当前位置:文档之家› 6_2时序逻辑电路数字电子技术

6_2时序逻辑电路数字电子技术

时序逻辑电路在实际中的应用

时序逻辑电路在实际中的应用 时序逻辑电路是一种重要的数字逻辑电路,其特点是电路任何一个时刻的输出状态不仅取决于当时的输入信号,而且与电路的原状态有关,具有记忆功能。构成组合逻辑电路的基本单元是逻辑门,而构成时序逻辑电路的基本单元是触发器。时序逻辑电路在实际中的应用很广泛,数字钟、交通灯、计算机、电梯的控制盘、门铃和防盗报警系统中都能见到。主要介绍典型的时序逻辑部件:集成计数器的识别与应用,集成寄存器的识别与应用;时序逻辑电路的分析和设计。 计数器在计算机及各种数字仪表中应用广泛,具有记忆输入脉冲个数的功能,还可以实现分频、定时等。计数器种类繁多,按技术体制可分为二进制计数器和N进制计数器;按增减趋势可分为加计数器和减计数器;按技术脉冲引入方式可分为同步计数器和异步计数器。同步计数器的特点是构成计数器的所有触发器共用同一个时钟脉冲,触发器的状态同时更新,计数速度快;而异步计数的特点是构成计数器的触发器不共用同一个时钟脉冲,所有触发器更新状态的时刻不一致,计数速度相对较慢。在实际应用中,计数器是以集成电路形式存在的,主要有集成二进制计数器、集成十进制计数器两大类,其他进制计数器可由它们通过外电路设计来实现。在每一大类计数器中,又以同步与异步、加计数与可逆计数来细分。 寄存器具有接收数码、存放或传递数码的功能,由触发器和逻辑门组成。其中,触发器用来存放二进制数,逻辑门用来控制二进制数的接收、传送和输出。由于一个触发器只能存放1位二进制数,因此,存放n位二进制数的n位寄存器,需要n个触发器来组成。寄存器有数码寄存器和移位寄存器2种。输入输出方式有并入-并出、并入-串出、串入-并出、串入-串出4种。当寄存器的每一位数码由一个时钟脉冲控制同时接收或输出时,称为并入或并出。而每个时钟脉冲只控制寄存器按顺序逐位移入或移出数码时,称为串入或串出。移位寄存器除了具有存储数码的功能以外,还具有移位功能。所谓移位功能,是指寄存器里存储的数码能在时钟脉冲作用下依次左移或右移。因此,移位寄存器不仅可以用来寄存数码,而且可以用来实现数码的串行-并行转换。 时序逻辑电路的分析实际上是一个读图、识图的过程,就是根据给定的时序逻辑电路,通过分析其状态和输出信号在输入变量和时钟作用下的转换规律,理解其逻辑功能和工作特性。时序逻辑电路的设计是时序逻辑电路分析的逆过程,就是根据给定的逻辑问题,设计出满足要求的时序逻辑电路。设计时序逻辑电路的任务就是根据给定的逻辑问题,设计出满足要求的时序逻辑电路。在实际应用中,常用集成触发器和门电路配合来设计时序逻辑电路。通常,电路设计最简的标准是:所用的触发器和门电路的数量以及门的输入端数目尽可能少。 1. 时序逻辑电路分析的一般步骤 时序逻辑电路分析的一般步骤可归纳为:写方程式、求状态方程、进行计算、画状态转换图(或状态转换表)、确定电路的逻辑功能等。 1)写方程式 仔细观察、分析时序电路,然后再逐一写出以下3个方程。 ①时钟方程:各个触发器时钟信号的逻辑表达式。 ②输出方程:时序电路各个输出信号的逻辑表达式。 ③驱动方程:各个触发器输入端信号的逻辑表达式。 2)求状态方程 把驱动方程代入相应触发器的特性方程,即可求出时序电路的状态方程。

第六章 时序逻辑电路(阎)

第六章时序逻辑电路

6.1 概述 一、时序逻辑电路的特点 1.功能上:任一时刻的输出不仅取决于该时刻的输入, 还与电路原来的状态有关。 例:串行加法器,两个多位数从低位到高位逐位相加 2. 电路结构上 ①一定包含存储电路 ②存储器状态和输入变量共同决 定输出.

二、时序电路的一般结构形式与功能描述方法

可以用三个方程组来描述:?????===),...,,,...,,(... ),...,,,,....,,() ,(21211212111l j l i q q q x x f y q q q x x x f y Q X F Y 输出方程?????===),...,,,,...,,(...),...,,,,...,,(),(21211212111l i k l i q q q x x x g z q q q x x x g z Q X F Y 驱动方程?????===+++) ,...,,,,...,,(...),...,,,,...,,() ,(2121121211111n l n n i l n l n l n n i n n n q q q z z z h q q q q z z z h q Q Z H Q 状态方程

三、时序电路的分类 1、同步时序电路与异步时序电路 同步:存储电路中所有触发器的时钟使用统一的cp, 触发器状态变化发生在同一时刻。 异步:没有统一的cp,触发器状态的变化有先有后。 2、Mealy 型和Moore 型 Mealy 型:Moore 型:仅取决于电路状态有关、与) Q (F Y Q X ) Q ,X (F Y ==

电子技术基础复习题-时序逻辑电路

《电子技术基础》复习题 时序逻辑电路 一、填空题: 1.具有“置0”、“置1”、“保持”和“计数功能”的触发器是() 2.触发器有门电路构成,但它不同门电路功能,主要特点是:() 型触发器的直接置0端Rd、置1端Sd的正确用法是() 4.按触发方式双稳态触发器分为:() 5.时序电路可以由()组成 6.时序电路输出状态的改变() 7.通常寄存器应具有()功能 8.通常计数器应具有()功能 9. M进制计数器的状态转换的特点是设初态后,每来()个CP时,计数器又重回初态。 10.欲构成能记最大十进制数为999的计数器,至少需要()个双稳触发器。 11. 同步时序逻辑电路中所有触发器的时钟端应()。 二、选择题: 1.计数器在电路组成上的特点是() a)有CP输入端,无数码输入端 b) 有CP输入端和数码输入端 c) 无CP输入端,有数码输入端 2.按各触发器的状态转换与CP的关系分类,计数器可分为()计数器。 a)加法、减法和加减可逆 b)同步和异步 c)二、十和M进制 3. 按计数器的状态变换的规律分类,计数器可分为()计数器。 a)加法、减法和加减可逆 b)同步和异步 c)二、十和M进制 4 按计数器的进位制分类,计数器可分为()计数器。 a)加法、减法和加减可逆 b)同步和异步 c)二、十和M进制 5. n位二进制加法计数器有()个状态,最大计数值是()。 a)2n-1 b)2n c)2n-1 6.分析时序逻辑电路的状态表,可知它是一只()。 (a) 二进制计数器(b)六进制计数(c) 五进制计数器 7. 分析如图所示计数器的波形图,可知它是一只()。 (a) 六进制计数器(b) 七进制计数器(c) 八进制计数器 8、逻辑电路如图所示,当A=“0”,B=“1”时,C脉冲来到后JK触发器()。 (a) 具有计数功能(b) 保持原状态(c) 置“0” (d) 置“1”

第6章-时序逻辑电路.

6 时序逻辑电路 6.1.1 已知一时序电路的状态表如表题6.1.1所示,A为输入信号,试作出相应的状态图。 解:由状态图的概念及已知的状态表,可画出对应的状态图,如图题解6.1.1所示。 6.1.2已知状态表如表题6.1.2所示,输入为X1X0,试作出相应的状态图。 解:根据表题6.1.2所示的状态表,作出对应的状态图如图题解6.1.2所示。

6.1.3已知状态图如图题6.1.3所示,试列出它的状态表。 解:按图题6.1.3列出的状态表如表题解6.1.3所示。 6.1.5 图题6.1.5所示是某时序电路的状态图,设电路的初始状态为01,当序列A=100110(自左至右输入)时,求该 电路输出Z的序列。 解:由图题6.1.5所示的状态图可知,当初态为01,输入信号的序列A=100110时,该时序 电路将按图题解6.1.5所示的顺序改变状态,因而对应的输出序列为Z=011010。

6.1.6已知某时序电路的状态表如表题6.1.6所示,输入A,试画出它的状态图。如果电路的初始状态在b,输入信号A一次是0、1、0、1、1、1、1,试求出其相应的输出。 解:根据表题6.1.6所示的状态表,可直接画出与其对应的状态图,如图题解6.1.6(a)当从初态b开始,依次输入0、1、0、1、1、1、1信号时,该时序电路将按图题解6.1.6(b)所示的顺序改变状态,因而其对应的输出为1、0、1、0、1、0、1。 6.2 同步时序逻辑电路的分析 6.2.1 试分析图题6.2.1(a)所示时序电路,画出其状态表和状态图。设电路的初始状态为0,试画出6.2.1(b)所示波形作用下,Q和Z的波形图。

电子技术——几种常用的时序逻辑电路习题及答案

第七章 几种常用的时序逻辑电路 一、填空题 1.(9-1易)与组合逻辑电路不同,时序逻辑电路的特点是:任何时刻的输出信号不仅与____________有关,还与____________有关,是______(a.有记忆性b.无记忆性)逻辑电路。 2.(9-1易)触发器是数字电路中______(a.有记忆b.非记忆)的基本逻辑单元。 3.(9-1易)在外加输入信号作用下,触发器可从一种稳定状态转换为另一种稳定状态,信号终止,稳态_________(a.不能保持下去 b. 仍能保持下去)。 4.(9-1中)JK 触发器是________(a.CP 为1有效b.CP 边沿有效)。 5.(9-1易)1n n n Q JQ KQ +=+是_______触发器的特性方程。 6.(9-1中)1n n Q S RQ +=+是________触发器的特性方程,其约束条件为___________。 7.(9-1易)1n n n Q TQ TQ +=+是_____触发器的特征方程。 8. (9-1中)在T 触发器中,若使T=____,则每输入一个CP ,触发器状态就翻转一次,这种具有翻转功能的触发器称为'T 触发器,它的特征方程是________________。 9.(9-1难)我们可以用JK 触发器转换成其他逻辑功能触发器,令 __________________,即转换成T 触发器;令_______________, 即转换为'T 触发器;令________________,即转换成D 触发器。 10.(9-1难)我们可以用D 触发器转换成其他逻辑功能触发器,令 __________________,即转换成T 触发器;令_______________, 即转换为'T 触发器。

时序逻辑电路的组成及分析方法案例说明

时序逻辑电路的组成及分析方法案例说明 一、时序逻辑电路的组成 时序逻辑电路由组合逻辑电路和存储电路两部分组成,结构框图如图5-1所示。图中外部输入信号用X (x 1,x 2,… ,x n )表示;电路的输出信号用Y (y 1,y 2,… ,y m )表示;存储电路的输入信号用Z (z 1,z 2,… ,z k )表示;存储电路的输出信号和组合逻辑电路的内部输入信号用Q (q 1,q 2,… ,q j )表示。 x x y 1 y m 图8.38 时序逻辑电路的结构框图 可见,为了实现时序逻辑电路的逻辑功能,电路中必须包含存储电路,而且存储电路的输出还必须反馈到输入端,与外部输入信号一起决定电路的输出状态。存储电路通常由触发器组成。 2、时序逻辑电路逻辑功能的描述方法 用于描述触发器逻辑功能的各种方法,一般也适用于描述时序逻辑电路的逻辑功能,主要有以下几种。 (1)逻辑表达式 图8.3中的几种信号之间的逻辑关系可用下列逻辑表达式来描述: Y =F (X ,Q n ) Z =G (X ,Q n ) Q n +1=H (Z ,Q n ) 它们依次为输出方程、状态方程和存储电路的驱动方程。由逻辑表达式可见电路的输出Y 不仅与当时的输入X 有关,而且与存储电路的状态Q n 有关。 (2)状态转换真值表 状态转换真值表反映了时序逻辑电路的输出Y 、次态Q n +1与其输入X 、现态Q n 的对应关系,又称状态转换表。状态转换表可由逻辑表达式获得。 (3)状态转换图

状态转换图又称状态图,是状态转换表的图形表示,它反映了时序逻辑电路状态的转换与输入、输出取值的规律。 (4)波形图 波形图又称为时序图,是电路在时钟脉冲序列CP的作用下,电路的状态、输出随时间变化的波形。应用波形图,便于通过实验的方法检查时序逻辑电路的逻辑功能。 二、时序逻辑电路的分析方法 1.时序逻辑电路的分类 时序逻辑电路按存储电路中的触发器是否同时动作分为同步时序逻辑电路和异步时序逻辑电路两种。在同步时序逻辑电路中,所有的触发器都由同一个时钟脉冲CP控制,状态变化同时进行。而在异步时序逻辑电路中,各触发器没有统一的时钟脉冲信号,状态变化不是同时发生的,而是有先有后。 2.时序逻辑电路的分析步骤 分析时序逻辑电路就是找出给定时序逻辑电路的逻辑功能和工作特点。分析同步时序逻辑电路时可不考虑时钟,分析步骤如下: (1)根据给定电路写出其时钟方程、驱动方程、输出方程; (2)将各驱动方程代入相应触发器的特性方程,得出与电路相一致的状态方程。 (3)进行状态计算。把电路的输入和现态各种可能取值组合代入状态方程和输出方程进行计算,得到相应的次态和输出。 (4)列状态转换表。画状态图或时序图。 (5)用文字描述电路的逻辑功能。 3.案例分析 分析图8.39所示时序逻辑电路的逻辑功能。 图8.39 逻辑电路 解:该时序电路的存储电路由一个主从JK触发器和一个T触发器构成,受统一的时钟CP控制,为同步时序逻辑电路。T触发器T端悬空相当于置1。 (1)列逻辑表达式。 输出方程及触发器的驱动方程分别为

最新数字电路第六章时序逻辑电路练习题CAO

第六章时序逻辑电路复习练习题 一、填空题: 1.构造一个模6计数器需要个状态,个触发器。构成一个1位十进制同步加法计数器至少需要()个JK触发器,一个1位5进制同步加法计数器至少需要()个JK触发器。 2.若要构成七进制计数器,最少用_________个触发器,它有______个无效状态。 3.构成一异步n2进制加法计数器需要 n 个触发器,一般将每个触发器接成计数或T’型触发器。计数脉冲输入端相连,高位触发器的 CP 端与邻低位Q端相连。 4. 一个4位移位寄存器,经过 4 个时钟脉冲CP后,4位串行输入数码全部存入寄存器;再经过 4 个时钟脉冲CP后可串行输出4位数码。 5. 要组成模15计数器,至少需要采用 4 个触发器。 6.按计数器中各触发器翻转时间可分为_同步计数器_,异步计数器_。 7. 74LS161是_a_(a.同步b.异步)二进制计数器。它具有_清除_,_置数__,_保持_和计数等四种功能。 8. 74LS290是__b__(a.同步b.异步)非二进制计数器。 9.在计数过程中,利用反馈提供置数信号,使计数器将指定数置入,并由此状态继续计数,可构成N进制计数器,该方法有_同步_置数和_异步置数两种。 10.将模为M和N的两片计数器a_(a.串接b.并接),可扩展成__M*N__进制的计数器。 二、选择题: 1、一个计数器的状态变化为:000 001 010 011 100 000,则该计数器是( 2 )进制(3 )法计数器。 (1)4 (2)5 (3)加(4)减 2、用n个触发器构成计数器,可得到的最大计数长度为( A ) A. 2n B.2n C.2n D.n 3、一块7490十进制计数器中,它含有的触发器个数是( A ) A. 4 B. 2 C. 1 D. 6 4.一位8421BCD码计数器至少需要(B)个触发器。 A.3 B.4 C.5 D.10 5、利用中规模集成计数器构成任意进制计数器的方法有( ABC ) A.复位法 B.预置数法 C.级联复位法 三.判断题 (1)异步时序电路的各级触发器类型不同。(×)(2)把一个5进制计数器与一个10进制计数器串联可得到15进制计数器。(×)(3)具有 N 个独立的状态,计满 N 个计数脉冲后,状态能进入循环的时序电路,称之模N计数器。(√) (4)计数器的模是指构成计数器的触发器的个数。(×)1、二进制加法计数器从0计数到十进制24时,需要5个触发器构成,有7个

时序逻辑电路(

第六章时序逻辑电路 内容提要 【熟悉】触发器四种电路结构及动作特点,四种逻辑功能及其逻辑关系、逻辑符号,逻辑功能的四种描述方法 【掌握】时序电路的特点和一般分析方法 【熟悉】寄存器的功能、分类及使用方法, 双向移位寄存器的级联【掌握】计数器的功能和分类,级联法、置位法构成N进制计数器【掌握】555定时器构成三种电路的工作特点、连接方法及主要参数一.一.网上导学 二.二.典型例题 三.三.本章小结 四.四.习题答案 网上导学 §6.1时序逻辑电路的特点 时序逻辑电路的特点:任意时刻的输出不仅取决于该时刻的输入,而 且还和电路原来的状态有关,所以时序电路具有记 忆功能。 在第五章中,向大家介绍了组合电路。 组合电路的特点是其任意时刻的输出状态仅取决于该时刻的输入状态。 2.时序电路逻辑功能描述方法 在上面给出的时序电路结构框图中,包括组合逻辑电路和具有记忆功能的存储电路。 输出变量y1,y2,y3。。。。y b,合称输出矢量Y(t)。 输入变量x1,x2,x3。。。。x a,合称输入矢量X(t)。 同样,存储电路的输入、输出称之为矢量P(t)和矢量Q(t)

按照结构图,我们可以列出三组方程:设tn+1,tn分别为相邻的两个离散的时间瞬间。 矢量Y(tn)是X(tn),Q(tn)的函数,称输出方程。 矢量P(tn)是X(tn),Q(tn)的函数,称驱动方程。 矢量Q(tn+1)是P(tn),Q(tn)的函数,称状态方程。 本节问答题 1.1.什么叫组合逻辑电路? 2.2.什么叫时序逻辑电路? 3.3.它们在逻辑功能和电路结构上各有什么特点? 4.4.在时序电路中,时间量tn+1,tn各是怎样定义的?描述时序电路功能需要几个方程,它们各表示什么含义? §6.2触发器 在这一节中,向大家介绍一种最基本的存储电路触发器(flip-flop)。触发器具有以下基本特点: (1)具有两个稳定的(0和1)状态,能存储一位二进制信息; (2)根据不同的输入,可将输出置成0或1状态; (3)当输入信号消失后,被置成的状态能保存下来。 6.2.1 基本RS触发器 一.电路结构及逻辑符号 在本书第三章里,我们讲了各种门电路,若把两个反相器按照a 图的形式连接起来,可以看出,A点和B点信号是反相的,而A点和C点始终保持同一电平。这样,可以把A,C视为同一点(下面的b 图和c图)。在C图中,A,B两点始终反相,而且电路状态稳定,在没有外界干扰或者触发的状态下,电路能够保持稳定的输出。(这一

时序逻辑电路分析举例

时序逻辑电路分析例题 1、 分析下图时序逻辑电路。 解: 1、列出驱动方程:111==K J 1//122Q A AQ K J +== 2、列出状态方程: 将驱动方程代入JK 触发器的特性方程Q K JQ Q //*+=得: /1*1Q Q = 212/1//21//2/1*2Q AQ Q Q A Q Q A Q AQ Q +++= 3、列出输出方程: 21//2/1Q Q A Q AQ Y += 4、列出状态转换表: (1)当A=1时: 根据:/1*1Q Q =;21/2/1*2Q Q Q Q Q +=;/ 2/1Q Q Y =得:

(2)当A=0时: 根据:/1*1Q Q =;2/1/21*2 Q Q Q Q Q +=;21Q Q Y =得: 5、画状态转换图: 6、说明电路实现的逻辑功能: 此电路是一个可逆4进制(二位二进制)计数器,CLK 是计数脉冲输入端,A 是加减控制端,Y 是进位和借位输出端。当控制输入端A 为低电平0时,对输入的脉冲进行加法计数,计满4个脉冲,Y 输出端输出一个高电平进位信号。当控制输入端A 为高电平1时,对输入的脉冲进行减法计数,计满4个脉冲,Y 输出端输出一个高电平借位信号。 2、如图所示时序逻辑电路,试写出驱动方程、状态方程,画出状态图,说明该电路的功能。

()()n n n n n n n n n n n n n n Q XQ Q Q X Q Q X Q Q Q X Q Q X Q Q X Q 0 1 1 1 1 010110 11+=⊕=+=⊕=++ 输出方程 ()01Q Q X Z ⊕= 1、 状态转换表,如表所示。状态转换图,略。 CP X Z

实验四:时序逻辑电路的应用

时序逻辑电路的应用 ●实验目的: 1.实现0-9十进制数计数(使用74LS90,74LS47芯片);2.实现六进制数计数(使用74LS90,74LS47芯片,异步置零);3.实现0 2 4 6 8 1 3 5 7 9 的计数。 ●实验原理: 1.要使数字显示译码器显示0-9的计数,必须在输入端接入74LS47译码器的输出,而该译码器需要在输入端引入 8421BCD码; 这样以来,需要用74LS90输出8421BCD码,可通过以下过程 实现:时钟信号 CP1(输入) Q0(输出) CP2 (输入) Q3Q2Q1Q0(输出8421BCD码,Q3为最高位)。 电路图如图一: 图表1

2. 列出74LS90的输出的8421BCD 码与数字显示译码器译码器显 示数字之间的关系: 从这张表格我们可以看到:当输出为0110时,输出应该自动清零;同时我们发现,该时刻Q 2 Q 1同时为一,之前的其它组合并没有这个特点;而且74LS90有两个清零端RV1和RV2,当同时为一是,便自动清零。于是我们只需要将Q 2 Q 1反馈到RV1 RV2,同时74LS4 D 端接地,便 能实现六进制数计数。 电路图如图二: 图表 2 3. 列出74LS90的输入与数字显示译码器译码器显示数字之间 Q 3 Q 2 Q 1 Q 0 显示 0 0 0 0 0 0 0 1 1 0 0 1 0 2 0 0 1 1 3 0 1 0 0 4 0 1 0 1 5 1 1 0 0(6)

的关系和5421BCD 码: 观察以上两张表:将右表的Q 0列移动至最后一列,便得到左表,由此我们可以用74LS90产生5421BCD 码,然后将最高位接入74LS47的最低位A 端,其余依次由高到低接入D C B 。 5421BCD 码的产生方法为:时钟信号 CP 2(输入) Q 3 (输出) CP 1(输入) Q 0Q 3Q 2Q 1(输出5421BCD 码,Q 0为最高位)。 电路图如下图: Q 3 Q 2 Q 1 Q 0 显示 0 0 0 0 0 0 0 1 0 2 0 1 0 0 4 0 1 1 0 6 1 0 0 0 8 0 0 0 1 1 0 0 1 1 3 0 1 0 1 5 0 1 1 1 7 1 1 9 Q 0 Q 3 Q 2 Q 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1

电子技术时序逻辑电路

1.已知逻辑电路畋及C 脉冲的波形,试画出各触发器输出Q 0,Q 1,Q 2,Q 3的波形 (Q 0,Q 1,Q 2,Q 3初始状态为“1010”)。 Q 1 C Q 3Q 2 Q 答案: Q 1 C Q 2 Q Q 3 2.已知逻辑电路图及C 脉冲的波形,试写出各触发器J ,K 端的逻辑式并列出各Q 的状态表 (设Q 0,Q 1,Q 2初始状态均为“0”)。 C 答案 逻辑式:J Q Q 012=,K J 0111==,K Q J Q 10 21==,K 21= 状态表:

3.逻辑电路图如图所示,各触发器的初始状态为“0”,已知C 脉冲的波形,试画出输出Q 0, Q 1,Q 2的波形。 C Q 0Q 1 Q 2 答案 "0" C Q 0Q 1 "0" Q 2 4.逻辑电路如图所示,各触发器的初始状态为“0”,试根据C 脉冲的波形,画出输出Q 0, Q 1,Q 2的波形。 C Q 0Q 1 Q 2 答案

C Q 0Q 1 Q 2 "0" 5.逻辑电路图如图所示,试写出各触发J ,K 的逻辑式,并画出输出Q 0,Q 1和Z 的波形(设 Q 0,Q 1初始状态均为“0”)。 答案: J K Q J Q K Q 00110 11====1 Q 0Q 1 Z C 6.已知逻辑电路图和C 脉冲的波形,试画出输出Q 0,Q 1及F 的波形(设Q 0,Q 1初始状态均 为“0”)。

Q 0Q 1 C F 答案: Q 0 Q 1 C F 7逻辑电路如图所示,试写出逻辑式,列出状态表,并说明它是什么逻辑部件。 A B 答案: S A B A B C AB =+= 8当输入A 和B 同为“1”或同为“0”时,输出为“1”。当A 和B 状态不同时,输出为“0”,试列出状态表并写出相应的逻辑式,用“与非”门实现之,画出其逻辑图。 答案: 状态表

电子技术习题解答.第8章.触发器和时序逻辑电路及其应用习题解答

第8章 触发器和时序逻辑电路及其应用习题解答 8.1 已知基本RS 触发器的两输入端D S 和D R 的波形如图8-33所示,试画出当基本RS 触发器初始状态分别为0和1两种情况下,输出端Q的波形图。 图8-33 习题8.1图 解:根据基本RS 触发器的真值表可得:初始状态为0和1两种情况下,Q的输出波形分别如下图所示: 习题8.1输出端Q的波形图 8.2 已知同步RS 触发器的初态为0,当S 、R 和CP 的波形如图8-34所示时,试画出输出端Q的波形图。 图8-34 题8.2图 解:根据同步RS 触发器的真值表可得:初始状态为0时,Q的输出波形分别如下图所示:

习题8.2输出端Q的波形图 8.3 已知主从JK触发器的输入端CP、J和K的波形如图8-35所示,试画出触发器初始状态分别为0时,输出端Q的波形图。 图8-35 习题8.3图 解:根据主从JK触发器的真值表可得:初始状态为0情况下,Q的输出波形分别如下图所示: 习题8.3输出端Q的波形图 8.4 已知各触发器和它的输入脉冲CP的波形如图8-36所示,当各触发器初始状态均为1时,试画出各触发器输出Q端和Q端的波形。

图8-36 习题8.4图 解:根据逻辑图及触发器的真值表或特性方程,且将驱动方程代入特性方程可得状态方程。即:(a )J =K =1;Qn + 1=n Q,上升沿触发 (b)J =K =1;Qn + 1=n Q, 下降沿触发 (c)K =0,J =1;Qn + 1=J n Q+K Qn =1,上升沿触发 (d)K =1,J =n Q;Qn + 1=J n Q+K Qn =n Qn Q+0·Qn =n Q,上升沿触发 (e)K =Qn ,J =n Q;Qn + 1=J n Q+K Qn =n Qn Q+0=n Q,上升沿触发 (f)K =Qn ,J =n Q;Qn + 1=J n Q+K Qn =n Qn Q+0=n Q,下降沿触发, 再根据边沿触发器的触发翻转时刻,可得当初始状态为1时,各个电路输出端Q的波形分别如图(a )、(b )、(c )、(d )、(e )和(f )所示,其中具有计数功能的是:(a )、(b )、(d )、(e )和(f )。各个电路输出端Q的波形与相应的输出端Q的波形相反。 习题8.4各个电路输出端Q的波形图

东南大学+数字电路实验+第4章_时序逻辑电路

东南大学电工电子实验中心 实验报告 课程名称:数字逻辑电路设计实 践 第4 次实验 实验名称:基本时序逻辑电 路 院(系):信息科学与工程学院专业:信息工程 姓名:学号: 实验室: 实验组别: 同组人员:无实验时间: 评定成绩:审阅教师: 时序逻辑电路 一、实验目的 1.掌握时序逻辑电路的一般设计过程; 2.掌握时序逻辑电路的时延分析方法,了解时序电路对时钟信号相关参数的基本要求; 3.掌握时序逻辑电路的基本调试方法;

4.熟练使用示波器和逻辑分析仪观察波形图,并会使用逻辑分析仪做状态分析。 二、实验原理 1.时序逻辑电路的特点(与组合电路的区别): ——具有记忆功能,任一时刻的输出信号不仅取决于当时的输出信号,而且还取决于电路原来的值,或者说还与以前的输入有关。 2.时序逻辑电路的基本单元一一触发器(本实验中只用到D触发器) 触发器实现状态机(流水灯中用到) 3.时序电路中的时钟 1)同步和异步(一般都是同步,但实现一些任意模的计数器时要异步控制时钟端) 2)时钟产生电路(电容的充放电):在内容3中的32768Hz的方波信号需要自己通过电路产生,就是用到此原理。 4.常用时序功能块 1)计数器(74161) a)任意进制的同步计数器:异步清零;同步置零;同步置数;级联 b)序列发生器 通过与组合逻辑电路配合实现(计数器不必考虑自启动) 2)移位寄存器(74194) a)计数器(一定注意能否自启动) b)序列发生器(还是要注意分析能否自启动)

三、实验内容 1.广告流水灯 a.实验要求 用触发器、组合函数器件和门电路设计一个广告流水灯,该流水等由8个LED组成,工作时始终为1暗7亮,且这一个暗灯循环右移。 1写出设计过程,画出设计的逻辑电路图,按图搭接电路。 2将单脉冲加到系统时钟端,静态验证实验电路。 3将TTL连续脉冲信号加到系统时钟端,用示波器和逻辑分析仪观察并记录 时钟脉冲CLK触发器的输出端Q2 Q1、Q0和8个LED上的波形。 b.实验数据 设计电路。 1)问题分析 流水灯的1暗7亮对应8个状态,故可采用3个触发器实现;而且题目要求输出8个信号控制8个灯的亮暗,故可以把3个触发器的输出加到3-8译码器的控制端,对应的8个译码器输出端信号控制8个灯的亮暗。

数字电路与逻辑设计习题_6第六章时序逻辑电路

第六章时序逻辑电路 一、选择题 1.同步计数器和异步计数器比较,同步计数器的显著优点是。 A.工作速度高 B.触发器利用率高 C.电路简单 D.不受时钟CP控制。 2.把一个五进制计数器与一个四进制计数器串联可得到进制计数器。 A.4 B.5 C.9 D.20 3.下列逻辑电路中为时序逻辑电路的是。 A.变量译码器 B.加法器 C.数码寄存器 D.数据选择器 4. N个触发器可以构成最大计数长度(进制数)为的计数器。 A.N B.2N C.N2 D.2N 5. N个触发器可以构成能寄存位二进制数码的寄存器。 A.N-1 B.N C.N+1 D.2N 6.五个D触发器构成环形计数器,其计数长度为。 A.5 B.10 C.25 D.32 7.同步时序电路和异步时序电路比较,其差异在于后者。 A.没有触发器 B.没有统一的时钟脉冲控制 C.没有稳定状态 D.输出只与内部状态有关 8.一位8421BCD码计数器至少需要个触发器。 A.3 B.4 C.5 D.10 9.欲设计0,1,2,3,4,5,6,7这几个数的计数器,如果设计合理,采用同步二进制计数器,最少 应使用级触发器。 A.2 B.3 C.4 D.8 10.8位移位寄存器,串行输入时经个脉冲后,8位数码全部移入寄存器中。 A.1 B.2 C.4 D.8 11.用二进制异步计数器从0做加法,计到十进制数178,则最少需要个触发器。 A.2 B.6 C.7 D.8 E.10 12.某电视机水平-垂直扫描发生器需要一个分频器将31500H Z的脉冲转换为60H Z的脉冲,欲构成此分频器至少需要个触发器。 A.10 B.60 C.525 D.31500 13.某移位寄存器的时钟脉冲频率为100KH Z,欲将存放在该寄存器中的数左移8位,完成该操作需要时间。

第6章_时序逻辑电路 课后答案

第六章 时序逻辑电路 【题 】 分析图时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,说明电路能否自启动。 Y 图P6.3 【解】驱动方程: 11323131233 J =K =Q J =K =Q J =Q Q ;K =Q ?? ??? 输出方程:3Y Q = 将驱动方程带入JK 触发器的特性方程后得到 状态方程为: n+11313131n 1 2121221n+1 3321 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q +?=+=?=+=⊕??=? 电路能自启动。状态转换图如图 【题 】 分析图时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图。A 为输入逻辑变量。 图A6.3

Y 图P6.5 $ 【解】 驱动方程: 12 21212() D AQ D AQ Q A Q Q ?=??==+?? 输出方程: 21Y AQ Q = 将驱动方程带入JK 触发器的特性方程后得到状态方程为: n+1 12 n+1 212() Q AQ Q A Q Q ?=??=+?? 电路的状态转换图如图 1 图A6.5 【题 】 分析图时序电路的逻辑功能,画出电路的状态转换图,检查电路能否自启动,说明电路能否自启动。说明电路实现的功能。A 为输入变量。

A Y 图P6.6 【解】驱动方程: 11221 1 J K J K A Q ==?? ==⊕? ~ 输出方程: 1212Y AQ Q AQ Q =+ 将驱动方程带入JK 触发器的特性方程后得到状态方程为: n+111 n+1 21 2 Q Q Q A Q Q ?=??=⊕⊕?? 电路状态转换图如图。A =0时作二进制加法计数,A =1时作二进制减法计数。 01图A6.6 【题 】 分析图时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,说明电路能否自启动。

时序逻辑电路应用举例

时序逻辑电路应用举例 1 抢答器 在智力竞赛中,参赛者通过抢先按动按钮,取得答题权。图1是由4个D触发器和2个“与非”门、1个“非”门等组成的4人抢答电路。抢答前,主持人按下复位按钮SB,4个D触发器全部清0,4个发光二极管均不亮,“与非”门G1输出为0,三极管截止,扬声器不发声。同时,G2输出为1,时钟信号CP经G3送入触发器的时钟控制端。此时,抢答按钮SB1~SB4未被按下,均为低电平,4个D 触发器输入的全是0,保持0状态不变。时钟信号CP可用555定时器组成多谐振荡器的输出。 当抢答按钮SB1~SB4中有一个被按下时,相应的D触发器输出为1,相应的发光二极管亮,同时,G1输出为1,使扬声器响,表示抢答成功,另外G1输出经G2反相后,关闭G3,封锁时钟信号CP,此时,各触发器的时钟控制端均为1,如果再有按钮被按下,就不起作用了,触发器的状态也不会改变。抢答完毕,复位清零,准备下次抢答。图1四人抢答器

2。八路彩灯控制器 八路彩灯控制器由编码器、驱动器和显示器(彩灯)组成,编码器根据彩灯显示的花型按节拍送出八位状态编码信号,通过驱动器使彩灯点亮、熄灭。图2给出的八路彩灯控制器电路图中,编码器用两片双向移位寄存器74LS194实现,接成自启动脉冲分配器(扭环形计数器),其中D1为左移方式,D2为右移方式。驱动器电路如图3,当寄存器输出Q为高电平时,三极管T导通,继电器K通电,其动合触点闭合,彩灯亮;当Q为低电平时,三极管截止,继电器复位,彩灯灭。 图2 八路彩灯控制器电路

工作时,先用负脉冲清零,使寄存器输出全部为0,然后在节拍脉冲(可由555定时器构成的多谐振荡器输出)的控制下,寄存器的各个输出Q按下表所示的状态变化,每8个节拍重复一次。这里假定8路彩灯的花型是:由中间向两边对称地逐次点亮,全亮后,再由中间向两边逐次熄灭。 图3 驱动器电路 寄存器输出状态

时序逻辑电路实验报告

二、时序逻辑电路实验题目 1. 试用同步加法计数器74LS161(或74LS160)和二4输入与非门74LS20构成百以内任意进制计数器,并采用LED 数码管显示计数进制。采用555定时器构成多谐振荡电路,为同步加法计数器提供时钟输入信号。例如,采用同步加法计数器74LS 161构成60进制加法计数器的参考电路如图2所示。 1Q A Q B Q C Q D CP 74LS161P T R CO D C B A L D C r Q A Q B Q C Q D CP 74LS161P T R CO D C B A L D C r CP & 设计: (一)设计一个固定进制的加法计数器。 (1)利用555定时器设计一个可以生时钟脉冲的多谐振荡器,使其构成长生脉冲,对同步加法器74LS161输入信号,根据555定时器构成的多谐振荡器的周期可定,由图可的T=T 1+T 2=(R A +R B )C+ R B C=(R A +2R B )C ,通过改变电阻R A ,R B 和C 的大小,可以改变脉冲的周期。所发电阻为2个510k Ω,C=1uF ,则T=(R A +2R B )C= (2)利用十六进制的加法计数器74LS61组成百以内任意进制计数器,可以用清零法和置数法改变计数器的技术进制,由于译码显示器可以显示….9,所以一片74LS161只可以控制一个显示器,就要将一片74LS161改为十进制,最后再利用级联的74LS161改变数组进制,可以将不同进制的数值用显示姨妈其显示出来,下面以33进制为例进行设计, a.清零法,异步清零信号为 = 计图如下:

U1 LM555CM GND 1 DIS 7OUT 3RST 4VCC 8 THR 6CON 5 TRI 2VCC 5V R1510kΩR2510kΩC11uF C25nF VCC 2 13U2 74LS160D QA 14QB 13QC 12QD 11RCO 15 A 3 B 4 C 5D 6 ENP 7ENT 10~LOAD 9~CLR 1CLK 2 GND 8 VCC 16U3 74LS160D QA 14QB 13QC 12QD 11RCO 15 A 3 B 4 C 5D 6 ENP 7ENT 10~LOAD 9~CLR 1 CLK 2GND 8VCC 1600U4 DCD_HEX_DIG_ORANGE U5 DCD_HEX_DIG_ORANGE VCC 5V VCC 5V VCC 600 U8B 74S00D 5 U6B 74S00D 10U7A 74S20D 141113 12 874VCC 5V 15 VCC VCC 9 上图中两个一码显示,左边是低位显示,右边为高位显示。 (3)状态转换图为: B,置数法,为了使显示数字范围在0~9,才能使显示译码器显示0~9,则是置数Q A1Q B1Q C1Q D1=0000,,在第一个74LS161与第二个之间对进位信号进行改造,将进位信号改为RCO=Q A Q D = ,用两个与非门实现该功能。则当=1, =0,且时钟信号来临时,计 数器置数Q A1Q B1Q C1Q D1=0000,置数信号LD= 则设计电路为: U1 LM555CM GND 1 DIS 7OUT 3 RST 4VCC 8 THR 6CON 5 TRI 2VCC 5V R1510kΩR2510kΩC1100nF C25nF VCC 2 13U2 74LS160D QA 14QB 13QC 12QD 11RCO 15 A 3 B 4 C 5D 6 ENP 7ENT 10~LOAD 9~CLR 1 CLK 2 GND 8 VCC 16U3 74LS160D QA 14QB 13QC 12QD 11RCO 15 A 3 B 4 C 5D 6 ENP 7ENT 10~LOAD 9~CLR 1 CLK 2GND 8VCC 1600DCD_HEX_DIG_ORANGE U5 DCD_HEX_DIG_ORANGE VCC 5V VCC 5V VCC 600 U8B 74S00D 5 U6B 74S00D U7A 74S20D 141113 12874VCC 5V 9 VCC 10VCC 15

第6章_时序逻辑电路课后答案

第六章 时序逻辑电路 【题 】 分析图时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,说明电路能否自启动。 Y 图P6.3 【解】驱动方程: 11323131233 J =K =Q J =K =Q J =Q Q ;K =Q ?? ??? 输出方程:3Y Q = 将驱动方程带入JK 触发器的特性方程后 得到状态方程为: n+11313131n 1 2121221n+1 3321 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q +?=+=?=+=⊕??=? 电路能自启动。状态转换图如图 【题 】 分析图时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图。A 为输入逻辑变量。 图A6.3

Y 图P6.5 【解】 驱动方程: 12 21212() D AQ D AQ Q A Q Q ?=??==+?? 输出方程: 21Y AQ Q = 将驱动方程带入JK 触发器的特性方程后得到状态方程为: n+1 12 n+1 212() Q AQ Q A Q Q ?=??=+?? 电路的状态转换图如图 1 图A6.5 【题 】 分析图时序电路的逻辑功能,画出电路的状态转换图,检查电路能否自启动,说明电路能否自启动。说明电路实现的功能。A 为输入变量。

A Y 图P6.6 【解】驱动方程: 11221 1 J K J K A Q ==?? ==⊕? 输出方程: 1212Y AQ Q AQ Q =+ 将驱动方程带入JK 触发器的特性方程后得到状态方程为: n+111 n+1 2 12 Q Q Q A Q Q ?=??=⊕⊕?? 电路状态转换图如图。A =0时作二进制加法计数,A =1时作二进制减法计数。 01图A6.6 【题 】 分析图时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,说明电路能否自启动。

阎石《数字电子技术基础》(第5版)(课后习题 时序逻辑电路)【圣才出品】

第6章 时序逻辑电路 6.1 分析图6-1时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图和时序图。 图6-1 解:电路的驱动方程为 12121211 J Q ', K J Q ,K ====将驱动方程代入JK 触发器的特性方程''Q JQ K Q *=+,可得 电路的状态方程为 12111212n n Q Q 'Q ',Q Q Q ' ++= =电路的输出方程为 2 Y Q =因此,可画出状态转换图及时序图如图6-2所示。 图6-2

6.2 分析图6-3时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,画出电路的状态转换图,并说明该电路能否自启动。 图6-3 解:电路的驱动方程为 1321312 D Q ',D Q D Q Q ===将驱动方程代入D 触发器的特性方程Q D *=,可得 电路的状态方程为 1231113112 n n n Q Q ',Q Q Q Q Q +++===电路的输出方程为 ()13 Y Q 'Q ' =因此,可画出状态转换图如图6-4所示,可见电路可以自启动。 图6-4 6.3 分析图6-5时序电路的逻辑功能,写出电路的驱动方程、状态方程和输出方程,

画出电路的状态转换图,说明电路能否自启动。 图6-5 解:电路的驱动方程为 11322131233J K Q ',J K Q , J Q Q ,K Q ======将驱动方程代入JK 触发器的特性方程1''n Q JQ K Q +=+,可得 电路的状态方程为113131n Q Q 'Q 'Q Q +=+=Q 3⊙Q 1 231121212 1123n n Q Q Q 'Q 'Q Q Q Q Q Q Q ' ++=+= ⊕=电路的输出方程为 3 Y Q =因此,可画出状态转换图如图6-6所示,可见电路可以自启动。 图6-6

相关主题
文本预览
相关文档 最新文档