当前位置:文档之家› 第十一章稳恒电流与真空中的恒定磁场和分析

第十一章稳恒电流与真空中的恒定磁场和分析

第十一章稳恒电流与真空中的恒定磁场和分析
第十一章稳恒电流与真空中的恒定磁场和分析

第十一章 电流与磁场

11-1 电源中的非静电力与静电力有什么不同?

答:在电路中,电源中非静电力的作用是,迫使正电荷经过电源内部由低电位的电源负极移动到高电位的电源正极,使两极间维持一电位差。而静电场的作用是在外电路中把正电荷由高电位的地方移动到低电位的地方,起到推动电流的作用;在电源内部正好相反,静电场起的是抵制电流的作用。

电源中存在的电场有两种:1、非静电起源的场;2、稳恒场。把这两种场与静电场比较,静电场由静止电荷所激发,它不随时间的变化而变化。非静电场不由静止电荷产生,它的大小决定于单位正电荷所受的非静电力,q

F E =

。当然电源种类不同,非F 的起因也不同。

11-2静电场与恒定电场相同处和不同处?为什么恒定电场中仍可应用电势概念? 答:稳恒电场与静电场有相同之处,即是它们都不随时间的变化而变化,基本规律相同,并且都是位场。但稳恒电场由分布不随时间变化的电荷产生,电荷本身却在移动。

正因为建立稳恒电场的电荷分布不随时间变化,因此静电场的两条基本定理,即高斯定理和环路定理仍然适用,所以仍可引入电势的概念。

11-3一根铜导线表面涂以银层,当两端加上电压后,在铜线和银层中,电场强度是否相同?电流密度是否相同?电流强度是否相同?为什么? 答:此题涉及知识点:电流强度d s

I =

??j s ,电流密度概念,电场强度概念,欧姆定律的

微分形式j E σ=。设铜线材料横截面均匀,银层的材料和厚度也均匀。由于加在两者上的电压相同,两者的长度又相等,故铜线和银层的场强E 相同。由于铜线和银层的电导率σ不同,根据j E σ=知,它们中的电流密度j 不相同。电流强度d s

I =

??j s ,铜线和银层的j

不同但相差不太大,而它们的横截面积一般相差较大,所以通过两者的电流强度,一般说来是不相同的。

11-4一束质子发生侧向偏转,造成这个偏转的原因可否是:(1)电场?(2)磁场?(3)若是电场和磁场在起作用,如何判断是哪一种场?

答:造成这个偏转的原因可以是电场或磁场。可以改变质子的运动方向,通过质子观察运动轨迹来判断是电场还是磁场在起作用。

11-5 三个粒子,当它们通过磁场时沿着如题图11-5所示的路径运动,对每个粒子可作出什么判断?

答:根据带电粒子在磁场中所受的洛伦兹力规律,通过观察运动轨迹的不同可以判断三种粒子是否带电和带电种类。

11-6 一长直载流导线如题11-6图所示,沿Oy 轴正向放置,在原点O 处取一电流元d I l ,求该电流元在(a ,0,0),(0,a ,0),(a ,a ,0),(a ,a ,a )各点处的磁感应强度Β。 分析:根据毕奥-萨伐尔定律求解。 解:由毕奥-萨伐尔定律

03

d d .4π

I r μ?=

l r

Β

原点O 处的电流元d I l 在(a ,0,0)点产生的Β为:

000332

()444I Idl

Idlj ai dB adlk k a a a

μμμπππ?=

=-=- d I l 在(0,a ,0)点产生的Β为:

003

2

d d d ()0,4π

4πI l

I l a a

a

μμ?=

=

?=j j

B j j

d I l 在(a ,a ,0)点产生的Β为:

022.16Idl

dB k a μπ=

=- d I l 在(a ,a ,a )点产生的Β为

02

3d d ().36πI l

a μ=

=

-B i k

11-7 用两根彼此平行的长直导线将半径为R 的均匀导体圆环联到电源上,如题11-7图所示,b 点为切点,求O 点的磁感应强度。

分析:应用毕奥-萨伐尔定律分别求出载流直导线L 1和L 2以及导体圆环上并联的大圆弧ab 大和小圆弧ab 小在O 点产生的磁感应强度,再利用磁感应强度的矢量和叠加求解。

解:先看导体圆环,由于ab 大和ab 小并联,设大圆弧有电流1I ,小圆弧有电流2I ,必有:

12.I R I R =大小

由于圆环材料相同,电阻率相同,截面积S 相同,实际电阻与圆环弧的弧长l 大和l 小有关,即:12,I l I l =大小

题11-6图

则1I 在O 点产生的1B 的大小为0112

,4πI l B R μ=

而2I 在O 点产生的2B 的大小为02212

.4I l B B R

μ=

=π小

1B 和2B 方向相反,大小相等.即120B B +=。

直导线1L 在O 点产生的30B =。 直导线2L 在O 点产生的R

I

B πμ404=,方向垂直纸面向外。 则O 点总的磁感强度大小为

R

I

B B πμ4040=

= 11-8 一载有电流I 的长导线弯折成如题11-8图所示的形状,CD 为1/4圆弧,半径为R ,圆心O 在AC ,EF 的延长线上.求O 点处磁场的场强。

分析:O 点的磁感强度Β为各段载流导线在O 点产生磁感强度的矢量和。 解:因为O 点在AC 和EF 的延长线上,故AC 和EF 段对O 点的磁场没有贡献。

CD 段:00,48CD I I

B R

R

μμπ

==

π2

DE 段:00(cos45cos135).42DE I

I

B a

R

μμ=

?-?=

=

ππ

O 点总磁感应强度为

000281

1.24DE CD I

I

B B B R

R

I R μμμ=+=+

π??=

+ ?π??

方同垂直纸面向外.

11-9 一无限长薄电流板均匀通有电流I ,电流板宽为

a ,求在电流板同一平面内距板边为a 的

P 点处的磁感应强度。

题11-7图

题11-8图

题图11-9

分析:微分无限长薄电流板,对微分电流dI 应用无限长载流直导线产生的磁场公式求解dB 。并将dB 再积分求解总的磁感应强度。注意利用场的对称性。

解:在电流板上距P 点x 处取宽为d .x 并平行于电流I 的无限长窄条,狭条中的电流为

d d .I

I x a =

dI 在P 点处产生的磁感强度为:0d d ,2I

B x

μ=π方向垂直纸面向里。

整个电流板上各窄条电流在P 点处产生的dB 方向相同,故

2000d d d ln 2.2π2π2πa

a

I

I I

B B x x

x a a

μμμ??==== ?????

?

11-10 在半径1R cm =的“无限长”半圆柱形金属薄片中,有电流5I A =自下而上地通过,如题11-10图所示。试求圆柱轴线上一点P 处的磁感应强度。

分析:微分半圆柱形金属薄片,对微分电流dI 应用无限长载流直导线产生的磁场公式求解

dB 。并将场强矢量dB 分解后再积分求解总的磁感应强度。注意利用场的对称性。

解:无限长载流半圆形金属薄片可看成由许多宽为d d l R θ=的无限长电流窄条所组成,每根导线上的电流在P 点产生的磁场d B 大小为0d d 2πI

B R

μ=,方向按右手螺旋法则确定,如解

11-10图所示。

I I

dI dl Rd R R θππ=

=

,002d d d .2π2πI I B R R

μμθ== 由于各电流窄条产生的磁场方向各不相同,P 点的总磁场应化矢量积分为标量积分,即

002

2

d d d sin sin ,2x x I I

B B B R R

μθ

μθθπ

====

ππ???

020d d d cos cos 0.2y y I B B B R

μθ

θθπ====π???

题11-10图 解11-10图

502

45

6.3710T,10

x I

B B x R μ-7-22-π?10?====?ππ?方向沿正向. 11-11 在半径为R 及r 的两圆周之间,有一总匝数为N 的均匀密绕平面线圈(如题11-11图)通有电流I ,求线圈中心(即两圆圆心)处的磁感应强度。

分析:微分密绕平面线圈,计算出相应的微分电流dI ,利用载流圆环在其圆心处产生的磁场公式求解dB 。并将矢量dB 再积分求解总的磁感应强度。

解:由于载流螺旋线绕得很密,可以将它看成由许多同心的圆电流所组成,在沿径向r 到R 范围内,单位长度的线圈匝数为

.N n R r

=

- 任取半径ρ,宽为d ρ的电流环,该电流环共有电流为

d d .IN

In R r

ρρ=

- 该电流环在线圈中心产生的磁感强度大小为

00d d d .22()IN B In R r μμρρρρ

=

=- 圆心处总磁感强度大小

00d d ln ,2()2()R

r

IN IN R

B B R r R r r

μμρρ===--??

方向垂直纸面向外。

11-12 如题11-12图所示,在顶角为2θ的圆锥台上密绕以线圈,共N 匝,通以电流I ,绕有线圈部分的上下底半径分别为r 和R .求圆锥顶O 处的磁感应强度的大小.

分析:微分密绕线圈,计算出相应的微分电流dI ,利用载流圆环在其轴线上产生的磁场公式求解dB 。并将矢量dB 再积分求解总的磁感应强度。

解:只要将题11-11中的均匀密绕平面线圈沿通过中心的轴垂直上提,便与本题条件相一致,故解题思路也相似。

如解11-12图建立坐标,取半径为ρ,宽为d ρ的电流环的密绕线圈,其含有匝数为d N

R r

ρ-, 通电流为d d .NI

I R r

ρ=

- 因为cot x ρθ=,cot dx d ρθ=。

半径为ρ的一小匝电流在O 点产生的dB 大小为

2200223/22223/2d d 2(+)2(

+cot )()

I NI

dB x R r μρμρρρρρθ==-

题11-11图

3003sin d d .2csc ()2()NI NI R r R r μμθρρθρρ

==-- 所有电流产生的磁场方向均沿x 轴,所以其磁感强度大小为

3300sin sin d ln

.2()

2()

R

r

NI NI R

B R r R r r

μθ

μθ

ρ

ρ

=

=

--?

11-13 半径为R 的木球上绕有细导线,所绕线圈很紧密,相邻的线圈彼此平行地靠着,以单层盖住半个球面共有N 匝,如题11-13图所示。设导线中通有电流I ,求在球心O 处的磁感应强度。

分析:考虑线圈沿圆弧均匀分布,微分密绕线圈,计算出相应的微分电流dI ,利用载流圆环在其轴线上产生的磁感应强度公式求解

dB 。并将矢量dB 再积分求解总的磁感应强度。 解:建立如解11-13图所示坐标,x 轴垂直线圈平面,考虑线圈沿圆弧均匀分布,故在

x x dx -+内含有线圈的匝数为

22d d d d ./2N N N

N l R R R θθ===πππ

线圈中通电流I 时,中心O

点处磁感强度为

2

02

2

3/2

d d .2()

Iy B N x y μ=

+

因为 sin ,cos ,x R y R θθ== 对整个半球积分求得O 点总磁感强度为

2

0223/2

d d 2()Iy B B N x y μ==+??

20cos d IN

R

μθθπ20

=

π?

0,4IN

x R

μ=

方向沿轴正向。

题11-12图 解11-12图

题11-13图

解11-13图

11-14 一个塑料圆盘,半径为R ,带电量q 均匀分布于表面,圆盘绕通过圆心垂直盘面的轴转动,角速度为ω.试证明

(1)在圆盘中心处的磁感应强度为0;2q

B R

μω=π

(2)圆盘的磁偶极矩为2m 1

.4

p q R ω=

分析:均匀带电圆盘以角速度ω旋转时相当于圆电流,微分带电圆盘,计算出相应的微分

电流dI ,利用载流圆环在其圆心处产生的磁场公式求解dB 。并将矢量dB 再积分求解总的磁感应强度。

解:(1)在圆盘上取一个半径为r 、宽为dr 的细圆环,其所带电量为

2

d 2d 2d .q

q r r r r R

σ=π=

ππ 圆盘转动后相当于圆电流

22

d d d 2d .πq qr r I n q r r R R

ω

ω==

π=2ππ 若干个圆电流在圆心产生的磁感强度为

002

0d d d 22.

2R

I

qr r

B B r

r

R q

R

μμωμω===π=

π???

(2)细圆环的磁矩为3

2

m 2

2

d d d d .qr

qr p S I r

r r R R ωω==π=

π

转动圆盘的总磁矩为3

2m 2

1

d 4

R

qr p r q R R ωω=

=

?

,方向沿轴向。 11-15 已知一均匀磁场的磁感应强度B =2T ,方向沿x 轴正方向,如题11-15图所示。试求(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量。

分析:应用磁通量概念求解。

解:(1)取各面由内向外为法线正方向。则

22cos 240103010Wb

0.24Wb,.

abcd abcd BS φ--=π=-????=-穿入

(2)cos

0.befc befc BS φπ

==

2

(3)cos 0.24Wb,.aefd aefd abcd BS BS φθ===穿出

11-16 如题11-16图所示,在长直导线AB 内通有电流I ,有一与之共面的等边三角形CDE ,

题11-15图

其高为h ,平行于直导线的一边CE 到直导线的距离为b 。求穿过此三角形线圈的磁通量。 分析:由于磁场不均匀,将三角形面积进行微分,应用磁通量概念求出穿过面元的磁通量,然后利用积分求出穿过三角形线圈的磁通量。

解:建立如解11-16图所示坐标,取距电流AB 为x 远处的宽为dx 且与AB 平行的狭条为面积元d 2()tan30d .S b h x x =+-?

则通过等边三角形的磁通量为

0d 2()tan 30d 2b h

S

b

I

B b h x x

x

μφ+==+-?π??

S 00d ()ln .33b h

b

I I b h x b h

x b h h x b ++-+??

==+-??ππ??

?

11-17 一根很长的铜导线,载有电流10A ,在导线内部,通过中心线作一平面S ,如题图11-17所示。试计算通过导线内1m 长的S 平面的磁通量。

分析:先求出磁场的分布,由于磁场沿径向不均匀,将平面S 无穷分割,应用磁通量概念求出穿过面元的磁通量,再利用积分求总磁通量。 解:与铜导线轴线相距为r 的P 点处其磁感强度为

02

2Ir B R μ=

π (r

于是通过单位长铜导线内平面S 的磁通量为

02

d 1d 2R

R

S

I

B r rdr R

μφπ===??

?

B S

760 1.01010Wb=1.010Wb.4I

μ--=

=???π

11-18 如题11-18图所示的空心柱形导体,柱的内外半径分别为a 和b ,导体内载有电流

I ,设电流I 均匀分布在导体的横截面上。求证导体内部各点(a r b <<)的磁感应强度B

由下式给出:22

022.2()I

r a B b a r

μ-=

π-

题11-16图 解11-16图

题11-17图

分析:应用安培环路定理求解。注意环路中电流的计算,应该是先求出载流导体内电流密度,再求出穿过环路的电流。 证明:载流导体内电流密度为22.()

I

b a δ=

π-

由对称性可知,取以轴为圆心,r 为半径的圆周为积分回路L ,则由安培环路定理

0d ,L

I μ∑?

B l =

得:22

2

2

002

2

2(),r a B r r a I b a

μδμ-π=π-=- 从而有:2202

2

()

.2()

I r a B r b a μ-=

π-

如果实心圆柱0a =,此时02

2Ir

B R μ=π。

11-19 有一根很长的同轴电缆,由两个同轴圆筒状导体组成,这两个圆筒状导体的尺寸如题11-19图所示。在这两导体中,有大小相等而方向相反的电流I 流过。(1)求内圆筒导体内各点(r a <)的磁感应强度B ;(2)求两导体之间(a r b <<)的B ;(3)求外圆筒导体内(b r c <<)的B ;(4)求电缆外(r c >)各点的B 。

分析:应用安培环路定理求解。求外圆筒导体内(b r c <<)的B 时,注意环路中电流的计算,应该是先求出外圆导体内电流密度,再结合内圆筒的电流,求出穿过环路的电流。 解:在电缆的横截面,以截面的轴为圆心,将不同的半径r 作圆弧并取其为安培积分回路L ,然后,应用安培环路定理求解,可得离轴不同距离处的磁场分布。 (1)当r a <时,

0d 0,L

I μ==∑?

B l 20B r π?=,得B =0;

(2)当a r b <<时,同理可得0;2I

B r

μ=

π

(3)当b r c <<时,有22022()2,()I r b B r I

c b μ??

π-

π=-??π-?

?

题11-18图

题11-19图

得220221;2I r b B r c b μ?

?

-=- ?π-??

(4)当r c >时,B =0。

11-20 题11-20图中所示为一根外半径为1R 的无限长圆柱形导体管,管中空心部分半径为

2R ,并与圆柱不同轴.两轴间距离OO a '=。现有电流密度为δ的电流沿导体管流动,求空

腔内任一点的磁感应强度B 。

分析:此题属于非对称分布磁场的问题,因而不能直接应用安培环路定理一次性求解,但可用补偿法求解。即将无限长载流圆柱形导体管看作是由半径为1R 的实心载流圆柱体和一根与圆柱轴平行并相距a 的半径为2R 的反向载流圆柱体叠加而成(它们的场都可以分别直接应用安培环路定理求解)。则空间任一点的场就可视作该两个载流导体产生场的矢量叠加。注意补偿电流的计算时,应该是先求出原来导体内电流密度,按照此电流密度进行补偿。 解:如解11-20图所示,设半径为1R 的载流圆柱其电流垂直纸面向外,电流密度为

22

12.()

I

R R δ=

π- 它在空腔中P 点产生的场为1B ,其方向如解11-20图所示,由安培环路定理可得

1011

2

B r μδ=

?;式中1r 为从O 点引向P 点的矢径。 同理可求得半径为2R 的反向载流的小圆柱在P 点产生磁场2B

,方向如解11-21图,即

2021

2

B r μδ=-?;式中2r 为从O '点引向P 点的矢径。

则 12012011

()()22

μμ'=+=?-=?B B B r r OO δδ

式中'OO 为从O 指向'O 的矢量。

11-20图

解11-20图

由于δ'⊥OO ,所以得B 的方向垂直'OO ,而大小为

0022121

22()

Ia B OO R R μμδ'=

=π-,空腔内的磁场为均匀磁场。 11-21 一电子在-3

7.010B T =?的匀强磁场中作圆周运动,圆周半径 3.0r cm =,某时刻电子在A 点,速度v 向上,如题11-21图所示。(1)试画出电子运动的轨道;(2)求电子速度的大小;(3)求电子动能k E 。

分析:应用运动电荷在匀强磁场中所受洛伦兹力公式并结合牛顿第二定律求解。 解:(1)由洛伦兹力公式:(),F e v B =-?

得电子的运动轨迹为由A 点出发刚开始向右转弯半径为r 的圆形轨道。

(2)由:2

,v F evB m r

==得:

19317131

1.6100.037.010m s 3.710m s .9.110

erB v m -----????===?? (3)2317216k 11

9.110(3.710)J =6.210J.22

E mv --==?????

11-22 把2.0keV 的一个正电子射入磁感应强度为2

0.10Wb m -?的均匀磁场内(题11-22图),其速度矢量与B 成89?角,路径成螺旋线,其轴在B 的方向.试求这螺旋线运动的周期

T 、螺距p 和半径r 。

分析:应用洛伦兹力分析带电粒子在均匀磁场中的运动求解。注意分析在B 的方向和垂直B

的运动不同特点。

解:带电粒子在均匀磁场中运动时,当v 与B

成θ=89?时,其轨迹为螺旋线。则

题11-21图

题11-22图

171

31

10

19

2.6510,

229.1110

3.6810,

1.6100.10

v s m s

m

T s

eB

ππ

--

-

-

-

===?

??

===?

??

7104

731

3

19

2.6810cos89

3.5610 1.6610

2.6810sin899.1110

1.5110.

1.6100.10

p v T m

v m

r m

eB

--

-

-

-

==?????=?

?????

===?

??

11-23在霍耳效应实验中,宽1.0cm,长4.0cm,厚3

1.010cm

-

?的导体,沿长度方向载有3.0A的电流,当磁感应强度B=1.5T的磁场垂直地通过该薄导体时,产生5

1.010V

-

?的横向霍耳电压(在宽度两端),试由这些数据求(1)载流子的漂移速度;(2)每立方厘米的载流子数目;(3)假设载流子是电子,试就一给定的电流和磁场方向在图上画出霍耳电压的极性。分析:带电粒子在均匀电场和磁场中运动。利用霍耳效应相关公式求解。

解:(1)载流子的漂移速度

5

141

2

1.010

6.710.

1.5 1.010

H H

E V

v m s m s

B Bd

-

---

-

?

====?

??

(2)每立方厘米的载流子数目

因为电流密度:,

nev

δ=

所以载流子密度

3293

19425

3.0

2.810

1.610 6.710(1.010 1.010)

I

n m m ev evs

δ

--

----

====?

???????

(3)略

11-24某瞬间a点有一质子A以71

10

a

v m s-

=沿题11-24图中所示方向运动。相距4

10

r cm

-

=远处的b点有另一质子B以31

210

b

v m s-

=?沿图示方向运动。,,

a b

v v r在同一平面内,求质子B所受的洛伦兹力的大小和方向。

分析:当考察两运动电荷的相互作用时,可从运动电荷B在运动电荷A形成的磁场中运动着手,求得所受磁力的大小和方向。

解:质子A以

a

v运动经过a点的瞬间在b点产生的磁感强度为

2

sin45

4

a

ev

B

r

μ

π

=?,方向垂直纸面向外。

质子B以

b

v运动,在经过b的同一瞬间受洛伦兹力为

22302

sin 45 3.610,4a b

b e v v F ev B N r

μπ-==?=? 方向垂直b v 和B 组成的平面。

11-25 如题11-25图所示,在长直导线旁有一矩形线圈,导线中通有电流120I A =,线圈中通有电流210I A =。求矩形线圈上受到的合力是多少?已知1,9,20a cm b cm l cm ===。 分析:应用安培力公式求解载流导线在磁场中所受的安培力。上下两边受力大小相等,方向相反,互相抵消。左右两边在不同大小的均匀磁场中。注意利用右手定则来判断安培力方向。 解:根据安培力公式:dF Idl B =?

可知矩形线圈上下两边受力大小相等,方向相反,互相抵消,左右两边受力大小不等,方向相反,且左边受力较大。矩形线圈受合力为

012221

12I I l F F F I lB I lB a a b μ??

=-=-=

- ?π+??

∑左右左右

7244101120100.22100.17.210N,.

---π???=????- ?

π??=?方向向左

11-26 在长直电流1I 旁有一等腰梯形载流线框ABCD ,通有电流2I ,已知BC ,AD 边的倾斜角为α。如题11-26图所示,AB 边与1I 平行,AB 距1I 为a ,梯形高b ,上、下底分别为c ,

d 长。试求此梯形线框所受1I 的作用力的大小和方向。

分析:本题求载流导线在磁场中所受安培力,BC 和AD 两边受力的大小随位置改变而改变,方向也不在同一直线上,通常采用力的正交分解再合成的办法求解。 解:由安培力公式得

题11-25图

题11-26图

11-24图

0122AB I I c

F a

μ=

π,方向向左。0122()

CD I I d

F a b μ=

π+,方向向右。

而BC 和AD 各电流元受力的大小随位置在改变,方向也不相同。

012

012012d d d ln .22cos 2cos a b

BC BC a

I I I I I I r a b

F F l r

r a

μμμαα++====πππ??

?

同理得

012ln .2cos AD I I a b

F a

μα+=

π

分别将BC F 和AD F 分解成与AB 平行与垂直的分量;显然,二者平行于AB 的分量大小相等方向相反而互相抵消,而垂直于AB 的分量其方向与AB F 相同。故整个梯形载流线圈受力

sin sin AB

CD BC AD F F

F F F αα=-++∑

01201201012tan ln

tan ln 22()

22I I c

I I d

I I I I a b a b

a

a b a a

μμμα

μα++=

-

+

+ππ+π

π 0121ln ,.2I I c

d c a b d I a b a a b μ-+??

=

+- ?π+??

方向向左垂直

11-27 载有电流20I A =的长直导线AB 旁有一同平面的导线ab ,ab 长为9cm ,通以电流

120I A =。求当ab 垂直AB ,a 与垂足O 点的距离为1cm 时,导线ab 所受的力,以及对O

点的力矩的大小。

分析:本题中各电流元受安培力方向相同,而大小随位置变化(B 随位置变化)而变化,故需通过积分求解合力。各电流元受磁力矩方向也相同,大小也随位置变化而变化,导线对O 点的磁力矩也需通过积分求解。

解:电流ab 中任意电流元受力大小为1d f I Bdx =。

0.1

01

10.01

0.1

d d ln

220.01

II f f x II x

μμ===

ππ

??

7

4410

2020ln10 1.8410N.2--π?=

???=?π

对O 点力矩为

0.1

01

0.01

d d d 2II M M x f x x x

μ===π???

60

12(0.10.01)7.210m N.2I I μ-=

-=?π

11-28 截面积为S ,密度为ρ的铜导线,被弯成正方形的三边,可以绕水平轴转动,如题11-28图所示。导线放在方向为竖直向上的匀强磁场中,当导线中的电流为I 时,导线离开

原来的竖直位置偏转一角度为θ而平衡,求磁感应强度。如22,S mm =3

8.9,g cm ρ-=?

15,10I A θ=?=。磁感应强度B 应为多少?

分析:载流线框绕OO '转动,由于没有平动只有转动,仅需考虑线框对OO '轴力矩的平衡,而不需考虑力的平衡。即

0M =∑。磁力矩可用闭合线框受到磁力矩求解。

解:设正方形各边长度为l ,质量为m ,平衡时重力对OO '轴的力矩

22sin sin 2sin .2

l

M mg mgl l sg θθρθ=+=重

载流线框受到磁力矩既可用整个线框受到磁力矩,也可用各导线段受力对轴的合力矩(因为此时以一条边为转轴),即m =?M p B ,其大小为

2m sin cos .M p B Il B θθπ??

=-= ?2??

平衡时有M M =重磁,即

222sin cos ,2tan l sg Il B sg

B I

ρθθρθ

==

36428.910210tan15T =9.5410T.10

--????=??

11-29 与水平成θ角的斜面上放一木制圆柱,圆柱的质量m 为0.25kg ,半径为R ,长l 为0.1m.在这圆柱上,顺着圆柱缠绕10匝的导线,而这个圆柱体的轴线位于导线回路的平面内,如题11-29图所示.斜面处于均匀磁场B 中,磁感应强度的大小为0.5T ,其方向沿竖直朝上.如果绕线的平面与斜面平行,问通过回路的电流至少要有多大,圆柱体才不致沿斜面向下滚动?

分析:本题属力电综合题。一方面,圆柱体受重力矩作用要沿斜面向下滚动;另一方面,处于圆柱体轴线平面内的载流线圈(线圈不产生重力矩)要受磁力矩作用而阻止圆柱体向下滚动。当M M =重磁时,圆柱体保持平衡不再滚动。 解:假设摩擦力足够大,圆柱体只有滚动无滑动。 圆柱体绕瞬时轴转动受到的重力矩sin M mgR θ=重。 线圈受到的磁力矩m sin sin M P B NBSI θθ==磁. 当M M =重磁时圆柱不下滚

.

题11-28图

题11-29图

sin sin ,mgR NBSI θθ=得

0.259.8

2.45A.222100.10.5

mgR mgR mg I NBS NB Rl NBl ?=

====??? 11-30 一个绕有N 匝的圆线圈,半径为a ,载有电流I 。试问:为了把这个线圈在外磁场中由θ等于零的位置,旋转到θ等于90°的位置,需对线圈作多少功?θ是线圈的面法线与磁感应强度B 之间的夹角。假设100,N = 5.0,a cm =0.1,I A = 1.5B T =。 分析:此题为磁力作功公式的应用。 解:磁力作功为

21()(0)A I I I NBS INBS φφφ=?=-=-=- 220.1100 1.5π(5.010)J 0.12J.-=-????=-

所以:外力需对线圈作多少功0.12A J '=

11-31 一半圆形闭合线圈半径0.1,R m =通过电流10,I A =放在均匀磁场中,磁场方向与线圈面平行,如题11-31图所示,3

510B =?GS 。求(1)线圈所受力矩的大小和方向;(2)若此线圈受力矩的作用转到线圈平面与磁场垂直的位置,则力矩作功多少?

分析:闭合线圈所受的磁力矩可以运用磁力矩与磁矩关系表达式求出。运用磁力做功表达式求出磁力矩做功。

解:(1)线圈受磁力矩,m M P B =? 所以m π

sin

2

M P B ISB == 2

34

2π0.110510102

7.8510N m,.

--?=????=?方向向上 (2)此时磁力作功

2

34

2π0.1(0)10510102

7.8410J.

A I I BS φ--?=?=-=????=?

题11-31图

恒定电流的磁场汇总

潍坊科技学院教案 课程名称:大学物理(一)授课人:郑海燕

19 电流电流密度 电流就是带电粒子(载流子)的定向运动。 正电荷的运动方向规定为电流的方向。电流还可以分为传导电流和运流电流两种类型。传导电流是指在导线中的电流,其载流子在导体上的每个局部区域都是正负抵消的,是电中性的;而运流电流是指裸露的电荷运动,由于电荷是裸露的,它周围有电场存在。 描述电流的物理量主要有两个:电流强度和电流密度。电流强度描述在一个截面上电流的强弱。电流强度定义为单位时间内通过导体中某一截面的电量。如果在dt时间内通过导体某一横截面S的电量 为dq,则通过该截面的电流强度为 国际单位制中,电流强度单位是安培(A)。1A=1C/s。电流强度是标量,电流强度没有严格方向含义。 电流密度矢量j 电流密度j的方向和大小定义如下:在导体中任意一点,j的方向为该点电流的流向,j的大小等于通过该点垂直于电流方向的单位面积的电流强度(即单位时间内通过单位垂面的电量)。 如下图(a)所示,设想在导体中某点垂直于电流方向取一面积元dS,其法向n取作该点电流的方向。 如果通过该面积元的电流为dI,按定义,该点处电流密度为 在导体中各点的j可以有不同的量值和方向,这就构成了一个矢量场,叫做电流场。象电场分布可以用电场线形象描绘一样,电流场也可用电流线形象描绘。所谓电流线是这样一些曲线,其上任意一点的切线方向就是该点j的方向,通过任一垂直截面的电流线的数目与该点j的大小成正比。 电流密度能精确描述电流场中每一点的电流的大小和方向,其描述能力优于电流强度。通常所说的电流分布实际上是指电流密度j的分布,而电流强弱和方向在严格意义上应指电流密度的大小和方向。 如下图所示(b),一个面积元dS的法线方向与电流方向成角,由于通过dS的电流dI与通过面积 元的电流相等,所以应有 (a) (b) 电流密度的定义 若将面积元dS用矢量dS=dS?n表示,其方向取法线方向,则上式可写成

电磁场HFSS实验报告

实验一? T形波导的内场分析 实验目的? 1、?熟悉并掌握HFSS的工作界面、操作步骤及工作流程。????? 2、?掌握T型波导功分器的设计方法、优化设计方法和工作原理。?实验仪器 1、装有windows 系统的PC 一台 2、或更高版本软件 3、截图软件 实验原理 本实验所要分析的器件是下图所示的一个带有隔片的T形波导。其中,波导的端口1是信号输入端口,端口2和端口3是信号输出端口。正对着端口1一侧的波导壁凹进去一块,相当于在此处放置一个金属隔片。通过调节隔片的位置可以调节在端口1传输到端口2,从端口1传输到端口3的信号能量大小,以及反射回端口1的信号能量大小。 T形波导 实验步骤 1、新建工程设置: 运行HFSS并新建工程:打开 HFSS 软件后,自动创建一个新工程: Project1,由主菜单选 File\Save as ,保存在指定的文件夹内,命名为Ex1_Tee;由主菜单选 Project\ Insert HFSS Design,

在工程树中选择 HFSSModel1,点右键,选择 Rename项,将设计命名为 TeeModel。 选择求解类型为模式驱动(Driven Model):由主菜单选HFSS\Solution Type ,在弹出对话窗选择Driven Model 项。 设置长度单位为in:由主菜单选 3D Modeler\Units ,在 Set Model Units 对话框中选中 in 项。。 2、创建T形波导模型: 创建长方形模型:在 Draw 菜单中,点击 Box 选项,在Command 页输入尺寸参数以及重命名;在Attribute页我们可以为长方体设置名称、材料、颜色、透明度等参数Transparent(透明度)将其设为。Material(材料)保持为Vacuum。 设置波端口源励:选中长方体平行于 yz 面、x=2 的平面;单击右键,选择 Assign Excitation\Wave port项,弹出 Wave Port界面,输入名称WavePort1;点击积分线 (Integration Line) 下的 New line ,则提示绘制端口,在绘图区该面的下边缘中部即(2,0,0)处点左键,确定端口起始点,再选上边缘中部即(2,0,处,作为端口终点。 复制长方体:展开绘图历史树的 Model\Vacuum\Tee节点,右键点击Tee项,选择 Edit\Duplicate\Around Axis,在弹出对话窗的Axis项选择Z,在Angel项输入90deg,在 Total Number 项输入2,点OK,则复制、添加一个长方体,默认名为TEE_1。重复以上步骤,在Angel项输入-90,则添加第3个长方体,默认名Tee_2.

11稳恒电流和稳恒磁场习题解答

第十一章 稳恒电流和稳恒磁场 一 选择题 1. 两根截面大小相同的直铁丝和直铜丝串联后接入一直流电路,铁丝和铜丝内的电流密度和电场强度分别为J 1,E 1和J 2,E 2,则:( ) A. J 1=J 2,E 1=E 2 B. J 1>J 2,E 1=E 2 C. J 1=J 2,E 1E 2 解:直铁丝和直铜丝串联,所以两者电流强度相等21I I =,由???=S J d I ,两者截面积相等,则21J J =,因为E J γ=,又铜铁γγ<,则E 1>E 2 所以选(D ) 2. 如图所示的电路中,R L 为可变电阻,当R L 为何值时R L 将有最大功率消耗: ( ) A. 18Ω B. 6Ω C. 4Ω D. 12Ω 解:L L R R R +=1212ab , L L R R R R U 3122006ab ab ab +=+?=∴ε 22ab 31240000)R (R R U P L L L L +==,求0d d =L L R P ,可得当Ω=4L R 时将有最大功率消耗。 所以选(C ) 3. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感应强度B 的大小为( ) A. l I μπ420 B. l I μπ20 C . l I μπ20 D. 0 解:设线圈四个端点为ABCD ,则AB 、AD 线段在A 点产生的磁感应强度为零,BC 、CD 在A 点产生的磁感应 强度由 )cos (cos π4210θθμ-=d I B ,可得 l I l I B BC π82)2πcos 4π(cos π400μμ=-=,方向垂直纸面向里 l I l I B CD π82)2πcos 4π(cos π400μμ=-=,方向垂直纸面向里 L 选择题2图 选择题3图

恒定电流的磁场(一)答案

一.选择题: [D ]1. 载流的圆形线圈(半径a1)与正方形线圈(边长a2) 通有相同电流I.若两个线圈的中心O1、O2处的磁感强度大小相 同,则半径a1与边长a2之比a1∶a2为 (A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8 参考答案: 1 12a I B μ =) 135 cos 45 (cos 2 4 4 2 2 ? - ? ? ? = a I B π μ [B]2.有一无限长通电流的扁平铜片,宽度为a,厚度不计,电流I在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b处的P点(如图)的磁感强度B 的大小为 (A) ) ( 2 b a I + π μ .(B) b b a a I+ π ln 2 μ . (C) b b a b I+ π ln 2 μ .(D) ) 2 ( b a I + π μ . 参考答案: 建立如图坐标,取任意x处宽度为dx的电流元 dI’=Idx/a, b b a a I x b a a Idx x b a dI B a+ = - + = - + =??ln 2 ) ( 2 ) ( 2 '0 π μ π μ π μ [D]3. 如图,两根直导线ab和cd沿半径方向被接到一个截面 处处相等的铁环上,稳恒电流I从a端流入而从d端流出,则磁感 强度B 沿图中闭合路径L的积分?? L l B d (A) I0μ.(B) I0 3 1 μ. (C) 4/ I μ.(D) 3/ 2 I μ. 参考答案: 设优弧长L1,电流I1, 劣弧长L2,电流I2 由U bL1c=U bL2c得I1ρL1/S= I2ρL2/S I1/I2=1/2 有I1=I/3, I2=2I/3 故 3 20I L d B μ = ? ? [ B ] 4. 无限长载流空心圆柱导体的内外半径分别 为a、b,电流在导体截面上均匀分布,则空间各处的B 的 大小与场点到圆柱中心轴线的距离r的关系定性地如图所 示.正确的图是 参考答案: 由环路定理I L d B μ = ? ? 当r

磁场的研究实验报告

实验题目: 磁场的研究 实验目的: 1、研究载流圆线圈轴线上各点的磁感应强度,把测量的磁感应强度与理论计算值比较, 加深对毕奥-萨伐尔 定律的理解; 2、在固定电流下,分别测量单个线圈(线圈a 和线圈b )在轴线上产生的磁感应强度B (a )和B(b),与亥姆 霍兹线圈产生的磁场B(a+b )进行比较, 3、测量亥姆霍兹线圈在间距d=R /2、 d=2R 和d=2R, (R 为线圈半径),轴线上的磁场的分布,并进行比较, 进一步证明磁场的叠加原理; 4、描绘载流圆线圈及亥姆霍兹线圈的磁场分布。 实验仪器: (1)圆线圈和亥姆霍兹线圈实验平台,台面上有等距离1.0cm 间隔的网格线; (2)高灵敏度三位半数字式毫特斯拉计、三位半数字式电流表及直流稳流电源组合仪一台; (3)传感器探头是由2只配对的95A 型集成霍尔传感器(传感器面积4mmx 3mmx 2mm)与探头盒(与台面接触面 实验原理: (1)根据毕奥一萨伐尔定律,载流线圈在轴线(通过圆心并与线圈平面垂直的直线)上某点的磁感应强度为: 232220)(2x R N R I B +=μ (5-1) 式中μ0为真空磁导率,R 为线圈的平均半径,x 为圆心O A 到该点的距离,N 为线圈匝数,I 为通过线圈的电流强度。因此,圆心处的磁感应强度B 0 为: R IN B 20μ= (5-2) 轴线外的磁场分布计算公式较为复杂,这里简略。 (2)亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈,两线圈内的电流方向一致,大小相同,线圈之间的距离d 正好等于圆形线圈的半径R 。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,所以在生产和科研中有较大的使用价值,也常用于弱磁场的计量标准。 设:z 为亥姆霍兹线圈中轴线上某点离中心点O 处的距离,则亥姆霍兹线圈轴线上任意一点的磁感应强度为: ????????????????????? ??-++??????????? ??++='--23222322202221z R R z R R NIR B μ(5-3) 而在亥姆霍兹线圈上中心O 处的磁感应强度B 0′为 .毫特斯拉计 .电流表 .直流电流源 .电流调节旋钮 .调零旋钮 .传感器插头 .固定架 .霍尔传感器 .大理石 .线圈 ABCD 为接线柱

第十一章稳恒电流的磁场(一)作业解答

一、利用毕奥—萨法尔定律计算磁感应强度 毕奥—萨法尔定律:3 04r r l Id B d ?=πμ 1.有限长载流直导线的磁场)cos (cos 4210ααπμ-=a I B ,无限长载流直导线a I B πμ20= 半无限长载流直导线a I B πμ40=,直导线延长线上0=B 2. 圆环电流的磁场2 32220)(2x R IR B +=μ,圆环中心R I B 20μ=,圆弧中心πθ μ220?=R I B 电荷转动形成的电流:π ω ωπ22q q T q I = == 【 】基础训练1、载流的圆形线圈(半径a 1 )与正方形线圈(边长a 通有相同电流I .如图若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8 【 】基础训练3、有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上 均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感强度B 的大小为 (A) ) (20b a I +πμ. (B) b b a a I +πln 20μ.(C) b b a b I +πln 20μ. (D) ) 2(0b a I +πμ. 解法: 【 】自测提高2、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感 强度的大小B P ,B Q ,B O 间的关系为 (A) B P > B Q > B O . (B) B Q > B P > B O . B Q > B O > B P . (D) B O > B Q > B P . 解法:

第十一章 恒定电流的磁场习题解

第十一章 恒定电流的磁场 11–1 如图11-1所示,几种载流导线在平面内分布,电流均为I ,求它们在O 点处的磁感应强度B 。 (1)高为h 的等边三角形载流回路在三角形的中心O 处的磁感应强度大小为 ,方向 。 (2)一根无限长的直导线中间弯成圆心角为120°,半径为R 的圆弧形,圆心O 点的磁感应强度大小为 ,方向 。 解:(1)如图11-2所示,中心O 点到每一边的距离为13 OP h =,BC 边上的电流产生的磁场在O 处的磁感应 强度的大小为 012(cos cos )4πBC I B d μββ=- 00(cos30cos150)4π/3 4πI I h h μ??= -= 方向垂直于纸面向外。 另外两条边上的电流的磁场在O 处的磁感应强度的大小和方向都与BC B 相同。因此O 处的磁感应强度是三边电流产生的同向磁场的叠加,即 0033 4π4πBC I I B B h h === 方向垂直于纸面向外。 (2)图11-1(b )中点O 的磁感强度是由ab ,bcd ,de 三段载流导线在O 点产生的磁感强度B 1,B 2和B 3的矢量叠加。由载流直导线的磁感强度一般公式 012(cos cos )4πI B d μββ=- 可得载流直线段ab ,de 在圆心O 处产生的磁感强度B 1,B 3的大小分别为 01(cos0cos30)4cos60) I B R μ= ?-? π(0(12πI R μ= 031(cos150cos180)4πcos60 I B B R μ?== ?- ?0(12πI R μ= I B 图11–2 图11–1 (a ) A E (b )

第11章稳恒磁场

第十一章 稳恒磁场习题 (一) 教材外习题 一、选择题: 1.如图所示,螺线管内轴上放入一小磁针,当电键K 闭合时,小磁针的N 极的指向 (A )向外转90? (B )向里转90? (C )保持图示位置不动 (D )旋转180? (E )不能确定。 ( ) 2 i 的大小相等,其方向如图所示,问哪些区域中某些点的磁感应强度B 可能为零? (A )仅在象限Ⅰ (B )仅在象限Ⅱ (C )仅在象限Ⅰ、Ⅲ (D )仅在象限Ⅰ、Ⅳ (E )仅在象限Ⅱ、Ⅳ ( ) 3.哪一幅曲线图能确切描述载流圆线圈在其轴线上任意点所产生的B 随x 的变化关系?(x 坐标轴垂直于圆线圈平面,原点在圆线圈中心O ) ( ) (A ) (B ) (C ) (D ) (E ) 4q 的点电荷。此正方形以角速度ω绕AC 轴旋转时,在中心O 点产生的磁感应强度大小为B 1;此正方形同样以角速度ω绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度的大小为B 2,则B 1与B 2间的关系为: (A )B 1=B 2 (B )B 1=2B 2 (C )B 1= 2 1B 2 (D )B 1=B 2/4 ( ) x B x x B x B x B q q C

5.电源由长直导线1沿平行bc 边方向经过a 点流入一电阻均匀分布的正三角形线框,再由b 点沿cb 方向流出,经长直导线2返回电源(如图),已知直导线上的电流为I ,三角框的 每一边长为l 。若载流导线1、2和三角框在三角框中心O 点产生的磁感应强度分别用1B 、2B 和3B 表示,则O 点的磁感应强度大小 (A )B =0,因为B 1=B 2, B 3=0 (B )B =0,因为021=+B B ,B 3=0 (C )B ≠0,因为虽然021=+B B ,但B 3≠0。 (D )B ≠0,因为虽然B 3=0,但021≠+B B 。 ( ) 6.磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上,图(A )~(E )哪一条曲线表示B -x 的关系? ( ) (A ) (B ) (C ) (D ) (E ) 7.A 、B A 电子的速率是B 电子速率的两倍。设R A 、R B 分别为A 电子与B 电子的轨道半径;T A 、T B 分别为它们各自的 周期。则: (A )R A ∶R B =2, T A ∶T B =2。 (B )R A ∶R B = 2 1 , T A ∶T B =1。 (C )R A ∶R B =1, T A ∶T B = 2 1 。 (D )R A ∶R B =2, T A ∶T B =1。 8.把轻的正方形线圈用细线挂在截流直导线AB 的附近,两者在同一平面内,直导线AB 固定,线圈可以活动。当正方形线圈通以如图所示的电流时线圈将 (A )不动 c x B B x x B x B x B 电流

电磁场HFSS实验报告

实验一 T形波导的内场分析 实验目的 1、熟悉并掌握HFSS的工作界面、操作步骤及工作流程。 2、掌握T型波导功分器的设计方法、优化设计方法和工作原理。实验仪器 1、装有windows 系统的PC 一台 2、HFSS15.0 或更高版本软件 3、截图软件 实验原理 本实验所要分析的器件是下图所示的一个带有隔片的T形波导。其中,波导的端口1是信号输入端口,端口2和端口3是信号输出端口。正对着端口1一侧的波导壁凹进去一块,相当于在此处放置一个金属隔片。通过调节隔片的位置可以调节在端口1传输到端口2,从端口1传输到端口3的信号能量大小,以及反射回端口1的信号能量大小。 T形波导

实验步骤 1、新建工程设置: 运行HFSS并新建工程:打开HFSS 软件后,自动创建一个新工程:Project1,由主菜单选File\Save as ,保存在指定的文件夹内,命名为Ex1_Tee;由主菜单选Project\ Insert HFSS Design,在工程树中选择HFSSModel1,点右键,选择Rename项,将设计命名为TeeModel。 选择求解类型为模式驱动(Driven Model):由主菜单选HFSS\Solution Type ,在弹出对话窗选择Driven Model 项。 设置长度单位为in:由主菜单选3D Modeler\Units ,在Set Model Units 对话框中选中in 项。。 2、创建T形波导模型: 创建长方形模型:在Draw 菜单中,点击Box 选项,在Command 页输入尺寸参数以及重命名;在Attribute页我们可以为长方体设置名称、材料、颜色、透明度等参数Transparent(透明度)将其设为0.8。Material(材料)保持为Vacuum。 设置波端口源励:选中长方体平行于yz 面、x=2 的平面;单击右键,选择Assign Excitation\Wave port项,弹出Wave Port界面,输入名称WavePort1;点击积分线(Integration Line) 下的New line ,则提示绘制端口,在绘图区该面的下边缘中部即(2,0,0)处点左键,确定端口起始点,再选上边缘中部即(2,0,0.4)处,作为端口终点。 复制长方体:展开绘图历史树的Model\Vacuum\Tee节点,右键

恒定电流的磁场(二)答案

一. 选择题 [ B ]1. 一个动量为p 的电子,沿图示方向入射并能穿过一个宽 度为D 、磁感强度为B (方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为 (A) p eBD 1 cos -=α. (B) p eBD 1sin -=α. (C) ep BD 1 sin -=α. (D) ep BD 1cos -=α. [ D ]2. A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设R A ,R B 分别为A 电子与B 电子的轨道半径;T A ,T B 分别为它们各自的周期.则 (A) R A ∶R B =2,T A ∶T B =2. (B) R A ∶R B 2 1 =,T A ∶T B =1. (C) R A ∶R B =1,T A ∶T B 1 =. (D) R A ∶R B =2,T A ∶T B =1. [ C ]3. 三条无限长直导线等距地并排安放,导线Ⅰ、Ⅱ、Ⅲ分别载有1 A ,2 A ,3 A 同方向的电流.由于磁相互作用的结果,导线Ⅰ,Ⅱ,Ⅲ单位长度上分别受力F 1、F 2和F 3,如图所示.则F 1与F 2的比值是: (A) 7/16. (B) 5/8. (C) 7/8. (D) 5/4. 提示: [ B ]4.如图,在一固定的载流大平板附近有一载流小线框能自由转动或平动.线框平面与大平板垂直.大平板的电流与线框中电流方向如图所示,则通电线框的运动情况对着从大平板看是: (A) 靠近大平板. (B) 顺时针转动. (C) 逆时针转动. (D) 离开大平板向外运动. 提示:,B p M m ?= F 1 F 2F 3 1 A 2 A 3 A ⅠⅡⅢ I 1 I 2

北京大学物理实验报告:霍尔效应测量磁场(pdf版)

霍尔效应测量磁场 【实验目的】 (1) 了解霍尔效应的基本原理 (2) 学习用霍尔效应测量磁场 【仪器用具】 仪器名参数 电阻箱? 霍尔元件? 导线? SXG-1B毫特斯拉仪±(1% +0.2mT) PF66B型数字多用表200 mV档±(0.03%+2) DH1718D-2型双路跟踪稳压稳流电源0~32V 0~2A Fluke 15B数字万用表电流档±(1.5%+3) Victor VC9806+数字万用表200 mA档±(0.5%+4) 【实验原理】 (1)霍尔效应法测量磁场原理 若将通有电流的导体至于磁场B之中,磁场B(沿着z轴)垂直于电流I S(沿着x轴)的方向,如图1所示则在导体中垂直于B和I S方向将出现一个横向电位差U H,这个现象称之为霍尔效应。 图 1 霍尔效应示意图 若在x方向通以电流I S,在z方向加磁场B,则在y方向A、A′两侧就开始聚积异号电荷而产生相应的附加电场.当载流子所受的横向电场力F E洛伦兹力F B相等时: q(v×B)=qE 此时电荷在样品中不再偏转,霍尔电势差就有这个电场建立起来。 N型样品和P型样品中建立起的电场相反,如图1所示,所以霍尔电势差有不同的符号,由此可以判断霍尔元件的导电类型。

设P型样品的载流子浓度为p,宽度为w,厚度为的d。通过样品电流I S=pqvwd,则空穴速率v=I S/pqwd,有 U H=Ew=I H B =R H I H B =K H I H B 其中R H=1/pq称为霍尔系数,K H=R H/d=1/pqd称为霍尔元件灵敏度。(2)霍尔元件的副效应及其消除方法 在实际测量过程中,会伴随一些热磁副效应,这些热磁效应有: 埃廷斯豪森效应:由于霍尔片两端的温度差形成的温差电动势U E 能斯特效应:热流通过霍尔片在其端会产生电动势U N 里吉—勒迪克效应:热流通过霍尔片时两侧会有温度差产生,从而又产生温差电动势U R 除此之外还有由于电极不在同一等势面上引起的不等位电势差U0 为了消除副效应,在操作时我们需要分别改变IH和B的方向,记录4组电势差的数据 当I H正向,B正向时:U1=U H+U0+U E+U N+U R 当I H负向,B正向时:U2=?U H?U0?U E+U N+U R 当I H负向,B负向时:U3=U H?U0+U E?U N?U R 当I H正向,B负向时:U4=?U H+U0?U E?U N?U R 取平均值有 1 (U1?U2+U3?U4)=U H+U E≈U H (3)测量电路 图 2 霍尔效应测量磁场电路图 霍尔效应的实验电路图如图所示。I M是励磁电流,由直流稳流电源E1提供电流,用数字万用表安培档测量I M。I S是霍尔电流,由直流稳压电源E2提供电流,用数字万用表毫安档测量I S,为了保证I S的稳定,电路中加入电阻箱R进行微调。U H是要测的霍尔电压,接入高精度的数字多用表进行测量。 根据原理(2)的说明,在实验中需要消除副效应。实际操作中,依次将I S、 I M的开关K1、K2置于(+,+)、(?,+)、(?,?)、(+,?)状态并记录U i即可,其 中+表示正向接入,?表示反向接入。

物理学教程第11章恒定磁场

一、简单选择题: 1.下列哪位科学家首先发现了电流对小磁针有力的作用:( D ) (A)麦克斯韦(B)牛顿 (C)库仑(D)奥斯特 2.磁场对运动电荷或载流导线有力的作用,下列说法中不正确的是:( B )(A)磁场对运动粒子的作用不能增大粒子的动能; (B)在磁场方向和电流方向一定的情况下,导体所受安培力的方向与载流子种类有关; (C)在磁场方向和电流方向一定的情况下,霍尔电压的正负与载流子的种类有关; (D)磁场对运动电荷的作用力称做洛仑兹力,它与运动电荷的正负、速率以及速度与磁场的方向有关。 3. 运动电荷之间的相互作用是通过什么来实现的:(B) (A)静电场(B)磁场 (C)引力场(D)库仑力 4.在均匀磁场中,放置一个正方形的载流线圈,使其每边受到的磁力的大小都相同的方法有:(B) (A)无论怎么放都可以(B)使线圈的法线与磁场平行(C)使线圈的法线与磁场垂直(D)(B)和(C)两种方法都可以 5.电流之间的相互作用是通过什么来实现的( B ) (A)静电场(B)磁场 (C)引力场(D)库仑力 6.一平面载流线圈置于均匀磁场中,下列说法正确的是:(D)(A)只有正方形的平面载流线圈,外磁场的合力才为零 (B)只有圆形的平面载流线圈,外磁场的合力才为零 (C)任意形状的平面载流线圈,外磁场的合力和力矩一定为零 (D)任意形状的平面载流线圈,外磁场的合力一定为零,但力矩不一定零 7.下列说法不正确的是:( A ) (A)静止电荷在磁场中受到力的作用 (B)静止电荷在电场中受到力的作用 (C)电流在磁场中受到力的作用 (D)运动电荷在磁场中受到力的作用

8.一根长为L ,载流I 的直导线置于均匀磁场B 中,计算安培力大小的公式是 sin F IBL θ=,这个公式中的θ代表: ( B ) (A )直导线L 和磁场B 的夹角 (B )直导线中电流方向和磁场B 的夹角 (C )直导线L 的法线和磁场B 的夹角 (D )因为是直导线和均匀磁场,则可令090θ= 7.磁感强度的单位是:( D ) (A )韦伯 (B )亨利 (C )牛顿/库伦 (D )特斯拉 8.在静止电子附近放置一条载流直导线,则电子在直导线产生的磁场中的运动状态是( D ) (A )向靠近导线方向运动 (B )向远离导线方向运动 (C )沿导线方向运动 (D )静止 9.下列说法正确的是:( B ) (A )磁场中各点的磁感强度不随时间变化,称为均匀磁场 (B )磁场中各点的磁感强度大小和方向都相同,称为均匀磁场 (C )磁场中各点的磁感强度大小和方向都相同,称为稳恒磁场 (D )稳恒磁场中,各点的磁感强度大小一定都相同 10.洛仑兹力可以:( B ) (A )改变运动带电粒子的速率 (B )改变带电运动粒子的动量 (C )对带电运动粒子作功 (D )增加带电运动粒子的动能 11.下列公式不正确的是:( D ) (A )03 d 4π I l r dB r μ?= (B )02 d 4π r I l e dB r μ?= (C )02 d sin 4π I l dB r μθ = (D )02 d sin 4π I l dB r μθ = 12.关于带电粒子在磁场中的运动,说法正确的是:( C ) (A )带电粒子在磁场中运动的回旋半径与粒子速度无关 (B )带电粒子在磁场中运动的回旋周期与粒子速度有关

亥姆霍兹线圈磁场测定-实验报告

开放性实验实验报告—— 亥姆霍兹线圈磁场测定 姓名学号班级 亥姆霍兹线圈是一对相同的、共轴的、彼此平行的各有N匝的圆环电流。当它们的间距正好等于其圆环半径R时,称这对圆线圈为亥姆霍兹线圈。在亥姆霍兹线圈的两个圆电流之间的磁场比较均匀。在生产和科研中经常要把样品放在均匀磁场中作测试,利用亥姆霍兹线圈是获得一种均匀磁场的比较方便的方法。 一、实验目的 1. 熟悉霍尔效应法测量磁场的原理。 2. 学会亥姆霍兹磁场实验仪的使用方法。 3. 测量圆线圈和亥姆霍兹线圈上的磁场分布,并验证磁场的叠加原理 二、实验原理 同学们注意,根据自己的理解,适当增减,不要太多,有了重点就可以了。 1.霍尔器件测量磁场的原理 图3—8—1 霍尔效应原理

如图3—8—1所示,有-N型半导体材料制成的霍尔传感器,长为L,宽为b,厚为d,其四个侧面各焊有一个电极1、2、3、4。将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I,电流密度为J,则电子将沿负J方向以速度运动,此电子将受到垂直方向磁场B的洛仑兹力 作用,造成电子在半导体薄片的1测积累过量的负电荷,2侧积累过量的正电荷。因此在薄片中产生了由2侧指向1侧的电场,该电场对电子的作用力,与反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起稳定的电压,此种效应为霍尔效应,由此而产生的电压叫霍尔电压,1、2端输出的霍尔电压可由数显电压表测量并显示出来。 如果半导体中电流I是稳定而均匀的,则电流密度J的大小为

(3—8—1) 式中b为矩形导体的宽,d为其厚度,则bd为半导体垂直于电流方向的截面积。 如果半导体所在范围内,磁场B也是均匀的,则霍耳电场也是均匀的,大小为 (3—8—2) 霍耳电场使电子受到一与洛仑兹力F m相反的电场力F e,将阻止电子继续迁移,随着电荷积累的增加,霍耳电场的电场力也增大,当达到一定程度时,F m与F e大小相等,电荷积累达到动态平衡,形成稳定的霍耳电压,这时根据F m=F e有 (3—8—3) 将(3—8—2)式代入(3—8—3)式得 (3—8—4) 式中、容易测量,但电子速度难测,为此将变成与I有关的参数。根据欧姆定理电流密度,为载流子的浓度,得,故有 (3—8—5) 将(3—8—5)式代入(3—8—4)式得

第十一章稳恒电流的磁场一作业答案

第十一章 稳恒电流的磁场(一) 一、利用毕奥—萨法尔定律计算磁感应强度 毕奥—萨法尔定律:3 04r r l Id B d ?=πμ 1.有限长载流直导线的磁场)cos (cos 4210ααπμ-=a I B ,无限长载流直导线a I B πμ20= 半无限长载流直导线a I B πμ40=,直导线延长线上0=B 2. 圆环电流的磁场232220)(2x R IR B +=μ,圆环中心R I B 20μ=,圆弧中心πθ μ220? =R I B 电荷转动形成的电流:π ω ωπ22q q T q I === 【 】基础训练1、载流的圆形线圈(半径a 1 )与正方形线圈(边长a 通有相同电流I .如图若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B) π2∶1 (C) π2∶4 (D) π2∶8 () 8 2,,22135cos 45cos 2 44, 2212 000201 02121ππμπμμ=== -?? ? == a a B B a I a I B a I B o o o o 得 由【 】基础训练3、有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上 均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点的磁感强度B 的大小为 (A) ) (20b a I +πμ. (B) b b a a I +πln 20μ.(C) b b a b I +πln 20μ. (D) )2(0b a I +πμ. 解法: b b a a I r dr a I r r dI dB dr a I dI a b b +===== =???+ln 222dI B B B ,B d B ,2P ,)(dr r P 0000πμπμπμπμ的大小为:,的方向也垂直纸面向内据方向垂直纸面向内;根处产生的它在,电流为导线相当于一根无限长的直的电流元处选取一个宽度为点为在距离 【 】自测提高2、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感 强度的大小B P ,B Q ,B O 间的关系为 (A) B P > B Q > B O . (B) B Q > B P > B O . B Q > B O > B P . (D) B O > B Q > B P . 解法:

恒定电流和磁场知识点总结

恒定电流 一、电流:电荷的定向移动行成电流。 1、产生电流的条件:(1)自由电荷;(2)电场; 2、电流是标量,但有方向:我们规定:正电荷定向移动的方向是电流的方向; 注:在电源外部,电流从电源的正极流向负极;在电源的内部,电流从负极流向正极;3、电流的大小:通过导体横截面的电荷量Q跟通过这些电量所用时间t的比值叫电流I表示;(1)数学表达式:I=Q/t;(2)电流的国际单位:安培A (3)常用单位:毫安mA、微安uA; 二、欧姆定律:导体中的电流跟导体两端的电压U成正比,跟导体的电阻R成反比; 1、定义式:I=U/R; 2、推论:R=U/I; 3、电阻的国际单位时欧姆,用Ω表示; 三、闭合电路:由电源、导线、用电器、电键组成; 1、电动势:电源的电动势等于电源没接入电路时两极间的电压;用E表示; 2、外电路:电源外部的电路叫外电路;外电路的电阻叫外电阻;用R表示;其两端电压叫外电压; 3、内电路:电源内部的电路叫内电阻,内点路的电阻叫内电阻;用r表示;其两端电压叫内电压;如:发电机的线圈、干电池内的溶液是内电路,其电阻是内电阻; 4、电源的电动势等于内、外电压之和; E=U内+U外 U外=RI E=(R+r)I 四、闭合电路的欧姆定律: 闭合电路里的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比; 1、数学表达式:I=E/(R+r) 2、当外电路断开时,外电阻无穷大,电源电动势等于路端电压;就是电源电动势的定义; 3、当外电阻为零(短路)时,因内阻很小,电流很大,会烧坏电路; 五、半导体:导电能力在导体和绝缘体之间;半导体的电阻随温升越高而减小;导体的电阻随温度的升高而升高,当温度降低到某一值时电阻消失,成为超导; 补充: 1.电阻定律:导体两端电阻与导体长度、横截面积及材料性质有关。 R=pl/S(电阻的决定式)P只与导体材料性质有关。R与温度有关。 二极管:单向导电性;正极与电源正极相连。 2.串联特点:①总电压等于各部分电压之和。 ②电流处处相等 ③总电阻等于各部分电阻和 ④总功率等于各部分功率和

磁悬浮实验报告67796

实验报告 课程名称: 工程电子场与电磁波 指导老师:________熊素铭________ 成绩:__________________ 实验名称:_ 磁悬浮 _实验类型: 动手操作及仿真 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1、观察自稳定的磁悬浮物理现象; 2、了解磁悬浮的作用机理及其理论分析的基础知识; 3、在理论分析与实验研究相结合的基础上,力求深化对磁场能量、电感参数和电磁力等知识点的理解。 二、实验内容 1、观察自稳定的磁悬浮物理现象 2、实测对应于不同悬浮高度的盘状线圈的激磁电流 3、观察不同厚度的铝板对自稳定磁悬浮状态的影响 实验原理 专业: 姓名: 学号: 日期: 地点:

1、自稳定的磁悬浮物理现象 由盘状载流线圈和铝板相组合构成磁悬浮系统的实验装置,如图2-6所示。该系统中可调节的扁平盘状线圈的激磁电流由自耦变压器提供,从而在50 Hz正弦交变磁场作用下,铝质导板中将产生感应涡流,涡流所产生的去磁效应,即表征为盘状载流线圈自稳定的磁悬浮现象。 2、基于虚位移法的磁悬浮机理的分析 在自稳定磁悬浮现象的理想化分析的前提下,根据电磁场理论可知,铝质导板应被看作为完纯导体,但事实上当激磁频率为50 Hz时,铝质导板仅近似地满足这一要求。为此,在本实验装置的构造中,铝质导板设计的厚度b 还必须远大于电磁波正入射平表面导体的透入深度d(b )。换句话说,在理想化的理论分析中,就交变磁场的作用而言,此时,该铝质导板可被看作为“透不过的导体”。 对于给定悬浮高度的自稳定磁悬浮现象,显然,作用于盘状载流线圈的向上的电磁力必然等于该线圈的重量。本实验中,当通入盘状线圈的激磁电流增大到使其与铝板中感生涡流合成的磁场,对盘状载流线圈作用的电磁力足以克服线圈自重时,线圈即浮离铝板,呈现自稳定的磁悬浮物理现象。现应用虚位移法来求取作用于该磁悬浮系统的电动推斥力。

第11章稳恒电流与真空中的恒定磁场习题解答和分析学习资料

第11章稳恒电流与真空中的恒定磁场习题解答和分析

第十一章 电流与磁场 11-1 电源中的非静电力与静电力有什么不同? 答:在电路中,电源中非静电力的作用是,迫使正电荷经过电源内部由低电位的电源负极移动到高电位的电源正极,使两极间维持一电位差。而静电场的作用是在外电路中把正电荷由高电位的地方移动到低电位的地方,起到推动电流的作用;在电源内部正好相反,静电场起的是抵制电流的作用。 电源中存在的电场有两种:1、非静电起源的场;2、稳恒场。把这两种场与静电场比较,静电场由静止电荷所激发,它不随时间的变化而变化。非静电场不由静止电荷产生,它的大小决定于单位正电荷所受的非静电力,q 非 F E =。当 然电源种类不同,非F 的起因也不同。 11-2静电场与恒定电场相同处和不同处?为什么恒定电场中仍可应用电势概念? 答:稳恒电场与静电场有相同之处,即是它们都不随时间的变化而变化,基本规律相同,并且都是位场。但稳恒电场由分布不随时间变化的电荷产生,电荷本身却在移动。 正因为建立稳恒电场的电荷分布不随时间变化,因此静电场的两条基本定理,即高斯定理和环路定理仍然适用,所以仍可引入电势的概念。 11-3一根铜导线表面涂以银层,当两端加上电压后,在铜线和银层中,电场强度是否相同?电流密度是否相同?电流强度是否相同?为什么? 答:此题涉及知识点:电流强度d s I =??j s ,电流密度概念,电场强度概念, 欧姆定律的微分形式j E σ=。设铜线材料横截面均匀,银层的材料和厚度也均匀。由于加在两者上的电压相同,两者的长度又相等,故铜线和银层的场强E

相同。由于铜线和银层的电导率σ不同,根据j E σ=知,它们中的电流密度j 不相同。电流强度d s I =??j s ,铜线和银层的j 不同但相差不太大,而它们的横 截面积一般相差较大,所以通过两者的电流强度,一般说来是不相同的。 11-4一束质子发生侧向偏转,造成这个偏转的原因可否是:(1)电场?(2)磁场?(3)若是电场和磁场在起作用,如何判断是哪一种场? 答:造成这个偏转的原因可以是电场或磁场。可以改变质子的运动方向,通过质子观察运动轨迹来判断是电场还是磁场在起作用。 11-5 三个粒子,当它们通过磁场时沿着如题图11-5所示的路径运动,对每个粒子可作出什么判断? 答:根据带电粒子在磁场中所受的洛伦兹力规律,通过观察运动轨迹的不同可以判断三种粒子是否带电和带电种类。 11-6 一长直载流导线如题11-6图所示,沿Oy 轴正向放置,在原点O 处取一电流元d I l ,求该电流元在(a ,0,0),(0,a ,0),(a ,a ,0),(a , a ,a )各点处的磁感应强度Β。 分析:根据毕奥-萨伐尔定律求解。 解:由毕奥-萨伐尔定律 03 d d .4πI r μ?=l r Β 原点O 处的电流元d I l 在(a ,0,0)点产生的Β为:000332 ()444I Idl Idlj ai dB adlk k a a a μμμπππ?==-=- d I l 在(0,a ,0)点产生的Β为:

第八章 恒定电流的磁场(二)

一. 选择题 [ C ]1. (基础训练2)三条无限长直导线等距地并排安放,导线Ⅰ、Ⅱ、Ⅲ分别载有1 A ,2 A ,3 A 同方向的电流.由于磁相互作用的结果,导线Ⅰ,Ⅱ,Ⅲ单位长度上分别受力F 1、F 2和F 3,如图所示.则F 1与F 2的比值是: (A) 7/16. (B) 5/8. (C) 7/8. (D) 5/4. 提示:设导线Ⅰ、Ⅱ、Ⅲ的电流强度分别为321,,I I I ,产生的磁感应强度分别为 321,,B B B ,相邻导线相距为 a ,则 a a I a I l I B l I B l I F a a I a I l I B l I B l I F πμπμπμπμπμπμ0103022122322203020113112111222 ,47222= ??? ??-=-== ??? ???+=+= 式中3A.I A,2I 1A,I ,1 ,132121=====m l m l 故8/7/21=F F . [ D ]2. (基础训练6)两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为 (A) R r I I 22 210πμ. (B) R r I I 22 210μ. (C) r R I I 22 210πμ. (D) 0. 提示:大圆电流在圆心处的磁感应强度为,方向垂直纸面朝内 2R I B 1 01μ=;小 圆电流的磁矩为方向垂直纸面朝内, ,222 r I p m π=所以,小圆 电流受到的磁力矩为 012=?=B p M m [ B ]3.(自测提高4) 一个动量为p 的电子,沿图示方向入射 并能穿过一个宽度为D 、磁感强度为B (方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为 (A) p eBD 1cos -=α. (B) p eBD 1sin -=α. F 1 F 2F 3 1 A 2 A 3 A ⅠⅡⅢ O r R I 1 I 2

巨磁电阻实验报告

巨磁电阻实验报告 【目的要求】 1、 了解GMR 效应的原理 2、 测量GMR 模拟传感器的磁电转换特性曲线 3、 测量GMR 的磁阻特性曲线 4、 用GMR 传感器测量电流 5、 用GMR 梯度传感器测量齿轮的角位移,了解GMR 转速(速度)传感器的原理 【原理简述】 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律 R=ρl/S 中,把电阻率ρ视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm ),可以忽略边界效应。当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm ),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。 电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott 指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。 在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。 无外磁场时顶层磁场方向 无外磁场时底层磁场方向 图 2 多层膜GMR 结构图 图3是图2结构的某种GMR 材料的磁阻特性。由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减 图3 某种GMR 材料的磁阻特性 磁场强度 / 高斯 电阻 \ 欧姆

相关主题
相关文档 最新文档