当前位置:文档之家› 大学物理第8章答案

大学物理第8章答案

大学物理第8章答案
大学物理第8章答案

第8章 磁场

8-10一均匀密绕直螺线管的半径为 ,单位长度上有 匝线圈,每匝线圈中的电流为 ,用毕奥—萨伐尔定律求此螺线管轴线上的磁场。

分析:由于线圈密绕,因此可以近似地把螺线管看成一系列圆电流的紧密排列,且每一匝圆电流在轴线上任一点的磁场均沿轴向。

解: 取通过螺线管的轴线并与电流形成右旋的方向(即磁场的方向)为x 轴正向,如习题8-10图解(a )所示。在螺线管上任取一段微元dx ,则通过它的电流为dI nIdx =,把它看成一个圆线圈,它在轴线上O 点产生的磁感应强度dB 为

20

2232

2()R nIdx

dB R x μ=+

由叠加原理可得,整个螺线管在O 点产生的磁感应强度B 的大小为

21

202232

2

()x L

x R nI

dx

B dB R x μ==

+??

021

2212

2212

21[

]2

()()nI

x x R x R x μ=

-++ 由图可知121222122212

12cos os ()()

x x R x R x ββ=

=++ c ,代入上式并整理可得 021(cos cos )2

nI

B μββ=

-

式中12ββ和分别为x 轴正向与从O 点引向螺线管两端的矢径r 之间的夹角。 讨论:

(1)若螺线管的长度远远大于其直径,即螺线管可视为无限长时,20β=,1βπ=,则有

nI B 0μ=

上式说明,无限长密绕长直螺线管内部轴线上各点磁感应强度为常矢量。理论和实验均证明:在整个无限长螺线管内部空间里,上述结论也适用。即无限长螺线管内部空间里的磁场为均匀磁场,其磁感应强度B 的大小为0nI μ,方向与轴线平行;

(2)若点O

位于半无限长载流螺线管一端,即

12

π

β=

,20β=或12

π

β=

,2βπ=时,无论哪一种情况均有

nI B 02

1

μ=

------(8-19) 可见半无限长螺线管端面中心轴线上磁感应强度的大小为管内的一半;

综上所述,密绕长直螺线管轴线上各处磁感应强度分布见习题8-10图解(b )所示,从图中也可看出,长直螺线管内中部的磁场可以看成是均匀的。

8-11两根长直导线互相平行地放置,导线内电流大小相等,均为I =10A ,方向相同,如图8-49题图(左)所示。求图中M 、N 两点的磁感强度B 的大小和方向。已知图中的

00.020r m =。

分析:因无限长直流载导线在距离a 处的磁感应强度为02I

B a

μπ=,因此,本题由磁场的叠加原理进行求解较为方便。

解:由题可知,两长直导线在M 处产生的磁感强度大小均为0120

2I

B B r μπ==

,但方向相反;在N

处产生的磁感强度均为:12B B ==

方向如图8-49(右)所示,由图可知,

1B 和2B 合成的方向沿水平向左。即:

M 处的磁感强度为:001200

022M I I

B B B r r μμππ=-=

-= N 处

4012120

cos

cos

()cos

1.0104

4

4

2N I

B B B B B T r μπ

π

π

π-=+=+=

=? 方向沿水平向左。

8-12如图8-50题所示,有两根导线沿半径方向接触铁环的a 、b 两点,并与很远处的电源相接。求环心O

的磁感强度。

分析:因带电流为I 圆弧在其圆心处产生的磁感应强度为022I B R μθ

π

= ,方向可由右手法则确定,因此,本题由磁场的叠加原理求解较为方便。

解:设图8-50中圆弧的半径为R 。由题可知,ef 距O 点很远,故 0e f B =;O 点在eb 和fa 的延长线上故0e b f a B B ==;又因载流圆弧在圆心处产生的磁感强度为:

000222224I I Il l B R R R R

μμμθπππ=

== ,其中l 为圆弧长,故 1acb l =弧和 2adb l =弧在O 点产生的磁感强度分别为:

011124I l B R μπ=

,022

22

4I l B R

μπ= 又由于导线的电阻与导线的长度成正比,且圆弧 acb

和圆弧 adb 构成并联电路,所以有:

1122I l I l =

根据叠加原理可得o 点的磁感强度为:

2011022

122

044ef eb fa I l I l B B B B B B R R

μμππ=+++-=

-= 8-13 如图8-51所示,几种载流导线在平面内分布,电流均为I ,它们在点O 处的磁感

应强度各为多少?

分析:因载流圆弧在圆心处产生的磁感强度为:000222224I I Il

l B R R R R

μμμθπππ=== ,无限长载流直导线在距离a 处的磁感应强度为02I

B a

μπ=

,故可由叠加原理求解。 解:图8-51(a)中,将流导线看作

1

4

圆电流和两段半无限长载流直导线,则: 000+0+0=88I I

B B B B R R

μμ=++=圆弧长直导线长直导线

磁感应强度0B 的方向垂直纸面向外。

图8-51(b)中,将载流导线看作圆电流和长直电流,则:

00022I

I

B R

R

μμπ=

-

磁感应强度0B 的方向垂直纸面向里。 图8-51(c)中图中,将载流导线看作

1

2

圆电流和两段半无限长直电流,则: 00000044424I I I I I

B R R R R R

μμμμμπππ=

++=+

磁感应强度0B 的方向垂直纸面向外。

8-14如图8-52(a )所示,一宽为b 的薄金属板,其电流为I 。试求在薄板的平面上,距板的一边为r 的点P 的磁感应强度。

分析:建立图8-52 (b)所示的坐标系,将金属板分成无限多份宽度为dx 的载流长直导线。现在距O 点x 处取一载流长直导线,其电流为Idx

dI b

=

,在p 点处产生的磁感应强度为:02dI

dB x

μπ=

,再由叠加原理求解。 解:载流薄板在p 点处产生的磁感应强度的大小为:

0ln

22r b r b r r I I r b B dB dx bx b r

μμππ+++===?? 磁感应强度的方向垂直纸面向里。 讨论:当b r 时,则

20001ln ln(1)[()]2222I I I r b b b b B b r b r b r r μμμπππ+=

=+=-+ 02I r

μπ≈ 表示,宽度为b 的载流金属板在p 点处产生的磁感应强度,可视为载流直导线在可p 点处产生的磁感应强度。B 的分布曲线如图8-52(c)所示。

8-15 如图8-53所示,在磁感强度为B 的均匀磁场中,有一半径为R 的半球面,B 与半球面轴线的夹角为α。求通过该半球面的磁通量。

分析:构建一个闭合曲面,再由高斯定理求解。

解:设有一半径为R 的圆面与半径为R 的半球面构成封闭曲面,则由磁场的高斯定理可知:

+=0d d d =?

?

?

封闭曲面

半球面

圆面

B s B s B s

所以:

2==R Bcos d d a π?

?

半球面

圆面

B s B s

8-16电流I 均匀地流过半径为R 的圆形长直导线,试计算单位长度导线通过图8-54中所示剖面的磁通量。

分析:将导线视为长直圆柱体,由于电流沿轴向均匀流过导体,故其磁场呈轴对称分布,即在与导线同轴的圆柱面上各点,B 大小相等,方向与电流成右手螺线关系。

解:围绕轴线取同心圆环路L ,使其绕向与电流成右手螺旋关系,根据安培环路定理可求得导线内部距轴线r 处的磁感强度。

22

000222L Ir I d B r I r R R μπμμππ=?===∑? B l

02

2Ir

B R

μπ=

; 如图8-54所示,在距轴线r 处的剖面上取一宽度dr 很窄的面元ds ldr =,该面元上各点的B 相同,由磁通量的定义可知穿过该面元的磁通量为:

02

2Ir

d Bds ldr R μπΦ==

故:

0020

24R

Ir Il

d ld R μμππ

Φ=Φ==

??

单位长度的磁通量为:004I l μπ

ΦΦ=

=

8-17 如图8-55(a )所示,两平行长直导线相距40cm ,每条通有电流200I A =,求:

(1)两导线所在平面内与该两导线等距的一点A (图中未标)处的磁感应强度;

(2)通过图中斜线所示矩形面积内的磁通量。已

1310r r cm ==,220r cm =,25l cm =。

分析:用已知的结论:长直载流导线在空间某点产生的磁感应强度为02I

B a

μπ=、磁通的叠加原理和磁场的叠加原理可方便求解。

(1)解:由02I

B a

μπ=

和磁场的叠加原理可知,两导线所在平面内与该两导线等距的一点A 处的磁感应强度的大小为:

7400012410200

4.010220.2

I I I B B B T a a a μμμπππππ--??=+=+===??

磁感应强度的方向垂直纸面向里。

(2)建立如图8-55 (b)所示的坐标,穿过线圈的总磁通Φ总等于一条电流产生磁通Φ的两倍,即2Φ=Φ总。

方法一:在中距原点O 为x 处取一很窄的面积元dS ldx =,穿过该面积的磁通量为:012I

d B dS ldx x

μπΦ==

穿过线圈的总磁通为: 21

1

502 2.2102r r r I

ldx Wb x

μπ+-Φ==??

方法二:设两电流相距为d ,则由两电流产生的磁感应强度大小

0022()

I I

B x d x μμππ=

+

- 故:

12

12

1

1

500[

] 2.210()22()

r r r r r r I I

BdS ldx Wb x d x μμππ++-Φ==+=?-?

?

总 8-18已知横截面积为2

10mm 裸铜线允许通过50A 电流而不会使导线过热,电流在导线横截面上均匀分布。求:

(1)导线内、外磁感强度的分布; (2)导线表面的磁感强度。

分析:将导线视为长直圆柱体,由于电流沿轴向均匀流过导体,故其磁场呈轴对称分布,即在与导线同轴的圆柱面上各点,B 大小相等,方向与电流成右手螺线关系。

解:(1)围绕轴线取同心圆环路L ,使其绕向与电流成右手螺旋关系,根据安培环路定理

d I μ=∑? B l 可知:

2L

d B r I πμ=?=∑? B l

当r R <时,22

22I Ir I r R R

ππ==∑,所以:

02

2Ir

B R μπ=

; 当r R >时,

I I =∑,所以:

02I

B r

μπ=

(2)在导线表面,由题可知:50I I =

31.7810R m -=

=?,则由(1)问可得:

30 5.6102I

B T R

μπ-=

=? 磁感强度的分布曲线如习题8-18图解所示。

8-19 有一同轴电缆,其尺寸如图8-56(a )所示。两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑。试计算以下各处的磁感强度:

(1)1r R <; (2)12R r R ≤<; (3)23R r R ≤<;

(4)3r R ≥,画出B r -图线。

分析:由于同轴导体内的电流均匀分布,其磁场呈轴对称分布,因此可由安培环路定理定理求解。

解:取半径为r 的同心圆为积分路径,由

l

d I μ=∑? B l 有:

(1)当1r R <时有:2

10

212I B r r R πμππ= 012

1

2Ir B R μπ= (2) 当12R r R <<时有:202B r I πμ= 022I

B r

μπ=

(3) 当23R r R <<时有:222302232()

2[]()r R B r I I R R ππμπ-=-- 203322

32

2IR r B rR R μπ-=- (4) 当3r R >时有:402()0B r I I πμ=-=

40B = 磁感强度B r -图线如图8-56 (b)所示。

8-20如图8-57所示,N 匝线圈均匀密绕在截面为长方形的中空骨架上。求通入电流I 后,环内外磁场的分布。

分析:由于N 匝线圈均匀密绕在截面为长方形的中空骨架上,由右手螺旋法则可知:螺线管内磁感强度的方向与螺线管中心轴线构成同心圆,因此,由安培环路定理求解较方便。

解:取半径为r 的圆周为积分路径,则由0

d I μ=∑? B l 可

知:

当1r R <时,120B r π= 10B =

当21R r R >>时,202B r NI πμ=

022NI

B r

μπ= 当2r R >时,320B r π=

30B = 8-21 测定离子质量的质谱仪如图8-58所示。离子源S 产生质量为m ,电荷为q 的离子,离子的初速度很小,可看作是静止的,经电势差V 加速后离子进入磁感强度为B 的均匀磁场,并沿一半圆形轨道到达离入口处距离为x 的感光底片上。试证明该离子的质量为

22

8B q m x V

=

分析:离子在电场中由静止加速后进入均匀磁场中作半径为r 的圆周运动,所需向心力为其所受的洛伦兹力。

证明:根据动能定理有:

2

12

m qU υ= (1) 离子以速率υ进入磁场后作圆周运动所需的向心力为其所受的洛伦兹力,作圆周运动的

半径为2

x

r =

,即:

2

/2

q B m

x υυ= (2)

由(1)、(2)可得

22

8B q m x U

=

8-22 在一真空室中的电子通过一个电势差0V 被加速,然后进入两个带电平行金属板之间的空间,两金属板之间的电势差为300V ,如图8-59所示。求:

(1)如果电子进入两板之间的空间时的速率为

616.010m s -??,则该电子是通过多大的电势差0V 被加

速的;

(2)如果两板间还有一匀强磁场,其方向与纸面垂直,则磁场B 必须多大,才能使电子无偏转地在两板间运动。

分析:电子在电场中由静止加速后进入电磁场中,要使其无偏转即作直线运动,则忽略重力时,电子所受的电场力应等于其所受的洛伦兹力。即F f =电场力洛伦兹力。

解:(1)根据动能定理有:

2

0012

m qV υ=,即 2

001022m V V q

υ=

≈ (2)电子在两板间运动时,同时受到洛伦兹力和电场力的作用,要使电子不偏转,则洛伦兹力和电场力应相等,即q B qE υ=,结合V dE =有:

35.010E

V

B T d

υ

υ-=

=

=? 8-23 已知地面上空某处地磁场的磁感强度4

0.410B T -=?,方向向北。若宇宙射线中有一速率7

1

5.010m s υ-=??的质子,垂直地通过该处。求:

(1)洛伦兹力的方向;

(2)洛伦兹力的大小,并与该质子受到的万有引力相比较。 分析: 解:

(1)洛伦兹力的方向为?B υ的方向; (2)⊥ B υ,故质子所受的洛伦兹力为:

163.210F q B N υ-==?

质子在地球表面所受的万有引力为:

261.6410G p F m g -==?

101.9510G

F

F =? 由此可见,质子所受的洛伦兹力远大于重力。

8-24 如图8-60所示。设有一质量为e m 的电子射入磁感强度为B 的均匀磁场中,当它位于点M 时,具有与磁场方向成α角的速度υ,它沿螺旋线运动一周到达点N 。试证M 、N 两点间的距离为

2cos e m MN eB

πυα

=

分析:将入射电子的速度沿磁场方向和垂直磁场方向分解为//υ和υ⊥,电子在垂直磁场的平面内在洛伦兹力的作用下作匀速圆周运动,在沿磁场方向,电子不受磁场力作用,作匀速运动。电子在磁场内同时参与上述两种运动,其运动轨迹是等距螺旋线。根据电子前进一个螺距所需的时间与电子作匀速圆周运动所经历的时间相等,可得证式。

证:由//MN T υ=可得:入射电子在磁场方向前进一螺距MN 所需的时间为:

//

cos MN

MN

T a

υυ=

=

(1)

在垂直磁场方向的平面内,电子作匀速圆周运动的周期为:

22e

m R

T eB

ππυ⊥

=

=

(2) 根据电子前进一个螺距所需的时间与电子作匀速圆周运动所经历的时间相等可得:

2cos e m a

MN eB

πυ=

8-25一通有电流为I 的导线,弯成如图8-61(a )所示的形状,放在磁感强度为B 的均匀磁场中,B 的方向垂直纸面向里.问此导线受到的安培力为多少

?

分析:将导线分解成两段直线和一段半圆弧三部分。由于两段直导线所受的安培力大小相等,但方向相反,由安培定律可知:0F =两段导线,因此,此导线所受的安培力为半圆弧部分所受的安培力。

解: 如图8-61 (b)所示,在半圆弧上与x 轴成θ角处任取一圆弧dl Rd θ=,该圆弧所受的力为:dF Id IRBd θ=?1l B =,方向如图所示。由对称性可知,整个半圆弧在x 轴上所受的合力为零。故有:

110

sin 2y F dF BIR d BIR π

θθ===??

由叠加原理可知:所求导线的安培力为:

2F F F BIRj =+=圆弧两段导线

8-26 如图8-62(a )所示,一根长直导线载有电流130I A =,矩形回路载有电流

220I A =,试计算作用在回路上的合力。已知 1.0a cm =,8.0b cm =,0.12l m =。

分析:由题可知,矩形上、下两段导线所受的安培力大小相等,方向相反,两力的矢量和为零,而矩形的左右两段导线由于载流导线在该处产生的磁感应强度不相等,且方向相反,因此线框所受的力为这两个力的合力。

解:设上、下两段导线所受的力分别为1F 和2F ,左右两段导线所受的力分别为3F 和4F ,如图8-62(b )所示。由安培定律和叠加原理可知,1F 和2F 大小相等,方向相反,即

120F F +=;整个矩形回路所受的力为34=+F F F 。即

301201234 1.281022()

I I l I I l

F F F N d d b μμππ-=-=

-=?+ 合力的方向向左。

8-27 一个正方形线圈,每边长度为0.6m ,载有0.1A 的稳恒电流,放在一个强度为4

10-T 的匀强磁场中。求

(1)线圈平面平行于磁场时,求线圈所受到的力矩; (2)线圈平面垂直于磁场时,求线圈所受到的力矩; (3)当线圈的法线与磁场方向之间的夹角θ从0变到π时,画出力矩随角度变化的曲线。

解:由均匀磁场对载流线圈的磁力矩公式

s i n M B I S θ=有:

(1)线圈平面平行于磁场时,即2

π

θ=

63.610M BIS N m -==? ;

(2) 线圈平面垂直于磁场时,0θ=,0M =; (3) 因6

sin 3.610sin M BIS θθ-==?,力矩随角度变化的曲线如习题8-27图解所示。

8-28 如图8-63(a)所示,一根长直同轴电缆,内、外导体之间充满磁介质,磁介质的相对磁导率为r μ(r μ<1),导体的磁化可以忽略不计。沿轴向有稳桓电流 通过电缆,内、外导体上电流的方向相反。求:

(1)空间各区域内的磁感应强度和磁化强度;

习题8-27图解

(2)磁介质表面的磁化电流。

分析:由题可知,电流分布呈轴对称,依照右手定则,磁感应线是以电缆对称轴线为中心的一组同心圆。因此,可先由磁介质中的安培环路定理求出环内的传导电流,再由磁感应强度和磁化强度的关系式求出磁感应强度B 和磁化强度M 。

解:(1)取与电缆轴同心的圆为积分路径。根据

L

d I =∑? H l ,有:

2H r I π=∑

当1r R <时,2

2

1

I

I r R

ππ=∑ 12

1

2Ir

H R π= 当1r R >时,

I I =∑ 22I H r

π=

当32R r R <<时,22

222

32()()

I I I r R R R ππ=---∑ 22332232()2()I R r H r R R π-=- 当3r R >时,

0I I I =-=∑ 4

0H

=

由B H μ=,(1)r M H μ=-可分别得:

10M =( 导体的相对磁导率为1r μ=) 012

12Ir B R μπ=

2(1)

2r I M r

μπ=- 022r I

B r

μμπ=

30M = 2203323

32()

2()

I R r B r R R μπ-=- 40M = 40B =

(2)由2I M r π=

磁化电流,可分别得磁介质内、外表面的磁化电流大小为:

1212()(1)si r I R M R I πμ==- 2222()(1)se r I R M R I πμ==-

对抗磁质(1r μ<),在磁介质内表面(1r R =),磁化电流与内导体传导电流力向相反;在磁介质外表面(2r R =),磁化电流与外导体传导电流方向相反。顺磁质的情况与抗磁质相反H(r)和B(r)分布曲线分别如图8-63 (b)和(c)。

8-29在实验室,为了测试某种磁性材料的相对磁导率r μ。常将这种材料做成截面为矩形的环形样品,然后用漆包线绕成一环形螺线管。设圆环的平均周长为0.10m ,横截面积为4

2

0.5010m -?,线圈的匝数为200匝。当线圈通以0.10A 的电流时,测得穿过圆环横截面积的磁通量为5

6.010Wb -?,求此时该材料的相对磁导率r μ。

分析:由右手定则可知,磁感线与电流相互环连,磁场沿环型螺线管分布。因此,可由安培环路定理求出磁场强度,再由磁通量公式和磁场强度和磁感应强度的关系求出r μ。

解: 当环形螺线管中通以电流I 时,由

L

d I =∑? H l 得磁介质内部的磁场强度为

NI

H L

=

又BS Φ=和0r B H H μμμ==有:

30 4.7810r L

NIS

μμΦ=

=?

8-30 如图8-64所示,一个截面为正方形的环形铁心,其磁导率为μ。若在此环形铁心上绕有N 匝线圈,线圈中的电流为I ,环的平均半径为r 。求此铁心的磁化强度。

分析:由题可知,磁场强度分布具有对称性,因此可先由安培环路定理求出磁场强度,再由磁场强度和磁化强度的关系求出铁心的磁化强度。

解:如图8-64所示,选取闭合回路C ,由安培环路定理

L

d I =∑? H l 有:

2H r NI π=

即铁心内磁场强度为:2NI

H r

π=

又由磁场强度和磁化强度的关系得:

(1)(1)2r r NI

M H r

μμπ-=-=

大学物理试题库及答案详解【考试必备】

第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)2 2d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确

大学物理活页作业答案(全套)

1.质点运动学单元练习(一)答案 1.B 2.D 3.D 4.B 5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。) 6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。) 7.解:(1))()2(22 SI j t i t r )(21m j i r )(242m j i r )(3212m j i r r r )/(32s m j i t r v (2))(22SI j t i dt r d v )(2SI j dt v d a )/(422s m j i v )/(222 s m j a 8.解: t A tdt A adt v t o t o sin cos 2 t A tdt A A vdt A x t o t o cos sin

9.解:(1)设太阳光线对地转动的角速度为ω s rad /1027.73600 *62 /5 s m t h dt ds v /1094.1cos 32 (2)当旗杆与投影等长时,4/ t h s t 0.31008.144 10.解: ky y v v t y y v t dv a d d d d d d d -k y v d v / d y C v ky v v y ky 2 22 121, d d 已知y =y o ,v =v o 则2 020 2 121ky v C )(22 22y y k v v o o

大学物理期末考试经典题型(带详细答案的)

例1:1 mol 氦气经如图所示的循环,其中p 2= 2 p 1,V 4= 2 V 1,求在1~2、2~3、3~4、4~1等过程中气体与环境的热量交换以及循环效率(可将氦气视为理想气体)。O p V V 1 V 4 p 1p 2解:p 2= 2 p 1 V 2= V 11234T 2= 2 T 1p 3= 2 p 1V 3= 2 V 1T 3= 4 T 1p 4= p 1V 4= 2 V 1 T 4= 2 T 1 (1)O p V V 1 V 4 p 1p 21234)(1212T T C M m Q V -=1→2 为等体过程, 2→3 为等压过程, )(2323T T C M m Q p -=1 1123)2(23RT T T R =-=1 115)24(2 5RT T T R =-=3→4 为等体过程, )(3434T T C M m Q V -=1 113)42(2 3 RT T T R -=-=4→1 为等压过程, )(4141T T C M m Q p -=1 112 5)2(25RT T T R -=-= O p V V 1 V 4 p 1p 21234(2)经历一个循环,系统吸收的总热量 23121Q Q Q +=1 112 13 523RT RT RT =+=系统放出的总热量1 41342211 RT Q Q Q =+=% 1.1513 2 112≈=-=Q Q η三、卡诺循环 A → B :等温膨胀B → C :绝热膨胀C → D :等温压缩D →A :绝热压缩 ab 为等温膨胀过程:0ln 1>=a b ab V V RT M m Q bc 为绝热膨胀过程:0=bc Q cd 为等温压缩过程:0ln 1<= c d cd V V RT M m Q da 为绝热压缩过程:0 =da Q p V O a b c d V a V d V b V c T 1T 2 a b ab V V RT M m Q Q ln 11= =d c c d V V RT M m Q Q ln 12= =, 卡诺热机的循环效率: p V O a b c d V a V d V b V c ) )(1 212a b d c V V V V T T Q Q (ln ln 11-=- =ηT 1T 2 bc 、ab 过程均为绝热过程,由绝热方程: 11--=γγc c b b V T V T 1 1--=γγd d a a V T V T (T b = T 1, T c = T 2)(T a = T 1, T d = T 2) d c a b V V V V =1 212T T Q Q -=- =11η p V O a b c d V a V d V b V c T 1T 2 卡诺制冷机的制冷系数: 1 2 1212))(T T V V V V T T Q Q a b d c ==(ln ln 2 122122T T T Q Q Q A Q -= -== 卡ω

大学物理课后习题答案第八章教学提纲

第八章 光的偏振 8.1 两偏振片组装成起偏和检偏器,当两偏振片的偏振化方向夹角成30o时观察一普通光源,夹角成60o时观察另一普通光源,两次观察所得的光强相等,求两光源光强之比. [解答]第一个普通光源的光强用I 1表示,通过第一个偏振片之后,光强为I 0 = I 1/2. 当偏振光通过第二个偏振片后,根据马吕斯定律,光强为I = I 0cos 2θ1 = I 1cos 2θ1/2. 同理,对于第二个普通光源可得光强为I = I 2cos 2θ2/2. 因此光源的光强之比I 2/I 1 = cos 2θ1/cos 2θ2 = cos 230o/cos 260o = 1/3. 8.2 一束线偏振光和自然光的混合光,当它通过一偏振片后,发现随偏振片的取向不同,透射光的强度可变化四倍,求入射光束中两种光的强度各占入射光强度的百分之几? [解答]设自然光强为I 1,线偏振光强为I 2,则总光强为I 0 = I 1 + I 2. 当光线通过偏振片时,最小光强为自然光强的一半,即I min = I 1/2; 最大光强是线偏振光强与自然光强的一半之和,即I max = I 2 + I 1/2. 由题意得I max /I min = 4,因此2I 2/I 1 + 1 = 4, 解得I 2 = 3I 1/2.此式代入总光强公式得 I 0 = I 1 + 3I 1/2. 因此入射光中自然光强的比例为I 1/I 0 = 2/5 = 40%. 由此可得线偏振光的光强的比例为I 2/I 0 = 3/5 = 60%. [讨论]如果I max /I min = n ,根据上面的步骤可得 I 1/I 0 = 2/(n + 1), I 2/I 0 = (n - 1)/(n + 1), 可见:n 的值越大,入射光中自然光强的比例越小,线偏振光的光强的比例越大. 8.3 水的折射率为1.33,玻璃的折射率为1.50,当光由水射向玻璃时,起偏角为多少?若光由玻璃射向水时,起偏角又是多少?这两个角度数值上的关系如何? [解答]当光由水射向玻璃时,水的折射率为n 1,玻璃的折射率为n 2,根据布儒斯特定律 tan i 0 = n 2/n 1 = 1.1278, 得起偏角为i 0 = 48.44o. 当光由玻璃射向水时,玻璃的折射率为n 1,水的折射率为n 2,根据布儒斯特定律 tan i 0 = n 2/n 1 = 0.8867, 得起偏角为i 0 = 41.56o. 可见:两个角度互为余角. 8.4 根据布儒斯特定律可测量不透明介质的折射率,今测得某釉质的起偏角为58o,则该釉质的折射率为多少? [解答]空气的折射率取为1,根据布儒斯特定律可得釉质的折射率为n = tan i 0 = 1.6003. 8.5 三个偏振片堆叠在一起,第一块与第三块偏振化方 向互相垂直,第二块与第一块的偏振化方向互相平行,现令第二块偏振片以恒定的角速度ω0绕光传播方向旋转,如图所 示.设入射自然光的光强为I 0,试证明:此自然光通过这一系 统后出射光强度为I = I 0(1 – cos4ωt )/16. [证明]自然光通过偏振片P 1之后,形成偏振光,光强为 I 1 = I 0/2. 经过时间t ,P 3的偏振化方向转过的角度为θ = ωt , 根据马吕斯定律,通过P 3的光强为I 3 = I 1cos 2θ. 由于P 1与P 2的偏振化方向垂直,所以P 2与P 3的偏振化方向的夹角为φ = π/2 – θ, 再根据马吕斯定律,通过P 2的光强为 I = I 3cos 2φ = I 3sin 2θ= I 0(cos 2θsin 2θ)/2 = I 0(sin 22θ)/8= I 0(1 – cos4θ)/16, 1P 3 2图8.5

大学物理习题及答案

x L h 书中例题:1.2, 1.6(p.7;p.17)(重点) 直杆AB 两端可以分别在两固定且相互垂直的直导线槽上滑动,已知杆的倾角φ=ωt 随时间变化,其中ω为常量。 求:杆中M 点的运动学方程。 解:运动学方程为: x=a cos(ωt) y=b sin(ωt) 消去时间t 得到轨迹方程: x 2/a 2 + y 2/b 2 = 1 椭圆 运动学方程对时间t 求导数得速度: v x =dx/dt =-a ωsin(ωt) v y =dy/dt =b ωcos(ωt) 速度对时间t 求导数得加速度: a x =d v x /dt =-a ω2cos(ωt) a y =d v y /dt =-b ω2sin(ωt) 加速度的大小: a 2=a x 2+a y 2 习题指导P9. 1.4(重点) 在湖中有一小船,岸边有人用绳子跨过一高处的滑轮拉船靠岸,当绳子以v 通过滑轮时, 求:船速比v 大还是比v 小? 若v 不变,船是否作匀速运动? 如果不是匀速运动,其加速度是多少? 解: l =(h2+x2)1/2 221/2 122()d l x d x v d t h x d t ==+ 221/2()d x h x v d t x += 当x>>h 时,dx/dt =v ,船速=绳速 当x →0时,dx/dt →∞ 加速度: x y M A B a b φ x h

220d x d t =2221/22221/2221/2221/2221/22221/2()1()11()()1112()2()d x d h x v dt dt x d h x v dt x d dx d h x dx h x v v dx x dt x dx dt dx x dx h x v v x dt x h x dt ?? +=??????=?+???? +??=?++ ???=-?+++ 将221/2()d x h x v d t x +=代入得: 2221/2221/2 221/2 22221/21()112()()2()d x h x x h x h xv v v v d t x x x h x x ++=-?+++3222232222)(x v h x v v x x h dt x d -=++-= 分析: 当x ∞, 变力问题的处理方法(重点) 力随时间变化:F =f (t ) 在直角坐标系下,以x 方向为例,由牛顿第二定律: ()x dv m f t dt = 且:t =t 0 时,v x =v 0 ;x =x 0 则: 1 ()x dv f t dt m = 直接积分得: 1 ()()x x v dv f t dt m v t c ===+?? 其中c 由初条件确定。 由速度求积分可得到运动学方程:

2018大学物理模拟考试题和答案

答案在试题后面显示 模拟试题 注意事项: 1.本试卷共三大题,满分100分,考试时间120分钟,闭卷; 2.考前请将密封线内各项信息填写清楚; 3.所有答案直接做在试卷上,做在草稿纸上无效; 4.考试结束,试卷、草稿纸一并交回。 一、选择题 1、一质点在平面上作一般曲线运动,其瞬时速度为,瞬时速率为,某一时间内的平均速度为,平均速率为,它们之间的关系必定有:() (A)(B) (C)(D) 2、如图所示,假设物体沿着竖直面上圆弧形轨道下滑,轨道是光滑的,在从A至C的下滑过程中,下面 哪个说法是正确的?() (A) 它的加速度大小不变,方向永远指向圆心. (B) 它的速率均匀增加. (C) 它的合外力大小变化,方向永远指向圆心.

(D) 它的合外力大小不变. (E) 轨道支持力的大小不断增加. 3、如图所示,一个小球先后两次从P点由静止开始,分别沿着光滑的固定斜面l1和圆弧面l2下滑.则小 球滑到两面的底端Q时的() (A) 动量相同,动能也相同.(B) 动量相同,动能不同. (C) 动量不同,动能也不同.(D) 动量不同,动能相同. 4、置于水平光滑桌面上质量分别为m1和m2的物体A和B之间夹有一轻弹簧.首先用双手挤压A和B 使弹簧处于压缩状态,然后撤掉外力,则在A和B被弹开的过程中( ) (A) 系统的动量守恒,机械能不守恒.(B) 系统的动量守恒,机械能守恒.(C) 系统的动量不守恒,机械能守恒.(D) 系统的动量与机械能都不守恒. 5、一质量为m的小球A,在距离地面某一高度处以速度水平抛出,触地后反跳.在抛出t秒后小球A 跳回原高度,速度仍沿水平方向,速度大小也与抛出时相同,如图.则小球A与地面碰撞过程中,地面给它的冲量的方向为________________,冲量的大小为____________________.

大学物理 习题分析与解答

第八章 恒定磁场 8-1 均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为[ ]。 (A) B r 22π (B) B r 2π (C) 0 (D) 无法确定 分析与解 根据高斯定理,磁感线是闭合曲线,穿过圆平面的磁通量与穿过半球面的磁通量相等。正确答案为(B )。 8-2 下列说法正确的是[ ]。 (A) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零 (D) 磁感强度沿闭合回路的积分不为零时,回路上任意点的磁感强度必定为零 分析与解 由磁场中的安培环路定理,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和一定为零。正确答案为(B )。 8-3 磁场中的安培环路定理∑?=μ=?n L I 1i i 0d l B 说明稳恒电流的磁场是[ ]。 (A) 无源场 (B) 有旋场 (C) 无旋场 (D) 有源场

分析与解 磁场的高斯定理与安培环路定理是磁场性质的重要表述,在恒定磁场中B 的环流一般不为零,所以磁场是涡旋场;而在恒定磁场中,通过任意闭合曲面的磁通量必为零,所以磁场是无源场;静电场中E 的环流等于零,故静电场为保守场;而静电场中,通过任意闭合面的电通量可以不为零,故静电场为有源场。正确答案为(B )。 8-4 一半圆形闭合平面线圈,半径为R ,通有电流I ,放在磁感强度为B 的均匀磁场中,磁场方向与线圈平面平行,则线圈所受磁力矩大小为[ ]。 (A) B R I 2π (B) B R I 221π (C) B R I 24 1π (D) 0 分析与解 对一匝通电平面线圈,在磁场中所受的磁力矩可表示为B e M ?=n IS ,而且对任意形状的平面线圈都是适用的。正确答案为(B )。 8-5 一长直螺线管是由直径d =0.2mm 的漆包线密绕而成。当它通以I =0.5A 的电流时,其内部的磁感强度B =_____________。(忽略绝缘层厚度,μ0=4π×10-7N/A 2) 分析与解 根据磁场中的安培环路定理可求得长直螺线管内部的磁感强度大小为nI B 0μ=,方向由右螺旋关系确定。正确答安为(T 1014.33-?)。 8-6 如图所示,载流导线在平面内分布,电流为I ,则在圆心O 点处的磁感强度大小为_____________,方向为 _____________ 。 分析与解 根据圆形电流和长直电 流的磁感强度公式,并作矢量叠加,可得圆心O 点的总

大学物理D下册习题答案

习题9 9.1选择题 (1)正方形的两对角线处各放置电荷Q,另两对角线各放置电荷q,若Q所受到合力为零, 则Q与q的关系为:() (A)Q=-23/2q (B) Q=23/2q (C) Q=-2q (D) Q=2q [答案:A] (2)下面说法正确的是:() (A)若高斯面上的电场强度处处为零,则该面内必定没有净电荷; (B)若高斯面内没有电荷,则该面上的电场强度必定处处为零; (C)若高斯面上的电场强度处处不为零,则该面内必定有电荷; (D)若高斯面内有电荷,则该面上的电场强度必定处处不为零。 [答案:A] (3)一半径为R的导体球表面的面点荷密度为σ,则在距球面R处的电场强度() (A)σ/ε0 (B)σ/2ε0 (C)σ/4ε0 (D)σ/8ε0 [答案:C] (4)在电场中的导体内部的() (A)电场和电势均为零;(B)电场不为零,电势均为零; (C)电势和表面电势相等;(D)电势低于表面电势。 [答案:C] 9.2填空题 (1)在静电场中,电势梯度不变的区域,电场强度必定为。 [答案:零] (2)一个点电荷q放在立方体中心,则穿过某一表面的电通量为,若将点电荷由中 心向外移动至无限远,则总通量将。 [答案:q/6ε0, 将为零] (3)电介质在电容器中作用(a)——(b)——。 [答案:(a)提高电容器的容量;(b) 延长电容器的使用寿命] (4)电量Q均匀分布在半径为R的球体内,则球内球外的静电能之比。 [答案:1:5] 9.3 电量都是q的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题9.3图示 (1) 以A处点电荷为研究对象,由力平衡知:q 为负电荷

大学物理期末考试题库

1某质点的运动学方程x=6+3t-5t 3 ,则该质点作 ( D ) (A )匀加速直线运动,加速度为正值 (B )匀加速直线运动,加速度为负值 (C )变加速直线运动,加速度为正值 (D )变加速直线运动,加速度为负值 2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。设21t t →时间合力作功为 A 1,32t t →时间合力作功为A 2,43t t → 3 C ) (A )01?A ,02?A ,03?A (B )01?A ,02?A , 03?A (C )01=A ,02?A ,03?A (D )01=A ,02?A ,03?A 3 关于静摩擦力作功,指出下述正确者( C ) (A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。 (B )受静摩擦力作用的物体必定静止。 (C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于 零。 4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间,其平均 速度的大小和平均速率分别为(B ) (A ) , (B ) 0, (C )0, 0 (D ) T R π2, 0 5、质点在恒力F 作用下由静止开始作直线运动。已知在时间1t ?,速率由0增加到υ;在2t ?, 由υ增加到υ2。设该力在1t ?,冲量大小为1I ,所作的功为1A ;在2t ?,冲量大小为2I , 所作的功为2A ,则( D ) A .2121;I I A A <= B. 2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =< 6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直线 运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力F 的 大小和方向分别为(D ) 轴正向相反与、轴正向相同 与、轴正向相同 与、轴正向相反 与、x a m D x a m x g m x g m B B B B ,,C ,B ,A μμT R π2T R π2T R π2t

大学物理第八章习题及答案

V 第八章 热力学基础 8-1如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是:(B ) (A) b1a 过程放热,作负功;b2a 过程放热,作负功 (B) b1a 过程吸热,作负功;b2a 过程放热,作负功 (C) b1a 过程吸热,作正功;b2a 过程吸热,作负功 (D) b1a 过程放热,作正功;b2a 过程吸热,作正功 8-2 如图,一定量的理想气体由平衡态A 变到平衡态B ,且它们的压强相等,则在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( B ) (A)对外作正功 (B)内能增加 (C)从外界吸热 (D)向外界放热 8-3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强温度都相同,现将3J 热量传给氦气,使之升高到一定温度,若使氢气也升高同样温度,则应向氢气传递热量为( C ) (A) 6 J (B) 3 J (C) 5J (D) 10 J 8-4 有人想象了如题图四个理想气体的循环过程,则在理论上可以实现的为 ( ) (A) (B)

(C) (D) 8-5一台工作于温度分别为327o C和27o C的高温热源和低温源之间的卡诺热机,每经历一个循环吸热2 000 J,则对外作功( B ) (A) 2 000 J (B) 1 000 J (C) 4 000 J (D) 500 J 8-6 根据热力学第二定律( A ) (A) 自然界中的一切自发过程都是不可逆的 (B) 不可逆过程就是不能向相反方向进行的过程 (C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体 (D)任何过程总是沿着熵增加的方向进行 8-7 一定质量的气体,在被压缩的过程中外界对气体做功300J,但这一过程中气体的内能减少了300J,问气体在此过程中是吸热还是放热?吸收或放出的热量是多少? 解:由于外界对气体做功,所以:300J = W - 由于气体的内能减少,所以:J ?E = 300 - 根据热力学第一定律,得:J ? + =W = E Q 300- 600 300 = - -

大学物理-作业与答案

《大学物理》课后作业题 专业班级: 姓名: 学号: 作业要求:题目可打印,答案要求手写,该课程考试时交作业。 第一章 质点力学 1、质点的运动函数为: 5 4;22 +==t y t x , 式中的量均采用SI 单位制。求:(1)质点运动的轨道方程;(2)s 11=t 和s 22=t 时,质点的位置、速度和加速度。 1、用消元法 t=x/2 轨迹方程为 y=x2+5 2、运动的合成 x 方向上的速度为x'=2, y 方向上的速度为y'=8t+5 将t 带入分别求出x 和y 方向上的速度 然后合成 x 方向上的加速度为x''=0 y 方向上的加速度为y''=8 所以加速度为8 2、如图所示,把质量为m 的小球悬挂在以恒加速度水平运动的小车上,悬线与竖直方向的夹角为θ,求小车的加速度和绳的张力。 绳子的拉力F ,将其水平和竖直正交分解为 Fsinα 和 Fcosα 竖直:Fcosα=mg 水平:Fsinα=ma a=gtanα 方向水平向右 3、一质量为0.10kg 的质点由静止开始运动,运动函数为j i 23 53 += t r (SI 单位) 求在t=0到t=2s 时间内,作用在该质点上的合力所做的功。 质点的速度就是 V =dr / dt =5* t^2 i +0 j 即质点是做直线运动,在 t =0时速度为V0=0;在 t =2秒时,速度为 V1=5*2^2=20 m/s 由动能定理得所求合力做的功是 W 合=(m*V1^2 / 2)-(m*V0^2 / 2)= m*V1^2 / 2=0.1*20^2 / 2=20 焦耳 第二章 刚体力学 T 1

1、在图示系统中,滑轮可视为半径为R、质量为m0的匀质圆盘。设绳与滑轮之间无滑动, 水平面光滑,并且m1=50kg,m2=200kg,m0=15kg,R=0.10m,求物体的加速度及绳中的张力。 解将体系隔离为 1 m, m, 2 m三个部分,对 1 m和 2 m分别列牛顿方程,有 a m T g m 2 2 2 = - a m T 1 1 = β2 1 22 1 MR R T R T= - 因滑轮与绳子间无滑动,则有运动学条件 R aβ = 联立求解由以上四式,可得 R M m m g m ? ? ? ? ? + + = 2 1 2 1 2 β 由此得物体的加速度和绳中的张力为 2 2 1 262 .7 15 5.0 200 50 81 .9 200 2 1 - ? = ? + + ? = + + = =s m M m m g m R aβ N a m T381 62 .7 50 1 1 = ? = =N a g m T438 ) 62 .7 81 .9( 200 ) ( 2 2 = - ? = - = 第四章静止电荷的电场 1、如图所示:一半径为R的半圆环上均匀分布电 荷Q(>0),求环心处的电场强度。 解:由上述分析,点O的电场强度 由几何关系θd d R l=,统一积分变量后,有 y x O

哈工程大学物理(下)作业答案(二)

哈工程大学物理(下)作业答案(二)

79. 一半径r=10cm 的圆形闭合导线回路置于均匀磁场B ( B=0.80T)中,B 与回路平面正交。若圆形回路的半径从t=0开始以恒定的速率(d r /d t=-80cm/s)收缩,则在t=0时刻闭合回路的感应电动势的大小是多少?如要求感应电动势保持这一数值,则闭合回路面积应以怎样的恒定速率收缩? 80. 一导线弯成如图形状,放在均匀磁场B 中,B 的方向垂直图面向里。.,600 a cd bc bcd ===∠,使导线绕 轴O O '旋转,如图转速为每分钟n 转。计算εoo’ ? ? 'O ? 解: 4 /32/32 122a a S ==

t BS ωΦcos =, 60/2n π=ω ∴ t BS t O O ωωΦsin )/d (d =-=' ?)60/2sin()60/2(nt BSn ππ= )60/2sin()120/3(2 nt B na ππ= 81. 电荷Q 均匀分布在半径为a 、长为L ( L >>a )的绝缘薄壁长圆筒表面上,圆筒以角速度ω绕中心轴线旋转.一半径为2a 、电阻为R 的单匝圆形线圈套在圆筒上(如图所示).若圆筒转速按照)/1(0 t t -=ωω的规律(ω 0和t 0是已知常数)随时间线性地减小,求圆形线圈中感应电流的大小和流向. 解:筒以ω旋转时,相当于表面单位长度上有环 形电流π ? 2ω L Q ,它和通电流螺线管的nI 等效.按长螺线管产生磁场的公式,筒内均匀磁场磁感强度为: L Q B π=20 ω μ (方向沿筒的轴向) 筒外磁场为零.穿过线圈的磁通量为: L a Q B a 22 2 ωμΦ=π= 在单匝线圈中产生感生电动势为 = -=t d d Φ?)d d (22 t L Qa ω μ-0 2 02Lt Qa ωμ= 感应电流i 为 202RLt Qa R i ωμ= = ? i 的流向与

《大学物理》 第二版 第八章课后习题答案解析

习题精解 8-1 一根无限长直导线有交变电流0sin i I t ω=,它旁边有一与它共面的矩形线圈ABCD ,如图8.3所示,长为l 的AB 和CD 两边与直导向平行,它们到直导线的距离分别为a 和b ,试求矩形线圈所围面积的磁通量,以及线圈中的感应电动势。 解 建立如图8.3所示的坐标系,在矩形平面上取一矩形面元dS ldx =,载流长直导线的磁场穿过该面元的磁通量为 02m i d B dS ldx x μφπ=?= 通过矩形面积CDEF 的总磁通量为 00ln 22b m a i il b ldx x a μμφππ==? 由法拉第电磁感应定律有 0ln cos 2m d il b t dt a φμωεωπ=- =- 8-2 有一无限长直螺线管,单位长度上线圈的匝数为n ,在管的中心放置一绕了N 圈,半径为r 的圆形小线圈,其轴线与螺线管的轴线平行,设螺线管内电流变化率为dI dt ,球小 线圈中感应的电动势。 解 无限长直螺线管内部的磁场为 0B nI μ= 通过N 匝圆形小线圈的磁通量为 20m NBS N nI r φμπ== 由法拉第电磁感应定律有 20m d dI N n r dt dt φεμπ=- =- 8-3 一面积为S 的小线圈在一单位长度线圈匝数为n ,通过电流为i 的长螺线管内,并与螺线管共轴,若0sin i i t ω=,求小线圈中感生电动势的表达式。 解 通过小线圈的磁通量为 0m BS niS φμ== 由法拉第电磁感应定律有 000cos m d di nS nSi t dt dt φεμμωω=- =-=- 8-4 如图8.4所示,矩形线圈ABCD 放在1 6.010B T -=?的均匀磁场中,磁场方向与线圈平面的法线方向之间的夹角为60α=?,长为0.20m 的AB 边可左右滑动。若令AB 边以速率1 5.0v m s -=?向右运动,试求线圈中感应电动势的大小及感应电流的方向。 解 利用动生电动势公式

大学物理作业参考答案.docx

电势、导体与 ※ 电介质中的静电场 (参考答案) 班级: 学号: 姓名: 成绩: 一 选择题 1.真空中一半径为 R 的球面均匀带电 Q ,在球心 O 处有一带电量为 q 的点电荷, 如图所示, 设无穷远处为电势零点,则在球内离球心 O 距离为 r 的 P 点处的电势为: (A ) q ; ( B ) 1 ( q Q ) ; 4 0 r O r P 4 0r R Q q R (C ) q Q ; ( D ) 1 ( q Q q ) ; 4 0 r 4 0r R 参考:电势叠加原理。 [ B ] 2.在带电量为 -Q 的点电荷 A 的静电场中,将另一 带电量为 q 的点电荷 B 从 a 点移动到 b , a 、 b 两点距离点电荷 A 的距离分别为 r 和 r ,如 1 2 图,则移动过程中电场力做功为: (A ) Q ( 1 4 0 r 1 qQ ( 1 (C ) 4 0 r 1 1 ) ; ( B ) qQ r 2 4 r 1 ) ; (D ) 4 2 ( 1 1 ) ;(-Q)A r 1 B a 0 r 1 r 2 qQ r 2 ( q ) b r ) 。 0 ( r 2 1 参考:电场力做功=势能的减小量。 A=W-W =q(U -U ) [ C ] ab a b 。 3.某电场的电力线分布情况如图所示,一负电荷从 M 点移到 N 点,有人根据这个图做出以 下几点结论,其中哪点是正确的? (A )电场强度 E <E ; ( B )电势 U < U ; MN M N (C )电势能 W M < W N ; ( D )电场力的功 A > 0。 N M [ C ] 4.一个未带电的空腔导体球壳内半径为 R ,在腔内离球心距离为 d ( d < R )处,固定一电 量为 +q 的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心 O 处的点势为: (A ) 0; ( B ) 4 q d ; R q q ( 1 1 ) 。 O +q (C ) - ; ( D ) d 4 0R 4 0 d R 参考:如图,先用高斯定理可知导体内表面电荷为 -q ,导体 外表面无电荷(可分析) 。虽然内表面电荷分布不均,但到 O 点的距离相同,故由电势叠加 原理可得。 [ D ] ※ 5.在半径为 R 的球的介质球心处有电荷 +Q ,在球面上均匀分布电荷 -Q ,则在球内外处的电势分别为: Q Q Q (A ) 4 r 内 , 4 r 外 ; ( B ) 4 r 内 , 0; 参考:电势叠加原理。注:原题中ε为ε0 (C ) 4 Q Q r 内 4 R ,0; ( D ) 0, 0 。 [ C ]

大学物理作业(二)答案

班级___ ___学号____ ____姓名____ _____成绩______________ 一、选择题 1. m 与M 水平桌面间都是光滑接触,为维持m 与M 相对静止,则推动M 的水平力F 为:( B ) (A)(m +M )g ctg (B)(m +M )g tg (C)mg tg (D)Mg tg 2. 一质量为m 的质点,自半径为R 的光滑半球形碗口由静止下滑,质点在碗内某处的速率为v ,则质点对该处的压力数值为:( B ) (A)R mv 2 (B)R mv 232 (C)R mv 22 (D)R mv 252 3. 如图,作匀速圆周运动的物体,从A 运动到B 的过程中,物体所受合外力的冲量:( C ) (A) 大小为零 (B ) 大小不等于零,方向与v A 相同 (C) 大小不等于零,方向与v B 相同 (D) 大小不等于零,方向与物体在B 点所受合力相同 二、填空题 1. 已知m A =2kg ,m B =1kg ,m A 、m B 与桌面间的摩擦系数 =,(1)今用水平 力F =10N 推m B ,则m A 与m B 的摩擦力f =_______0______,m A 的加速度a A =_____0_______. (2)今用水平力F =20N 推m B ,则m A 与m B 的摩擦力 f =____5N____,m A 的加速度a A =. ( g =10m/s 2) 2. 设有三个质量完全相同的物体,在某时刻t 它们的速度分别为v 1、v 2、v 3,并且v 1=v 2=v 3 , v 1与v 2方向相反,v 3与v 1相垂直,设它们的质量全为m ,试问该时刻三物体组成的系统的总 动量为_______m v 3________. 3.两质量分别为m 1、m 2的物体用一倔强系数为K 的轻弹簧相连放在光滑水平桌面上(如图),当两物体相距为x 时,系统由静止释放,已知弹簧的自然长度为x 0,当两物体相距为x 0时,m 1的速度大小为 F m A m B m M F θ A O B R v A v B x m 1m 2

大学物理电磁学考试试题及答案

大学电磁学习题1 一.选择题(每题3分) 1.如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为: (A) E =0,R Q U 04επ= . (B) E =0,r Q U 04επ= . (C) 204r Q E επ= ,r Q U 04επ= . (D) 204r Q E επ= ,R Q U 04επ=. [ ] 2.一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2)在同一电场中且通过相同的路径被加速所获速率的: (A) 2倍. (B) 22倍. (C) 4倍. (D) 42倍. [ ]

3.在磁感强度为B ?的均匀磁场中作一半径为r 的半球面S ,S 边线所在 平面的法线方向单位矢量n ?与B ? 的夹角为? ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) ?r 2B . . (B) 2??r 2B . (C) -?r 2B sin ?. (D) -?r 2B cos ?. [ ] 4.一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示.现测得导体上下两面电势差为V ,则此导体的霍尔系数等于 (A) IB VDS . (B) DS IBV . (C) IBD VS . (D) BD IVS . (E) IB VD . [ ] 5.两根无限长载流直导线相互正交放置,如图所示.I 1沿y 轴的正方向,I 2沿z 轴负方向.若载流I 1的导线不能动,载流I 2的导线可以自由运动,则载流I 2的导线开始运动的趋势 ? y z x I 1 I 2

大学物理第八章练习题

10题图 第八章 磁场 填空题 (简单) 1、将通有电流为I 的无限长直导线折成1/4圆环形状,已知半圆环的半径为R ,则圆心O 点的磁 感应强度大小为 。 2、磁场的高斯定律表明磁场是 ,因为磁场发生变化而引起电磁感应,所 产生的场是不同于回路变化时产生的 。相同之处是 。 3、只要有运动电荷,其周围就有 产生;而法拉弟电磁感应定律表明,只要 发生变 化,就有 产生。 4、(如图)无限长直导线载有电流I 1,矩形回路载有电流I 2,I 2回路的AB 边与长直导线平行。电 流I 1产生的磁场作用在I 2回路上的合力F 的大小为 ,F 的方向 。 (综合) , 5、有一圆形线圈,通有电流I ,放在均匀磁场B 中,线圈平面与B 垂直,I 则线圈上P 点将受到 , 力的作用,其方向为 ,线圈所受合力大小为 。(综合) 6、∑?==?n i i l I l d B 0 0μ 是 ,它所反映的物理意义是 。 7、磁场的高斯定理表明通过任意闭合曲面的磁通量必等于 。 8、电荷在磁场中 (填一定或不一定)受磁场力的作用。 9、磁场最基本的性质是对 有力的作用。 10、如图所示,在磁感强度为B 的均匀磁场中,有一半径为R 的半球面, B 与半球面轴线的夹角为α。求通过该半球面的磁通量为 。(综合) 11、当一未闭合电路中的磁通量发生变化时,电路中 产生感应电流;电路中 产生感应电动势(填“一定”或“不一定”) (综合) > 12、一电荷以速度v 运动,它既 电场,又 磁场。(填“产生”或“不产生”) 4题图 5题图

14题图 13、一电荷为+q ,质量为m ,初速度为0 的粒子垂直进入磁感应强度为B 的均匀磁场中,粒子将作 运动,其回旋半径R= ,回旋周期T= 。 14、把长直导线与半径为R 的半圆形铁环与圆形铁环相连接(如图a 、b 所示),若通以电流为I ,则 a 圆心O 的磁感应强度为 _____________; 图b 圆心O 的磁感应强度为 15、在磁场中磁感应强度B 沿 任意闭合路径的线积分总等于 。这一重要结论称为磁场的环路定理,其数学表达式为 。 16、磁场的高斯定理表明磁场具有的性质 。 17、在竖直放置的一根无限长载流直导线右侧有一与其共面的任意形状的平面线圈,直导线中的电流由上向下,当线圈以垂直于导线的速度背离导线时,线圈中的感应电动势 ,当线圈平行导线向上运动时,线圈中的感应电动势 。(填>0,<0,=0)(设顺时针方向的感应电动势为正) 18、在磁场空间分别取两个闭合回路,若两个回路各自包围载流导线的根数不同,但电流的代数和相同,则磁感应强度沿两闭合回路的线积分 ,两个回路的磁场分布 。(填“相同”或“不相同” ) ( 判断题 (简单) 1、安培环路定理说明电场是保守力场。 ( ) 2、安培环路定理说明磁场是无源场。 ( ) 3、磁场的高斯定理是通过任意闭合曲面的磁通量必等于零。 ( ) 4、电荷在磁场中一定受磁场力的作用。 ( ) 5、一电子以速率V 进入某区域,若该电子运动方向不改变,则该区域一定无磁场;( ) 6、在B=2特的无限大均匀磁场中,有一个长为L1=2.0米,宽L2=0.50米的矩形线圈,设线圈平 面的法线方向与磁场方向相同,则线圈的磁通量为1Wb 。 7、磁场力的大小正比于运动电荷的电量。如果电荷是负的,它所受力的方向与正电荷相反。 8、运动电荷在磁场中所受的磁力随电荷的运动方向与磁场方向之间的夹角的改变而变化。当电荷的运动方向与

大学物理第八章课后习题答案

大学物理第八章课后习 题答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第八章电磁感应电磁场 8 -1一根无限长平行直导线载有电流I,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则() (A)线圈中无感应电流 (B)线圈中感应电流为顺时针方向 (C)线圈中感应电流为逆时针方向 (D)线圈中感应电流方向无法确定 分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B). 8 -2将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则() (A)铜环中有感应电流,木环中无感应电流 (B)铜环中有感应电流,木环中有感应电流 (C)铜环中感应电动势大,木环中感应电动势小 (D)铜环中感应电动势小,木环中感应电动势大 2

3 分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流.因而正确答案为(A ). 8 -3 有两个线圈,线圈1 对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且t i t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为ε12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ). (A )2112M M = ,1221εε= (B )2112M M ≠ ,1221εε≠ (C )2112M M =, 1221εε< (D )2112M M = ,1221εε< 分析与解 教材中已经证明M21 =M12 ,电磁感应定律 t i M εd d 12121=;t i M εd d 21212=.因而正确答案为(D ). 8 -4 对位移电流,下述四种说法中哪一种说法是正确的是( ) (A ) 位移电流的实质是变化的电场 (B ) 位移电流和传导电流一样是定向运动的电荷 (C ) 位移电流服从传导电流遵循的所有定律 (D ) 位移电流的磁效应不服从安培环路定理 分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).

相关主题
文本预览
相关文档 最新文档