当前位置:文档之家› 杂多酸催化剂

杂多酸催化剂

杂多酸催化剂
杂多酸催化剂

题目杂多酸催化剂

姓名与学号张凌烽 1108010236 指导教师孟锦宏

年级与专业2011级化学工程与工艺

所在学院环境与化学工程学院

摘要

杂多酸是固体酸的一种,具有着独特的氧化还原性,酸性以及双功能性,在许多化学反应中能够表现出很强的催化活性。杂多酸这种绿色、无毒、无腐蚀性的环保型催化剂己在多种有机反应中实现了成功应用,如:酯化醚化、缩合反应、酰基化、烷基化、水合脱水和聚合反应等,反应中呈现出反应活性高、腐蚀性小、污染率低等诸多优点,但由于杂多酸比表面积小、热稳定性低、回收困难等问题使得杂多酸在催化领域的应用受到了一定的限制。

关键词:

1 绪论

1.1前言

绿色化学是近十年来在化学领域内提出的新名词,绿色化学又被称为“环境友好化学“、“清洁化学”、“环境无害化学”。这种发展趋势已涉及到分子合成、生物技术、化学分析等许多领域,内容丰富,应用广泛。绿色化学的最大优势在于通过科学的手段在化学反应的起始与末端进行有效的防控干预,使反应中无副产物,真正实现零排放,彻底无污染,化学绿色化是新时代里化学发展的主要研究方向。

无机酸是许多化工产品生产中必不可少的、非常重要的常规催化剂,传统无机酸类催化剂主要有浓硫酸、三氯化招、浓憐酸等。这类酸催化剂在反应中有许多优势,如工艺成熟、催化效率高、价格低廉,但此类催化剂最大的缺陷在于:副反应多、腐烛性强、设备要求高、后处理繁杂,无法满足环保技术的要求,为了克服诸多缺点,人们开发、研制了许多新型催化剂,如固体酸、杂多酸和离子交换树脂等。

杂多酸是一类含有氧桥的多核高分子化合物,无论是均相反应体系,还是非匀相反应体系,杂多酸均可作为酸催化剂,氧化还原型催化剂及双功能型催化剂,广泛应用于各类有机反应催化当中,如:酯化酸化、缩合反应、酰基化、烧基化、水合脱水、聚合反应等,反应中呈现出腐烛性小,活性高,污染率低等诸多优点。二十世纪七十年代,憐鹤酸催化丙稀水合制备异丙醇在R本成功投入工业生产。目前,以杂多酸为催化媒介并实现工业化生产的的重要有机合成反应已达十几种随着科学研究的不断开拓深入,杂多酸类化合物在工业催化领域的开发将越来越深入。

1.2多酸化学简介

时至今日,多酸化学的发展己有200年的历史,进入新世纪后,多酸化学走进了一个薪新的发展时代“?”。多酸分子中的金属离子通常具有d"电子构型,最具代表性的是鹤原子和销原子,也是构成多酸的主要元素。多酸的立体结构中,八面体

和四面体成为多酸的主要建筑块,这些八面体或四面体通过边、角、面进行连接,形成了许多具有多种特殊功能和结构的多金属阴离子,科学家们根据组成和结构的不同,多酸被划分为杂多酸与同多酸两类[1]。

1.2.1杂多酸分类

同多酸与杂多酸的分类是根据分子组成中是否存在杂原子来判断,若多酸组成元素是由杂原子构成的称为杂多酸,反之,称为同多酸⑸,妈、钼、锐、银、担是多酸中较为常见的配原子,同时,杂多酸中心杂原子可以由数十种元素构成,主要分布在周期表中过渡金属元素区以及非金属区,由于构成的杂原子通常以多种不同价态分布于多酸的阴离子中,使得杂多酸种类极其繁多,为杂多酸的生产应用奠定了基础。

1.2. 2杂多酸结构

由于可能有不同的增补原子和杂原子结合,因此有许多不同的杂多酸。知名度较高的二种分别是Keggin结构H n XM12O40及Dawson结构H n X2M18O62。

图1-1 Keggin结构,XM12O40n?图1-2 Dawson结构,X2M18O62n?

以下是一些杂多酸的例子:

H4X n+M12O40,X = Si, Ge; M = Mo, W

H3X n+M12O40,X = P, As; M = Mo, W

H6X2M18O62,X=P, As; M = Mo, W

1.2. 3杂多酸性质

杂多酸具备有很多特殊性质,这要归因于杂多酸较大体积的阴离子,规则的面体八面体使杂多酸阴离子的对称性非常好,电荷密度较低。杂多酸分子中的质子容易解离,而显现强酸性,且酸性强度大于相应中心原子或配位原子所形成的无机酸,另外过渡金属元素所构成的杂多酸阴离子有着易于传递电子的特性,故而可以接受另外的电子,这种双功能性使杂多酸成为具有特殊性质的催化剂。

杂多酸分子内含有多个质子,物理形态呈固态,是典型的固体酸,溶于水后测定的酸强度结果显示,其酸性强度通常强于常见的无机酸类。杂多酸分子中还含有经基,根据相似相容性原理,杂多酸能够溶解在强极性小分子溶剂里。在水溶液中甚至能够完全电离出3个质子。但在有机大分子溶剂内解离的较慢,其酸性强弱变化顺序为H3PW12O40> H4PW11O40> H4PMo12O40~ H4SiW12O40>>HCL、HNO3[2]。也正由于杂多酸分子不易溶解于弱极性大分子或非极性试剂中,在某些反应中,杂多酸可作为固体酸催化剂,这使杂多酸在工业领域内的催化应用具有更大意义。

由于杂多酸结构存在可调解性,将中心原子、配位原子通过这种调节作用改变以达到杂多阴离子的多样的还原性与氧化性的目的。具有配位原子和相同结构的杂多阴离子,其氧化性存在规律性的变化,一般氧化性呈负相关变化,且这种氧化还原性的变化更多的决定于其配位原子,结构影响不大,在大多数情况下,氧化性与配位原子电极电位呈正相关。

V(V) >Mo (VI) >W (VI)

2.酸催化原理

杂多酸是强质子酸,被广泛应用在酯化、酯交换、酯水解等相关反应,以及烷烃异构化,烯烃的水合、重排和异构化等反应。反应可以在均相或者多相中进行,杂多酸在这些体系中都表现出了优异的催化性能。

Misono 等将在固体上进行的催化反应分为表面型反应( surface-type) 和体

相型( bulk-type I and II) 反应两种类型。表面型反应是指非极性分子在POM 表面进行的反应,通常为非均相催化反应。非极性分子仅能在表面反应。体相型I 是准液相型反应,即极性分子还可以扩散进入晶格间体相,形成与体相整体有关的三维反应场进行反应。体相型II 反应是指反应物分子虽然不能直接进入体相内部,但通过氧化还原载体( e 和II+ ) 的扩散可与体相内部发生作用。体相型I 和体相型II 两种催化作用模型是固体POM 催化剂固有特征。

2.1水合和脱水

水合反应主要有低碳烯烃的水合和复杂不饱和分子的水合.丙烯、正丁烯和异丁烯水合生成丙醇正丁醇和异丁醇。

脱水反应主要有醇类和复杂饱和分子的脱水,如丙三醇脱水制丙烯醛,乙醇、丙醇和异丁醇,1,4-丁二醇脱水合成烯烃和四氢呋喃。

2.2酯化和醚化

酯化和醚化是典型而且重要的酸催化反应,主要反应有醇酸酯化反应、链烯烃酯化反应、芳香酸酯化反应和甾族化合物的酯化反应,以及醚化反应。通常被研究的是Keggin 型和Dawson 型杂多酸作为酯化和醚化的催化剂。这些反应一般在有机溶剂中进行,而水会影响反应速率.这些杂多酸催化剂表现出的活性通常跟其酸性一致,这正是典型的B 酸催化剂的表现。

虽然杂多酸催化剂在均相条件下表现出了比传统无机酸更强的活性,但因其成本较高,于是研究重点逐步转移到各种固载方法以及可以方便回收重复使用的绿色化学方法上来.经常使用的载体有SiO2,介孔氧化铝,沸石,分子筛,ZrO2,镁铝水滑石,高分子聚合物等,使用固载的催化剂进行的酯化和醚化相关反应已有大量报道。

2.3烷基化、酰基化、去烷基化和异构化

Friedel-Crafts 反应是芳香烃烷基化酰基化的重要反应,杂多酸对其有良好的催化效果,对于去烷基化和异构化也有很好的催化效果。SnO2负载的

H 3PW 12O 40、聚合物负载的杂多酸或者杂多酸盐催化苯甲醚和苯甲醇的Friedel-Crafts 烷基化反应。 Nikunj 等。用γ-Al 2O 3负载的PW 12催化苯甲醇和新丁醇的Friedel-Crafts 烷基化。蒙脱土作为载体杂多酸催化的苯甲醇和甲醛的羟烷基化反应。α-蒎烯在无溶剂条件下的的异构化萜品醇异构化制备桉叶素,氧化苯乙烯异构化为苯基乙醛等等。

2HC C

H 2C H 2C H 2C OH OH H 2C H 3C OH +3RCOOCH 3HPA salts 2OCOR C H 2C CH 2OCOR 2OCOR 3C +3CH 3OH

图2-1 三羟甲基丙烷的酯交换反应

2.4 聚合反应和缩合反应

杂多酸对于聚合和缩合反应是良好的催化剂,在催化这类反应时主要表现出Bronsted 酸酸性,但有时也可表现出L 酸酸性。Ferreira 等用SiO 2负载的杂多酸催化丙三醇和丙酮的缩合,达到了97%的转化率。Castanheiro 等使用溶胶-凝胶法固载的杂多酸为催化剂,研究了对催化丙三醇和丙酮的缩醛反应的活性。他们发现催化剂的活性按照H 3PW 12O 40> H 4SiW 12O 40> H 4PMo 12O 40> H 4SiMo 12O 40的顺序降低,这与杂多酸的酸性强弱顺序是相同的。反应产物中甘油缩丙酮的产率和选择性都达到了98%。

OH HO OH +O O O HO +O O OH

H 2O +

图2-2 固载杂多酸催化缩醛反应

3氧化催化原理

酸催化反应中,经典的Keggin 型杂多酸作为主体催化剂,相对酸催化反应而言,在液相氧化中,许多过渡金属杂多阴离子被更多的使用,其中多组分的杂多酸氧化还原催化剂是有效的氧化催化剂,可以和金属卟呤相比拟。近年来,已有许多关于杂多配合物的氧化催化作用的报道,其中,杂多酸催化的一些反应( 长链烯烃的液相氧化和甲基丙烯醛及异丁酸的气相氧化) 已成功地实现了工

业化生产。它们可催化氧化的有机反应,按有机物分类包括烷、烯、炔烃、醇和醛类的氧化反应。另外,他们对肼和硫化氢等无机物的氧化催化研究也比较活跃。空气中的氧气或者分子氧是廉价易得的理想氧化剂,但是氧气作为氧化剂也有很多缺点,例如氧气活化比较困难,活化后分子氧氧化的自由基机理难于控制反应途径,对产物的选择性差。另一种常用的氧化剂是过氧化氢,其含氧量高,副产物只有水,对环境友好。下面以不同的有机底物为分类综述近年来杂多酸催化剂的研究进展。

3.1烷烃的氧化

催化氧化烷烃的关键是活化反应性弱的C-H键,通常需要苛刻的反应条件,带来带对产物的低选择性。Mirkhani 等合成了Schiff 碱和杂多酸阴离子杂化的催化剂,用于过氧化氢对环烷烃的催化氧化,结果显示中心配位金属为Fe 和Cu 时底物的转化率最高。杂多酸的大体积和低电荷密度在复合催化剂中起到了促进分子间电荷转移和稳定反应中间体的作用,促进了氧化反应的进行。.

3.2烯烃的氧化

烯烃的环氧化是烯烃氧化反应中极为重要的一种,有多种杂多酸催化体系对此反应有良好的催化效果。Mizuno 等使用[gamma-SiW10O36]( 8-)为催化剂,过氧化氢为氧化剂,对多种烯烃的环氧化都有很好的效果,产物中环氧化物的选择性达到99%以上,过氧化氢的利用率也达到了99%以上。

3.3 醇的氧化

杂多酸可以有效地催化氧气或者过氧化氢对醇类的氧化,对产物具有良好的选择性。Neu-man 等用sandwich 型杂多酸作为配体,Pd( Ⅱ)为中心,合成了Pd-POM 化合物( PdCl2)0.5Q12{[WZn3( H2O)2][( ZnW9O34)2]} ,对于空气氧化醇类有很好的催化活性。此催化剂在同时氧化一级醇和二级醇时,对一级醇有特别的选择性。这可能是因为一级醇的活性要高于二级醇。对产物也有良好的选择性,主要生成醛类,以及少量的羧酸。此反应不需要用碱来活化醇,十分环保高效。Mizuno 等

在有机相中使γ-Keggin 型缺位杂多酸和[Zn( acac)2]反应,合成了新型的sandwich型含锌杂多酸。此新型杂多酸可以催化氧化二级醇表现出了极高的空间选择性。合成此催化剂的方法也为以后合成其它多金属取代的杂多酸指明了方向。

4杂多酸的部分应用

5结束语

随着人类环保意识提高,环境友好型杂多酸催化剂的研究和应用得到了更加广泛的关注,在精细化学品合成中的应用也越来越受到人们的重视。杂多化合物的性能与其组成及其结构密切相关,可以利用现在分析表征手段,通过分子剪裁技术,从分子、原子水平上设计催化剂分子,将杂多阴离子独立单元组装成一维、二维甚至三维空间伸展的开放有序体,以拓宽其在化工中的应用。通过调节杂多酸催化剂的酸性和氧化还原性的协同作用,提高其对底物的专一性也是重要的研究方向之一。通过向传统杂多化合物上引入过渡金属、有机金属、含手性配体的金属及有机分子可以得到特定功能的新型催化剂。经金属离子、烷基铵等有机离子部分或全部取代杂多酸中的质子氢,可调节催化剂的酸性和孔径等,使其具有强耐水性和优良的择形性,也应引起关注。另外,负载杂多酸与传统催化剂相比,具有低温耐火性、可重复使用及易于实现连续化生产等优点,具有很好的工业化前景,也是杂多酸催化领域最为重要的分支之一,但也存在活性组分溶脱损失及积炭失活等问题,这有待进一步深入研究。我国对杂多酸催化剂及其性能的研究也已做了大量的工作,并取得了一定进展,但实现工业化规模的应用并不多见,这有待于结构化学、动力学、催化、有机化学、无机化学和化工界学者和企业的共同努力,推动杂多化合物这种新兴催化材料的研究和发展,以加速我国精细化工过程的绿色化进程。

绿色化学催化剂应用

绿色化学催化剂应用 摘要:从有机功能小分子催化、高分子负载催化剂、新型过渡路易酸催化、生物质催化、离子液体和超临界流体为介质的催化来介绍有机合成中的一些绿色反应。 关键字:绿色,有机合成,催化 催化化学 催化化学对人类社会的发展和进步起着深远的影响,80 %以上的传统化工过程都与催化作用有关。近年来随着人类对能源、环境和健康等问题的普遍关注,催化化学的作用和地位进一步获得了新的评价。因此,适当掌握一些关于催化剂及催化过程的知识是非常必要的。催化化学是一门面向化学类专业大学学生的一门学科。其目的主要是使学生了解催化化学的基础知识以及最新发展动向,通过学习,提高学生对化学和化工领域的环境友好的意识,为今后从事研究和开发打下良好的基础。学科内容主要包括:催化作用基础、催化剂的设计、制备和表征以及各种新兴催化技术在绿色化学、生物医药等领域的应用,如纳米技术、超临界流体技术和相转移催化等。 绿色化学 绿色化学的定义:是在化工产品生产过程中,从工艺源头上就运用环保的理念,推行源消减、进行生产过程的优化集成,废物再利用与资源化,从而降低了成本与消耗,减少废弃物的排放和毒性,减少产品全生命周期对环境的不良影响。绿色化工的兴起,使化学工业环境污染的治理由先污染后治理转向从源头上根治环境污染。 绿色化学被称为环境无害化学(Environmentally Benign Chemistry),由此

发展的技术称环境友好技术或洁净技术:即利用化学原理在化学品的设计、生产和应用中消除或减少那些对人类健康、社区安全和生态环境有毒有害物质的使用和生产,设计研究没有或只有尽可能少的环境负作用,在技术上和经济上可行的产品和化学过程。无论属于哪个学科,面对一项有利于人类社会的发展的新理论,都应该树立正确的态度和观念。所以,首先有必要解释清楚这些技术或科学理念的理论来源及前因后果、带来的益处、发展方向、积极意义、发展前景及发展方式等等。 绿色化学的研究内容及其实现方式 1、绿色化学研究的核心内容 绿色化学研究的核心内容是原子经济性这一概念最早是1991年美国Stanford大学的著名有机化学家Trost(为此他曾获得了1998年度的“总统绿色化学挑战奖”的学术奖)提出的,即原料分子中究竟有百分之几的原子转化成了产物。理想的原子经济反应是原料分子中的原子百分之百地转变成产物,不产生副产物或废物,实现废物的“零排放”。他用原子利用率衡量反应的原子经济性,认为高效的有机合成应最大限度地利用原料分子的每一个原子,使之结合到目标分子中。绿色化学的原子经济性的反应有两个显著优点:一是最大限度地利用了原料,二是最大限度地减少了废物的排放。近年来,开发新的原子经济反应已成为绿色化学研究的热点之一。国内外均在开发钛硅分子筛上催化氧化丙烯制环氧丙烷的原子经济新方法。此外,针对钛硅分子筛催化反应体系,开发降低钛硅分子筛合成成本的技术,开发与反应匹配的工艺和反应器仍是今后努力的方向。 BHC工艺是一个典型的原子经济性反应,不但合成简单,原料利用率高,而且无需使用大量溶剂和避免产生大量废物,对环境造成的污染小。Boots工艺肟化法从原料到产物要经过4步反应,每步反应中的底物只有一部分进入产物,所用原料中的原子只有40%进入最后产品中。而BHC工艺只需3步反应即可得到产品布洛芬,其原子经济性达到77%,也就是说新方法可少产废物37%。如果考虑副产物乙酸的回收,BHC 合成布洛芬工艺的原子有效利用率则高达99%。 环氧乙烷的生产,原来是通过氯醇法两步制备,采用银催化剂后,改为乙烯直接氧化成环氧乙烷的原子经济性反应。而合成乙二醇二乙酸酯(EGDA)的经典

负载型杂多酸钒催化剂浅析

负载型杂多酸钒催化剂浅析 开封市三丰催化剂有限责任公司 耿雨 张智勇 杜保强 [摘 要] 本研究主要对用于硫酸生产的固体负载杂多酸钒催化剂主要成份、杂多酸与载体的相互作用等问题进行初步探索,针对现有硫酸催化剂的生产工艺作出改进,提高催化剂的活性以及选择更适宜的物化性质(孔容积、孔径分布、比表面、强度、颗粒度和形状等)。 [关键词] 硫酸催化剂 杂多酸 催化剂选择活性 我国钒催化剂品种有中温型、低温型、宽温区型,也有特种耐砷型,外形有条形、环形和异形等。生产工艺有混碾工艺和后期浸渍处理,尽管很多厂家进行了许多改良,但品种基本在这些范畴内,并没有实质性的突破。未从本质上解决催化剂存在的问题,本研究是从催化剂生产原料硅藻土的研究入手,探索杂多酸催化成份在多孔二氧化硅上的分布状态,从而解决硫酸催化剂具体微观组分热稳定性,改善其相应物化性能。 1.二氧化硅载体 目前世界上所有的硫酸生产用钒催化剂载体的有效成份均为硅藻土所含的无定型SiO2,它决定了催化剂的最初强度,理论上认为无定型SiO2不参与反应,但从实际应用情况判断无定型SiO2直接影响有效催化剂成份、SO2与O2的传递(微观反应的扩散过程)。通常在320-610℃下,催化剂的活性组分在二氧化硅载体表面形成了很薄的液膜(100-1000 ?),SO2穿过液膜时与一个独立的钒位表面氧化成SO3时造成了V-O-M键的变化(M为K或P或Cs或Mn或Li或Ti 等),由于M氧化物具有多变性,SO2在多变的负载钒催化剂上的催化活性也呈现多变性,这就需要稳定的SiO2载体来提高硫酸催化剂的稳定性。 1.1载体塑性 硅藻土孔隙中所含的是由吸附水和结合水组成,其中结合水是在双电层范围内的被土颗粒吸引在其周围的水,它分为强结合水和弱结合水;吸附水是处于土颗粒引力范围之外的水,它分为重力水和毛细水,自由水在硫酸催化剂中需110℃干燥1.5h才能逸出,而结合水需在450℃下连续焙烧1.5小时。 I p来表示。 固态 半固态 可塑态 液态 图1-1 硅藻土的界限含水量 137

催化剂与绿色化学

催化剂与绿色化学 张烨 材料化学 2012111

绿色化学又称环境友好化学,它是在化学产品的设计、制造和应用过程中运用一套原理和理论来减少或者消除对有害物质的生产和利用的一门学科。绿色化学工艺的目标是用化学的技术和手段去减少或消除那些对人类健康有害的原料、产物、副产物、溶剂和试剂等的产生或应用。绿色化学的核心是新催化剂和新反应工艺的研究!催化技术是绿色化学工艺研究及应用的重要手段。两者的关系可以说是你中有我,我中有你。绿色化学由美国化学会(ACS)提出,目前得到世界广泛的响应。其核心是利用化学原理从源头上减少和消除工业生产对环境的污染;反应物的原子全部转化为期望的最终产物。涉及原子经济性和绿色化学“十二原则”问题。而催化剂在这方面有着难以取代的作用。 绿色催化剂:绿色化学要求化学品的生产最大限度地合理利用资源,最低限度地产生环境污染和最大限度地维护生态平衡。它对化学反应的要求是:采用无毒、无害的原料;在无毒无害及温和的条件下进行;反应必须具有高效的选择性;产品应是环境友好的。这四点要求之中有两点涉及到催化剂,人们将这类催化反应称为绿色催化反应,其使用的催化剂也就称为绿色催化剂。 绿色催化剂的种类及性质:1)固体酸催化剂 2)固体碱催化剂 3)生物催化剂 4)光催化剂 5)电极催化剂 6)膜催化剂 固体酸催化剂:分子筛催化剂,又称沸石分子筛催化剂,指以分子筛为催化剂活性组分或主要活性组分之一的催化剂。分子筛具有离子交换性能、均一的分子大小的孔道、酸催化活性,并有良好的热稳定性和水热稳定性,可制成对许多反应有高活性、高选择性的催化剂。 杂多酸催化剂,由杂原子(如P、Si、Fe、Co 等)和配位原子(即多原子,如Mo、W、V、Nb、T a 等)按一定的结构通过氧原子配位桥联组成的一类含氧多酸或为多氧簇金属配合物,常用HPA 表示。特点有:可通过杂多酸组成原子的改变来调变其酸性和氧化还原性;一些杂多酸化合物表现出准液相行为,因而具有一些独特的性质;结构确定,兼具一般配合物和金属氧化物的主要结构特征,热稳定性较好,且在低温下存在较高活性;它是一种环境友好的催化剂。 固体碱催化剂:一般而言,固体碱可理解为凡能使酸性指示剂改变颜色的固体,或是凡能化学吸附酸性物质的固体;按Br?nsted 和Lewis的酸碱定义,则固体碱是具有接受质子或给出电子对能力的固体。固体碱的特点:固体碱作为催化剂具有高活性、高选择性、反应条件温暖和、产物易于分离、可循环使用等诸多优点。

杂多酸

液体催化剂制备技术及应用 赵毓璋

1. 研发杂多酸催化剂的意义 催化剂的应用历史很长,特别在石油化工、精细化工、有机化工和生物化工中,可以说催化技术已成为化学工业最关键的核心技术之一。据统计,到目前为止,人类所掌握的化学反应80%以上必须在催化剂存在下才能实现。在化学工业生产中,最常用的催化剂是无机酸和无机碱,一般是液体溶液,用于均相或非均相反应。酸碱催化剂适用于水合反应、分解反应、酯化反应、芳烃烷基化反应、脱水反应、胺化反应、加氢反应、不饱和化合物的双键转移反应、氧化还原反应等。但是由于传统的酸碱催化剂过于注重生产的实效性和经济性,而忽略环境效应和生态效应,以至于目前所使用的催化剂绝大多数都对环境造成或多或少的污染。如今有害化学物质的处理和环境保护受到特别关注,世界各国都在积极进行绿色化学研究与开发,提倡清洁生产,特别是化学化工中的清洁生产更为世人瞩目,它已成为主要的研究方向。绿色化学是更高层次的化学,它的主要特点是原子经济,即在获取新物质的转化过程中充分利用每个原料原子,实现“零排放”,既可充分利用资源,又不产生污染,实现清洁生产。而催化技术是清洁生产的重要技术,因此,研究和开发新的环境友好型催化剂是摆在科学工作者面前的一个比较迫切的课题。目前,这方面的研究有固体超强碱催化剂、杂多酸催化剂、夹层式催化剂等的开发。 杂多酸(Heteropoly Acid,简称HPA )是由杂原子(如P、Si、Fe、Co等)和多原子(如Mo、W、V、Nb、Ta等)按一定的结构

通过氧原子配位桥联组成的一类含氧多酸,具有很高的催化活性,它不但具有强酸性,而且具有氧化还原性,是一种多功能的新型催化剂。杂多酸稳定性好,可作均相及非均相反应,甚至可作相转移催化剂,对环境无污染,是一类大有前途的绿色催化剂,它可用作以芳烃烷基化和脱烷基反应、酯化反应、脱水/化合反应、氧化还原反应以及开环、缩合、加成和醚化反应等。因杂多酸独特的酸性、“准液相”行为、多功能等优点在催化反应领域已有许多出色的应用实例。如丙烯液相水合制异丙醇、甲基丙烯醛氧化制甲基丙烯酸、四氢呋哺(THF)开环聚合加水合制聚氧四甲撑二醇(PTMG)它是合成聚氨酯的主要原料。杂多酸在均相、多相酸催化反应、氧化还原反应中都有许多别于其它催化材料的特性,概括有如下几点: (1)杂多酸结构组成简单、性能稳定,其催化性能容易用杂多酸阴离子的分子水平表征。 (2)杂多酸的表面结构和体相结构差别很小,具有所谓“准液相”的特征。催化反应不仅在表面上进行,同时在体相内进行。 (3)杂多酸不仅同时具有多元酸如多电子还原能力,而且它的酸性和氧化还原性还可以在较大的范围内调变。因此,杂多酸即可作为酸性催化剂又可作为氧化还原催化剂,是一种双功能催化剂。 (4)杂多酸具有较好的热稳定性和可溶性,因此它既可作为多相催化剂,也可作为均相催化剂。 (5)杂多酸的酸强度远远高于通常的无机酸,但是由于质子不游离出来,腐蚀性很小。

绿色化学

绿色化学产生的时代背景是什么? 答:(1)、人类的生活,不管是衣食住行,还是其他方面都离不开化学,随着人类的发展,人们在追求更绿色,更先进的化学品。 (2)、传统化学没有有效地利用资源,无节制地消耗物破坏了原有的生态平衡,造成了恶劣的环境污染,但人类生活离不开化学,故需寻求绿色的可持续发展之路。 (3)、未来,化学将是提供解决人类赖以进步的物质基础这一难题的核心科学。 1、简要概括绿色化学的基本内容。 答:绿色化学的目标是追求完美,它主要围绕化学反应、原料、催化剂、溶剂和产品的绿色来进行的。主要包括:化学反应的绿色化、原料的绿色化、溶剂的绿色化、催化剂的绿色化、产品的绿色化、化工生产的绿色化。即:研究新反应体系包括新的、更安全的、对环境友好的合成方法和路线;采用清洁、无污染的化学原料包括生物质资源;探究新的反应条件;设计和研究安全的、毒性更低或更环保的化学产品。 2、叙述绿色化学与环境化学的异同点。 答:相同点:绿色化学又称环境友好化学,故这两大化学都在为保护环境,保护生态,实现可持续发展而努力。他们的奋斗目标都是:在化学为人类带来便利的同时,合理利用自然资源,实现经济的可持续发展。 不同点:(1).研究任务不同,绿色化学是从源头上解决污染,寻找充分利用原材料和能源且在各个环节都洁净和无污染的反应途径和工艺;环境化学是环境化学是要从微观的原子、分子水平上来研究宏观的环境现象与变化的化学机制及其防治途径。(2).研究内容不同,绿色化学的研究主要是围绕化学反应、原料、催化剂、溶剂和产品的绿色化来进行的;环境化学是研究污染物(主要是化学污染物)在环境(包括大气圈、水圈、土壤岩石圈和生物圈)中的迁移、转化的基本规律,环境中污染物的种类和成分及其定量分析方法,环境中天然的和人为释放的化学性质的迁移、转化规律及其与环境质量和人类健康的关系。

绿色化学

第一章 1、简答:温室效应及其与化学的相关性;核冬天;光化学烟雾及其化学本质;生物多样型? 答:全球气候变暖是大气中温室气体浓度升高引起的。这些温室气体又是人类在寻找食物、生活用品及供热取暖等满足基本生活要求的过程中,以及工业生产活动过程中排放到大气中的。温室气体主要有CO2、NO X、CH4、卤代烃等。 核冬天:有限的核战争所产生的烟尘会导致地球冷却的假设,被称为“核冬天”。 光化学烟雾主要就是氮氧化合物与烃类物质在紫外线照射下,经过一系列复杂反应后形成的一种大气污染现象。氮氧化物是光化学烟雾引发的主要元凶:NO2→NO+O;O+C X H Y→C X H Y O;C X H Y O+O2→C X H Y O3; C X H Y O3+C M H N→RCHO+R’COR2;O+O2→O3。 生物多样性是指地球上所有生物——植物、动物和微生物及其他物质构成的综合体。它包括遗传的多样性、物种多样性和生态系统多样性三个组成部分。 2、为什么说化学是一门中心的、实用的、创造性的学科? 答:化学的原理和方法以及化学反应方面的研究目前仍在主导其他学科;它在开发天然资源以满足人类的生活需要方面作出了巨大贡献。基于化学的产业,利用天然资源制取大量的化肥、农药、农膜、塑料、钢铁、水泥等产品和材料,并生产大量的合成纤维和橡胶等以弥补农业、林业的不足;能源的开发利用,新材料的开发利用,医药卫生等均离不开化学。可以说,人类的衣、食、住、行、用及保持健康等无一项可以离开化学,化学在这些领域中直接或间接地发挥着不可替代的作用。 3、人类目前面临的主要环境问题有哪些?造成这些困境的原因是什么?(1页) 答:1、全球气候变暖2、核冬天的威胁3、臭氧层破坏4、光化学烟雾和大气污染5、酸雨6、生物多样性锐减7、深林的破坏8、荒漠化9、水资源危机10、海洋污染日甚。环境问题的起因是人类自己。环境问题是指由于人类活动作用于周围的环境所引起的环境质量变化以及这种变化对人类的生产、生活和质量造成的影响。 第二章 1、简答:绿色化学的目标;化学工业造成的危害;风险试剂;生物质的种类;可再生资源;原子利用率;环境商;环境因子?(课本第2章) 答:绿色化学的目标是:化学过程不产生污染,即将污染消除于其产生之前。 2、为什么要大力发展绿色化学?(11页)答:1、大力发展绿色化学是人类社会可持续发展的必然要求;2、发展绿色化学是科学技术和经济发展的要求。 3、绿色化学及其与环境污染治理的异同?(10~11页) 答:绿色化学就是利用化学原理和方法来减 少或消除对人类健康社会安全、生态环境有 害的反应原料、催化剂、溶剂和试剂、产物、 副产物的新兴学科,是一门从源头上、从根 本上减少或消除污染的化学。 传统的环境保护方法是治理污染,或曰污染 的末端处理,也就是研究已有污染物对环境 的污染情况,研究治理这些已经产生了的污 染物的原理和方法,是一种指标的方法。 绿色化学的目标是:化学过程不产生污染, 即将污染消除于其产生之前。实现这一目标 后就不需要治理污染,因其根本就不产生污 染,是一种从源头上治理污染的方法,是一 种治本的方法。 4、什么是绿色化学品?怎么设计安全的化 学品?(17页) 5、举例说明原子经济反应是不产生污染的 必要条件?(找不到) 6、试论计算机辅助绿色化学合成路线设计 的必要性和方法?(23页) 7、怎样在反应过程中使化学反应绿色化? (第5节) 8、自选一条目前使用的环氧丙烷合成路线, 用绿色化学原理对其进行评价并设计一条 更佳的新路线?(13页底端14页顶端) 9、简述绿色化学十二原则?(27页) 答:1、不让废物产生而不是让其生成后再 处理;2、最有效地设计化学反应和过程, 最大限度地提高原子经济性;3、尽可能不 使用、不产生对人类健康和环境有毒有害的 物质;4、尽可能有效地设计功效卓著而又 无毒无害的化学品;5、尽可能不使用辅助 物质,如须使用也应是无毒无害的;6、在 考虑环境和经济效益的同时,尽可能使消耗 最低;7、技术和经济上可行时应以可再生 资源为原料;8、应尽可能避免衍生反应;9、 尽可能使用性能优异的催化剂;10、应设计 功能终结后可降解为无害物质的化学品; 11、应发展实时分析方法,以监控和避免有 害物质的生产;尽可能选用安全的化学物 质,最大程度地减少化学事故发生。 第三章 1、设计安全无毒化学品的一般性原则有哪 些?(36页表3-1) 2、设计安全化学品的方法主要有哪些?其 基本原理分别是?(39~57页) 答:方法有:1、毒理学分析及相关分子设 计;2、利用构效关系设计安全的化学品;3、 利用集团贡献法构筑构效关系;4、利用等 电排置换设计更加安全的化学品;5、“软” 化学设计;6、用另一类有相同功效而无毒 的物质替代有毒有害物质;7、消除有毒辅 助物品的使用。 3、化学品的毒理学分析包括哪些内容?如 何根据毒理学分析进行相关分子的设计? 举例说明?(39页) 4、什么是构效关系?如何根据构效关系设 计更加安全的化学品?(49页) 答:一类化合物的毒性以及该类化合物中不 同结构(结构差异)引起的毒性差异称为构 效关系。 第四章 1、由碳、硅元素的化学性质,试讨论用硅 取代碳的可行性及硅取代物的优点?(58 页) 2、用辛酸—水分配系数表征有毒化学品毒 性的一般准则是什么?(68页) 3、举例说明等电排置换是设计更加安全化 学品的有效方法?(找不到) 4、从分子量、分子体积角度看,应该怎样 设计更加安全的化学品?(找不到) 5、常见可降解和不可降解的基团有哪些? (62页) 6、从可生物降解、对水声生物的毒性角度 看,怎样设计更加安全的化学品?(67页 第3节) 第五章 1、举例说明什么是催化剂,它在化学反应 中有何作用?(80页表5-1最后一列) 2、以环戊二烯钛催化烯烃聚合为例,说明 催化剂分子机器的作用?(81页图5-2) 3、为什么说催化剂能全方位地促进绿色化 学的发展?(81页) 4、什么是催化剂设计?怎样进行催化剂设 计?(84页) 答:所谓催化剂设计,就是指人们按照自己 的意图制造目标催化剂的工作,它代表一种 构思,而不一定要画出图纸。也就是对指定 的反应,或者需要制造的某种产品,应该如 何选用一种催化剂的知识逻辑分析。(设计 步骤见图5-5) 5、以萘与丙烯发生烷基化反应为例说明催 化剂结构对反应选择性的巨大影响?(87 页) 6、简述反应原料的重要性及绿色化学对反 应原料的选择原则?(88页) 7、生物质作为反应原料的优缺点?(89页) 答:优点:1、生物质可给出结构多样性的 产品材料2、生物质的结构单元通常比原油 的结构单元复杂3、由生物质衍生所得物质 常常已是氧化产物,无需再通过氧化反应引 入氧4、增大生物质的使用量可增长原油的 使用时间,为可持续发展做出贡献,为一些 必须使用石油做原料的产品的生产提供保 证5、使用生物质可减少二氧化碳在大气中 浓度的增加,从而减缓温室效应6、化学工 业使用更多的可再生资源可使其本身在原 料上更有保障7、生物质资源比原油有更大 的灵活性。 缺点:1、在经济上还不具备竞争力2、现 在考虑用作化学化工原料的生物质是传统 的食品原料,把食品原料改作化工原料是否 合适3、生物质的生产季节性很强4、生物 质的组成极为复杂,不同种类的物质,其组 成和性质都可能不尽相同,若需要对每一类 生物质有针对性地修建工厂,这将使生物质

杂多酸催化剂

题目杂多酸催化剂 姓名与学号张凌烽 1108010236 指导教师孟锦宏 年级与专业2011级化学工程与工艺 所在学院环境与化学工程学院

摘要 杂多酸是固体酸的一种,具有着独特的氧化还原性,酸性以及双功能性,在许多化学反应中能够表现出很强的催化活性。杂多酸这种绿色、无毒、无腐蚀性的环保型催化剂己在多种有机反应中实现了成功应用,如:酯化醚化、缩合反应、酰基化、烷基化、水合脱水和聚合反应等,反应中呈现出反应活性高、腐蚀性小、污染率低等诸多优点,但由于杂多酸比表面积小、热稳定性低、回收困难等问题使得杂多酸在催化领域的应用受到了一定的限制。 关键词:

1 绪论 1.1前言 绿色化学是近十年来在化学领域内提出的新名词,绿色化学又被称为“环境友好化学“、“清洁化学”、“环境无害化学”。这种发展趋势已涉及到分子合成、生物技术、化学分析等许多领域,内容丰富,应用广泛。绿色化学的最大优势在于通过科学的手段在化学反应的起始与末端进行有效的防控干预,使反应中无副产物,真正实现零排放,彻底无污染,化学绿色化是新时代里化学发展的主要研究方向。 无机酸是许多化工产品生产中必不可少的、非常重要的常规催化剂,传统无机酸类催化剂主要有浓硫酸、三氯化招、浓憐酸等。这类酸催化剂在反应中有许多优势,如工艺成熟、催化效率高、价格低廉,但此类催化剂最大的缺陷在于:副反应多、腐烛性强、设备要求高、后处理繁杂,无法满足环保技术的要求,为了克服诸多缺点,人们开发、研制了许多新型催化剂,如固体酸、杂多酸和离子交换树脂等。 杂多酸是一类含有氧桥的多核高分子化合物,无论是均相反应体系,还是非匀相反应体系,杂多酸均可作为酸催化剂,氧化还原型催化剂及双功能型催化剂,广泛应用于各类有机反应催化当中,如:酯化酸化、缩合反应、酰基化、烧基化、水合脱水、聚合反应等,反应中呈现出腐烛性小,活性高,污染率低等诸多优点。二十世纪七十年代,憐鹤酸催化丙稀水合制备异丙醇在R本成功投入工业生产。目前,以杂多酸为催化媒介并实现工业化生产的的重要有机合成反应已达十几种随着科学研究的不断开拓深入,杂多酸类化合物在工业催化领域的开发将越来越深入。 1.2多酸化学简介 时至今日,多酸化学的发展己有200年的历史,进入新世纪后,多酸化学走进了一个薪新的发展时代“?”。多酸分子中的金属离子通常具有d"电子构型,最具代表性的是鹤原子和销原子,也是构成多酸的主要元素。多酸的立体结构中,八面体

浅谈“绿色催化”(DOC)

读书报告题目:浅述“绿色催化” 院系:化工学院 专业:化学工程 姓名:翟继博 学号:201231460

浅述“绿色催化” 前言 在20世纪90年代,未解决传统化学工业带来的环境危机,在国际化学化工领域兴起了绿色化学研究和开发的新兴潮流。绿色化学是利用化学的技术和方法去减少或消灭那些对人类健康和生态环境有害的原料、催化剂、溶剂和试剂、产物及副产物等的使用和产生。其中绿色化学“十二条原则”中第二条(合成方法应具有“原子经济性”) 和第九条(使用高选择性的催化剂) 都提到了绿色化学中新的催化方法是关键。可以说,化学工业的重大变革、技术进步大多都是随着新的催化材料或新的催化技术而产生的,要发展环境友好的绿色化学,就要大力发展绿色催化技术。 1.原子经济性 1991年Trost首先提出了原子经济的概念,即原料中究竟有百分之几的原子转化成了产物。理想的原子经济反应是指原料分子中的原子百分之百地转化为产物,不产生副产物或废物,实现废物的零排放。 原子经济反应: A + B ?→ ?C(产物) + D(副产物) D=0 或C>>D 其中Trost原子经济中的原子利用率(Atom Utilization ,简称AU)定义如下: 目标产物的摩尔质量 AU= 化工过程产物的所有物 种摩尔质量之和 AU用来估算不同化工过程在不同工艺路线中的原子利用程度,它由理论反应式算出。它不是指产物的选择性,而是原子的选择性。 例如,用传统的氯醇法合成环氧乙烷,其原子利用率AU只有25 %, ?ClCH2CH2OH + HCl CH2=CH2 + Cl2 + H2O ?→ ?HCl CH2CH2O + CaCl2 + 2H2O ClCH2CH2OH + Ca(OH)2?→ ?C2H4O + CaCl2 + H2O 总反应:C2H4 + Cl2 + Ca(OH)2?→ AU = 44/173 = 25% 而用乙烯催化环氧化法仅需一步反应,原子利用率AU达到100 %,

绿色化学

绿色化学 Green Chemistry 一绪论 化学与社会化学与环境可持续发展与绿色化学 化学与其它学科的关系化学是很多学科的基础;化学是一门实用科学,其直接对应的工业为化学工业;化学是一门创造性科学,其相应的化学研究组织很庞大,如美国的化学会。 现代化工在国民经济中的地位化工是强大的传统基础产业之一又是战略产业(从1970’ s开始化工及其产品在全球经济战略中一直扮演重要角色)也是当代高科技的基础同时与人类的衣食住行用有着密切的关系 化学与8大公害事件(马斯河谷事件多诺拉事件伦敦烟雾事件洛杉矶光化学烟雾四日市哮喘事件米糠油事件水俣病事件痛痛病事件) 环境污染类型的划分:按污染物性质可分为生物污染、化学污染和物理污染化学污染占80-90% 环境科学诞生过于依赖合成杀虫剂,无异于饮鸩止渴!20世纪60~70年代,越来越多的研究结果证实了《寂静的春天》中的科学预言 可持续发展 自从1987年《我们共同的未来》()出版以来,可持续发展作为一种新的发展理念和模式已逐渐为世界各国所接受。但是,可持续发展如何从一个概念进入可操作的实践,仍然是一个世界各国政府、学术研究机构和企业界正在努力寻求解决的问题。 绿色化学技术 绿色化学,又称“可持续发展化学”,主要是为了减少或消除化学反应对环境的污染和生态的破坏,研究新的化学反应体系,包括新的合成方法和路线,探索新的反应条件,寻求新的包括生物资源在内的化学原料,开发能够代替挥发性有机溶剂的溶剂、无毒无害的高效催化剂、减少副产物产生的合成方法,设计和研究新的绿色化学品等。 二绿色化学的基本概念(绿色化学的诞生绿色化学的定义绿色化学的内容绿色化学的原则原子经济性绿色化学奖简介) 绿色化学的理论基础((1)1991年,美国著名有机化学家Trost在《Science》上提出了“原子经济性(原子利用率)”的概念;(2)1992年,荷兰有机化学家Sheldon提出了“E-因子”的概念。这两个重要的绿色化学基本概念的提出,引起了人们极大的关注,也标志着绿色化学的萌芽。) 1994年8月于美国华盛顿市召开的208届美国化学会全国年会环境化学分会,首次以“绿色化学”为主题。Paul T. ANASTAS 1995 年编辑出版《绿色化学》(Green Chemistry )。 1996年6月,克林顿颁发了美国首届“总统绿色化学挑战奖”。 1999年初,英国皇家化学会创办了国际性的“Green Chemistry”学术刊物。 这几个重大事件,正式宣告了绿色化学的诞生 绿色化学定义绿色化学就是用化学的技术和方法去减少或消灭那些对人类健康、社区安全、生态环境有害的原料、催化剂、溶剂和试剂、产物、副产物等的使用和产生。(联合国环保署) 绿色化学的研究内容 对于一个化学反应主要受四方面的影响:1)原料或起始物的性质;(2)试剂或合成路线的特点;(3)反应

杂多酸的研究进展1108010224李轶凡

摘要 杂多酸(Heteropoly Acid,简写为HPA )是由杂原子(如P、Si、Fe、Co等)和多原子(如Mo、W、V、Nb、Ta等)按一定的结构通过氧原子配位桥联组成的一类含氧多酸,具有很高的催化活性,它不但具有酸性,而且具有氧化还原性,是一种多功能的新型催化剂,杂多酸稳定性好,可作均相及非均相反应,甚至可作相转移催化剂,对环境无污染,是一类大有前途的绿色催化剂,它可用作以芳烃烷基化和脱烷基反应、酯化反应、脱水/化合反应、氧化还原反应以及开环、缩合、加成和醚化反应等。因杂多酸独特的酸性、“准夜相”行为、多功能(酸、氧化、光电催化)等优点在催化研究领域中受到研究者们的广泛重视。 关键词:杂多酸催化多功能

目录 杂多酸催化剂 (3) 一、定义 (3) 二、制备 (4) 2.1Dawson杂多酸制备 (4) 2.1.1 Dawson型磷钼钒杂多酸的合成 (4) 2 .2 Keggin型杂多酸的合成 (4) 2.2.1 Keggin型Ni—Mo—Zr杂多酸盐的合成 (4) 2.3 负载型 P—no—W 杂多酸催化剂的制备 (5) 2.3.1直接负载法 (5) 2.3.2接枝法 (5) 2.3.3密封法 (5) 三.应用 (6) 3.1铈钼锆杂多酸盐的制备及超声降解性能 (6) 3.2二氧化硅负载杂多酸铵催化苯液相硝化反应的研究 (6) 四.负载型杂多酸催化剂的研究进展 (7) 4.1活性炭负载杂多酸催化合成没食子酸甲酯的研究 (7) 4.2介孔材料负载杂多酸催化剂催化乙醇脱水制乙烯 (8) 4.3磷钨杂多酸季铵盐催化脂肪酸甲酯环氧化 (8) 4.4纳米复合杂多酸催化合成草莓酯 (9) 4.5杂多酸(盐) 掺杂TiO2 制备新型复合光催化剂的研究进展 (9) 4.6杂多酸催化合成磷酸单双辛酯的研究 (10) 参考文献 (11)

绿色化学考题及答案

一:催化剂的主要作用? 具有选择性能缩短或延长到达平衡的时间,而不能改变转化率。 二:绿色食品的标准是什么? 第一,产品或产品原料的产地,必须符合农业部制定的绿色食品生态环境标准; 第二,农作物种植、畜禽饲养、水产养殖及食品加工,必须符合农业部制定的绿色食品生产操作规程; 第三,产品必须符合农业部制定的绿色食品质量和卫生标准; 第四,产品外包装,必须符合国家食品标签通用标准,符合绿色食品特定的包装,装璜和标签规定。 三:什么是化学品对人体的毒性?其致毒途径有哪些? 化学品对生命机体造成的生物化学影响,称为毒性。 致毒途径有三种 (a)接触致毒: 皮肤接触、嘴接触、呼吸系统接触 (b)生物吸收致毒: 生物吸收是指生命系统内对有毒化学品吸收的能力及在生命系统内的分布。(c)物质的固有毒性致毒 四:绿色产品的共性或实质 1、产品本身不会引起环境污染和健康问题,包括不会对野生生物、有益昆虫或植物 造成损害; 2、当产品被使用后,应能再循环或易于在环境中降解为无害物质。 五:什么是清洁生产?清洁生产的内容和过程分别指什么?谈谈绿色化学对我们的影响。 清洁生产是指将综合预防的环境保护策略持续应用于生产过程和产品使用过程中,以其减少对人类和环境的风险。 清洁的生产过程是指在生产中尽量少用和不用有毒有害的原料;采用无毒无害的中间产品,采用少废、无废的新工艺和高效设备,改进常规的产品生产工艺;尽量减少生产过程中的各种危害因素,如高温、高压、低温、低压、易燃、易爆、强噪声、强震动等:采用可靠、简单的生产操作和控制;完善生产管理:对物料进行内部循环使用,对少量必须排放的污染物采取有效的设施和装置进行处理和处置。 六:离子液体与其他溶剂相比具有哪些特点?举例说明之 ①无色、无味、几乎无蒸气压; ②有高的热稳定性和化学稳定性,呈液态的温度范围大; ③无可燃性,无着火点,热容量较大且粘度低; ④离子电导率高,分解电压(也称电化学窗口)一般高达3~5V; ⑤具有很强的Bronsted、Lewis和Franklin酸性以及超酸性质,且酸碱性可进行调节; ⑥能溶解大多数无机物、金属配合物、有机物和高分子材料(聚乙烯、PTFE或玻璃除 外) , 还能溶解一些气体, 如H2 ,CO和O2 等; ⑦弱配位能力; ⑧价格相对便宜,而且容易制备 例如:配位能力的N(CN)2-类新离子液体;2-羟基乙铵甲酸盐,它有极低的熔点(-82℃),室温时有很高的离子电导率(3.3mS·㎝-1)以及高可极化度,热稳定性达到150℃,此离子液体能溶解许多无机盐,一些不溶解的聚合物如聚苯胺和聚砒咯在此离子液体中也有很好的溶解性;含N (CF3SO2) 2-的咪唑类离子液体, 这种离子液体不仅对水稳定,不溶

绿色化学

绿色化学的定义及其特点 绿色化学又称环境无害化学、环境友好化学、洁净化学。 利用现代科学技术的原理和方法,从根源上根除污染;研究环境友好的新原料、新反应、新过程、新产品,实现环境化工与生态协调发展;减少甚至消灭对人类健康、社区安全、生态环境的有害原料、催化剂、溶剂、助剂、产物、副产物的使用和生产。 特点: 绿色化学是从源头上消除污染,促进自然生态系统的良性循环; 绿色化学是要求合理利用资源和能源、降低生产成本、实现资源使用的“减量化、在再使用、再循环”,是发展循环经济的关键途径。 绿色化学的基本特点是:在获取新物质的转化过程中,充分利用每个原子,实现零排放。 1、绿色化学反应的主要任务 寻找无害化学合成; 尽量减少化学合成中得有毒原料和有毒产物; 设计安全化学品; 使化学品在被期望功能得以实现的同时,将其毒性降到最低; 使用安全溶剂和助剂,尽可能不使用助剂 采用无毒无害的溶剂代替挥发性有毒有机物作溶剂 反应原子转化率高 2、举例说明绿色化学的主要研究领域。 设计安全有效的目标分子:构效关系。 设计安全有效化学品主要包括如下两个方面的内容:①新的安全有效化学品的设计;②对已有的有效但不安全的分子进行重新设计。 寻找安全有效的反应原料,如: (1)用二氧化碳代替有毒有害的光气生产聚氨酯:RNH2 + CO2-> RNHCOOR1 (2)亚氨基二乙酸二钠的生产采用新工艺消除有毒氢氰酸的使用: HOCH2CH2NHCH2CH2OH + 2NaOH (铜催剂)=NaOOCH2CH2NHCH2CH2OONa + 4H2寻找安全有效的合成路线:要符合原子经济性原理。要考虑到产品的性能优良,价格低廉,又要使产生的废物和副产物少,对环境无害,可利用计算机来进行辅助设计。 寻找新的转化方法:①催化等离子体方法;②电化学方法;③光化学及其他辐射方法; 寻找安全有效的反应条件:(1)寻找安全有效地催化剂①活性组分的负载化②用固体酸代替液体酸; (2)寻找安全有效的反应介质①采用超临界流体作为反应介质②水作溶剂的两相催化法。 4、什么是原子利用率,计算用氯醇法和过氧化氢直接氧化法制备环氧丙烷的原子利用率。 原子利用率=(目标产物的量/按化学计量式所得所有产物的量之和)*100%=(目标产物的量/各反应物的量的和)*100% 氯醇法:CH3-CH=CH2 + Cl2+ Ca(OH)2——C3H6O +CaCl2+H2O 42 71 74 58 111 18 原子利用率=58/(111+18+58)=58/(42+71+74)=31% 过氧化氢法:H2O2 +CH3-CH=CH2——C3H6O +H2O 3442 58 18 原子利用率=58/(42+34)=76.3% 5、影响化学物质在环境中相态和归宿的性质有哪些?简述化学在环境中降解的化学反应类 型。 1.挥发性、熔点、密度

固体超强酸制备

探究思路:两个要求:“保证活性高作为前提,以使用次数作为重要比较指标” 其实,一个固定酯化反应采用不同的固体超强酸(均以该酯化反应作为探究优化制备条件)作为催化剂,所得到的酯化效率差别不会大,只要肯花功夫、时间探究便可达到,所以探究重点摆在对比固体超强酸的稳定性上即提高其使用寿命,而使用寿命以催化活性高作为前提(不同催化剂间催化效用相差不大下,尽管催化效率较差点,但使用次数好,这也算是好催化剂),但在催化效用有一定情况下,探究使用寿命才有意义,随意首先需要探究出优化的固体超强酸的制备条件和酯化条件。 借助微波酯化反应探究最佳活性的催化剂制备条件,然后以活性最佳的催化剂探究微波酯化反应条件。 微波辐射酯化反应——“微波辐射催化合成乙酸正丁酯”: 用微波辐射技术以乙酸和正丁醇为原料,S2O2-8/M X O Y型固体超强酸为催化剂的酯化反应,最佳的微波合成条件为:催化剂用量2。0 g,酸醇物质的量的比为1。0∶2。0,微波功率为595 W,微波辐射时间为30 min,产率84。1%。 主要试剂和仪器:冰醋酸(CP),正丁醇(AR),微波炉,阿贝折光仪(或红外光谱波峰测试)实验过程: 在100 mL圆底烧瓶中加入5。7 mL(0。1 mol·L-1)的冰醋酸和9。1 mL(0。1 mol·L-1)的正丁醇(最适宜的酸醇比为1。0∶2。0),加入2。0 g催化剂,然后将圆底烧瓶装好回流冷凝管和搅拌装置,置于微波炉内。在搅拌下先以65 W的功率加热1 min,再以最适宜的微波功率是595 W,一定反应时间加热回流时间30 min。反应完毕取出圆底烧瓶,待反应物稍冷,过滤出催化剂,粗产品经提纯、干燥、蒸馏,收集124~126℃的馏分。称重,计算产率。 在合成反应中,有些反应是可逆反应生成水,为了提高转化率,常用带水剂把水从反应体系中分离出来。可作带水剂的物质必须要与水水作用产生共沸物使得水更易被蒸出,且在水中的溶解度很小.它可以是反应物或者产物,例如如:环已烯合成是利用产物与水形成共沸物;乙酸异戊酯合成中,反应初期利用原料异戊醇与水形成二元共沸物或原料,产物和水形成三元共沸物,并用分水器分水,同时将原料送回反应体系,随着反应的进行,原料减少,则利用产物乙酸异戊酯与水形成 二元共沸物. 带水剂也可以是外加的。反应物及产物沸点比水高但反应又产生水的,外加第三组分,但第三组分必需是对反应物和产物不起反应的物质,通常加入的第三组分有石油醚,苯甲苯,环已烷,氯仿,四氯化碳等。 在250mL单口平底烧瓶中加入10mL正丁醇、6mL乙酸,再加入适量的三氯化铁作催化剂,放入微波炉内,装上回流冷凝管及分水器,在一定功率微波连续辐射后停止反应。冷却至室温,用饱和食盐水洗涤,分出有机层,水洗至中性,用无水硫酸镁干燥,蒸馏,收集124℃~126℃的馏分,

绿色化学

绿色化学 第一章 A、绿色化学的定义、目标及特点 绿色化学的定义 绿色化学又称为环境无害化学、环境友好化学、清洁化学。它是涉及有机合成、催化、生物化学、分析化学等学科的一门综合性学科。它运用现代科学技术的原理、技术和方法来减少或消除化学品的设计、生产和应用中对人类健康、生态环境有害的原料、催化剂、溶剂、试剂、产物、副产物等化学品的使用和产生。也就是降低或消除在化学品设计、制造与应用中的有害物质。使所设计的化学产品或过程更加环境友好。绿色化学的理想在于不再使用有毒、有害的物质;不再产生废物;不再处理废物。 绿色化学的目标:利用可持续发展的方法来降低维持人类生活水平及科技进步所需化学产品与过程所使用与产生的有害物质。 绿色化学的特点:理想的绿色化学技术应该是:采用具有一定转化率的高选择性化学反应来生产目的产品,不生成或很少生成副产物或废物,实现或接近废物的“零排放”;工艺过程使用无害的原料、溶剂和催化剂;生产环境友好的产品。 B、原子经济性与产品收率 原子经济性与产品收率是两个不同的概念。前者是从传统宏观量上来看化学反应,后者则从原子水平上来看化学反应。若一个化学反应,反应的产率或收率很高,但反应分子中的原子很少进入最终产品中,即反应的原子经济性很差,则意味着该反应会排出大量的废弃物。因此,仅仅用反应的产率或收率来衡量一个反应是否理想显然是不充分的。要消除废弃物的排放,只有通过实现原料分子中的原子百分之百地转变成产物,才能达到不产生副产物或废物,实现废物“零排放”的要求。所以,应使用产率和原子经济性两个概念作为评估一个化学工艺过程的标准。 C、评价化学工程的方法 绿色化学应该最大限度地利用资源 最大限度地使用或产生无毒或毒性小的物质 最大限度使用可更新原料或可再生的原料 产品尽量保持其功效,将毒性降至最小 能量使用最小并考虑对经济及环境的影响 1.4 绿色化学的基本原理 1.污染防止优于污染形成后处理。 2.设计合成方法时应最大限度地使所使用的所有原料都转化到最终产品中。 3.设计合成方法时应最大限度地使用或产生无毒或毒性小的物质。 4.设计化学产品时应尽量保持其功效而降低其毒性。

杂多酸催化剂

Heteropoly acids:a green and e?cient heterogeneous Br ?nsted acidic catalyst for the intermolecular hydroamination of ole?ns Lei Yang a ,Li-Wen Xu a,b,*,Chun-Gu Xia a,* a State Key Laboratory for Oxo Synthesis and Selective Oxidation,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences, and Graduate School of the Chinese Academy of Sciences,Lanzhou 730000,PR China b Department of Chemistry,National University of Singapore,3Science Drive 3,Singapore 117543,Republic of Singapore Received 8February 2008;revised 5March 2008;accepted 6March 2008 Available online 10March 2008 Abstract Intermolecular hydroamination of non-activated ole?ns with amides and benzyl carbamate proceeds e?ciently in the presence of environmentally benign silicotungstic acid (HSiW)catalyst under mild conditions in air to a?ord addition products in good to excellent yields. ó2008Elsevier Ltd.All rights reserved. Keywords:Heteropoly acids;Intermolecular hydroamination;Amides;Ole?ns In recent years,Keggin type heteropoly acids (HPAs)catalysts have received much attentions in both academic and industrial applications due to their unique properties,which o?ers several advantages in terms of catalytic perfor-mance,strong acidic,and redox site and selectivity to par-ticular reaction product by selective stabilization of reaction intermediate.1HPAs are non-corrosive,environ-mentally benign,and economically feasible solid acid cata-lysts compared to conventional homogeneous acids,such as H 2SO 4or TfOH.Furthermore,they can be reused and recycled easily in most cases after the reaction and hence they are regarded as green catalysts.As a consequence,a variety of synthetically useful transformations have been developed using HPAs as catalysts,such as oxidation of alcohols,2esteri?cation,3Friedel–Crafts reactions,4Man-nich reactions,5cyanosilylation,6ring-opening of epox-ides,7and dehydration.8 Hydroamination,the simple addition of an N–H bond across C–C unsaturated organic fragment,has attracted much attention in the past decades.Intermolecular hydro-amination of ole?ns is one of the most important and chal-lenging topics in this area.9Despite signi?cant e?orts that have been devoted into the intermolecular hydroamination of ole?ns with alkylamines and arylamines,only a few reports of the intermolecular hydroamination of non-acti-vated alkenes with weakly basic amine nucleophiles such as sulfonamides,carbamates,and carboxamides are known (Scheme 1). Recently,e?cient platinum(II),10gold(I),11Cu(II),12Fe(III),13and other metal salts 14catalyzed hydroamina-tions of amides and carbamates were reported.Along with the metal catalysts,there also have been examples using metal-free catalysts for the hydroaminations of ole?ns and amides.15Although some notable progress has been made on the hydroamination reactions of alkenes with 0040-4039/$-see front matter ó2008Elsevier Ltd.All rights reserved.doi:10.1016/j.tetlet.2008.03.034 * Corresponding authors.Tel.:+8609314968056;fax:+8609318277088(L.-W.X.). E-mail addresses:licpxulw@https://www.doczj.com/doc/5d5090036.html, (L.-W.Xu),cgxia@https://www.doczj.com/doc/5d5090036.html, (C.-G. Xia). Available online at https://www.doczj.com/doc/5d5090036.html, Tetrahedron Letters 49(2008)2882–2885

相关主题
文本预览
相关文档 最新文档