当前位置:文档之家› 小车循迹控制系统设计(路线5)

小车循迹控制系统设计(路线5)

小车循迹控制系统设计(路线5)
小车循迹控制系统设计(路线5)

武汉理工大学华夏学院

课程设计课程名称单片机原理及应用课程设计

题目小车循迹控制系统设计(路线5)

专业

班级

学号

姓名

成绩

指导教师夏婷

2014 年7 月 3 日

课程设计任务书

学生姓名:专业班级:

指导教师:夏婷工作单位:信息工程系

设计题目:小车循迹控制系统设计(路线5)

初始条件:1、硬件设备:MCS-51单片机最小系统板、四个QTI传感器、两个舵机、两个车轮、锂电池、ISP下载线、面包板;

2、软件环境:Keil C51、progisp下载器。

设计任务:(在规定的时间内完成下列任务)

1.完成硬件设计并连线,以MCS-51单片机为控制核心,根据4个QTI传感器采集到的数据控制舵机的运转,进而控制车轮的速度和方向,并画出硬件原理图和实验连线图;2.用C语言编程实现以下小车行驶线路(地图见下页):

起始点→黄点→A点,旋转360度→中心点→起始点。

时间安排:各时间段的任务可以交替进行

设计报告撰写格式要求:(按提供的设计报告统一格式撰写)

设计报告应包含以下内容:

①设计任务与要求②总体方案与说明

③硬件原理图与说明④实验接线图与说明

⑤软件主要模块流程图与说明⑥核心代码与注释

⑦系统调式、问题分析与解决方案;⑧使用说明

⑨小结与体会⑩参考文献

附录:源程序(必须有简单注释)

指导教师签名:2014 年 6 月30 日

教研室主任(或责任教师)签名:2014年 6 月30 日

小车行驶线路地图如下:

目录

起始点

目录

第1章需求分析 (1)

1.1 课程设计题目 (1)

1.2 课程设计目的任务及内容和要求 (1)

1.3 软硬件运行环境及开发工具 (1)

第2章概要设计 (2)

2.1 设计原理及实现方法................................................................... 错误!未定义书签。

2.2 主要芯片说明 (3)

2.2.1 传感器 (3)

2.2.2 面包板 (3)

2.2.3 单片机最小系统板 (3)

第3章详细设计 (4)

3.1 硬件设计与实现 (4)

3.2 系统主程序流程 (5)

3.3功能模块详细设计 (7)

3.3.1 起始点到黄点路线模块设计 (7)

3.3.2 黄点到A点路线模块设计 (8)

3.3.3 A点到中心点路线模块设计 (8)

3.3.4 中心点到起点模块设计 (8)

第4章系统调试与操作说明 (9)

4.1 系统调试 (9)

4.1.1 直线调试 (9)

4.1.2 达到A点旋转360调试 (9)

4.2 问题分析与解决 (9)

4.3 操作说明 (9)

第5章课程设计总结与体会 (10)

参考文献 (10)

附录 (11)

步进电机控制程序: (11)

第1章需求分析

1.1 课程设计题目

小车循迹控制系统设计(路线5)。

1.2 个人任务如下

使用KeilC51编程软件采用C语言编程实现小车从起始点→黄色点,旋转135度这一模块功能设计和总体调试,同时不断修正小车的路线。

1.3 软硬件运行环境及开发工具

以MCS-51单片机为控制核心,根据4个QTI传感器采集的数据控制舵机的运转,Windows xp操作系统PC机一台。KeilC51编程软件、progisp下载器、串口调试小助手等软件。

第2章概要设计

2.1 设计原理及实现方法

2.1.1 舵机控制和驱动原理

舵机常用的控制信号是一个周期为20毫秒左右,宽度为1毫秒到2毫秒的脉冲信号。当舵机收到该信号后,会马上激发出一个与之相同的,宽度为1.5毫秒的负向标准的中位脉冲。之后二个脉冲在一个加法器中进行相加得到了所谓的差值脉冲。输入信号脉冲如果宽于负向的标准脉冲,得到的就是正的差值脉冲。如果输入脉冲比标准脉冲窄,相加后得到的肯定是负的脉冲。此差值脉冲放大后就是驱动舵机正反转动的动力信号。舵机电机的转动,通过齿轮组减速后,同时驱动转盘和标准脉冲宽度调节电位器转动。直到标准脉冲与输入脉冲宽度完全相同时,差值脉冲消失时才会停止转动!

2.1.2 小车的软硬件设计原理

小车前面有4个qti感应器来随时采集数据,当探测为黑线的时候,返回值为1,当探测为白线的时候,返回值是0,只有当中间两个qti返回值全为1的时候,才走在黑线上,根据返回的状态来控制小车舵机的速度。

同时将整个过程分为四个子模块来实现,分别为起点到黄点,黄点到A点,A点到中心点,中心点到起始点。在运动过程中还需设计旋转135度和360度和90度的旋转子模块,当小车偏离轨迹候后,需设计修正子模块。最后为了使小车停到指定区域,还需编写停止子模块。

2.1.3 小车前进功能实现

此模块原理是向小车输出若干个PWM波,波形的占空比可控制小车移动,通过

时间宽度和延时产生信号,作用于电机,从而控制其运动。在本次设计中,向小车PWM波过程已经被模块化在头文件中,即motion()函数中,通过对motion()函数的三个参数进行设置来实现控制电机转动从而控制小车前进。我们小组设计的前进参数是motor_motion(1470,1530,1),其中1470表示左轮慢速前进,1530表示右轮慢速前进,1表示给的脉冲数即小车所走的步数。

2.1.4 小车旋转功能实现

小车旋转的原理是调整两轮的移动方式、速度及移动步数。因实际情况所制,当需旋转360度时,若左右轮同时旋转无法达到预期结果,因此,我们的解决方案是左右旋转,右轮

静止不动,经过多次调试测出旋转所需的步数290,最终得出的结果为:motor_motion( 1300 , 1500 ,290),其中,1300表示左轮快速前进,1500表示右轮静止不动,290表示小车所走的步数;同样的方法,当需旋转90度和135度时,经过多次试测出旋转所需的步数分别是55、83.5。

2.2 主要芯片说明

2.2.1 传感器

QTI(Quick Track Infrared)传感器是一种红外传感器,它利用光电接收管探测其所面对的表面反射光强度。当QTI传感器面对一个很暗的表面时,反射光强度很低;面对一个很亮的表面时,反射光的强度很高。因此不同强度的反射光导致传感器输出不同,即探测到不同颜色的物体输出不同的电平信号。在本系统中所使用到的QTI传感器他侧刀黑色物体时输出高电平,探测到白色物体时输出低电平。

2.2.2 面包板

面包板是由于板子上有很多小插孔,很像面包中的小孔,因此得名,专为电子电路的无焊接实验设计制造的。由于各种电子元器件可根据需要随意插入或拔出,免去了焊接,节省了电路的组装时间,而且元件可以重复使用,所以非常适合电子电路的组装、调试和训练。

2.2.3 单片机最小系统板

单片机最小系统是在以51单片机为基础上扩展,使其能更方便的运用于测试系统中。它主要有电源、复位、振荡电路以及扩展部分等部分组成。最小系统原理图如图2.1所示:

图 2.1 单片机最小系统电路图

第3章详细设计

3.1 硬件设计与实现

小车是由多个硬件零件组装而成,每个零件负责不同的功能,根据设计任务和要实现的主要功能,来进行硬件设计。硬件设计原理图如下:

硬件设计接线图如下:

图3.2 接线图画法

3.2 系统主程序流程

本系统设计了四个模块,分别为起点到黄点,黄点到A点,A点到中心点,中心点到起

始点四个路线模块。通过对每个功能模块的调用实现系统要求的功能。系统主流程图如下:

图3.3 系统主程序流程图

3.3功能模块详细设计

3.3.1 起始点到黄点路线模块设计

起点到黄点,主要是从开始就前进,在前进过程中不停检测传感器传过来的信号。通过判断小车是否偏离路线后决定是否修正方向,如果检测到0 1 1 1信号,则旋转135度。程序代码如下:

motor_motion(1300,1700,1);

//没有到黄点让小车继续前进直到黄点

if(p21_state()==0 && p22_state()==0 && p23_state()==0 && p24_state()==1) //如果4个qti返回信息为0 0 0 1 则说明小车行进到了黄点

{

motor_motion(1300, 1500,83.5);

//如果走到黄点就不用再继续前进,就该让小车向右转动135度角

}

3.3.2 黄点到A点路线模块设计

黄点到A点,主要是从开始就前进,在前进过程中不停检测传感器传过来的信号,通过判断小车是否偏离路线后决定是否修正。如果检测到0 0 0 0信号,则旋转360度。

程序流程图如下:

图3.4黄点到A点模块流程图

3.3.3 A点到中心点路线模块设计

A点到中心点,主要是从开始就前进,在前进过程中不停检测传感器传过来的信号,通过判断小车是否偏离路线后决定是否修正。当第一次检测到1 1 1 1信号时,这表示已经到达中心点,则旋转90度。

3.3.4 中心点到起点模块设计

中心点到起点循迹过程中,不断地通过传感器检测信号,进行路线修正。当再次检测到1 1 1 1信号时,这表示已经到达起点,则让小车停止行驶。

第4章系统调试与操作说明

4.1 系统调试

4.1.1 直线调试

主要是判断小车是否能沿着黑线向前走,方法:让程序只有函数motor_motion (1470,1530,1),其中1470表示左轮慢速前进,1530表示右轮慢速前进,1表示给的脉冲数即小车所走的步数。并烧写到小车中,把小车放在一条黑线上,看它是否能一直在黑线上前进,若不能,再qti是否连接正确,直至小车能一直走在直线上。

4.1.2 达到黄点旋转135度调试

主要判断小车能否到达黄点,并成功旋转135度,方法:将自己模块程序烧写到小车中,放在一个白颜色的板子上面,观察小车能否旋转135度,注意看其角度是否正常,并多次修改脉冲数,直至能够刚好旋转135度。

4.2 问题分析与解决

在系统调试过程中,我们遇到了许多的问题。通过不断分析这些问题和不断重复调试最终都得到了很好的解决。下面列举几个突出的问题:

问题:调试的时候,总是在旋转360度的时候,脉冲给的数目不准确,要么转多了,要么没转够。解决方案:

解决方案:进过多次调试试验,最后调试为102才刚刚差不多,然后再加上一个延时和冲出B点的函数,才解决这个问题。

4.3 操作说明

(1)在KeilC51中写好的程序进行编译生成.hex文件;

(2)通过ISP下载线和progisp软件将已生成的.hex文件烧写到单片机中;

(3)当烧写成功后,拔掉下载线,然后在已设定好的路径上,摆正小车的位置;

(4)开小车上的开关,观察小车是否按照预定的路径进行行驶。

第5章课程设计总结与体会

经过为期一周的单片机课程设计,我颇有感触。课程设计是我们专业课程知识综合应用的实践训练,让我们相互学习,相互监督,学会了合作。

这次课设最大的收获就是熟悉单片机的用途,这次的课程设计非常的有意思。也是我们第一次合作进行动手实验。本次课程设计,老师要求我们每6个人为一组,分别进行小车行走的几种路线。一开始,老师给我们讲解了这次课程设计中的一些难点,这样方便我们在做实验的时候少走很多弯路。在老师讲解完之后,我们就开始做起实验,一开始按着步骤做,但是在测试中发现很多目的都不能达到,于是我们又回头检查错误,经过多次检查,我们发现实验中很多器材有问题,这些坏器材让我们浪费了大量的时间和精力。我们这次实验里小车按要求是两个车轮一个前进一个后退来达到原地旋转360度的目的,但是在实验过程中,我们组用的小车不能进行这种行为,于是我们只能选择单轮旋转,使其达到旋转360度的目的,但途中又发现一次脉冲只能使小车旋转320度左右,脉冲一旦过大,小车就停止运动,最后我们又添加了一次脉冲,使其达到旋转360度的目的。

这次课程设计教会我们如何完成团队任务,合理分配任务。让我们学会了相互合作,相互学习。

参考文献

[1] 蔡美琴,MCS—51 系列单片机系统及其应用(第二版),高等教育出版社,2004

[2] 李华,MCS一51系列单片机实用接口技术,北京:航空航天大学出版社,2003

[3] 蔡方凯,单片机原理及基于单片机的嵌入式系统设计,北京:中国水利水电出版社,2007

设计者:夏衡

日期:2014 年7 月3 日

附录

步进电机控制程序:

#include

#include "Global.h"

#include "delay.h"

#include "qti.h"

#include "motion.h"

#include

main()

{

//主要是完成黄点旋转135度,白点旋转360度,中心点旋转90度

while(1)

{

motor_motion(1470,1530,1); //直走

if((P22_state()&&(!P23_state()))||(P21_state()&&(!P22_state())&&(!P23_state())&&(!P24_state( ))))

{

motor_motion(1470, 1700,1); //左转修正

}

if(((!P22_state())&&P23_state())||((!P21_state())&&

(!P22_state())&&(!P23_state())&&P24_state()))

{

motor_motion(1300, 1550,1); //右转修正

}

//黄点点旋转135度

if((!P21_state()) && (!P22_state())&& (!P23_state()) && (!P24_state()) )

{

motor_motion(1300,1500,255);

motor_motion(1300,1500,35);

motor_motion(1300,1700,10);

}

//白点旋转360度

if((!P21_state()) && (P22_state())&& (P23_state()) && (P24_state()) )

{

motor_motion(1300, 1500,120);

}

//中心点旋转90度后,跳出循环,以便停止

if((P21_state()) && (P22_state())&& (P23_state()) && (P24_state()) )

{

motor_motion(1300, 1500,55); //90度

break;

}

}

//停止模块

while(1)

{

motor_motion(1470,1530,1); //直走

if((P22_state()&&(!P23_state()))||(P21_state()&&(!P22_state())&&(!P23_state())&&(!P24_state( ))))

{

motor_motion(1470, 1700,1); //左转修正

}

if(((!P22_state())&&P23_state())||((!P21_state())&&

(!P22_state())&&(!P23_state())&&P24_state()))

{

motor_motion(1300, 1550,1); //右转修正

}

//起始点停止

if((P21_state()) && (P22_state())&& (P23_state()) && (P24_state()) )

{

//死循环,停止

while(1)

{

motor_motion(1500,1500,1);

}

}

}

}

循迹小车的设计与制作毕业设计论文

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容: 按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期: 毕业设计(论文)

智能循迹小车___设计报告

智能循迹小车___设计报告

智能循迹小车设计 专业:自动化 班级:自动化132 姓名:罗植升莫柏源梁 桂宾 指导老师: 2014年4月——2010年6月

本课题是基于STC89C52单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。小车系统以 STC89C52单片机为系统控制处理 器; 采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。

当今世界,传感器技术和自动控制技术正在飞速发展,机械、电气和电子信息已经不再明显分家,自动控制在工业领域中的地位已经越来越重要,“智能”这个词也已经成为了热门词汇。现在国外的自动控制和传感器技术已经达到了很高的水平,特别是日本,比如日本本田制作的机器人,其仿人双足行走已经做得十分逼真,而且具有一定的学习能力,还据说其智商已达到6岁儿童的水平。 作为机械行业的代表产品—汽车,其与电子信息产业的融合速度也显著提高,呈现出两个明显的特点:一是电子装置占汽车整车(特别是轿车)的价值量比例逐步提高,汽车将由以机械产品为主向高级的机电一体化方向发展,汽车电子产业也很有可能成为依托整车制造业和用车提升配置而快速成为新的增长点;二是汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具有交通、娱乐、办公和通讯等多种功能。 无容置疑,机电一体化人才的培养不论是在国外还是国内,都开始重视起来,主要表现在大学生的各种大型的创新比赛,比如:亚洲广播电视联盟亚太地区机器人大赛(ABU ROBCON)、全国大学生“飞思卡尔”杯智能汽车竞赛等众多重要竞赛都能很好的培养大学生对于机电一体化的兴趣与强化机电一体化的相关知识。但很现实的状况是,国内不论是在机械还是电气领域,与国外的差距还是很明显的,所以作为机电一体化学生,必须加倍努力,为逐步赶上国外先进水平并超过之而努力。 为了适应机电一体化的发展在汽车智能化方向的发展要求,提出简易智能小车的构想,目的在于:通过独立设计并制作一辆具有简单智能化的简易小车,获得项目整体设计的能力,并掌握多通道多样化传感器综合控制的方法。所以立“智能循迹小车”一题作为尝试。 此项设计是在以杨老师提供的小车为基础上,采用AT89C52单片机作为控制核心,实现能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。

基于单片机的智能寻迹小车毕业设计

基于单片机的智能寻迹小车毕业设计 系统主要由红外避障模块、声控模块、光电寻迹、电机驱动及语音播报模块组成。 采用P89V51单片机作为智能小车控制核心。系统能实现对线路进行寻迹,小 车可以 前进或后退,遇到障碍物可以自行停止并可以实现反向运行,系统可以利用声 音控 制小车的启停。整个系统小巧紧凑,控制准确,性价比高,人机互动性好。 P89V51单片机;红外避障;线路寻迹;直流减速电机 ABSTRACT System is mainly by infrared obstacle avoidance module, voice module, opto-electronics and motor drive tracing module. Used as a single- chip smart car P89V51 control core. System can realize the tracing lines, cars can go forward or backward, encountered obstacles can stop and reverse operation can be achieved, the system can use voice to control the start and stop car. Compact the entire system to control the accurate, cost-effective, good human-computer interaction. KEYWORD: P89V51MCU;Infrared obstacle avoidance;Tracing;DC motor speed 1

基于stm32的智能小车设计毕业设计

海南大学 毕业论文(设计) 题目:基于stm32的智能小车设计学号:20112834320005 姓名:陈亚文 年级:2011级 学院:应用科技学院(儋州校区) 学部:工学部 专业:电子科学与技术 指导教师:张健 完成日期:2014 年12 月 1 日

摘要 本次试验主要分析了基于STM32F103微处理器的智能小车控制系统的系统设计过程。此智能系统的组成主要包括STM32F103控制器、电机驱动电路、红外探测电路、超声波避障电路。本次试验采用STM32F103微处理器为核心芯片,利用PWM技术对速度以及舵机转向进行控制,循迹模块进行黑白检测,避障模块进行障碍物检测并避障功能,其他外围扩展电路实现系统整体功能。小车在运动时,避障程序优先于循迹程序,用超声波避障电路进行测距并避障,在超声波模块下我们使用舵机来控制超声波的发射方向,用红外探测电路实现小车循迹功能。在硬件设计的基础上提出了实现电机控制功能、智能小车简单循迹和避障功能的软件设计方案,并在STM32集成开发环境Keil下编写了相应的控制程序,并使用mcuisp软件进行程序下载。 关键词:stm32;红外探测;超声波避障;PWM;电机控制

Abstract This experiment mainly analyzes the control system of smart car based on microprocessor STM32F103 system design process. The composition of the intelligent system mainly including STM32F103 controller, motor drive circuit, infrared detection circuit, circuit of ultrasonic obstacle avoidance. This experiment adopts STM32F103 microprocessor as the core chip, using PWM technique to control speed and steering gear steering, tracking module is used to detect the black and white, obstacle avoidance module for obstacle detection and obstacle avoidance function, other peripheral extended circuit to realize the whole system function. When the car is moving, obstacle avoidance program prior to tracking, using ultrasonic ranging and obstacle avoidance obstacle avoidance circuit, we use steering gear under ultrasonic module to control the emission direction of ultrasonic, infrared detection circuit is used to implement the car tracking function. On the basis of the hardware design is proposed for motor control function, simple intelligent car tracking and obstacle avoidance function of software design, and in the STM32 integrated development environment under the Keil. Write the corresponding control program, and use McUisp program download software. Keywords:STM32;Infrared detection;Ultrasonic obstacle avoidance;PWM;Motor control

毕业设计智能循迹避障小车设计

毕业设计智能循迹避障 小车设计 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

单片机系统课程设计 轮式移动机器人的设计 学院:通信与电子工程学院 班级:电子131 姓名:初清晨 学号: 13 同组成员:孟庆阳张轩 指导老师:王艳春 日期:2015年12月24日

组员分工 1、组长:张轩,实物焊接,报告整理,程序设计 2、组员:孟庆阳,实物焊接,仿真测试,报告整理 3、组员:初清晨,实物焊接,报告整理,仿真测试

目录

摘要 随着计算机、微电子、信息技术的快速进步,智能化技术的开发速度越来越快,智能度越来越高,应用范围也得到了极大的扩展。智能作为现代的新发明,是以后的发展方向,它可以按照预先设定的模式在一个环境里自动的运作,不需要人为的管理,可应用于科学勘探等用途。智能电动小车就是其中的一个体现。设计者可以通过软件编程实现它的行进、循迹、停止的精确控制以及检测数据的存储、显示,无需人工干预。因此,智能电动小车具有再编程的特性,是机器人的一种。 本设计采用AT89S52单片机加电机驱动电路和红外遥控及循迹模块还有红外接收一体化传感器设计而成,采用模块化的设计方案,运用红外遥控器控制小车的前进、后退、左转、右转、启动和停止。 关键词:智能小车;STC89C52单片机;L9110;红外对管 Intelligent tracking and obstacle-avoid car Abstract:Based infrared detection of black lines and the road obstacles, and use a STC89C52 MCU as the controlling core for the speed and direction, A electronic drived, which can automatic track and avoid the obstacle, was designed and fabricated. In which, the car is drived by the L298N circuit, its speed is controlled by the output PWM signal from the STC89C52. Keywords: Smart Car; STC89C52 MCU; L298N; Infrared Emitting Diode 第一章绪论 智能小车的意义和作用 自第一台工业机器人诞生以来,机器人的发展已经遍及机械、电子、冶金、交通、宇航、国防等领域。近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式。人们在不断探讨、改造、认识自然的过程中,制造能替代人劳动的机器一直是人类的梦想。 随着科学技术的发展,机器人的感觉传感器种类越来越多,其中视觉传感器成为自动行走和驾驶的重要部件。视觉的典型应用领域为自主式智能导航系统,对于视觉的各种技术而言图像处理技术已相当发达,而基于图像的理解技术还很落后,机器视觉需要通过大量的运算也只能识别一些结构化环境简单的目标。视觉传感器的核心器件是摄像管或CCD,目前的CCD已能做到自动聚焦。但CCD传

基于光电传感器自动循迹小车设计

基于光电传感器自动循迹 小车设计 The Standardization Office was revised on the afternoon of December 13, 2020

摘要 制作自动寻迹小车所涉及的专业知识包括控制、模式识别、传感技术、汽车电子、电气、计算机、机械等诸多学科。为了使小车能够快速稳定的行驶,设计制作了小车控制系统。在整个小车控制系统中,如何准确地识别路径及实时地对智能车的速度和方向进行控制是整个控制系统的关键。 由于此小车能够自动寻迹,加速,减速.故又被称作为智能车.本智能车控制系统设计以MC9S12XS128微控制器为核心,通过两排光电传感器检测小车的位置和运动方向来获取轨道信息,根据轨道信息判断出相应的轨道类型,并分配不同的速度给硬件电路加以控制,完成了在变负荷条件下对速度的快速稳定调节。红外对射传感器用于检测智能车的速度,以脉宽调制控制方式(PWM)控制电机和舵机以达到控制智能车的行驶速度和偏转方向。 软件是在CodeWarrior 的环境下用C语言编写的,用PID控制算法调节驱动电机的转速和舵机的方向,完成对模型车运动速度和运动方向的闭环控制。智能车能够准确迅速地识别特定的轨道,并沿着引导线以较高的速度稳定行驶。 整个智能车系统涉及车模机械结构的改装、传感器电路设计及控制算法等多个方面。经过多次反复的测试,最终确定了现有的智能车模型和各项控制参数。 关键词: MC9S12XS128;PID;PWM;光电传感器;智能车

ABSTRACT Making automatic tracing car involved the professional knowledge including control, pattern recognition, sensing technology, automobile electronics, electrical, computer, machinery and so on many subjects. According to the technical requirements of the contest, we design the intelligent vehicle control system. In the entire control system of the smart car, how to accurately identify the road and real-time control the speed and direction of the Smart Car is the key to the whole control system. Because this car can automatic tracing, accelerate, slowing down. So it is also known as intelligent car this intelligent vehicle control system design take the MC9S12XS128 micro controller as a core, examines car's position and the heading through two row of photoelectric sensors gains the racecourse information, judges the corresponding racecourse type according to the racecourse information, and assigned the different speed to control for the hardware circuit, has completed in changes under the load condition to the speed fast stable adjustment. The infrared correlation sensor uses in examining the intelligent vehicle's speed, (PWM) controls the electrical machinery and the servo by the pulse-duration modulation control mode achieves the control intelligence vehicle's moving velocity and the deflection direction. The software is under the CodeWarrior environment with the C language compilation, actuates electrical machinery's rotational speed and servo's direction with the PID control algorithm adjustment, completes to the model vehicle velocity of movement and the heading closed-loop control. The intelligent vehicle can distinguish the specific racecourse rapidly accurately, and along inlet line by the high speed control travel. The entire intelligent vehicle system involves the vehicle mold mechanism the re-equipping, the sensor circuit design and the control algorithm and so on many aspects. After the repeated test, has determined the existing intelligent vehicle model and each controlled variable finally many times. Keywords: MC9S12XS128; PID;PWM;photoelectric sensor; smart car

智能循迹小车设计报告

电子作品设计报告 项目名称:智能小车 学院:机电工程学院 专业:应用电子技术 班级:09应电(1)班 组别:第三组 姓名:杨磊赖焕宁梁广生 指导老师:杨青勇玉宁

目录 摘要: (3) 关键词: (3) 引言: (3) 一、系统设计 (3) 1.1设计要求 (4) 1.2车体方案认证与选择 (4) 二、硬件设计及说明 (5) 2.1原理图设计 (5) 2.1.1稳压电源 (5) 2.1.2基本系统 (5) 2.1.3电机驱动 (5) 2.1.4液晶显示部分 (6) 2.1.5RS485数据总线 (6) 2.1.6循迹部分 (7) 2.2PCB设计 (7) 2.2.1主板PCB (7) 2.2.2循迹板PCB (8) 三、软件设计及说明 (8) 四、系统测试过程 (10)

五、总结 (11) 六、附录 (11) 附录一:系统元器件清单 (11) 附件二:系统测试源程序 (12) 摘要:本组的智能小车是采用凌阳的车架,是以两个电机来驱动小车,主板部 分自行设计。通过接收器MAX1483来采集信息,传送进主控芯片PIC16F886单片机,进行数据处理后,送进驱动芯片L293D以完成相应的操作。采用反射式红外光电传感器ST178来实现小车自动循迹功能,并且整个过程采用液晶显示屏RT1602来显示相应的数据。 关键词:PIC16F886 L293D 反射式红外光电传感器ST178 自动循迹引言: 近现代,随着电子科技的迅猛发展,人们对技术也提出了更高的要求。汽车的智能化在提高汽车的行驶安全性,操作性等方面都有巨大的优势,在一些特殊的场合下也能满足一些特殊的需要。智能小车系统涉及到自动控制,车辆工程,计算机等多个领域,是未来汽车智能化是一个不可避免的大趋势。本文设计的小车以PIC16f886 为控制核心,用反射式红外光电传感器作为检测元件实现小车的自动循迹前行,并显示等功能。 一、系统设计 本组智能小车的硬件主要有以PIC16f886 作为核心的主控器部分、自动循迹部分、显示部分、电机驱动部分。其中电机驱动部分和其他部分分别由两个不同的电源分开供电。 小车硬件系统结构示意图如下:

智能循迹小车分析方案

智能循迹小车设计 专业:自动化 班级:0804班 姓名: 指导老师: 2018年8月——2018年10月 摘要:

本课题是基于AT89C52单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。小车系统以 AT89S52 单片机为系统控制处理器;采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。 引言

当今世界,传感器技术和自动控制技术正在飞速发展,机械、电气和电子信息已经不再明显分家,自动控制在工业领域中的地位已经越来越重要,“智能”这个词也已经成为了热门词汇。现在国外的自动控制和传感器技术已经达到了很高的水平,特别是日本,比如日本本田制作的机器人,其仿人双足行走已经做得十分逼真,而且具有一定的学习能力,还据说其智商已达到6岁儿童的水平。 作为机械行业的代表产品—汽车,其与电子信息产业的融合速度也显著提高,呈现出两个明显的特点:一是电子装置占汽车整车<特别是轿车)的价值量比例逐步提高,汽车将由以机械产品为主向高级的机电一体化方向发展,汽车电子产业也很有可能成为依托整车制造业和用车提升配置而快速成为新的增长点;二是汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具有交通、娱乐、办公和通讯等多种功能。 无容置疑,机电一体化人才的培养不论是在国外还是国内,都开始重视起来,主要表现在大学生的各种大型的创新比赛,比如:亚洲广播电视联盟亚太地区机器人大赛

毕业设计+智能循迹避障小车设计之令狐文艳创作

单片机系统课程设计 令狐文艳 轮式移动机器人的设计 学院:通信与电子工程学院 班级:电子131 姓名:初清晨 学号:2013131013 同组成员:孟庆阳张轩 指导老师:王艳春 日期:2015年12月24日

组员分工 1、组长:张轩,实物焊接,报告整理,程序设计 2、组员:孟庆阳,实物焊接,仿真测试,报告整理 3、组员:初清晨,实物焊接,报告整理,仿真测试

目录 摘要1 第一章绪论2 1.1智能小车的意义和作用2 1.2智能小车的现状3 第二章方案设计与论证3 2.1 主控系统3 2.2 电机驱动模块4 2.3 循迹模块5 2.4 避障模块6 2.5 机械系统7 2.6电源模块7 第三章硬件设计7 3.1 AT89S52单片机的简介8 3.2总体设计11 3.3驱动电路12 3.4信号检测模块13 3.5主控电路14 第四章软件设计15 4.1主程序框图15 4.2电机驱动程序15 4.3循迹模块16 4.4避障模块20 结束语25 致谢26 附录一循迹加红外避障综合程序28 附录二实物图32

摘要 随着计算机、微电子、信息技术的快速进步,智能化技术的开发速度越来越快,智能度越来越高,应用范围也得到了极大的扩展。智能作为现代的新发明,是以后的发展方向,它可以按照预先设定的模式在一个环境里自动的运作,不需要人为的管理,可应用于科学勘探等用途。智能电动小车就是其中的一个体现。设计者可以通过软件编程实现它的行进、循迹、停止的精确控制以及检测数据的存储、显示,无需人工干预。因此,智能电动小车具有再编程的特性,是机器人的一种。 本设计采用AT89S52单片机加电机驱动电路和红外遥控及循迹模块还有红外接收一体化传感器设计而成,采用模块化的设计方案,运用红外遥控器控制小车的前进、后退、左转、右转、启动和停止。 关键词:智能小车;STC89C52单片机;L9110;红外对管 Intelligent tracking and obstacle-avoid car Abstract:Based infrared detection of black lines and theroad obstacles, and use a STC89C52 MCU as the controlling core for the speed and direction, A electronic drived, which can automatic track and avoid the obstacle, was designed and fabricated. In which, the car is drived by the L298N circuit, its speed is controlled by the output PWM signal from the STC89C52. Keywords: Smart Car; STC89C52 MCU; L298N;Infrared Emitting Diode 第一章绪论 1.1智能小车的意义和作用 自第一台工业机器人诞生以来,机器人的发展已经遍及机械、电子、冶金、交通、宇航、国防等领域。近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式。人们在不断探讨、改造、认识自然的过程中,制造能替代人劳动的机器一直是人类的梦想。 随着科学技术的发展,机器人的感觉传感器种类越来越多,其中视觉传感器成为自动行走和驾驶的重要部件。视觉的典型应用领域为自主式智能导航系统,对于视觉的各种技术而言图像处理技术已相当发达,而基于图像的理解技术还很落后,机器视觉需要通过大量的运算也只能识别一些结构化环境简单的

毕业设计+智能循迹避障小车设计

单片机系统课程设计轮式移动机器人的设计 学院:通信与电子工程学院 班级:电子131 姓名:初清晨 学号: 2013131013 同组成员:孟庆阳张轩 指导老师:王艳春 日期: 2015年12月24日

组员分工 1、组长:张轩,实物焊接,报告整理,程序设计 2、组员:孟庆阳,实物焊接,仿真测试,报告整理 3、组员:初清晨,实物焊接,报告整理,仿真测试

目录 摘要 (1) 第一章绪论 (2) 1.1智能小车的意义和作用 (2) 1.2智能小车的现状 (3) 第二章方案设计与论证 (3) 2.1 主控系统 (3) 2.2 电机驱动模块 (4) 2.3 循迹模块 (5) 2.4 避障模块 (6) 2.5 机械系统 (7) 2.6电源模块 (7) 第三章硬件设计 (7) 3.1 AT89S52单片机的简介 (8) 3.2总体设计 (11) 3.3驱动电路 (12) 3.4信号检测模块 (13) 3.5主控电路 (14) 第四章软件设计 (15) 4.1主程序框图 (15) 4.2电机驱动程序 (15) 4.3循迹模块 (16) 4.4避障模块 (20) 结束语 (25) 致谢 (26) 附录一循迹加红外避障综合程序 (28) 附录二实物图 (32)

摘要 随着计算机、微电子、信息技术的快速进步,智能化技术的开发速度越来越快,智能度越来越高,应用范围也得到了极大的扩展。智能作为现代的新发明,是以后的发展方向,它可以按照预先设定的模式在一个环境里自动的运作,不需要人为的管理,可应用于科学勘探等用途。智能电动小车就是其中的一个体现。设计者可以通过软件编程实现它的行进、循迹、停止的精确控制以及检测数据的存储、显示,无需人工干预。因此,智能电动小车具有再编程的特性,是机器人的一种。 本设计采用AT89S52单片机加电机驱动电路和红外遥控及循迹模块还有红外接收一体化传感器设计而成,采用模块化的设计方案,运用红外遥控器控制小车的前进、后退、左转、右转、启动和停止。 关键词:智能小车;STC89C52单片机;L9110;红外对管 Intelligent tracking and obstacle-avoid car Abstract:Based infrared detection of black lines and the road obstacles, and use a STC89C52 MCU as the controlling core for the speed and direction, A electronic drived, which can automatic track and avoid the obstacle, was designed and fabricated. In which, the car is drived by the L298N circuit, its speed is controlled by the output PWM signal from the STC89C52. Keywords: Smart Car; STC89C52 MCU; L298N; Infrared Emitting Diode

毕业设计基于单片机的智能循迹小车

第1章绪论 1.1课题背景 目前,在企业生产技术不断提高、对自动化技术要求不断加深的环境下,智能车辆以及在智能车辆基础上开发出来的产品已成为自动化物流运输、柔性生产组织等系统的关键设备。世界上许多国家都在积极进行智能车辆的研究和开发设计。移动机器人是机器人学中的一个重要分支,出现于20世纪06年代。当时斯坦福研究院(SRI)的Nils Nilssen和charles Rosen等人,在1966年至1972年中研制出了取名shakey的自主式移动机器人,目的是将人工智能技术应用在复杂环境下,完成机器人系统的自主推理、规划和控制。从此,移动机器人从无到有,数量不断增多,智能车辆作为移动机器人的一个重要分支也得到越来越多的关注。 智能小车,是一个集环境感知、规划决策,自动行驶等功能于一体的综合系统,它集中地运用了计算机、传感、信息、通信、导航及白动控制等技术,是典型的高新技术综合体。 智能车辆也叫无人车辆,是一个集环境感知、规划决策和多等级辅助驾驶等功能于一体的综合系统。它具有道路障碍自动识别、自动报警、自动制动、自动保持安全距离、车速和巡航控制等功能。智能车辆的主要特点是在复杂的道路情况下,能自动地操纵和驾驶车辆绕开障碍物并沿着预定的道路(轨迹)行进。智能车辆在原有车辆系统的基础上增加了一些智能化技术设备: (1)计算机处理系统,主要完成对来自摄像机所获取的图像的预处理、增强、分析、识别等工作; (2)摄像机,用来获得道路图像信息; (3)传感器设备,车速传感器用来获得当前车速,障碍物传感器用来获得前方、侧方、后方障碍物等信息。 智能车辆技术按功能可分为三层,即智能感知/预警系统、车辆驾驶系统和全自动操作系统团。上一层技术是下一层技术的基础。三个层次具体如下: (1)智能感知系统,利用各种传感器来获得车辆自身、车辆行驶的周围环境及 驾驶员本身的状态信息,必要时发出预警信息。主要包括碰撞预警系统和驾驶员状态监控系统。碰撞预警系统可以给出前方碰撞警告、盲点警告、车道偏离警告、换道/

智能寻迹小车设计报告

~ 目录 1.项目设计目的 (1) 2.项目设计正文 (3) .项目分析及方案制定 (3) .设计步骤及流程图 (4) 寻迹设计步骤 (4) 流程图 (4) ( .主要模块介绍 (4) LM393的主要特点 (4) LM393引脚图及内部框图 (5) LM393 功能简介 (5) 89C2051 (5) 89C2051简介 (5) 89C2051 主要性能参数 (5) 89C2051 功能特性概述 (6) 。 .电路设计及PCB绘制 (6) 电源电路 (6) 红外收发电路 (6) 电机驱动电路 (7) 单片机最小系统 (7) 整体电路 (8)

PCB板的绘制 (8) . 成品展示 (9) \ 3.项目设计总结 (9) 4.参考文献 (10) 智能寻迹小车 ——CDIO三级项目 王君杰 (电子信息工程 1501 6) 一、项目设计目的 在科技飞速发展的今天,智能化的概念已经渗入到各行各业,自动控制系统也出现在生活的方方面面,早到工厂的机械化生产,近到目前的自动驾驶。越来越多的领域涉及到电控制技术。特别是使用单片机一类的MCU的控制,在生活中越来越常见。因此,基于单片机控制的电路的学习和时间对于我们来说就显得尤为重要。同时,对于单片机作为软件主控单元,结合模电数电的硬件电路支持的综合项目开发,也是作为大学生需要了解并且熟练运用的基础。掌握了这些知识,对于我们以后的职业发展也有着莫大的帮助。 二、? 三、项目设计正文 、项目分析及方案制定 首先对于“智能寻迹小车”这个标题而言,我们可以分为两个部分:小车和智能寻迹。“小车”决定了硬件电路的大致构成:电源、电容、电阻、开关、电机、LED。而“智能”则决定了一些高级电路的选用:MCU、传感器、电机驱动、电位器及一些IC。 其次,假如去掉“智能”两字,仅关注如何做成一个能够行驶的小车,那么电路的搭建将会变得尤为简单。假如做一个“上电即跑”的小车,那么连开关都不需要,仅需要电源(干电池即可),两个电机 (3V/100mA)和两个限流电阻按图一方式连接即可。当然,这样的 小车只能实现向一个方向前进,无法实现跑道的自动识别和转向。 不过,这个电路也是所有行驶工具的基础,所有的行驶工具,都是 在这个电路的基础上按照想要实现的功能进行拓展开发。 接着让我们来到“智能”的环节。所谓智能,也就是需要小车 有人的思想,正如同课题所述——寻迹。智能的小车需要具备自动识别跑道的能力。同时,在采集到跑道信息后要做出相应的处理。在我们这个课题中,也就是需要及时并

基于单片机控制的循迹小车设计毕业设计

摘要 本循迹小车采用现在较为流行的8位单片机作为系统大脑,以STC89C52单片机为控制核心。用其控制行进中的小车,以实现其既定的性能指标。充分分析我们的系统,其关键在于实现小车的自动控制,而在这一点上,单片机就显现出来它的优势控制简单、方便、快捷。40脚的DIP封装使它拥有32个完全IO(GPIO-通用输入输出)端口,通过这些端口加以信号输入电路,将各传感器的信号传至单片机分析处理,从而控制 L293D电机驱动,控制小车。利用红外对管检测黑线,通过循迹模块里的红外对管是否寻到黑线产生的电平信号返回到单片机红外对管来实现循迹功能。单片机根据程序设计的要求做出相应的判断送给电机驱动模块。让小车来实现前进,左转,右转,停车等基本功能。集成红外线传感器即光电开关进行避障。整个系统的电路结构简单,可靠性能高。根据小车各部分功能,分析硬件电路,并调试电路。将调试成功的各个模块逐个地融合成整体,再进行软件编程调试,直至完成。 关键词:循迹小车STC89C52单片机红外对管 L293D电机驱动

Abstract This tracking car adopts the now popular 8-bit single chip microcomputer as the system of the brain, with the STC89C52 single-chip microcomputer as the core. To control the traveling car with it, in order to realize the given performance index. Full analysis of our system, the key is to achieve the automatic control cars, but at this point, single-chip microcomputer control will show its advantage is simple, convenient and fast. 40 feet DIP package makes it has 32 completely IO (GPIO - general input/output port, signal input circuit, through these ports will transmit the signals to single chip microcomputer analysis of each sensor to control L293D motor drive and control the car. The use of infrared for detecting tube black line, through infrared tracking module for tube whether find level signal produced by the black thread returns to the SCM infrared tube to realize tracking function. SCM according to the requirement of the program design make the corresponding judgment for motor driver module. Let the car to achieve forward, turn left, turn right, the basic function such as parking. Integrated infrared sensor photoelectric switch for obstacle avoidance. The circuit of the whole system structure is simple, reliable performance is high. According to the function of car parts, analyze the hardware circuit, and debug the circuit. Debugging success of each module individually merged into a whole, and then software programming and debugging, until completion. KEY WORDS: STC89C52 dc motor infrared sensors the pipe tracing cars L293D motor drive

基于单片机的智能循迹小车的控制过程毕业设计

基于单片机的智能循迹小车的控制过程 毕业设计

摘要 本文论述了基于单片机的智能循迹小车的控制过程。智能循迹是基于自动引导机器人系统,用以实现小车自动识别路线,以及选择正确的路线。智能循迹小车是一个运用传感器、单片机、电机驱动及自动控制等技术来实现按照预先设定的模式下,不受人为管理时能够自动实现循迹导航的高新科技。该技术已经应用于无人驾驶机动车,无人工厂,仓库,服务机器人等多种领域。 本设计采用STC89C52单片机作为小车的控制核心;采用TCRT5000红外反射式开关传感器作为小车的循迹模块来识别白色路面中央的黑色引导线,采集信号并将信号转换为能被单片机识别的数字信号;采用驱动芯片L298N构成双H桥控制直流电机,其中软件系统采用C程序,本设计的电路结构简单,容易实现,可靠性高。 关键词:单片机;自动循迹;驱动电路

Abstract This paper discusses the intelligent tracing electric trolley control process. Automatic tracing is used to make the car indentify route automatically , and choosing the right route, based on the automatic guide robot system. Intelligent tracing electric trolley is an advanced technology to realize automatic tracing navigation. It is out of human management but under the designed mode that use of the use of a transducer, single chip, motor drive and automatic control .This technology has been applied in unmanned vehicle, unmanned factory, warehouse, service robot and many other fields. During the design of Intelligent tracing electric trolley, STC89C52 single clip is used as the control core; at the same time with TCRT5000 reflective infrared transducer switch to identify the black guide line at the central of the white road, which used as the car tracing module, it can gather the signal and transfer it into digital signal that can be recognized by single chip. And the driving chip L298N constitute the double H bridge constitute of driving chip L298N can control direct current motor. Among which the software system is using C program. In a nutshell, the design of the circuit has the advantages of simple structure, easy implementation, and high reliability. Key words:single chip microcomputer; automatic tracing; driving circuit

相关主题
文本预览
相关文档 最新文档