当前位置:文档之家› 影响土壤浸提液电导率的盐分化学性质要素及其强度研究

影响土壤浸提液电导率的盐分化学性质要素及其强度研究

影响土壤浸提液电导率的盐分化学性质要素及其强度研究
影响土壤浸提液电导率的盐分化学性质要素及其强度研究

土壤电导率的测定实验报告

竭诚为您提供优质文档/双击可除土壤电导率的测定实验报告 篇一:土壤学实验 1.1土壤样品的采集与处理 (7) 1.1.1土壤样品的采集 (7) 1.1.2土壤样品的处理 (8) 1.2土壤水分的测定 (10) 1.2.1土壤吸湿水的测定 (10) 1.2.2土壤田间持水量的测定 (10) 1.3土壤容重和孔度的测

定............................................................... . (12) 1.3.1土壤容重的测定................................................................... . (12) 1.3.2土壤孔度的测定......................................................................(:土壤电导率的测定实验报告). (12) 1.4土壤有机质的测定...................................................................14附录A土壤农化分析基本知识..........................................................119附录b土筛号与筛孔直径对照表.........................................................127附录c 电导仪温度校正系数.. (1) 28附录D折射率的温度校正及换算为可溶性固形物含量 (130) 实验一土壤样品制作 1.1土壤样品的采集与处理 土壤是农业生产的基础,土壤的理化性质直接影响农产品的数量和质量。对土壤样品进行分析,首先须对土壤样品

土壤农化分析

《土壤农化分析》2000年1月由中国农业出版社出版,作者是博斯丹。 本书适用于土壤、农业化学和植物营养专业的本科生和研究生。 内容有效性 《21世纪土壤农化分析》教材已获国家农业大学指导委员会批准。在第二版中,我们试图反映20世纪90年代土壤农化分析的进展,土壤分析内容略有增加,但变化不显著。在植物分析中,增加了农产品质量分析的新内容。由于工业“三废”排放的有害重金属元素对水和农田对动植物和人类的毒性越来越大,增加了“无机污染物(有害)物质分析”一章;混合肥料。材料分析的内容为国家标准方法。鉴于各学校都单独开设了仪器分析课程,根据大家的意见,删除了“仪器分析”一章,进行全面的质量控制,提高技术人员的专业水平,保证分析工作的质量,加强分析工作的科学管理,特别是增加了“分析质量控制和数据处理”一章。

在本书的第二版中,许多测量单位和符号不再使用。第二版严格按照1984年颁布的《中华人民共和国计量单位法》及国家有关数量和单位标准,进行了全面修订,保持了全书的一致性。 书目录 第一章是土壤农业化学分析的基础知识 第二章土样的采集和制备 第三章土壤有机质的测定 第四章土壤氮硫分析 第五章土壤中微量元素的测定 第六章土壤中钾的测定 第七章土壤中微量元素的测定 第八章土壤阳离子交换量分析 第九章土壤水溶性盐分析

第十章土壤碳酸钙的测定 第十一章土壤中硅、铁、铝等元素分析 第十二章植物样品的采集、制备和水分测定第十三章植物灰分及各种营养元素的测定第十四章农产品中蛋白质和硝酸的分析 第十五章农产品中碳水化合物的分析 第十六章粮油中脂肪酸的测定 第十七章有机酸和维生素分析 第十八章无机污染(有害)物质分析 第十九章无机肥料分析 第二十章有机肥分析 第21章分析质量控制和数据处理

土壤电导率测定方法(精)

土壤电导率测定方法 土壤电导率是测定土壤水溶性盐的指标, 而土壤水溶性盐是土壤的一个重要属性, 是判定土壤中盐类离子是否限制作物生长的因素。上壤中水溶性盐的分析, 对了解盐分动态, 对作物生长的影响以及拟订改良措施具有十分重要的意义。土壤水溶性盐的分析一般包括全盐量测定, 阴离子 (Cl - 、 SO 2- 3 、 CO 2- 3 、 HCO - 3 、 NO - 3 和阳离子 (Na + 、 K + 、 Ca 2+ 、 Mg 2+ 的测定, 并常以离子组成作为盐碱土分类和利用改良的依据。下面把测定方法告诉你, 你应该更能理解土壤电导率与土壤性质的关系了。 测定方法为: 1 实验方法、原理 土壤水溶性盐的测定分水溶性盐的提取和浸出液盐分的测定两部分。在进行土壤水溶性盐提取时应特别注意水土比例、振荡时间和提取方式, 它们对盐分溶出量都有一定影响。目前在我国采用 5 :1 浸提法较为普遍。盐分的测定主要采用电导法和烘干法,其中以电导法较简便,快速,烘干法较准确,但操作繁琐费时。本实验采用水土比 5 :1 浸提,电导法测定水溶性盐总量。电导法测定原理是土壤水溶性盐是强电解质, 其水溶液具有导电作用, 在一定浓度范围内, 溶液的含盐量与电导率呈正相关, 因此通过测定待测液电导率的高低即可测出土壤水溶性盐含量。 2 仪器试剂 250ml 三角瓶,漏斗、电导仪、电导电极。 0.01M KCl , 0.02M KCL 标准溶液。 3 操作步骤 土壤水溶性盐的提取, 称取过 1mm 筛风干土 20.00g , 置于 250ml 干燥三角瓶中,加入蒸馏水 100m1( 水土比 5 :1 ,振荡 5 分钟,过滤于干燥三角瓶中,需得到清壳滤

(完整版)第八章+成土因素和土壤形成过程

第三节成土因素和土壤形成过程 以上我们讨论了土壤的三相物质四种成分及其土壤的主要物理化学性质。不同的土壤具有不同的物质组成和性质,土壤的肥力状况也不同。那么土壤是怎样形成的呢?这是土壤地理学要搞清楚的问题之一。 一、土壤形成因素 (一)土壤形成因素学说 1. 道库恰耶土壤形成因素学说土壤形成因素学说是十九世纪末,由俄国著名的土壤学家B.B. 道库恰耶夫建立起来的。道库恰耶夫土壤形成因素学说的基本观点有以下四点: ①土壤是成土因素综合作用的产物他认为土壤是在各种成土因素综合作用下形成的,离开某一成土因素都不能形成土壤,并提出了如下土壤形成数学函数式。 S:土壤,K:气候,O:生物,F :岩石,P:地形,T:时间道库恰耶夫认为土壤形成因素包括气候、生物、母质和时间四种因素,它们各自对土壤形成都有一定的作用。只有某一种因素形不能形成土壤,是在这四种因素综合作用下形成的。②成土因素的同等重要性和相互不可代替性关于这一点,他举例说:“我们假定,如果医生提出水、空气和食物对人的机体那个比 较重要,那么这个问题是空洞而用无的。因为缺乏任何一个,生物都不能单独生存,提出这 样的问题是无益的。提出土壤形成因素中哪一个因素起着最重要的作用,同样也是无益 的。” ③成土因素的发展变化制约着土壤的形成和演化世界上的一切事物都在不停地运动,成土因素也是如 此,它们也处于无休止的变化过 程当中。前面已经说过,土壤是各种成土因素综合作用的结果。它们与土壤之间的关系是函数关系,若成土因素发生了变化,土壤本身也必然跟着发生相应的变化,所以成土因素的发展变化制约着土壤的形成和演化。 ④成土因素是有地理分布规律的道库恰耶夫在多年研究俄罗斯黑钙土的基础上,1883 年发表了他的 经典著作——《俄 国黑钙土》。在这本书中他第一次阐明了土壤的地带性分布规律,同时他指出,这是由于成土因素有地带性分布规律的结果。虽然现在看起来,各种自然事物的地带性规律已为众所周知的事实。但在当时,这种观点也是史无前例的,非常了不起的。它对以后地理科学的发展起到了巨大的推动作用。 但是由于当时的条件限制,道库恰耶夫成土因素学说也还存在不少问题。最突出的问题有两个: ①没有指出土壤形成过程中的主要因素。②没有指出人类活动在成土中的特殊作用。 2. 威廉斯对土壤形成因素的发展 ①提出了生物发生学观点威廉斯认为在所有自然成土因素中,生物因素应为主导因素。因为土壤的 本质特性是 它具有肥力,而肥力的产生是生物在土壤中活动的结果,没有生物活动就没有土壤,因此他认为土壤是在以生物为主导的各种成土因素综合作用下形成的。 ②提出了土壤是人类劳动对象和劳动产物的观点 这一观点的提出具有极为重要的意义,一方面土壤是人类劳动的对象,也就是说人类的农业生产活动离不开土壤,强调了土壤对人类的重要性。另一方面土壤又是人类劳动的产物,就是说人类活动也是一个重要的成土因素,特别对农业土壤来说,它是一个主导因素。 3. 叶尼对土壤形成因素学说的发展

资源环境分析教学大纲

《资源环境分析》教学大纲 一、基本信息 二、教学目标及任务 资源环境分析既是一门技术性很强的课程,又是一门应用学科,是农业资源与环境专业的核心课程。 学生通过学习土壤、植物、农产品品质、肥料、环境污染分析的基本知识,掌握样品的采集制备、分析方法的选择与使用、分析样品的预处理技术、测试方法的基本原理、试剂配制与测试操作技术、操作的要点难点,方法的误差产生与干扰的克服方法、常规分析与现代仪器分析技术、分析质量的控制、分析数据的处理与评价应用知识。为学生开展SRT课题的研究,参与本学科或相关学科的科学研究,进行毕业论文的设计提供技术支撑。同时也为学生毕业后从事科学研究,在实际生产中为可持续农业的发展进行合理施肥、食物和饲料的检定、环境评价与环境修复、有机绿色农业生产的提供强有力的技术支持。 三、学时分配 四、教学内容及教学要求 第一章分析的基本知识

第三节水、试剂、器皿 1.水的制备与检验 2.试剂的规格、标准、选用与配制 3.常用分析器皿的特性、使用与洗涤 习题要点:水的检验方法与要求,试剂的规格与配制方法,常用分析器皿的特性和洗涤方法。 第四节分析误差的控制与数据处理 1.分析误差的来源 2.分析误差的表示方法 3.系统误差的控制 4.偶然误差的控制 5.允许误差的范围 6.可疑数据的取舍 习题要点:分析误差的类型与表示方法,如何控制分析误差和进行数据的取舍。 本章重点、难点:实验室用水的检验、试剂的选用与配制方法,常用器皿的特性与使用方法,实验误差的减免。本章教学要求: 掌握:实验用水的检验指标和检验方法,试剂的规格、选用、配制与保存方法,常用器皿的特性与使用方法,实验误差的检验与减免。 理解:实验室用水的制备方法、试剂的标准,分析数据的统计与检验。 了解:特殊用水的制备方法,标准试剂的要求和前处理方法,常规分析仪器的使用与维护。 第一章样品的采集制备与保存 第四节土壤样品的采集制备与保存 1.土壤样品的采集 2.土壤样品的制备 3.土壤样品的保存 习题要点:如何使土壤样品具有最大的代表性,特殊样品的采集制备和保存的要求。 第五节植物样品的采集制备与保存 1.植物组织品采集制备与保存 2.瓜果样品采集制备与保存 3.籽粒样品采集制备与保存 习题要点:根据研究的要求采集制备与保存植物组织。 第六节肥料样品的采集制备与保存 1.无机肥料样品的采集制备与保存 2.有机肥料样品的采集制备与保存 习题要点:比较肥料样品、土壤样品和植物样品的采集、制备与保存的异同。 第五节样品水分含量的测定 1.常压烘干法 2.减压烘干法 3.共沸蒸馏法 4.卡尔·费休法 习题要点:根据样品的特性选用其水分含量的测定方法,操作要点。 本章重点、难点:代表性土壤、植物、肥料样品的采集制备与保存方法与要求。 本章教学要求: 掌握:代表性土壤、植物、肥料样品的采集制备与保存方法与要求,水分测定的烘干法。 理解:特殊土样、诊断样品的采集制备与保存方法,水分测定的减压烘干法、蒸馏法、卡尔-费休法的原理。 了解:根据样品的特性和研究要求进行样品的采集与制备、选择样品水分含量的测定方法。 第三章土壤有机质的测定 第三节概述。 1.土壤有机质在肥力上的意义 2.土壤有机质的形态与含量 3.土壤有机质与氮素含量的关系 4.有机碳不同测定方法的比较和选用

土壤含水率和盐分对土壤电导率的影响_孙宇瑞

中国农业大学学报 2000,5(4):39~41 Jo ur na l o f China Ag ricultura l U niv er sity 土壤含水率和盐分对土壤电导率的影响 孙宇瑞① (中国农业大学精细农业研究中心) 摘 要 基于电流-电压四端法的“po la r-dipo le ar ra y”形式,以壤土作为研究对象,对土壤含水率和土壤盐分与土壤电导率之间的相互关系进行了试验研究。结果表明,在土壤盐分和含水率2个相关因素中,土壤盐分对土壤电导率的影响较土壤含水率要大得多。 关键词 土壤电导率;土壤含水率;土壤盐分;测量 分类号 S153.2 Experimental Survey for the Effects of Soil Water Content and Soil Salinity on Soil Electrical Conductivity Sun Yurui (Research Center of Precision Agriculture,CAU) Abstract By using one ty pe of four-electro de senso rs,called“pola r-dipole a rra y”,the rela tionship amo ng soil w ater content,soil salinity and soil electrical co nductivity w as inv estigated.The test results show ed that in most cases soil salinity can be assessed directly from the measurement of soil electrical conductivity ev en tho ugh soil electrical co nductivity is a v ariable determined by a co mbinatio n of soil w ater content,soil salinity and soil tex ture, soil com paction and so on. Key words soil electrical co nductivity;soil wa ter content;soil salinity;measurement 近年来土壤学的研究结果表明,土壤电导率这一参数本身包含了反映土壤品质和物理性质的丰富信息[1]。例如,土壤中盐分、水分及有机质含量,土壤压实度、质地结构和孔隙率等都不同程度地影响着土壤电导率的改变。在以上诸因素中,文献[2]认为土壤盐分和含水率对电导率的影响明显大于其他各因素。借助于测量土壤电导率评价农作物的生长环境,是当前发达国家精细农作研究的热点之一。笔者应用“电流-电压四端法”的“pola r-dipo le ar ray”测量组态,对土壤盐分、含水率与土壤电导率间的相互影响分别做了单因素和双因素的试验研究。 1 测量原理 测量电路见图1。I为一恒流源,作为测量电路的激励信号源;ΔV MN为M与N两点间的电位差。4根土壤探针分为2组分别与I和ΔV MN连接。J,K分别为激励电流I的流入与流出端口;M,N分别为测量电路的输出电位端口;a为电流端J和K距离之中点至电压端M和N 距离之中点的跨距;b为J和K间的距离;c为M和N间的距离。这种特殊的测量探针分布结 收稿日期:20000229 ①孙宇瑞,北京清华东路17号中国农业大学(东校区)63信箱,100083

土壤理化性质分析方法

测定土壤理化指标有很多标准文件,部分指标有国家标准,部分用农业行业标准,由于指标太多,故列出土壤测定的一些方法,通过方法可以搜索到行业标准或国家标准的具体内容,供参考: 土壤质地国际制;指测法或密度计法(粒度分布仪法)测定 土壤容重环刀法测定 土壤水分烘干法测定 土壤田间持水量环刀法测定 土壤pH土液比1:2.5,电位法测定 土壤交换酸氯化钾交换——中和滴定法测定 石灰需要量氯化钙交换——中和滴定法测定 土壤阳离子交换量EDTA-乙酸铵盐交换法测定 土壤水溶性盐分总量电导率法或重量法测定 碳酸根和重碳酸根电位滴定法或双指示剂中和法测定 氯离子硝酸银滴定法测定 硫酸根离子硫酸钡比浊法或EDTA间接滴定法测定 钙、镁离子原子吸收分光光度计法测定 钾、钠离子火焰光度法或原子吸收分光光度计法测定 土壤氧化还原电位电位法测定。 土壤有机质油浴加热重铬酸钾氧化容量法测定 土壤全氮凯氏蒸馏法测定 土壤水解性氮碱解扩散法测定 土壤铵态氮氯化钾浸提——靛酚蓝比色法(分光光度法)测定 土壤硝态氮氯化钙浸提——紫外分光光度计法或酚二磺酸比色法(分光光度法)测定 土壤有效磷碳酸氢钠或氟化铵-盐酸浸提——钼锑抗比色法(分光光度法)测定 土壤缓效钾硝酸提取——火焰光度计、原子吸收分光光度计法或ICP法测定 土壤速效钾乙酸铵浸提——火焰光度计、原子吸收分光光度计法或ICP法测定 土壤交换性钙镁乙酸铵交换——原子吸收分光光度计法或ICP法测定 土壤有效硫磷酸盐-乙酸或氯化钙浸提——硫酸钡比浊法测定 土壤有效硅柠檬酸或乙酸缓冲液浸提-硅钼蓝比色法(分光光度法)测定 土壤有效铜、锌、铁、锰DTPA浸提-原子吸收分光光度计法或ICP法测定 土壤有效硼沸水浸提——甲亚胺-H比色法(分光光度法)或姜黄素比色法(分光光度法)或ICP法测定 土壤有效钼草酸-草酸铵浸提——极谱法测定 全量铅、镉、铬干灰化法处理——原子吸收分光光度计法或ICP法测定 全量汞湿灰化处理——冷原子吸收(或荧光)光度计法 全量砷干灰化处理——共价氢化物原子荧光光度法或ICP法测定

(完整版)土壤农化分析教学及实验大纲

《土壤农化分析》教学大纲 一、课程教学大纲说明 1.课程性质与任务 《土壤农化分析》是研究土壤植物及肥料分析的科学,是一门以实验为主实践性技术性很强的课程,同时也是一门应用科学,是农业资源与环境专业必修的一门专业课。通过本课程的教学,使学生比较全面系统地掌握土壤植物及肥料分析的基本理论,基本知识和基本操作,并且学会现代分析仪器的使用技术,达到能够熟练掌握土壤农化分析的基本技能及分析方法,准确规范的进行土壤植物及肥料样品的分析得出正确的分析结果,并能应用到生产实际和科学研究中去。 2.教学目的与要求 1、学会并掌握土壤农化分析的基本知识及基本操作技能。 2、理解并掌握分析结果的质量控制和数据处理的方法并能够熟练准确的应用。 3、了解常用现代分析仪器的分析原理简单构造及操作方法做到熟练使用正确分析。 4、理解并正确掌握土壤植物及肥料样品的采集制备与保存,试验仪器设备的准备及试剂的配制,熟练正确的掌握试验操作技术及土壤植物和肥料常规分析项目的意义目的分析的基本原理方法操作步骤结果分析及注意事项。并能把分析结果正确的应用到生产实际和科学研究中去。 3.适用专业 《土壤农化分析》适用于农业资源与环境、植物营养,土壤等专业。 4.前期相关课程要求 前期要求具有普通化学、分析化学、高等数学、植物学、土壤学及植物营养与肥料学等学科的一般知识,并与植物营养学和土壤学课程相衔接,从而系统地构成农业资源与环境等专业的课程体系。 5.教学方式、主要环节与学时分配 教学方式本着课堂教学和实验教学并重的原则,主要包括讲课、实验和讨论等环节,计划教学总时数76-80学时,其中讲课48-50学时、实验28-30学时。 6.考试考核办法 以期中和期末考试为主,考核采取闭卷笔试,并要求实验成绩占30-40%、平时成绩占10-20%。 二、使用教材及主要参考书 教材:《土壤农化分析》中国农业出版社出版,鲍士旦主编 参考书目:《土壤农化分析》农业出版社出版,南京农业大学主编 《土壤农化常规分析法》科学出版社出版,中国土壤学会农业化学专业委员会主编 《土壤分析技术规范》,农业出版社出版。全国土壤肥料总站主编 《土壤农化分析手册》,农业出版社出版。劳家柽主编 《土壤农业化学常规分析法》,科学出版社出版,李酉开主编。 三、理论教学内容与学时安排 绪论(1学时) 教学目的和要求明确土壤农化分析的教学目的、任务、内容和方法,要求学生了解土壤农化分析学的发展概况和课程的基本要求。 一、土壤农化分析的内容和任务 二、土壤农化分析的发展概况 三、土壤农化分析的教学目的、方法和基本要求。

土壤总盐量测定

土壤全盐量的测定中华人民共和国林业行业标准L Y / T 1 2 5 1 -1 9 9 土壤浸出液的制备 方法要点 土壤水溶性盐可按一定的土水比例(通常采用1:5 ), 用平衡法浸出,然后侧定浸出液中的全盐量以及CO32-, HCO3-,Cl-, SO42-, C a2+, Mg2+,N a+,K+等8种主要离子的含量(可计算出离子总量) 。测定结果均以千克土所含厘摩尔数( c mo l / k g ) 表示。 主要仪器 真空泵 往复式电动振荡机 离心机(4000r/min) 锥形瓶 布氏漏斗或素瓷滤烛 抽滤瓶 锥形瓶。 测定步骤 用台秤准确称取通过2mm筛孔的风干土样50.00g,放入干燥的500m L锥形瓶中。用量筒准确加入无二氧化碳的纯水250mL,加塞,振荡3min, 按土壤悬浊液是否易滤清的情况,选用下列方法之一过滤,以获得清亮的浸出液,滤液用干燥锥形瓶承接。全部滤完后,将滤液充分摇匀,塞好,供测定用。 容易滤清的土壤悬浊液:用滤纸在7cm直径漏斗上过滤,或用布氏漏斗抽滤,滤斗上用表面皿盖好,以减少蒸发。最初的滤液常呈浑浊状,必须重复过滤至清亮为止。 较难滤清的土壤悬浊液:用皱折的双层紧密滤纸在10cm直径漏斗上反复过滤。碱化的土壤和全盐量很低的粘重土壤悬浊液,可用素瓷滤烛抽滤。如不用抽滤,也可用离心分离,分离出的溶液也必须清晰透明。 注意事项 ①浸出液的土水比例和浸提时间: 用水浸提土壤中易溶盐时,应力求将易溶盐完全溶解出来,同时又须尽可能使难溶盐和中溶盐(碳酸钙、硫酸钙等)不溶解或少溶解,并避免溶出的离子与土壤胶粒吸附的离子发生交换反应。因此应选择适当的土水比例和振荡时间。 各种盐类的溶解度不同,有的相差悬殊,因而有可能利用控制水土比例的方法将易溶盐与中溶盐及难溶盐分离开。采用加水量小的土水比例,较接近于田间实际情况,同时难溶盐和中溶盐被浸出的量也较少。因此有人采用1:2.5,或1:1的土水比例,或采用饱和泥浆浸出液。加水里小的土水比例,给操作带来的困难很大,特别难适用于粘重土壤。于是有人采用加水t大的土水比例. 如1:5 ,1:10或1:20等。这样又导致易溶盐总量偏高的结果(特别是含硫酸钙和碳酸钙较多的土壤更为显著)。 在同一土水比例下,浸提的时间愈长,中溶盐和难溶盐被浸出的可能性愈大,土粒与水溶液之间的离子交换反应亦愈完全。由此产生的误差也愈大。前人的研究证明,对于土壤中易溶盐的土壤,一般有2-3min便足够了。 因此,制备土壤水浸出液时的土水比例和浸提时间必须统一规定,才能使分析结果可以相互比较。本标准现采用国内较通用的1:5土水比例和振荡3 min时间的规定。 ②盐分分析的土样,可以用湿土样(同时测定土壤水分换算系数K1),也可以通过2mm筛孔的风干土样。 ③制备浸出液所用的蒸馏水或去离子水。放久后会吸收空气中二氧化碳,用这种水浸提土壤时,将会增加碳酸钙的溶解度故须加热煮沸,逐尽二氧化碳。冷却后立即使用。此外,蒸馏

土壤学

土壤学

1.《土壤学》(第二版),西南农业大学主编,中国农业出版社,1991 2.《土壤学》(上、下册),东北林学院主编,中国林业出版社,1979 3.《区域土壤地理》,刘世全、张明主编,四川大学出版社,1997 4.《中国土壤》,席承藩主编,中国农业出版社,1998 5.《四川土壤》,四川省农业厅主编,四川人民出版社,1997 6.《中国土壤》,熊毅、李庆逵主编,科学出版社,1987 7.《土壤学》,罗汝英主编,中国林业出版社,1992 8.《中国红壤》,李庆逵主编,科学出版社,1985 9.《中国农业土壤概论》候光炯主编,中国农业出版社,1979 10.《土壤地理学》,李天杰主编,人民教育出版社,1980 11.《土壤学》国家自然科学基金委员会,科学出版社,1996 12.《土壤农化分析手册》,劳家柽主编,中国农业出版社,1988 13.《土壤发生与分类学》,张凤荣等主编,北京大学出版社,1992 14.《土壤肥料学》,王介元,王昌全主编,中国农业科技出版社,1997 15.《环境土壤学》牟树森,青长乐主编,中国农业出版社,1993 16.《英汉土壤学词汇》,中国科学院南京土壤研究所主编,科学出版社,1975 17.《土壤学名词》,土壤学名词审定委员会主编,科学出版社,1999 18.《基础土壤学》,熊顺贵主编,中国农业大学出版社,2001 19.《土壤科学与农业可持续发展》,中国土壤学会主编,中国科学技术出版社,1994 20.《土壤环境学》,李天杰主编,高等教育出版社,1995 21.《土壤化学》,袁可能主编,中国农业出版社,1990 22.《土壤学》,朱祖祥主编,中国农业出版社,1983 23.《The Natural and Properties of Soils(Eleventh Edition)》,Brandy,N.C. and Well,R.R, prentice Hall 24.《Environmental Soil Science》,Tan,K.H., Marcel Dekker,1994 25.《Soil Microbiology and Biochemistry(Second Edition)》,Paul,E.A.and Clark,F.E.,Academic Press,1996 26.《土壤和环境微生物学》,陈文新主编,北京农业大学出版社,1990 27.《土壤物理学(附实验指导)》,华孟,王坚主编,北京农业大学出版社,1993 28.《土壤溶质运动》,李韵珠,李保国主编,科学出版社,1998 29.《植物营养元素的土壤化学》,袁可能主编,科学出版社,1983 30.《土壤地理研究法》,赵其国,龚子同主编,科学出版社,1989 31.《土壤学》,林大仪主编,北京:中国林业出版社,2002 32.《土壤肥料学》,范业宽、叶坤主编,武昌:武汉大学出版社,2002 33.《土壤肥料学》,吴礼树主编,北京:中国农业出版社,2004 34.《土壤肥料学》,谢德体主编,北京:中国林业出版社,2004 讲授纲要第一二三四五六七八九十十一十二十三十四十五十六十七章 第一章绪论 向上 目的要求: 使得学生了解土壤在人类农业生产和自然环境中的重要性、土壤学的任务与土壤学和相关学科的关系;掌握土壤及土壤肥力的内涵。 教学内容:

土壤农化分析

《土壤农业化学分析》是中国农业出版社于2000年1月出版的一本书,由鲍士丹撰写。 本书适用于土壤,农业化学,植物营养等专业的本科生和研究生。 内容有效性 21世纪土壤农业化学分析教科书(用于土壤农业化学资源和环境)已由国家农业高等学校指导委员会批准。在第二版中,我们试图反映1990年代土壤农业化学分析的进展。土壤分析的含量略有增加,但变化不大;在植物分析中为农产品质量分析增加了新内容;由于从工业“三种废物”排放到水和农田中的有害重金属元素对植物,动物和人类的毒性日益严重,因此增加了“无机污染物(有害)物质的分析”一章;肥料分析部分添加了无机复合肥。材料分析的内容均为国家标准方法。鉴于每个学校都开设了单独的仪器分析课程,因此根据大家的意见删除了“仪器分析”一章;为了全面进行质量控制,提高技术人员的专业水平,保证分析工作的质量,加强分析工作的科学管理,特别增加了“分析质量控制和数据处理”一章。

在本书的第二版中,现在不再使用许多度量单位和符号。在第二版中,严格按照1984年颁布的中华人民共和国计量单位法和相关的国家数量和单位标准进行了相应的全面修订,以保持整本书的一致性。 图书目录 第一章土壤农化分析的基本知识 第二章土壤样品的采集与制备 第三章土壤有机质的测定 第四章土壤氮和硫的分析 第五章土壤中礏的测定 第六章土壤中钾的测定 第七章土壤中微量元素的测定 第八章土壤阳离子交换隆能的分析 第九章土壤水溶性盐的分析

第十章土壤中碳酸钙的测定 第十一章土壤中硅、铁、铝等元素的分析第十二章植物样品的采集、制备与水分测定第十三章植物灰分和各种营养元素的测定第十四章农产品中蛋白质和氮基酸的分析第十五章农产品中碳水化合物的分析 第十六章籽粒中油脂肪酸的测定 第十七章有机酸和维生素的分析 第十八章无机污染(有害)物质的分析 第十九章无机肥料分析 第二十章有机肥料的分析 第二十一章分析质量的控制和数据处理 附表

磷酸盐分析方法(水质 土壤 植株浸提液)

SmartChem正磷酸盐方法(水质; 土壤、植株浸提 液) 方法原理: 磷在酸性条件下与钼酸铵(或同时存在酒石酸锑钾)反应生成淡黄色的磷钼酸铵复合物。再用还原剂抗坏血酸还原生成深蓝色的钼蓝。于880nm波长处测定吸光度,计算磷的浓度。 此方法中只有正磷酸盐才能形成蓝色化合物,多磷酸盐(和一些有机磷复合物)可以通过硫酸人工水解,转化成正磷酸盐。有机磷可以通过过硫酸盐的消解转化成正磷酸盐。 采用不同的前处理方法,将需要测定的磷形态转化成正磷酸盐形式,进行测定。 干扰: 1、在海水中,几倍于磷含量的铜、铁、或硅酸盐不会对测试结果产生干扰,但过高浓度的铁可以产生沉淀并造成磷的流失。铁离子的干扰可以用硫酸氢盐消除。 2、盐含量在5-20%间的样品其磷测试结果将比其实际含量低1%左右。 3、砷酸盐的测定类似于磷的测定,当砷酸盐的浓度高于磷的时候要考虑是否会对结果产生干扰。但在海水中一定浓度的砷酸盐不会对结果产生干扰。砷酸盐的干扰可以用硫酸氢盐消除。 4、分析磷的时候,样品必须过滤以除浊度产生的干扰。总磷或水解磷的过滤应该在消解之后进行,在磷吸收样品颜色在光度计中的吸收会对结果产生影响。 5、方法的干扰还可能由于试剂水、试剂、玻璃器皿或其他样品处理器皿中含有污染物。 1、标样制备 A储备标样的制备200mg P/L: 磷酸二氢钾 0.8772g

蒸馏水 1000mL B使用储备液 20mgP/L: 储备液A 10mL 蒸馏水 100mL C标样系列 分别移取上述20mgP/L的储备液0、2、4、6、8、10mL于6只100mL容量瓶中,用蒸馏水定容至100mL,则其浓度分别为0,0.4,0.8,1.2, 1.6,2mg/L的P。 2、试剂配制 Aerosol 22母液 可以用15% 十二烷基硫酸钠溶液代替:溶解15g的十二烷基硫酸钠溶液(SDS) [CH3(CH2)11OSO3Na(分析纯Sigma CAS No:151-21-3 L5750) (磷酸盐<0.0001%)]到85mL的试剂水中。微摇并加热至完全溶解。 针洗液(测量磷酸盐时的探针清洗液): 1mL Aerosol-22母液或者1g SDS(sigma,日本或者欧洲产)溶解于2000mL蒸馏水中,摇匀。 试剂PO4A: 1mL Aerosol-22母液或者1g SDS(sigma,日本或者欧洲产)溶解于1000mL蒸馏水中,摇匀。(可保存一个月) 酒石酸锑钾溶液(0.3%):称取0.3g的半水合酒石酸锑钾, [K(SbO)C4H4O6·1/2H2O]到100mL容量瓶里,加入50mL的试剂水溶解,并用试剂水定容至100mL。将溶液储存于棕色玻璃瓶中,4℃避光保存。(可保存一个月) 试剂PO4B: 8.5mL浓硫酸溶于70mL蒸馏水中,加入0.6g四水钼酸铵 [(NH4)6Mo7O24·4H2O]和0.3%的酒石酸锑钾溶液5mL,溶解,用试 剂PO4A定容至100mL。(可保存2周)

土壤农化分析各章复习要点

第一章土壤农化分析基本知识 1、名词解释: 空白试验回收率有效数字精密度准确度绝对误差对照试验相对偏差平行性重复性 2、应掌握内容: 1)、误差来源问题 土壤农化分析的误差来源于三个方面,即采样误差、称量误差和分析误差,误差主要来源于采样误差,其次是分析误差;其中分析误差包括系统误差和偶然误差;分析结果的准确度由系统误差决定,分析结果的精密度由偶然误差决定。 系统误差和偶然误差产生的原因。 2)偶然误差和系统误差的检验和校正方法 3)有效数字的保留问题 4)我国试剂的规格: 第二章土壤样品采集与制备 1、名词解释:风干土烘干土土壤质量含水量 2、土壤样品采集中应注意的问题 每一点采取的土样厚度、深浅、宽狭应大体一致。 各点都是随机决定的,在田间观察了解情况后,随机定点可以避免主观误差,提高样品的代表性,一般按S形线路采样。 采样地点应避免田边、路边、沟边和特殊地形的部位以及堆过肥料的地方。 一个混合样品是由均匀一致的许多点组成的,各点的差异不能太大,不然就要根据土壤差异情况分别采集几个混合土样,使分析结果更能说明问题。 一个混合样品重在1kg左右。 3、土壤样品的保存时样品瓶上的标签应包含的内容 4、耕层混合样品采集的原则 5、样品采集与制备的方法 6、掌握烘干法测定土壤含水量的方法与条件 7、风干样品处理时,测定项目与土壤过筛粒径之间的关系。 第三章土壤有机质测定 1、土壤有机质的概念 2、土壤有机质测定的常用方法有哪些?(干烧法、湿烧法、容量法、比色法、直接灼烧法) 3、干烧法和湿烧法的优缺点 4、重铬酸钾容量法可分为几种?重铬酸钾外加热法与的稀释热法比较优缺点。 5、两种容量法原理,测定条件(反应温度、时间、指示剂的选择及颜色变化、校正系数、注意事项等) 第四章土壤氮素分析 1、名词:土壤有效氮土壤无机氮、土壤碱解氮开氏法 2、开氏法原理及优点 3、开氏法测定土壤全氮消煮时的条件 1)加速剂的主要成分及各成分所起作用,成分选择,用量等。 2)温度、时间,溶液清亮后为什么要后煮30分钟等

土壤中各种元素提取方法

土壤中各元素提取方法 1、Cu、Zn、Fe 等DTPA浸提 DTPA(二乙三胺五乙酸)浸提液可测定有效态Cu、Zn、Fe 等。浸提液的配制:其成分为0.005mol/LDTPA-0.01mol/L CaCl2-0.1mol/L TEA(三乙醇胺)。称取 1.967gDTPA溶于14.92gTEA 和少量水中;再将1.47gCaCl2 ·2H2O 溶于水,一并转入1000mL容量瓶中,加水至约950mL,用6mol/L HCl 调节pH 至7.30 (每升浸提液约需加6mol/L HCl 8.5mL),最后用水定容。贮存于塑料瓶中,几个月内不会变质。浸提手续:称取25.00g 风干过20 目筛的土样放入150mL硬质玻璃三角瓶中,加入50.0ml DTPA浸提剂,在25℃用水平振荡机振荡提取2h,干滤纸过滤,滤液用于分析。DTPA 浸提剂适用于石灰性土壤和中性土壤。 2、0.1mol/L HCl 浸提 称取10.00g风干过20 目筛的土样放入150mL硬质玻璃三角瓶中,加入50.0mL1mol/L HCl浸提液,用水平振荡器振荡1.5h,干滤纸过滤,滤液用于分析。酸性土壤适合用0.1mol/L HCl浸提。 3、B、Mn、Mo、S、Ca、Mg、K、Na、P水浸提 土壤中有效硼常用沸水浸提,操作步骤:准确称取10.00g 风干过20 目筛的土样于250mL或300mL 石英锥形瓶中,加入20.0mL 无硼水。连接回流冷却器后煮沸5min,立即停止加热并用冷却水冷却。冷却后加入4 滴0.5mol/L CaCl2 溶液,移入离心管中,离心分离出清液备测。 关于有效态金属元素的浸提方法较多,例如:有效态Mn 用1mol/L 乙酸铵-对苯二酚溶液浸提。有效态Mo 用草酸-草酸铵、(24.9g 草酸铵与12.6g草酸溶解于1000mL水中)溶液浸提,固液比为1 ﹕10。硅用pH4.0 的乙酸-乙酸钠缓冲溶液、0.02mol/LH2SO4 、0.025%或1%的柠檬酸溶液浸提。酸性土壤中有效硫用H3PO4-HAc 溶液浸提,中性或石灰性土壤中有效硫用0.5mol/L NaHCO3 溶液(pH8.5)浸提。用1mol/L NH4Ac 浸提土壤中有效钙、镁、钾、钠以及用0.03mol/L NH4F-0.025mol/L HCl 或0.5mol/L NaHCO3 浸提土壤中有效态磷等等。 4、碳酸盐结合态、铁-锰氧化结合态等形态的提取 1)、可交换态 浸提方法是在1g试样中加入8mlMgCl2 溶液(1mol/LMgCl2 ,pH7.0)或者乙酸钠溶液(1mol/L NaAc,pH8.2),室温下振荡1h。 2)、碳酸盐结合态 经3.2.1 处理后的残余物在室温下用8ml 1mol/L NaAc 浸提,在浸提前用乙酸把pH 调至5.0,连续振荡,直到估计所有提取的物质全部被浸出为止(一般用8h左右)。 3)、铁锰氧化物结合态 浸提过程是在经3.2.2 处理后的残余物中,加入20mL 0.3mol/L Na2 S2 O3 -0.175mol/L 柠檬酸钠-0.025mol/L 柠檬酸混合液,或者用0.04mol/L NH2OH ﹒HCl 在20% (V/V)乙酸中浸提。浸提温度为96℃±3℃,时间可自行估计,到完全浸提为止,一般在4h 以内。 4)有机结合态

土壤理化指标的测定方法W

土壤样品理化指标的测定 1.pH的测定(NY/T1377-2007 土壤pH的测定) 原理 土壤试液或悬浊液的pH值用pH玻璃电极为指标指示电极,以饱和甘汞电极为参比电极,组成测量电池,可测出试液的电动势,由此通过仪表可直接读取试液的pH值。 仪器 (1)pH计:SevenGo SG2 pH计。 (2)磁力搅拌器。 测定方法 (1)土壤浸出液的制备 新鲜样品应进行风干,平铺于阴凉通风处(本实验采用冷冻干燥法)。用四分法分取适量风干样品,剔除土壤以外的侵入体,如动植物残体、砖头、石块等,用圆木棍碾碎,使样品全部过2mm孔径的实验筛,过筛后充分混匀,装入玻璃广口瓶、塑料瓶或洁净的土样袋中,备用。储存期间,试样应尽量避免日光、高温、潮湿、酸碱气体等的影响。 称取10g±0.1g试样,加无二氧化碳蒸馏水25ml(或氯化钾溶液或氯化钙溶液)。将容器密封后,用振荡机或搅拌器,剧烈振荡或搅拌5min,然后静置1h~3h。 (2)pH计校标 开机预热10分钟,将浸泡24h以上的玻璃电极浸入pH6.87标准缓冲溶液中,以甘汞电极为参比电极,将pH计定位在6.87处,反复几次至不变为止。取出电极,用蒸馏水冲洗干净,用滤纸吸去水份,再插入pH4.01(或9.18)标准缓冲溶液中复核其pH值是否正确(误差在±0.2pH单位即可使用,否则要选择合适的玻璃电极)。 (3)测量 用蒸馏水冲洗电极,并用滤纸吸去水分,将玻璃电极和甘汞电极插入土壤试液或悬浊液中,读取pH值,反复3次,用平均值作为测量结果。 说明 (1)水土比对土壤pH值有影响,一般酸性土,其水土比为5:1~1:1,对测定结果影响不大;对碱性土,水土比增加,测得pH值增高,因此测定土壤pH值水土比应固定不变,一

土壤农化分析

土壤农化分析: 《面向21世纪课程教材·土壤农化分析(土壤农业化学资源与环境专业用)》为全国高等农业院校教材指导委员会审定教材。再版时,我们力求反映20世纪90年代有关土壤农化分析方面的进展。土壤分析部分内容略有增加,但变动不大;植物分析中农产品品质分析增加新的内容;由于工业“三废”排放有害重金属元素进入水体和农田,对植物、动物及人类产生日益严重的毒害,故增加“无机污染(有害)物质的分析”一章;肥料分析部分增加了无机复混肥料分析的内容,其方法均为国标法。鉴于各校已单独开设仪器分析课,根据大家的意见去掉“仪器分析”一章;为了全面开展质量控制,提高技术人员业务水平,保证分析工作质量和加强分析工作的科学管理,特增加“分析质量控制及数据处理”一章。 在本书第二版中有许多现在已不再使用的计量单位和符号,在再版时严格按照1984年颁布的《中华人民共和国法定计量单位》及有关量和单位的国家标准,相应给予全面修改,以保持全书的一致性。 目录: 第一章土壤农化分析的基本知识 第二章土壤样品的采集与制备 第三章土壤有机质的测定 第四章土壤氮和硫的分析 第五章土壤中礏的测定 第六章土壤中钾的测定

第七章土壤中微量元素的测定 第八章土壤阳离子交换隆能的分析 第九章土壤水溶性盐的分析 第十章土壤中碳酸钙的测定 第十一章土壤中硅、铁、铝等元素的分析第十二章植物样品的采集、制备与水分测定第十三章植物灰分和各种营养元素的测定第十四章农产品中蛋白质和氮基酸的分析第十五章农产品中碳水化合物的分析 第十六章籽粒中油脂肪酸的测定 第十七章有机酸和维生素的分析 第十八章无机污染(有害)物质的分析 第十九章无机肥料分析 第二十章有机肥料的分析 第二十一章分析质量的控制和数据处理 附表

EM38大地电导率仪-土壤特性

E lectrical conductivity measure-ments have been used for years to determine salinity and moisture in soils. Probes were inserted directly into the soil to determine how well the soil conducted an applied current. This process was slow and labor-intensive and was usually reserved for scientific studies.A more recent technique for measuring conductivity is electromagnetic induction (EM), a non-invasive, non-destructive sampling method. No probes are required using EM, and measurements can be done quickly and inexpensively. How Does EM Work? W e have used the EM-38, a commer-cially available instrument from Geonics Ltd., Ontario, Canada. The EM-38 is about 3 ft. long and is light-weight enough to be carried in one hand. The unit is powered by a single 9 volt battery that lasts approximately 16 to 20 hours.The principle of operation of the EM-38is shown in the drawing in Figure 1. The transmitting coil induces a mag-netic field that varies in strength with depth in the soil. The relative strength of the magnetic field is illustrated by the relative diameter of the circles in Figure 1. The magnetic field is strongest about 15 inches below the soil surface and has an effective sensing depth of about 5 ft. A receiving coil reads primary and secondary “induced” currents in the soil.It is the relationship between these pri-mary and secondary currents that mea-sures soil conductivity. In Figure 1,the thicker circles illustrate soils that are bet-ter conductors of electrical current.Clayey soils have a higher electrical con-ductivity than coarser textured soils, so when a clay horizon is nearer the surface (b in Figure 1), the EM sensor reading is higher. Deeper topsoils having a clay hori-zon further below the soil surface (a in Figure 1) are less conductive to electri-cal current and have lower EM readings.How Are EM Measurements Used? Electromagnetic induction technolo-gy was originally developed for the min-ing industry, and has been used in miner-al, oil, and gas exploration, groundwater studies, and archaeology. In these appli-cations, differences in conductivity of subsurface layers of rock or soil may indi-cate stratified layers or voids that could be of interest. In agriculture, the EM sen-sor was first used to measure soluble salts and soil moisture. Other agricultural applications now include determining soil mapping units, estimation of topsoil depth in claypan soils, depth of sand deposition after river flooding, estimation of herbi-cide degradation, and crop productivity.For each of the applications described above, a relationship must be established between the EM sensor reading and the soil feature of interest. Once the relation-ship is established, however, the readings can be gathered rapidly. A mobile EM data collection unit is shown in Figure 2. The EM sensor is mounted on a wooden trailer away from metallic objects and vehicle engine inter-ference that can affect EM readings. A differential global positioning system (DGPS) receiver is mounted on the vehi-cle, with an analog-to-digital converter and a computer that records EM sensor Figure 2.Mobile EM-38 sensor unit is pulled behind a four-wheel ATV, equipped with analog/digital converter, laptop computer, and DGPS antenna. EM-38Sensor DGPS antenna Laptop computer Analog/Digital converter M I S S O U R I B y J. G l e n n D a v i s , N e w e l l R. K i t c h e n , K e n n e t h A. S u d d u t h a n d S c o t t T. D r u m m o n d Using Electromagnetic Induction to Characterize Soils Researchers are studying use of electro-magnetic induction as a convenient and low cost method for measuring variability beneath the surface, particularly for clay-pan soils. The information may help iden-tify optimum nitrogen (N) rates for vari- ous field areas. Figure 1.EM-38 principle of operation in soils.

相关主题
文本预览
相关文档 最新文档