体单元在边界点(结点)处相互连接,从而组成整个柔性物体,各个弹性体单元的分布质量可以按照一定的格式集中到各自的结点上。对于每一个弹性体单元,其在物体坐标系内的挠度和转角,可以用结点位移的插值函数来表示,而插值函数实质上就是一种假定振型,这样,整个柔性物体的振动状态就可以用这些节点位移来表示,这里的节点位移并不是对整个结构或某个子结构所取的假定振型,而是具备简单物理意义的参数。 利用有限元法进行数学建模,所得到的数学模型的广义坐标不但维数有限,而且物理意义明确,这就使得获取某些参数不必经过复杂的数值运算而可以直接通过测量得到。从弹性体单元的选择到整个柔性物体运动方程的建立都有统一的方法,这就使得有限元法的相关数值运算可以利用计算机来完成。利用有限元法建立起来的柔性物体模型设计控制器时,不必考虑很多近似因素,可以更加准确的设计控制器。 3) 分布参数法 柔性机械臂分布参数模型的建立,主要利用哈密顿原理,由此得到的是一组复杂的高度非线性的常微分-偏微分耦合方程组,而考虑到在小的挠曲变形的假设下,可以得到一个相对简单的分布参数模型。 哈密顿原理是柔性臂系统分布参数模型动力学建模的理论基础,由哈密顿原理建模的步骤大致是:建立系统的动能、势能和虚功表达式;对系统的变分积分方程进行必要的推导和整理。该方法以能量方式建模,可以避免方程中出现内力项,适用于比较简单的柔性体动力学方程。而对于复杂的结构,函数的变分运算将变得非常繁琐。但是变分原理又有其特点,由于它是将系统真实运动应满足的条件表示为某个函数或泛函的极值条件,并利用此条件确

二自由度机械臂动力学分析培训资料

二自由度机械臂动力 学分析

平面二自由度机械臂动力学分析 姓名:黄辉龙 专业年级:13级机电 单位:汕头大学 摘要:机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过分析,得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 关键字:平面二自由度 动力学方程 拉格朗日方程 相关介绍 机器人动力学的研究有牛顿-欧拉(Newton-Euler )法、拉格朗日 (Langrange)法、高斯(Gauss )法等,但一般在构建机器人动力学方程中,多采用牛顿-欧拉法及拉格朗日法。 欧拉方程又称牛顿-欧拉方程,应用欧拉方程建立机器人机构的动力学方程是指研究构件质心的运动使用牛顿方程,研究相对于构件质心的转动使用欧拉方程,欧拉方程表征了力、力矩、惯性张量和加速度之间的关系。 在机器人的动力学研究中,主要应用拉格朗日方程建立机器人的动力学方程,这类方程可直接表示为系统控制输入的函数,若采用齐次坐标,递推的拉格朗日方程也可以建立比较方便且有效的动力学方程。 在求解机器人动力学方程过程中,其问题有两类: 1)给出已知轨迹点上? ??θθθ、及、 ,即机器人关节位置、速度和加速度,求相应的关节力矩矢量τ。这对实现机器人动态控制是相当有用的。 2)已知关节驱动力矩,求机器人系统相应各瞬时的运动。也就是说,给出关节力矩矢量τ,求机器人所产生的运动? ??θθθ、及、 。这对模拟机器人的运动是非常有用的。 平面二自由度机械臂动力学方程分析及推导过程 1、机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: 1) 选取坐标系,选定完全而且独立的广义关节变量n r ,,2,1,r ???=θ。 2) 选定相应关节上的广义力r F :当r θ是位移变量时,r F 为力;当r θ是角度变量时,r F 为力矩。 3)求出机器人各构件的动能和势能,构造拉格朗日函数。 4) 代入拉格朗日方程求得机器人系统的动力学方程。 2、下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。

具有冗余自由度的机械手臂的构型优化

具有冗余自由度的机械手臂的构型优化作者贾腾赵宪良崔金超安少杰李朝阳赵士欣 摘要: 利用 Pro /E软件建立了机械手臂的三维模型, 并通过插件 MECHAN IS M /Pro对模型进行刚体定义, 把模型导入ADAMS进行后续的约束和驱动添加, 从而获得机械手臂的虚拟样机。然后对机械手臂的虚拟样机的工作域进行求解分析,并通过运动仿真模拟了机械手臂关节在实际作业过程中的驱动情况, 得出其运动曲线, 并分析和验证了所建立的机械手臂的运动方程的正确性。 关键词:Pro/E; 运动学分析;机械手;ADAMS;优化; 0引言 冗余自由度机械臂具有灵活性高、避障能力强、以及抗故障风险等优点,可以在保证末端操作器位姿不变的前提下实现避奇异、避障、避关节极限、关节力矩优化及抑制振动等运动学和动力学层面的优化。随着计算机技术和加工制造业的飞速发展, 机器人技术的发展速度越来越快, 其智能化程度越来越高, 已经应用并扩展到经济发展的诸多领域, 成为现代生产和高科技研究中的一个不可或缺的组成部分。目前, 随着机器人技术研究领域的不断发展, 机器人计算机仿真系统作为机器人设计和研究的灵活方便的工具, 发挥着重要的作用。机器人计算机仿真系统在机器人技术研究的许多方面都有应用。ADAMS软件具有十分强大的运动学和动力学分析功能, 但由于ADAMS的建模能力相对薄弱, 前处理模块中的几何建模功能不强, 无法完成复杂模型的建模, 因此降低了结构分析结果的可信度。作者利用基于特征的参数化设计软件 Pro/E建立五自由度的机械手臂结构并赋予与实际相应的各种属性, 然后利用M echanism /Pro模块将虚拟样机模型导入到 ADAMS环境下, 进行运动学仿真分析, 并根据 D-H 方法对其进行数学模型的建立, 进行正向运动学和逆向运动学分析, 利用仿真结果来验证所建立的机械手臂的运动方程。 一机械手臂的仿真建模 1.1 机械手臂的三维模型建立 机械手采用 Pro/E来进行建模, 其 Pro/E模型如图 1所示。该机械手臂参照人体手臂的结构, 采用开链连杆式的关节型结构, 分为前臂、上臂、手腕和手爪等结构, 以及能够旋转的腰关节、肩关节、肘关节、腕关节和手爪关节。机械手臂拥有 5个自由度,但由于机械手臂可以安装在移动的车体上而增加额外的自由度, 故总体自由度为 6以上, 使手臂末端执行器能实现空间中的任何位姿。

工业机器人静力及动力学分析

注:1)2008年春季讲课用;2)带下划线的黑体字为板书内容;3)公式及带波浪线的部分为必讲内容第3章工业机器人静力学及动力学分析 3.1 引言 在第2章中,我们只讨论了工业机器人的位移关系,还未涉及到力、速度、加速度。由理论力学的知识我们知道,动力学研究的是物体的运动和受力之间的关系。要对工业机器人进行合理的设计与性能分析,在使用中实现动态性能良好的实时控制,就需要对工业机器人的动力学进行分析。在本章中,我们将介绍工业机器人在实际作业中遇到的静力学和动力学问题,为以后“工业机器人控制”等章的学习打下一个基础。 在后面的叙述中,我们所说的力或力矩都是“广义的”,包括力和力矩。 工业机器人作业时,在工业机器人与环境之间存在着相互作用力。外界对手部(或末端操作器)的作用力将导致各关节产生相应的作用力。假定工业机器人各关节“锁住”,关节的“锁定用”力与外界环境施加给手部的作用力取得静力学平衡。工业机器人静力学就是分析手部上的作用力与各关节“锁定用”力之间的平衡关系,从而根据外界环境在手部上的作用力求出各关节的“锁定用”力,或者根据已知的关节驱动力求解出手部的输出力。 关节的驱动力与手部施加的力之间的关系是工业机器人操作臂力控制的基础,也是利用达朗贝尔原理解决工业机器人动力学问题的基础。 工业机器人动力学问题有两类:(1)动力学正问题——已知关节的驱动力,求工业机器人系统相应的运动参数,包括关节位移、速度和加速度。(2)动力学逆问题——已知运动轨迹点上的关节位移、速度和加速度,求出相应的关节力矩。 研究工业机器人动力学的目的是多方面的。动力学正问题对工业机器人运动仿真是非常有用的。动力学逆问题对实现工业机器人实时控制是相当有用的。利用动力学模型,实现最优控制,以期达到良好的动态性能和最优指标。 工业机器人动力学模型主要用于工业机器人的设计和离线编程。在设计中需根据连杆质量、运动学和动力学参数,传动机构特征和负载大小进行动态仿真,对其性能进行分析,从而决定工业机器人的结构参数和传动方案,验算设计方案的合理性和可行性。在离线编程时,为了估计工业机器人高速运动引起的动载荷和路径偏差,要进行路径控制仿真和动态模型的仿真。这些都必须以工业机器人动力学模型为基础。 工业机器人是一个非线性的复杂的动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间。因此,简化求解过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。 在这一章里,我们将首先讨论与工业机器人速度和静力学有关的雅可比矩阵,然后介绍工业机器人的静力学问题和动力学问题。

工程机械臂系统结构动力学分析

工程机械臂系统结构动力学分析 发表时间:2019-06-18T10:03:50.107Z 来源:《科技新时代》2019年4期作者:张雷[导读] 工程机械臂架系统是工程机械设计的核心,优秀的设计对整个工作、生产都有极大的帮助。 安徽省矿业机电装备有限责任公司 235000 摘要 “十三五”以来,我国的机械制造业迅猛发展,自主创新能力不断提升,对国民经济的发展有这深远的意义。工程机械的作业环境恶劣,结构复杂,吨位大,技术是发展的关键。工程机械臂架是大型机械设计的关键,其合理性直接影响到机械的作业精准性。目前的技术下,各种工程机械臂灵活、高效,但复杂的工作环境很大程度上制约了其工作性能。因此,本研究对提升工程机械臂系统有着重大的意义。 关键词:工程机械臂,多体动力学,等效单元,动态优化一、理论概述 (一)多体动力学 多体动力学包括刚体系统动力学和柔体系统动力学。 图1 多刚体系统与多柔体系统关系(二)工程机械臂 工程机械臂架系统是工程机械设计的核心,优秀的设计对整个工作、生产都有极大的帮助。根据本人查阅的相关资料,目前的研究主要有以下几个方面: (1)工作机械臂系统的动力学微分方程建模该系统采用多体动力学的方法加墨,常用的方法有牛顿-欧拉方法、拉格朗日法等。(2)动力学仿真 采用动力学分析软件进行仿真,求解数值。常用软件有:MATLAB、Adams、ANSYS。(3)模态分析 机械结构的动态特征是通过振动模态参数判断的,包含了各阶频率、阻尼等。通过模态分析,得出各阶固有频率,对系统振型分析,得出优化结构设计。 (三)本研究对经济建设的意义“十三五”以来,我国的机械制造业迅猛发展,自主创新能力不断提升,对国民经济的发展有这深远的意义。工程机械的作业环境恶劣,结构复杂,吨位大,技术是发展的关键。工程机械臂架是大型机械设计的关键,其合理性直接影响到机械的作业精准性。目前的技术下,各种工程机械臂灵活、高效,但复杂的工作环境很大程度上制约了其工作性能。因此,本研究对提升工程机械臂系统有着重大的意义。其次,我国经济飞速反正,大型机械设备的租赁业务迅速萌芽,市场对工程机械的的需求急剧上升。市场大环境也为工程机械产品的革新提供了肥沃的土壤。 二、工程机械臂系统结构动力学分析多体动力系统对大型机械设备的意义重大,多体系统中包含了多刚体系统和柔性多体系统。机械臂的建模方法主要有牛顿-欧拉方法、凯恩方法等。工程机械臂动力学建模的等效有限元方法,是指用等效单元替代系统部件,从而代替真实运动系统。它可以大大减少人力分析工作。 (一)等效单元 将机构划分为多个单元,用集中质量和惯量表示。在任意外力作用下,有相同的运动状态。如果满足以上条件,广义惯量阵与原义无差别,则可以保证等效集中质量。构造单元的质量阵,其实并未真实分布,称为伪质量阵。(二)伪质量矩阵 对系统分析时,采用齐次坐标描述。

柔性机械臂动力学建模

柔性机械臂动力学建模 一,研究现状 柔体动力学建模方面国内外出现很多研究,主要针对关节柔性与柔性臂杆进行建模。 其中,Chang-Jin Li, T、S、 Sankar, 利用拉格朗日方程及假设模态法对柔性机械臂进行建模,提出的该方法可以降低运算量,并用单连杆柔性机器人进行证明验证; B、Subudhi ,A、S、Morris, 基于欧拉-拉格朗日法与假设模态法对多柔性杆与柔性关节进行动力学建模; Gnmarra-Rosado VO,Yuhara, EAO,利用牛顿-欧拉公式与有限元分析法对两柔性两转动关节推导动力学方程; 危清清,采用拉格朗日及假设模态法建立柔性机械臂辅助空间站舱段对接过程的动力学方程; 谢立敏,基于动量、动量矩守恒关系与拉格朗日假设模态法对双柔性关节单柔性臂建模;王海,在考虑外部干扰下对柔性关机机械臂进行动力学建模;刘志全,基于精细模型的空间机械臂对柔性关节进行建模。 1,建模过程原理 1)坐标系的选择(根据机械臂运动姿态选择不同的坐标系,一般包括绝对坐标系与相对坐标系,如表1所示) 设柔性体的变形始终处于弹性范围内,因为任何一个弹性体都具有无限多自由度,忽略轴向变形与剪切变形的影响,仅考虑弯曲变形,通常都将柔性体离散成有限自由度作为近似分析模型。(对变形场进行离散化后得到的常微分方程将有利于对柔性多体系统动力学建模研究的进一步深入)如下表2所列。

根据原理的不同一般常用的可分为牛顿-欧拉方法,拉格朗日方程(第二类),以及凯恩方程。如表3所示。 表3 动力学建模方法 二,单杆柔性机械的建模过程 1,模型简化假设 关节建模时需要注意关节齿轮传动间隙,间隙的存在使得传动机构存在误差,输出运动与输入运动不再就是线性关系;另外,关节臂驱动力就是通过电机来提供,电机中的电感电阻等元件,会影响电机力矩的产生,即关机建模的精细化问题,这里只进行简单的处理,不考虑精细化问题。柔性关节主要由分体式永磁同步电机,谐波减速器,永磁制动器,光电编码器与圆光栅等组成。谐波减速器为柔性关节的减速与驱动装置,一般把把关节视为转子-扭簧系统。

机器人机械臂运动学分析

平面二自由度机械臂动力学分析 [摘要] 机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。本文采用拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过研究得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 [关键字] 平面二自由度 一、介绍 机器人是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,简化解的过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。 机器人动力学问题有两类: (1) 给出已知的轨迹点上的,即机器人关节位置、速度和加速度,求相应的关节力矩向量Q r。这对实现机器人动态控制是相当有用的。 (2) 已知关节驱动力矩,求机器人系统相应的各瞬时的运动。也就是说,给出关节力矩向量τ,求机器人所产生的运动。这对模拟机器人的运动是非常有用的。 二、二自由度机器臂动力学方程的推导过程 机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: (1) 选取坐标系,选定完全而且独立的广义关节变量θr ,r=1, 2,…, n。 (2) 选定相应关节上的广义力F r:当θr是位移变量时,F r为力;当θr是角度变量时, F r为力矩。 (3) 求出机器人各构件的动能和势能,构造拉格朗日函数。 (4) 代入拉格朗日方程求得机器人系统的动力学方程。 下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。 1、分别求出两杆的动能和势能

柔性机械臂动力学建模

柔性机械臂动力学建模 一,研究现状 柔体动力学建模方面国内外出现很多研究,主要针对关节柔性和柔性臂杆进行建模。 其中,Chang-Jin Li, T.S. Sankar,利用拉格朗日方程及假设模态法对柔性机械臂进行建模,提出的该方法可以降低运算量,并用单连杆柔性机器人进行证明验证; B.Subudhi ,A.S.Morris, 基于欧拉-拉格朗日法和假设模态法对多柔性杆和 柔性关节进行动力学建模; Gnmarra-Rosado VO,Yuhara, EAO利用牛顿-欧拉公式和有限元分析法对两柔性两转动关节推导动力学方程; 危清清,采用拉格朗日及假设模态法建立柔性机械臂辅助空间站舱段对接过程的动力学方程; 谢立敏,基于动量、动量矩守恒关系和拉格朗日假设模态法对双柔性关节单柔性臂建模;王海,在考虑外部干扰下对柔性关机机械臂进行动力学建模;刘志全,基于精细模型的空间机械臂对柔性关节进行建模。 1,建模过程原理 1)坐标系的选择(根据机械臂运动姿态选择不同的坐标系,一般包括绝对坐标系和相对坐标系,如表1所示) 2),柔体离散化方法 设柔性体的变形始终处于弹性范围内,因为任何一个弹性体都具有无限多自由度,忽略轴向变形和剪切变形的影响,仅考虑弯曲变形,通常都将柔性体离散成有限自由度作为近似分析模型。(对变形场进行离散化后得到的常微分方程将有利于对柔性多体系统动力学建模研究的进一步深入)如下表2所列。 表2变形体离散化方法

3)动力学的建模方法 根据原理的不同一般常用的可分为牛顿-欧拉方法,拉格朗日方程(第二类),以及凯恩方程。如表3所示。 二,单杆柔性机械的建模过程 1,模型简化假设 关节建模时需要注意关节齿轮传动间隙,间隙的存在使得传动机构存在误差, 输出运

7自由度工业机器人机械结构毕业设计

摘要 7 自由度工业机器人以工作范围大、动作灵活、结构紧凑、能抓取靠近机座的物体等特点备受设计者和使用者的青睐。由于有一个冗余自由度,很容易在确保最佳焊接姿势的同时,避免工件以及夹具对机器人工作臂的干扰。 本论文首先根据机器人持重3kg、工作范围1434mm、本体重量150kg,确立机器人为S腰部回转、L小臂摆动、E大臂回转、U臂部俯仰、R腕部扭转、B 腕部俯仰、T腕部回转的7自由度关节型弧焊机器人的总体结构;分析机器人的各个关节在转动惯量、角速度、加速度等技术指标下的工作状况,确定7个关节都采用交流电机驱动、机器人手臂专用减速器传动,同时B、T腕部关节还用到同步带传动。通过计算各关节所需电机的功率和转矩、减速器的减速比、同步带的要求并选型;用UG NX6.0画出机器人的各关节三维仿真模型,并装配成型。 本课题研究具有广泛的实际意义和应用前景。设计的7自由度工业机器人为后续的机器人动力学分析和运动控制提供了参考依据,并可以做进一步的研发。 关键词:7自由度,工业机器人,机械结构

Abstract 7 dof industrial robots with large scope of work, flexible, compact structure, can grab the object near the base are famous among so much designers and users. Because there is a redundant freedom, it is easy to ensure the best welding position at the same time, avoid workpiece and fixture work on the robot arm interference. In this thesis, according to the robot puts up 3kg, the scope of work is 1434mm, body weight is 150kg,establish 7 dof joint structure of arc-welding robot including S waist, L arm swing, E arm rotation, U pitching arm, R wrist turn, B wrist pitch, T wrist rotation. Analysis of the various robot joints in moment of inertia, angular velocity, acceleration and other technical indicators of the work under the conditions identified seven joints driven by AC motor, the robot arm dedicated reducer drive, while B, T wrist joint is also used in synchronous belt drive. Required by calculating the joint motor power and torque, reduction ratio reducer, belt requirements and selection; robot with UG NX6.0 draw three-dimensional simulation model of each joint, and assembly molding. This research has extensive practical significance and application prospect. 7 dof industrial robots designed for the follow-up dynamics analysis and motion control and provide a reference, and can do further research and development. Key words: 7 dof, industrial robot, mechanical structure

二自由度机械臂动力学分析

平面二自由度机械臂动力学分析 姓名:黄辉龙 专业年级:13级机电 单位:汕头大学 摘要:机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过分析,得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 关键字:平面二自由度 动力学方程 拉格朗日方程 相关介绍 机器人动力学的研究有牛顿-欧拉(Newton-Euler )法、拉格朗日(Langrange)法、高斯(Gauss )法等,但一般在构建机器人动力学方程中,多采用牛顿-欧拉法及拉格朗日法。 欧拉方程又称牛顿-欧拉方程,应用欧拉方程建立机器人机构的动力学方程是指研究构件质心的运动使用牛顿方程,研究相对于构件质心的转动使用欧拉方程,欧拉方程表征了力、力矩、惯性张量和加速度之间的关系。 在机器人的动力学研究中,主要应用拉格朗日方程建立机器人的动力学方程,这类方程可直接表示为系统控制输入的函数,若采用齐次坐标,递推的拉格朗日方程也可以建立比较方便且有效的动力学方程。 在求解机器人动力学方程过程中,其问题有两类: 1)给出已知轨迹点上? ??θθθ、及、 ,即机器人关节位置、速度和加速度,求相应的关节力矩矢量τ。这对实现机器人动态控制是相当有用的。 2)已知关节驱动力矩,求机器人系统相应各瞬时的运动。也就是说,给出关节力矩矢量τ,求机器人所产生的运动? ??θθθ、及、 。这对模拟机器人的运动是非常有用的。 平面二自由度机械臂动力学方程分析及推导过程 1、机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: 1) 选取坐标系,选定完全而且独立的广义关节变量n r ,,2,1,r ???=θ。 2) 选定相应关节上的广义力r F :当r θ是位移变量时,r F 为力;当r θ是角度变量时,r F 为力矩。 3)求出机器人各构件的动能和势能,构造拉格朗日函数。 4) 代入拉格朗日方程求得机器人系统的动力学方程。 2、下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。

机械系统动力学作业---平面二自由度机械臂运动学分析

机械系统动力学作业---平面二自由度机械臂运动学分 析 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

平面二自由度机械臂动力学分析 [摘要] 机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。本文采用拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过研究得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 [关键字] 平面二自由度机械臂动力学拉格朗日方程 一、介绍 机器人是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,简化解的过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。 机器人动力学问题有两类: (1) 给出已知的轨迹点上的,即机器人关节位置、速度和加速度,求相应的关节力矩向量Q r。这对实现机器人动态控制是相当有用的。 (2) 已知关节驱动力矩,求机器人系统相应的各瞬时的运动。也就是说,给出关节力矩向量τ,求机器人所产生的运动。这对模拟机器人的运动是非常有用的。 二、二自由度机器臂动力学方程的推导过程 机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: (1) 选取坐标系,选定完全而且独立的广义关节变量θr ,r=1, 2,…, n。 (2) 选定相应关节上的广义力F r:当θr是位移变量时,F r为力;当θr是角度变量时, F r为力矩。 (3) 求出机器人各构件的动能和势能,构造拉格朗日函数。 (4) 代入拉格朗日方程求得机器人系统的动力学方程。 下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。

机械臂动力学与控制的研究

摘要 操作器和移动平台的组合提供了一种可用于广泛应用程序高效灵活的操作系统,特别是在服务性机器人领域。在机械臂众多挑战中其中之一是确保机器人在潜在的动态环境中安全工作控制系统的设计。在本文中,我们将介绍移动机械臂用动力学系统方法被控制的使用方法。该方法是一种二级方法, 是使用竞争动力学对于统筹协调优化移动平台以及较低层次的融合避障和目标捕获行为的方法。 I介绍 在过去的几十年里大多数机器人的研究主要关注在移动平台或操作系统,并且在这两个领域取得了许多可喜的成绩。今天的新挑战之一是将这两个领域组合在一起形成具有高效移动和有能力操作环境的系统。特别是服务性机器人将会在这一方面系统需求的增加。大多数西方国家的人口统计数量显示需要照顾的老人在不断增加,尽管将有很少的工作实际的支持他们。这就需要增强服务业的自动化程度,因此机器人能够在室内动态环境中安全的工作是最基本的。 图、1 一台由赛格威RMP200和轻重量型库卡机器人组成的平台

这项工作平台用于如图1所示,是由一个Segway与一家机器人制造商制造的RMP200轻机器人。其有一个相对较小的轨迹和高机动性能的平台使它适应在室内环境移动。库卡工业机器人具有较长的长臂和高有效载荷比自身的重量,从而使其适合移动操作。 当控制移动机械臂系统时,有一个选择是是否考虑一个或两个系统的实体。在参考文献[1]和[2]中是根据雅可比理论将机械手末端和移动平台结合在一起形成一个单一的控制系统。另一方面,这项研究发表在[3]和[4],认为它们在设计时是独立的实体,但不包括两者之间的限制条件,如延伸能力和稳定性。 这种控制系统的提出是基于动态系统方法[5],[6]。它分为两个层次,其中我们在较低的水平,并考虑到移动平台作为两个独立的实体,然后再以安全的方式结合在上层操纵者。在本文中主要的研究目的是展现动力系统方法可以应用于移动机械臂和使用各级协调行为的控制。 本文剩下的安排如下。第二部分介绍系统的总体结构设计,其次是机械手末端移动平台的控制在第三第四部分讲述。在第五部分我们在结束本文之前将显示一些实验。然而, 首先与动力学系统有关工作总结与方法将在在部分I-A提供。 A.相关工作 动力学系统接近[5], [6]为控制机器人提供一套动作的框架,例如障碍退避和目标捕捉。每个动作通过一套一个非线性动力学系统的attractors和repellors来完成。这些通过向量场的简单的加法被结合在一起来完成系统的整体动作。动力系统的方法涉及到更广泛的应用势场法[7],但具有一定的优势。这里势场法的行为是由后场梯度形成的结果,行为变量,如航向和速度,可直接运用动力系统控制的方法。 成本相对较低的计算与方法有关,使得它在动态环境中在线控制适宜,允许它即使在相当低的水平有限的计算能力平台[8]实施。传感器的鲁棒性在人声嘈杂中显示[9]和[10]其中一个是由红外传感器和麦克风的结合,当避障和目标获取时使用。尽管能解决各种各样的任务,但它仅是一个局部的方法,为了其他的任务和使命级计划(即参见[11])其他的方法应该被采用。 当多行为被结合时,在[5]和 [6]的缺点是由潜在的假的因子引起的。为了克服这个问题[12]介绍了一种基于竞争动态的行为比重。每个行为的影响是控制使用一个相关的竞争优势,再加上定义的行为之间有竞争力的相互作用,控制重物。如果所有的行为之

第3章 工业机器人静力计算及动力学分析

第3章工业机器人静力计算及动力学分析 章节题目:第3章工业机器人静力计算及动力学分析 [教学内容] 3.1 工业机器人速度雅可比与速度分析 3.2 工业机器人力雅可比与静力计算 3.3 工业机器人动力学分析 [教学安排] 第3章安排6学时,其中介绍工业机器人速度雅可比45分钟,工业机器人速度分析45分钟,操作臂中的静力30分钟,机器人力雅可比30分钟,机器人静力计算的两类问题10分钟,拉格朗日方程20分钟,二自由度平面关节机器人动力学方程60分钟,关节空间和操作空间动力学30分钟。 通过多媒体课件结合板书的方式,采用课堂讲授和课堂讨论相结合的方法,首先讨论与机器人速度和静力有关的雅可比矩阵,然后介绍工业机器人的静力学问题和动力学问题。 [知识点及其基本要求] 1、工业机器人速度雅可比(掌握) 2、速度分析(掌握) 3、操作臂中的静力(掌握) 4、机器人力雅可比(掌握) 5、机器人静力计算的两类问题(了解) 6、拉格朗日方程(熟悉) 7、二自由度平面关节机器人动力学方程(理解) 8、关节空间和操作空间动力学(了解) [重点和难点] 重点:1、速度雅可比及速度分析 2、力雅可比

3、拉格朗日方程 4、二自由度平面关节机器人动力学方程 难点:1、关节空间和操作空间动力学 [教学法设计] 引入新课: 至今我们对工业机器人运动学方程还只局限于静态位置问题的讨论,还没有涉及力、速度、加速度等。机器人是一个多刚体系统,像刚体静力学平衡一样,整个机器人系统在外载荷和关节驱动力矩(驱动力)作用下将取得静力平衡;也像刚体在外力作用下发生运动变化一样,整个机器人系统在关节驱动力矩(驱动力)作用下将发生运动变化。 新课讲解: 第一次课 第三章工业机器人静力计算及动力学分析 3-1 工业机器人速度雅可比与速度分析 一、工业机器人速度雅可比 假设有六个函数,每个函数有六个变量,即:,可写成 Y=F(X,将其微分,得:,也可简写成 。该式中(6×6)矩阵叫做雅可比矩阵。 在工业机器人速度分析和以后的静力分析中都将遇到类似的矩阵,称之为机器人雅可比矩阵,或简称雅可比矩阵。 二自由度平面关节机器人,端点位置x,y与关节θ1、θ2的关系为:

三维空间机械臂的动力学建模与仿真分析

机械工程师 MECHANICAL ENGINEER 三维空间机械臂的动力学建模与仿真分析 吴良凯,王涛,王春丽,王洲,夏国辉(山东科技大学机械电子工程学院,山东青岛266590) 摘要:为了提高三维空间助力机械臂的设计效率,运用拉格朗曰方法建立机械臂的动力学模型,利用Sold /V o k 建立三 维空间助力机械臂的构件模型,将装配后三维实体模型导入ADAMS 中进行动力学仿真分析,得到相关性能曲线图,为空间 助力机械臂的结构设计和最优控制提供依据。 关键词:机械臂;动力学;ADAM S 拉格朗日法中图分类号:"P 241N /441 文献标志码:A 文章编号:1〇〇2-2333(2〇17)〇1-〇〇15-〇3 Dynamics Modeling and Simulation Analysis of Three-dimensional Space Manipulator WU Liangkai , WANG Tao , WANG Chunli , WANG Zhou , XIAGuohui (College of Mechanical and Electronic Engineering , Shandong University of Science and Technology , Qingdao 266590, China ) Abstract : In order to improve the design efficiency of three-dimensional space manipulator, the dynamic modeling of the manipulator is established by using Lagrange method, the three-dimensional solid component model of space manipulator is built by Solidworks, the three -dimensional solid model after assembled is imported into ADAMS to carry out the dynamic simulation analysis. Related performance curve is obtained to provide reference for the mechanical structure design and the optimal control of the space manipulator. Key words : manipulators; dynamics; ADAMS; Lagrange 0 引言 三维空间助力机械臂是一个复杂的动力学系统,它 由多个关节和多个运动构件组成,各关节与运动构件之 间存在复杂的耦合关系?。为了机械臂的结构设计以及控 制系统的开发与优化,对机械臂进行动力学分析与研究常取极大值[15。然而,发电机实际工作中,除少数情况外, 支架大部分区域的实际受力要低于峰值。故对比二者的 数据,大部分试验值小于仿真值,以负偏差居多。 3)试验所得的最大测点峰值为309 MPa ,比材料的许 用应力小。 综上所述,该发电机转子支架的强度特性比较好,符 合安全使用标准。3 结论 本文对某具体的发电机转子支架设计案例,分别在 额定工况和飞逸工况两种条件下,进行了强度性能数值 计算,并进行了应力试验,获得了强度性能较好的转子支 架。同时,也应该看到,仿真的工况点不多,故存在数据不 完善之处,下一步的工作,拟对更多工况点展开分析,以 更加精确地验证转子支架的强度性能。 [参考文献] [1] 衣然,兰波.大型水力发电机转子支架应力分析[C ]//第十九次 中国水电设备学术讨论会论文集,2013[2] 哈尔滨大电机研究所.水轮机设计手册[M ].北京:机械工业出 版社,1981. [3] 张慧珍.1.5MW 水平轴风力机叶片结构性能分析[D ].成都:西华 大学能源与环境学院,2011. [4] 陈荣盛.风力机结构动力学特性研究[D ].成都:西华大学能源与 是非常重要的。越来越多设计人员将虚拟样机仿真作为 机械系统研发的重要依据,相比传统机械设计而言,节省 了物理样机的实验时间以及材料,缩短了设计周期,提高 了机械臂工作性能[34]。 目前动力学分析领域中的方法主要包括拉格朗曰 环境学院,2009. [5] 王旭,李萍,陈荣盛,等.水轮机尾水管设计的CFD 分析与模型试 验研究[J ].水电能源科学,2015,33(9):163-165. [6] 秦艳,苟向辉.发电机转子支架应力试验分析[J ].工程与试验, 2015,55(2):52-54. [7] 王旭,胡洪,王莉君,等.基于有限元法的2MW 水平轴风力发电机 叶片模态分析[】].机械制造,2015,53(1):9-11. [8] 李发海,王岩.电机与拖动基础[M ].北京:清华大学出版社,2005.[9] 闻邦椿.机械设计手册[M ].北京:机械工业出版社,2010.[10] 温洁明,陈家权,沈炜良.水轮发电机转子支架有限元分析及应 力试验[J ].机械工程师,2007(3)61-63. [11 ]薛勇,程文兵,张明.糯扎渡水电站水轮机蜗壳水压试验情况及 分析[J ].人民长江,2012,43 (4):67-69. [12] 章宝华,良贵.材料力学[M ].北京:北京大学出版社,2011.[13] 冼进.现代机电驱动控制技术[M ].北京:中国水利水电出版 社,2009. [14] 王旭,李萍,陈荣盛,等.水轮机椭圆蜗壳设计的CFD 计算及试 验分析[J ]■人民黄河,2016,38(1):109-111.[15] 胡金秀,胡祥甫.85MW 高转速水轮发电机转子设计[J ].山东 工业技术,2014(7) :8-9. (编辑昊天) 作者简介:张彦南(1984—),男,博士,工程师,主要从事水利水电工 程方面的研究。 收稿日期:2016-07-07 网址 https://www.doczj.com/doc/5511550256.html, 电邮:hrbengineer@https://www.doczj.com/doc/5511550256.html, 2017 年第 1 期 | 15

自由度机械臂动力学分析

自由度机械臂动力学分 析 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

平面二自由度机械臂动力学分析姓名:黄辉龙专业年级:13级机电单位:汕头大学 摘要:机器臂是一个非线性的复杂动力学系统。动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。经过分析,得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。 关键字:平面二自由度动力学方程拉格朗日方程 相关介绍 机器人动力学的研究有牛顿-欧拉(Newton-Euler)法、拉格朗日(Langrange)法、高斯(Gauss)法等,但一般在构建机器人动力学方程中,多采用牛顿-欧拉法及拉格朗日法。 欧拉方程又称牛顿-欧拉方程,应用欧拉方程建立机器人机构的动力学方程是指研究构件质心的运动使用牛顿方程,研究相对于构件质心的转动使用欧拉方程,欧拉方程表征了力、力矩、惯性张量和加速度之间的关系。 在机器人的动力学研究中,主要应用拉格朗日方程建立机器人的动力学方程,这类方程可直接表示为系统控制输入的函数,若采用齐次坐标,递推的拉格朗日方程也可以建立比较方便且有效的动力学方程。 在求解机器人动力学方程过程中,其问题有两类: 1)给出已知轨迹点上 ?? ? θ θ θ、及 、,即机器人关节位置、速度和加速度,求相应 的关节力矩矢量τ。这对实现机器人动态控制是相当有用的。

2)已知关节驱动力矩,求机器人系统相应各瞬时的运动。也就是说,给出关 节力矩矢量τ,求机器人所产生的运动? ??θθθ、及、。这对模拟机器人的运动是非常有用的。 平面二自由度机械臂动力学方程分析及推导过程 1、机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。机器人动力学方程的具体推导过程如下: 1) 选取坐标系,选定完全而且独立的广义关节变量n r ,,2,1,r ???=θ。 2) 选定相应关节上的广义力r F :当r θ是位移变量时,r F 为力;当r θ是角度变量时,r F 为力矩。 3)求出机器人各构件的动能和势能,构造拉格朗日函数。 4) 代入拉格朗日方程求得机器人系统的动力学方程。 2、下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。 1)如图1,设21,θθ是广义坐标,21,Q Q 是广义力。 2)分别求出两杆的动能和势能 11112111111sin ,2 121:1θθc c c T c gl m U I v v m E =+=?杆 (1-1) ]sin [,2 121:22112222122222)()(杆θθθθ+=++=??l g m U I v v m E c c T c (1-2) 式中,1c v 是杆1质心),(111c c y x C 的速度向量,2c v 是杆2质心 ),(222c c y x C 的速度向量。它们可以根据质心21,C C 的位置方程导出。 3)分别求出两杆的速度

相关主题
文本预览
相关文档 最新文档