当前位置:文档之家› 2010-Tectonic-GPS velocity field for the Tien Shan and surrounding regions

2010-Tectonic-GPS velocity field for the Tien Shan and surrounding regions

GPS velocity field for the Tien Shan and surrounding regions Alexander V.Zubovich,1,2Xiao‐qiang Wang,3Yuri G.Scherba,4

Gennady G.Schelochkov,1Robert Reilinger,5Christoph Reigber,2,6Olga I.Mosienko,1,2 Peter Molnar,7Wasili Michajljow,2,6Vladimir I.Makarov,8Jie Li,3,9Sergey I.Kuzikov,1 Thomas A.Herring,5Michael W.Hamburger,10Bradford H.Hager,5Ya‐min Dang,11 Vitaly D.Bragin,1and Rinat T.Beisenbaev12

Received30July2010;revised30September2010;accepted15October2010;published23December2010.

[1]Measurements at~400campaign‐style GPS points and another14continuously recording stations in cen-tral Asia define variations in their velocities both along and across the Kyrgyz and neighboring parts of Tien Shan.They show that at the longitude of Kyr-gyzstan the Tarim Basin converges with Eurasia at 20±2mm/yr,nearly two thirds of the total conver-gence rate between India and Eurasia at this longitude. This high rate suggests that the Tien Shan has grown into a major mountain range only late in the evolution of the India‐Eurasia collision.Most of the convergence between Tarim and Eurasia within the upper crust of the Tien Shan presumably occurs by slip on faults on the edges of and within the belt,but1–3mm/yr of con-vergence is absorbed farther north,at the Dzungarian Alatau and at a lower rate with the Kazakh platform to the west.The Tarim Basin is thrust beneath the Tien Shan at~4–7mm/yr.With respect to Eurasia,the Fer-ghana Valley rotates counterclockwise at~0.7°Myr?1 about an axis at the southwest end of the valley.Thus, GPS data place a bound of~4mm/yr on the rate of crust-al shortening across the Chatkal and neighboring ranges on the northwest margin of the Ferghana Valley,and they limit the present‐day slip rate on the right‐lateral Talas‐Ferghana fault to less than~2mm/yr.GPS mea-surements corroborate geologic evidence indicating that the northern margin of the Pamir overthrusts the Alay Valley and require a rate of at least10and pos-sibly15mm/yr.Citation:Zubovich,A.V.,et al.(2010), GPS velocity field for the Tien Shan and surrounding regions, Tectonics,29,TC6014,doi:10.1029/2010TC002772.

1.Introduction

[2]Whereas slip on a single fault at a boundary between oceanic plates accommodates virtually all relative motion between the adjacent plates,intracontinental deformation commonly occurs by widespread deformation and slip on numerous faults.This form of deformation is particularly apparent where mountain ranges have been built in intra-continental settings,such as that in which the Rocky Mountains of the western United States developed in late Cretaceous and early Cenozoic(Laramide)time.

[3]The Tien Shan serves as the prototypical active intracontinental mountain belt.Separate ranges,bounded on one or both sides by reverse faults and with intermontane basins between them,collectively form a belt of widespread deformation and abundant seismicity far from boundaries of the major plates(Figure1).Such belts typify active defor-mation elsewhere in Asia,such as in Mongolia or on the northeastern margin of the Tibetan Plateau,and they char-acterize the separate ranges that form the Andes in parts of Colombia,Venezuela,Peru,and Argentina.In active intra-continental belts,several faults are concurrently active;no single fault defines a plate https://www.doczj.com/doc/5c4631667.html,teral continuity of individual ranges,however,can be short,only100–200km, and slip rates on faults within the belts vary along strike.

[4]The Tien Shan illustrates these features.Both field observations of active faulting[e.g.,Abdrakhmatov et al., 2007;Chedia,1986;Laverov and Makarov,2005; Makarov,1977;Makarov et al.,2010;Sadybakasov,1990; Shultz,1948;Thompson et al.,2002]and fault plane solutions of moderate earthquakes[e.g.,Ghose et al.,1998;Maggi et al.,2000;Nelson et al.,1987;Tapponnier and Molnar, 1979]demonstrate largely reverse faulting,in some cases with modest but not negligible strike‐slip components.Four earthquakes with magnitudes greater than approximately 8have occurred within the Tien Shan since1889[e.g.,

1Research Station of the Russian Academy of Sciences,Bishkek,

Kyrgyzstan.

2Department of Technical Infrastructures and Data Management,Central

Asian Institute for Applied Geosciences,Bishkek,Kyrgyzstan.

3Earthquake Administration of the Xinjiang Uygur Autonomous Region,

Urumqi,China.

4National Center of Space Researches and Technologies,National Space

Agency of the Republic of Kazakhstan,Almaty,Kazakhstan.

5Department of Earth,Atmospheric,and Planetary Sciences,

Massachusetts Institute of Technology,Cambridge,Massachusetts,USA.

6Department1,Deutsches GeoForschungsZentrum,Potsdam,Germany.

7Department of Geological Sciences and Cooperative Institute for

Research in Environmental Sciences,University of Colorado,Boulder,

Colorado,USA.

8Institute of Environmental Geosciences,Russian Academy of Sciences,

Moscow,Russia.

9Research Center of Space Science and Technology,China University of

Geosciences,Wuhan,China.

10Department of Geological Sciences,Indiana University,Bloomington,

Indiana,USA.

11Chinese Academy of Surveying and Mapping,Beijing,China.

12Seismological Experimental‐Methodical Expedition,Almaty,

Kazakhstan.

Copyright2010by the American Geophysical Union.

0278‐7407/10/2010TC002772

TECTONICS,VOL.29,TC6014,doi:10.1029/2010TC002772,2010

Kondorskaya and Shebalin ,1977;Gu et al.,1989;Molnar and Ghose ,2000;Richter ,1958;Savarenskii et al.,1962].Studies of Quaternary faulting demonstrate slip at rates of 1to 4mm/yr on several approximately parallel faults that divide the belt into blocks tens of kilometers in width [e.g.,Abdrakhmatov et al.,2007;Makarov ,1977;Thompson et al.,2002].Deep basins with 2000m or more of late Ce-nozoic sediment lie between ranges [e.g.,Cobbold et al.,1996;Laverov and Makarov ,2005;Makarov ,1977;Sadybakasov ,1990].East ‐west dimensions of such basins and of the ranges between them,however,are only ~100–

300km (Figures 1,2,and 3).Accordingly,despite the line-arity of the belt as a whole,along ‐strike variations within it make finding a typical cross section difficult [e.g.,Laverov and Makarov ,2005;Makarov ,1977;Sadybakasov ,1990].Moreover,the deep structure of the belt,as reflected in both crustal thickness [e.g.,Kosarev et al.,1993;Oreshin et al.,2002;Vinnik et al.,2002]and upper mantle structure [e.g.,Li et al.,2009;Roecker et al.,1993;Wolfe and Vernon ,1998],shows marked differences both across and along the strike of the

range.

Figure 1.Map of the central Tien Shan and surroundings showing topography,shallow ‐focus seismic-ity,selected cities,and the trace of the Talas ‐Ferghana fault (TFF).Gray circles show events with precise locations given and updated by Engdahl et al.[1998],and blue stars show events with 7≤M <8and M ≥8from Molnar and Deng [1984].The inset shows the regional setting of the Tien Shan.

[5]To the south of the Tien Shan,the Tarim Basin (Figures 1–3)appears to deform sufficiently slowly that its movement relative to Eurasia has been described as a rigid body rotation about an axis just south of the southeastern edge of the basin [e.g.,Calais et al.,2006;England and Molnar ,2005;Kuzikov and Mukhamediev ,2010;Meade ,2007;Reigber et al.,2001;Shen et al.,2001;Thatcher ,2007].In most such treatments,root ‐mean ‐square (RMS)differences in relative velocities among points in the basin are less than 2mm/yr,and as small as 1mm/yr for some studies.

[6]At the western end of the Tien Shan,the Ferghana Valley (Figures 1–3)also seems to undergo only mild de-formation except on its edges [e.g.,Reigber et al.,2001;Thomas et al.,1993;Ulomov ,1974].Mountain ranges to the north of the Ferghana Valley,including the Chatkal Range,and to its south,the South Tien Shan,absorb relative movement of the basin with respect to the regions on its flanks.Seismicity on the edge of the valley is relatively high,but only sparse small earthquakes have been located beneath its center (Figure 1).Sediment has accumulated within the valley since at least Mesozoic time,and high terrain seems to have surrounded the region for much of that time [e.g.,Kreydenkov and Raspopin ,1972;Kuzichkina ,1972;Sinitsyn ,1960,pp.101–109;Sinitsyn ,1962].Paleo-magnetic declination anomalies suggest as much as 20°–30°of counterclockwise rotation of the basin and the

neigh-

Figure 2.Map of region with GPS points and showing names of key localities,lines of profiles in Figures 4,5,7,and 9,and regions where smaller maps are shown.The region labeled 1is shown in Figure 6,and that labeled 2is in Figure 8.

boring Chatkal Range with respect to Eurasia [Bazhenov ,1993;Thomas et al.,1993].Thus,the Ferghana Valley seems to have maintained its identity as a block since Me-sozoic time.

[7]To the west of the Tarim Basin and south of the South Tien Shan,the Pamir shares features that typify the Tibetan Plateau:a high,relatively flat plateau (Figures 2and 3),where normal faulting and east ‐west extension appear to dominate active deformation [e.g.,Burtman and Molnar ,1993;Strecker et al.,1995].Many of the same east ‐west trending sutures and fragments of Gondwana that had been accreted to Eurasia during Phanerozoic time can be identi-fied in the Pamir and in the Hindu Kush of Afghanistan farther west,and it follows that the regions have undergone a similar geologic history,at least perhaps until the Pamir

was displaced northward with respect to most of Tibet,presumably in Cenozoic time [e.g.,Burtman and Molnar ,1993;Schwab et al.,2004].Both the Pamir and Hindu Kush are associated with intermediate ‐depth seismicity,whose form suggests the presence of a deformed,subducted lithospheric slab at depth [e.g.,Mellors et al.,1995;Pavlis and Das ,2000;Roecker ,1982;Vinnik et al.,1977].The inclined zone of seismicity projects to the surface at northern edge of the Pamir,where concentrated shortening occurs along the Pamir frontal thrust zone,suggesting subduction of continental lithosphere beneath the Pamir [Burtman and Molnar ,1993;Hamburger et al.,1992;Strecker et al.,2003].

[8]We present observations of present ‐day surface motions within and around the Tien Shan based on 16years

of

Figure 3.Map of region with GPS velocities,relative to Eurasia.Error ellipses show 95%confidence

ellipses.

geodetic measurements from a dense,regional GPS network (Figures2and3).These data provide quantitative constraints on deformation rates within and around the Tien Shan and in turn within this type area of intracontinental mountain building.A few points for which we can obtain GPS veloc-ities lie within the Pamir,and they allow us to address de-formation on its eastern and northern edges.

2.GPS Network and Processing

[9]We report results from campaign measurements be-ginning in1994and from a growing number of continu-ously recording stations in the region since before1994.In fact,the GPS network that we analyze began as three sep-arate networks each of which grew over time(we give a summary of the history of these networks in the auxiliary material).1Table1summarizes not only velocities and uncertainties of GPS points,but also dates of the first campaigns used in our determination of the velocity field, durations spanned by remeasurements,and numbers of remeasurement campaigns for each site.Table1updates results for subsets of these data analyzed earlier [Abdrakhmatov et al.,1996;Bogomolov et al.,2007;Bragin et al.,2001;Herring et al.,2002;Kuzikov and Mukhamediev, 2010;Laverov and Makarov,2005;Meade and Hager,2001; Reigber et al.,2001;Yang et al.,2008;Zubovich et al.,2007].

[10]We processed the GPS observations using the GAMIT/GLOBK software suite[Herring,2004;King and Bock,2004],and we estimated uncertainties following standard procedures described by Reilinger et al.[2006]. Appendix A gives some details of the processing.

3.Results

[11]To present the velocity field we rely on both maps (Figures3,6,and8)and profiles(Figures4,5,7,and9).We orient profiles perpendicular to the main structures,and plot separately components of velocity parallel and perpendicu-lar to the structures,which allows convergent or divergent and strike‐slip components to be separated.

3.1.Convergence Between the Tarim Basin and Eurasia

[12]Perhaps the most definitive result is the demonstra-tion that the Tarim Basin moves toward the Kazakh Plat-form,and hence toward the Eurasian plate,at20(±2)mm/yr. Earlier,Abdrakhmatov et al.[1996]had inferred such a rate by extrapolating measurements within the Kyrgyz and Ka-zakh side of the Tien Shan to the Tarim Basin in China. With GPS data from the Tarim Basin,Reigber et al.[2001] reported a rate of19±3mm/yr for a station in the western Tarim Basin with respect to Eurasia.With more sites in both Tarim and especially within the stable Kazakh Platform, with more measurements at individual sites,and with a time interval spanned by initial and most recent measurements roughly twice that used by Reigber et al.[2001],we can refine the rate,as shown most clearly on profiles A‐A′and B‐B′(Figures2and4).The lower rates shown for pro-files C‐C′and D‐D′(Figures2and4)derive in part from

the southernmost points on these profiles lying within the deforming southern margin of the Tien Shan.Hence the velocities of these points with respect to Eurasia underesti-

mate the convergence rate between Tarim and Eurasia. [13]As noted above,GPS data from the entire Tarim Basin,including a large area east of where we have data,

show that relative to Eurasia Tarim rotates about an axis just south of the eastern end of the basin[e.g.,Calais et al., 2006;England and Molnar,2005;Kuzikov and Mukhamediev,2010;Meade,2007;Reigber et al.,2001;

Shen et al.,2001;Thatcher,2007].Thus,these angular velocities require an eastward decrease of convergence rates of points in Tarim relative to Eurasia,as is apparent also for

data along profile E‐E′(Figures2and5,blue and green points).These data,from the western part of Tarim,alone are inadequate to improve estimates of angular velocities of

Tarim relative to Eurasia,but note that the eastward decrease in rates also contributes to the smaller maximum rates on profiles C‐C′and D‐D′than on profiles A‐A′and B‐B′

(Figure4).

[14]At the longitude of the Kyrgyz,or central,Tien Shan (~75°E–80°E),global GPS data show that India converges with Eurasia at~33mm/yr[Argus et al.,2010].Thus,in this

segment,shortening across the Tien Shan,by convergence between the Tarim Basin and the Kazakh Platform,absorbs nearly two thirds of India’s penetration into Eurasia.Al-

though India seems to underthrust southwestern Tibet at ~20mm/yr[e.g.,Jade et al.,2004],the orientation of the Himalaya at this longitude is not perpendicular to the

orientation of plate convergence.Thus underthrusting be-neath the western Himalaya absorbs only~12–13mm/yr of India’s convergence with Eurasia at this longitude. [15]Estimated amounts of Cenozoic shortening across the central Tien Shan do not permit shortening at an average rate of~20mm/yr for more than~10Myr,and hence sug-gest a much shorter duration than India has been penetrating into Eurasia(since~45–55Ma[e.g.,Garzanti and Van Haver,1988;Zhu et al.,2005]).For instance,assuming Airy isostasy and a Cenozoic age of present‐day elevations, Avouac et al.[1993]inferred as much as~220km of shortening.With present‐day knowledge of crustal thick-ness,however,this amount seems https://www.doczj.com/doc/5c4631667.html,ing receiver functions from numerous seismograph stations,Oreshin et al.[2002]and Vinnik et al.[2002]reported crustal thick-nesses of55–65km beneath much of the central Tien Shan, compared with~45km not only beneath the Kazakh Plat-form to the north and the Tarim Basin to the south,but also beneath the Naryn Basin within the Tien Shan.Makarov et al. [2010]inferred similar crustal thicknesses from seismic re-flection profiling.Even if one allowed for20km of excess crustal thickness beneath a region as wide as200km,if that thickening were due to shortening of crust45km thick,it would call for only~90km of shortening.From mapping of structures,Abdrakhmatov et al.[2001],inferred as little as 35–80km of shortening across central Tien Shan in Kyr-gyzstan,which constitutes roughly two thirds of the width of the belt.Similarly,both Chedia[1986]and Makarov[1995] [see also Laverov and Makarov,2005]calculated that50km

1Auxiliary materials are available in the HTML.doi:10.1029/ 2010TC002772.

Table1.Coordinates,Velocities,Dates of Installations,and Durations of GPS Recording at Sites a

Name Longitude(°N)Latitude(°E)VxI VyI VxE VyE Sx Sy Cor SYear Dur n AAC473.75542.16828.3 6.9?0.1 5.00.30.30.0041995.611.16 ABD472.05041.78426.0 5.7?2.4 3.10.30.30.0101995.512.07 ADA475.52544.13227.0 3.7?1.2 2.30.40.40.0001997.49.27 ADRA70.02340.80026.98.9?1.0 4.60.60.60.0081994.7 4.03 AIB479.96942.89629.88.5 1.48.30.40.40.0031998.87.88 AKB476.95642.07329.110.90.79.70.30.30.0061995.610.88 AKBA73.82138.50322.424.6?6.121.30.60.60.0041994.7 4.04 AKD480.13547.88224.9 2.1?3.0 1.80.80.70.0302000.6 4.05 AKH478.54241.79530.212.5 1.811.70.40.4?0.0051998.88.05 AKJ472.14541.55726.2 6.9?2.2 4.30.30.30.0111995.512.08 AKK476.85442.88528.5 5.30.1 4.10.40.40.0041995.610.17 AKQI78.45140.94229.817.3 1.216.50.60.60.0061998.9 4.34 AKS475.96740.71728.314.7?0.213.30.30.30.0081995.810.810 AKT479.85143.42729.7 6.8 1.3 6.60.50.50.0021998.8 6.86 AKTA78.96639.87728.818.70.118.20.50.50.0061998.9 6.37 AKTO75.89939.19630.623.6 2.122.00.60.60.0001998.9 4.33 ALA471.46041.36226.9 6.2?1.4 3.50.30.30.0071995.512.08 ALB576.16742.31328.67.40.1 6.10.40.40.0131995.810.76 ALD472.25839.42121.215.2?7.312.70.60.60.0351999.6 4.84 ALM169.73040.82927.27.3?0.9 3.70.50.5?0.0271994.78.13 ALT477.76343.90828.0 3.2?0.4 2.40.40.40.0031997.87.86 ALUN74.24440.33126.516.5?1.714.10.40.40.0061994.77.87 ANA477.60342.79028.6 6.70.1 5.70.30.30.0141995.810.78 AND469.51439.73727.28.6?1.2 5.40.70.60.0601999.6 4.84 ANGR70.08241.10227.58.1?0.2 3.90.60.60.0031994.7 4.03 ARA477.75041.86029.511.9 1.010.90.40.4?0.0041998.88.05 ARC476.66541.69328.811.20.310.10.70.70.0202002.6 3.83 ARG479.65746.64927.3 3.2?0.8 2.90.90.90.0672000.6 3.04 ARP474.82740.83827.811.1?0.79.40.40.40.0081997.78.97 ARS472.98241.24425.68.1?2.7 6.00.40.50.0121997.7 6.88 ARTU b58.56156.43024.67.2?0.9 1.20.40.40.0001999.67.933 ASK473.53840.07529.210.80.78.70.70.70.0581999.6 4.84 ASP473.49442.70026.4 4.2?1.9 2.00.50.50.0171995.6 5.94 ASR481.10550.09126.50.8?1.1 1.00.70.70.0272000.6 4.05 ASS478.14843.31028.8 5.10.5 4.40.50.50.0021998.8 6.86 AST476.96643.05927.8 5.7?0.3 4.60.50.50.0091997.87.85 ATAI73.93341.38326.812.6?1.19.30.60.60.0021994.7 4.03 AWAT80.39340.64333.417.3 5.017.20.90.90.0261998.9 2.73 AZO477.11443.89728.5 4.20.2 3.20.40.50.0031997.87.86 BAB473.26839.51325.813.5?2.711.30.60.60.0281999.6 4.84 BACH78.54039.77729.719.7 1.118.90.60.60.0091998.9 4.33 BALH73.98045.06926.7 3.8?1.9 2.70.70.80.0111995.7 3.03 BAN2b77.51213.03446.234.619.833.40.60.60.0022003.6 3.916 BAR477.61642.00828.712.00.111.00.50.50.0361998.8 6.95 BAU475.01941.57628.07.8?0.4 6.20.40.40.0031997.78.99 BAY475.08341.07927.411.1?1.19.50.40.40.0071997.78.98 BAYS67.04638.17526.510.3?1.2 5.10.60.60.0171994.7 4.03 BER475.65742.95727.7 5.1?0.6 3.60.50.50.0141995.6 6.04 BES475.79542.81827.9 4.9?0.5 3.50.30.30.0061995.611.16 BESH70.52440.35726.59.5?1.4 5.30.60.60.0081994.7 4.03 BET475.03040.64628.212.1?0.210.40.40.40.0051997.78.98 BIN479.41645.13726.9 3.9?1.4 3.60.70.70.0362000.6 4.05 BKE475.42640.75728.113.3?0.411.90.70.70.0202002.6 4.04 BOK473.21242.76827.0 4.0?1.3 1.80.80.7?0.0011995.6 3.83 BOL483.98449.03825.90.6?1.7 1.30.70.70.0072000.6 4.05 BOR473.23541.64827.17.6?1.2 5.40.40.40.0111995.68.86 BOST71.28343.77728.4 4.90.3 1.80.70.70.0041995.7 3.03 BOZ471.79241.49526.2 6.6?2.0 3.90.30.30.0101995.512.08 BRL470.52042.56926.8 5.3?1.2 2.50.60.60.0181997.4 5.15 BTK470.76540.04827.9 6.5?0.6 3.60.60.60.0331999.6 4.84 BTR475.02041.18627.211.4?1.19.70.40.40.0041997.78.99 BULU74.95138.66223.624.5?5.122.70.60.6?0.0041998.9 4.34 BUR479.05342.26129.811.7 1.411.10.40.4?0.0011998.88.06 BUZ476.43242.81127.6 5.0?0.8 3.70.30.40.0031995.610.17 BYS475.72942.74927.8 5.0?0.5 3.40.30.30.0041995.611.15 CAR168.10441.24526.4 6.7?1.3 2.50.40.40.0201994.77.87 CATK71.72142.01425.58.8?2.2 4.90.60.60.0031994.7 4.03 CAUV72.09040.19926.910.8?1.47.80.40.40.0061994.79.87

Table1.(continued)

Name Longitude(°N)Latitude(°E)VxI VyI VxE VyE Sx Sy Cor SYear Dur n CEK475.75040.68628.614.30.112.90.70.70.0212002.6 4.04 CHA471.72142.01527.0 5.2?1.4 2.70.50.50.0191995.5 6.25 CHIL78.87843.58429.08.4 1.1 6.40.60.60.0061994.7 4.03 CHK477.73941.52729.313.70.912.70.60.60.0071998.8 4.94 CHL477.84543.26728.3 5.70.0 4.80.40.50.0021997.87.85 CHLK78.37343.52928.9 4.80.5 4.40.70.70.0052004.4 2.14 CHO477.07542.71928.6 6.80.3 5.70.30.30.0181995.810.78 CHR478.97643.27129.6 6.3 1.2 5.70.40.40.0011997.88.810 CHT476.05241.33428.213.2?0.411.90.70.70.0192002.6 4.05 CHU474.00243.42327.2 3.6?1.1 1.80.40.4?0.0051997.48.25 CHUM b74.75142.99926.9 3.8?1.4 2.00.30.30.0031997.79.835 CHY472.87541.96627.6 5.2?0.7 2.90.40.40.0051995.59.37 DAL478.45743.13729.5 6.5 1.2 5.80.40.40.0001997.88.810 DANG69.20038.04317.816.5?9.610.90.90.90.0221994.7 2.03 DAR475.04140.78228.012.1?0.510.40.40.40.0051997.78.98 DAT472.28639.57326.411.2?2.18.70.60.60.0311999.6 4.84 DEGE75.76643.24527.4 4.1?0.8 2.60.50.50.0121995.57.07 DENA67.88038.23526.68.0?1.1 3.80.50.40.0161994.78.14 DJA476.49841.24528.114.4?0.413.20.70.70.0122002.6 4.04 DJAN66.10638.33824.612.0?2.9 6.70.60.60.0201994.7 4.03 DJE473.95641.89627.77.2?0.8 5.30.30.30.0051995.611.16 DJR474.46940.98727.710.9?0.99.20.50.50.0062000.5 6.15 DNG473.61940.92525.511.2?2.99.40.60.60.0082000.5 4.34 DOR479.87743.38029.87.4 1.57.00.60.70.0281998.8 4.84 DRB469.12841.55225.6 6.2?2.6 2.80.90.80.0711999.5 3.04 DSO478.66843.43229.0 5.70.7 5.10.40.40.0041998.87.810 DUSC68.62538.51622.615.4?9.412.70.90.90.0261994.7 2.03 DYU474.36641.47626.88.5?1.6 6.70.40.40.0001997.79.18 EGA476.36743.00526.6 5.0?1.7 3.70.60.60.0201995.6 4.13 EKS476.74242.07028.910.40.59.20.30.30.0081995.610.89 ELB476.46841.82028.010.8?0.59.50.30.30.0061995.611.17 ELG474.21542.61827.3 5.6?1.0 3.70.30.30.0071995.69.86 ELS475.05142.62427.8 5.9?0.6 4.20.50.50.0071995.6 6.14 EME474.45241.82127.58.2?0.9 6.30.30.30.0051995.611.16 ENG476.42241.49429.013.80.312.60.70.70.0252002.6 3.83 ESE480.30843.06130.17.5 1.67.30.40.40.0011998.87.88 GAK484.93148.22127.6 3.1?0.1 4.40.70.70.0192000.6 4.05 GARA68.51537.64220.310.4?7.9 5.80.60.60.0121994.7 4.03 GAZE75.47938.85328.824.70.123.20.50.5?0.0021998.9 6.37 GBL478.78743.66429.0 6.80.8 6.10.70.70.0141998.8 3.74 GKO476.72542.17128.59.20.18.10.40.40.0091999.57.06 GKU478.92143.03929.4 6.7 1.1 6.20.40.40.0031998.87.89 GSO478.62143.54629.2 5.70.8 4.90.40.40.0051998.87.87 GTA477.13942.07128.810.90.39.70.40.40.0091998.87.77 GUAO b87.17743.47131.2 6.9 3.38.50.50.50.0022002.5 5.018 HEB483.59049.82825.50.0?2.00.70.70.70.0042000.6 4.05 HOK476.76742.64128.8 6.10.6 4.80.30.30.0101995.610.87 HON473.80242.42627.6 4.4?0.8 2.40.30.3?0.0061995.611.14 HRT473.06742.49327.4 5.0?0.9 2.80.30.30.0081995.611.85 HYDE b78.55117.41742.334.014.933.10.60.50.0012003.6 3.916 IISC b77.57013.02143.235.816.334.80.30.3?0.0011995.512.047 IKZ473.79639.65429.013.20.711.00.70.60.0031999.6 4.84 ILI478.18843.95327.6 3.9?0.6 3.10.70.70.0231998.8 3.73 INY479.07042.01530.212.2 1.911.60.30.30.0031995.810.97 IRKT b104.31652.21925.2?5.5?0.80.60.30.3?0.0041995.811.743 ISH478.21041.60130.113.2 1.712.40.40.5?0.0021998.88.05 ISY577.49043.26128.1 5.6?0.2 4.70.60.80.0381997.8 5.74 JAM471.52642.90826.8 4.8?1.5 2.00.60.50.0131997.4 5.15 JANG70.80441.53326.38.4?1.6 4.40.60.60.0031994.7 4.04 JAP478.68143.25429.5 5.6 1.0 5.00.40.40.0031998.87.814 JET478.27442.29728.511.60.110.80.40.40.0031995.87.96 JIAS76.73439.49726.620.8?2.119.30.60.6?0.0131998.9 4.34 JJO475.33443.01127.2 4.3?1.1 2.80.40.40.0001995.611.06 JLK473.68640.63725.511.0?2.88.90.50.50.0041997.7 4.87 JNI478.22443.10428.8 5.70.5 5.00.40.50.0041998.8 6.86 JUA475.64542.10527.58.2?0.8 6.60.30.30.0141995.511.19 K03161.59451.83527.3 5.80.60.80.90.7?0.0111998.6 4.03 K05166.31651.75127.0 6.20.1 2.4 1.00.70.0191998.6 4.03

Table1.(continued)

Name Longitude(°N)Latitude(°E)VxI VyI VxE VyE Sx Sy Cor SYear Dur n K07165.79548.05227.0 5.2?0.5 1.20.80.70.0371998.6 4.03 K08170.01949.01326.1 3.1?1.50.20.80.70.0171998.6 4.03 K09166.46247.82826.6 4.3?1.00.50.90.70.0421998.6 4.03 K10067.17644.40125.8 5.7?2.2 2.10.80.80.0221998.6 3.93 K11169.03443.37626.3 5.2?1.8 2.10.90.80.0251998.6 2.93 K12169.65043.50427.2 5.1?0.9 2.1 1.00.80.0401998.6 2.93 K13170.28553.12626.8 3.7?0.2 1.10.80.60.0411998.6 4.03 K14174.01051.69427.0 2.2?0.30.40.90.70.0251998.6 4.03 K15171.84851.33827.0 3.4?0.3 1.10.70.70.0181998.6 4.03 K16173.66049.40727.2 2.4?0.40.50.90.70.0551998.6 4.03 K17174.57146.90828.1 2.50.10.90.70.70.0251998.6 4.03 K18173.55345.75528.2 2.80.20.90.70.70.0181998.6 4.03 K19175.78350.80826.7 1.7?0.70.50.80.70.0211998.6 4.03 K20178.90050.16826.3 1.4?1.3 1.00.70.70.0421998.6 4.03 K21178.40649.19425.7 2.5?2.0 1.90.80.80.0581998.6 4.03 K22176.06449.38526.9 3.0?0.7 1.80.70.70.0281998.6 4.03 K23175.84447.85227.00.8?0.8?0.50.70.70.0201998.6 4.03 K24180.04749.06528.2 1.30.5 1.30.70.70.0251998.6 4.03 KAB481.60949.52826.3 1.7?1.1 1.90.80.70.0192000.6 4.05 KAI476.10141.17327.514.1?0.812.50.50.50.0241995.8 6.97 KAK172.90442.80627.4 6.2?0.6 3.20.40.40.0081994.77.810 KAL476.39742.30629.07.20.5 5.90.40.40.0081999.57.04 KALA78.03739.71429.620.1 1.019.20.60.60.0101998.9 4.34 KALP79.03540.50329.416.40.815.60.60.60.0071998.9 4.33 KAR476.77641.73328.612.20.210.90.40.40.0191995.810.76 KARA70.96339.95928.312.60.38.60.60.60.0041994.7 4.03 KARL73.46038.95721.827.4?6.724.10.60.60.0071994.7 4.03 KAS475.44342.30028.3 6.5?0.1 5.10.30.30.0061995.611.16 KAST75.96743.04527.2 5.8?1.2 4.80.70.80.0052004.4 2.14 KASU76.84041.13228.414.40.112.80.30.30.0051994.711.98 KAT480.00842.74030.210.0 1.99.80.70.60.0171998.8 4.85 KAZA b73.94441.38526.410.0?2.08.00.30.30.0021997.79.833 KAZY69.82442.03626.3 5.6?1.9 2.30.40.40.0171995.57.08 KBU471.57942.20227.1 4.9?1.1 2.30.30.40.0081995.512.06 KEK476.05742.75928.3 4.7?0.1 3.30.50.50.0141995.8 6.04 KELI77.90637.25825.722.2?3.021.3 1.00.80.0211998.9 2.74 KEN472.36742.59327.2 4.7?1.0 2.20.30.30.0111995.512.07 KET480.35543.40030.2 6.9 1.8 6.90.50.50.0051998.8 6.86 KFIR67.86837.83810.58.1?17.6 3.30.60.60.0141994.7 4.03 KHA473.67244.38027.8 3.1?0.4 1.20.50.60.0051997.4 5.14 KHZ472.29740.36228.08.6?0.5 6.10.60.60.0381999.6 4.84 KIN474.06642.20427.6 6.1?0.8 4.20.30.30.0021995.611.16 KIT3b66.88539.13527.6 6.1?0.7 2.20.30.30.0001995.512.044 KIZI76.46338.65627.122.8?1.721.40.50.50.0021998.9 6.37 KJA673.19041.00125.810.0?2.78.00.50.5?0.0151997.77.15 KKA472.89441.69527.07.2?1.3 4.90.40.40.0141995.58.97 KKB472.73539.67827.610.8?1.08.30.60.60.0251999.6 4.84 KKC474.92841.73728.17.9?0.5 6.30.40.40.0011997.79.18 KKD476.20541.90227.910.7?0.59.30.50.50.0231995.8 6.95 KKO475.14642.25727.8 6.8?0.6 5.20.40.40.0101995.510.17 KKT470.22243.27127.1 5.4?1.1 2.40.60.60.0091997.4 5.15 KKY475.55041.01827.512.3?1.010.90.80.70.0291998.8 3.94 KLM470.97539.74227.88.6?0.7 5.70.60.60.0281999.6 4.84 KNG471.46439.87527.49.4?1.1 6.70.60.60.0311999.6 4.84 KNS478.82543.02429.5 6.7 1.1 6.00.40.40.0011997.88.89 KOG476.40841.89227.211.1?1.39.90.70.70.0242002.6 3.83 KOK478.64643.45229.1 5.30.7 4.70.40.40.0031997.88.812 KOL479.88546.95924.9 1.8?2.8 1.60.80.80.0352000.6 3.04 KOR484.95949.41225.30.4?2.0 1.40.70.70.0132000.6 4.05 KOS476.52040.91828.515.3?0.114.00.70.70.0102002.6 4.04 KOVK73.88141.80827.4 6.3?1.1 4.40.50.50.0151999.8 5.83 KOY479.09242.16630.111.8 1.811.40.30.30.0101995.810.97 KRB476.07241.78128.310.4?0.28.90.30.30.0041995.611.17 KRC485.06648.79725.10.7?2.6 1.70.90.90.0492000.6 3.04 KRK471.90439.49427.18.9?1.4 6.30.60.60.0481999.6 4.84 KRL676.43441.12227.914.0?0.612.50.40.40.0081995.810.86 KRM478.16143.48328.7 4.70.4 4.00.60.60.0141997.8 4.74

Table1.(continued)

Name Longitude(°N)Latitude(°E)VxI VyI VxE VyE Sx Sy Cor SYear Dur n KRS479.92643.02729.77.4 1.47.10.40.40.0051998.87.89 KRT475.04841.48727.89.0?0.77.40.40.40.0051997.78.98 KRTV b78.61950.71426.6 2.4?0.8 1.70.40.40.0032000.7 6.719 KRU476.44340.73428.514.7?0.113.30.70.70.0122002.6 4.04 KRV473.66741.34427.08.3?1.6 6.40.50.50.0002000.5 6.14 KSH477.74444.59225.9 3.5?2.2 2.70.60.70.0262000.6 4.05 KSHI b75.92339.51731.019.8 2.418.30.40.40.0031998.9 6.35 KST483.99847.67027.0 2.6?0.8 3.30.70.70.0222000.6 4.05 KSTU b92.79455.99324.8?3.1?1.40.30.40.40.0021997.77.128 KTA470.94042.78326.8 3.8?1.4 1.10.60.60.0051997.4 4.34 KTAU70.94042.78326.2 4.5?2.1 1.70.70.60.0821995.57.05 KTE476.38742.61928.8 6.20.4 4.90.40.40.0221995.610.84 KTSS73.38545.78528.0 6.40.6 3.00.60.60.0011994.7 4.03 KTY476.19842.89527.6 4.5?0.8 3.10.50.50.0111995.6 6.15 KUD479.85843.63029.77.3 1.47.10.70.70.0201998.8 3.74 KUK475.76141.74928.89.10.57.60.80.80.0502002.6 3.83 KUL476.29840.81628.814.30.413.00.30.30.0101995.810.89 KUM470.60141.66926.8 5.5?1.4 2.50.30.30.0071995.512.08 KUN475.56941.35827.611.8?0.810.20.30.30.0121995.810.79 KUR475.08643.37926.9 3.8?1.4 2.30.30.40.0001995.511.17 KURA72.83243.25326.9 4.4?1.2 1.70.70.70.0031995.7 3.03 KURG68.71537.87418.911.9?8.87.90.80.80.0161994.7 4.03 KURY76.33943.89427.8 3.1?0.6 2.20.80.80.0082004.4 2.14 KUT476.33943.89426.9 3.2?1.2 2.00.40.4?0.0011997.49.27 KYZ475.13542.09227.77.5?0.7 5.80.30.30.0061995.511.28 KYZY73.32339.37923.119.1?5.016.40.70.70.0151995.7 3.03 KZY475.97740.52329.613.9 1.112.50.70.70.0192002.6 4.04 KZZ478.31443.52229.8 5.6 1.7 4.70.70.70.0141998.8 3.75 LAM469.93339.77427.87.2?0.8 4.10.60.60.0571999.6 4.84 LEDI68.52638.32320.28.9?8.0 4.10.60.60.0121994.7 4.03 LHAS b91.10429.65746.116.817.419.40.30.30.0001995.511.246 LHAZ b91.10429.65746.317.217.519.70.50.5?0.0022002.5 5.017 LJM473.22141.57227.38.1?1.1 5.90.40.40.0121996.77.76 MARK77.62438.90427.922.1?0.820.90.60.60.0161998.9 4.34 MAT478.50144.22527.4 3.4?1.1 2.80.60.60.0152000.6 5.06 MAY176.47843.15527.5 5.5?0.6 3.70.40.40.0071994.78.010 MDG470.15740.03528.1 5.4?0.3 2.40.60.60.0331999.6 4.84 MER473.34142.52426.9 4.5?1.1 2.30.50.50.0101995.6 6.85 MKR473.04542.24827.7 5.2?0.6 3.00.40.40.0091995.69.95 MNJ479.32342.75729.210.50.810.10.50.50.0011998.8 5.86 MOL475.03841.66927.88.4?0.7 6.70.30.30.0041995.511.28 MUD476.57241.12927.314.0?1.212.70.90.90.0472002.6 2.93 MUJI74.42739.02422.720.7?5.919.00.50.40.0001998.9 6.37 MUN478.11242.43928.510.80.110.00.40.4?0.0041998.88.07 MURG73.79638.13722.126.5?6.223.10.60.60.0051994.7 4.04 MUS473.31842.17528.4 5.80.1 3.60.40.40.0071995.69.96 NAR576.25541.44628.212.5?0.311.00.40.40.0161995.810.78 NBA480.00042.59930.810.8 2.410.50.70.70.0121998.8 3.74 NGS475.73041.87527.58.6?0.97.10.80.80.0032002.6 3.83 NJK477.94642.24828.111.9?0.411.10.40.4?0.0041998.88.06 NJT478.23842.40627.011.7?1.310.90.80.80.0121998.8 2.74 NKR479.21042.66529.311.00.910.30.40.40.0041998.88.06 NKU478.28443.01332.6 6.3 4.2 5.60.70.70.0231998.8 3.95 NRIL b88.36069.36221.6?1.0?1.4 1.20.40.40.0002001.3 6.226 NRK474.69041.82027.88.2?0.7 6.50.40.4?0.0011997.79.18 NSB473.76340.88025.611.3?2.99.20.40.4?0.0031997.77.17 NTE479.21043.13929.57.1 1.1 6.60.40.40.0041998.87.88 NTP478.37442.68428.48.4?0.17.50.40.40.0021998.88.07 NVSK b83.23554.84126.20.5?0.6 1.00.40.40.0072000.6 6.824 OBO475.84941.43327.712.8?0.811.40.70.70.0252002.6 3.84 OGI474.54942.04028.0 6.8?0.5 5.00.30.30.0051995.611.15 OKI473.93341.38327.19.5?1.47.50.30.30.0051995.611.08 OKT167.67040.29127.07.8?1.1 3.60.40.40.0031994.78.14 ONA475.98341.57727.810.4?0.89.10.80.80.0352002.6 3.84 ORGO77.91842.44028.010.5?0.59.60.30.30.0031995.511.26 OSH472.74340.52226.89.6?1.67.30.40.50.0131997.7 6.88 OTM473.20142.23527.8 5.0?0.4 2.70.30.30.0111995.512.08

Table1.(continued)

Name Longitude(°N)Latitude(°E)VxI VyI VxE VyE Sx Sy Cor SYear Dur n OTTU75.82741.65524.812.2?3.29.50.60.60.0101994.7 4.03 OYT474.07640.43626.613.2?1.911.30.40.4?0.0041997.77.18 PAK475.13040.84827.611.9?0.910.30.40.40.0041997.78.98 PAN080.04043.99429.5 3.9 1.3 3.50.50.50.0201995.5 5.010 PCH479.06042.39629.310.80.910.30.40.4?0.0031998.88.06 PDB480.22843.75629.5 6.8 1.2 6.60.40.50.0061998.8 6.86 PISH78.24637.55927.622.6?1.221.9 1.00.80.0091998.9 2.73 PKZ478.07643.20829.2 5.70.9 4.90.70.70.0171998.8 3.94 PODG b79.48543.32829.6 6.0 1.3 5.60.30.30.0021998.68.928 POL2b74.69442.68027.7 6.3?0.6 4.50.30.3?0.0011995.512.048 PPR478.29242.54728.89.80.49.00.40.40.0001998.88.07 PSE482.59850.35724.9 1.9?2.5 2.40.70.70.0102000.6 4.05 PSH478.92642.72128.710.10.39.40.40.40.0041998.88.07 PTO478.86142.62029.39.70.99.10.40.40.0011998.88.06 PTU475.08840.57828.212.3?0.410.80.40.40.0071997.78.98 PUR473.62741.28825.88.8?2.5 6.80.40.40.0001997.77.17 QIAK75.40440.09429.114.60.613.10.50.50.0171998.9 6.37 QIQI76.97840.84428.014.1?0.713.20.50.50.0151998.9 6.36 RAL474.25241.91227.57.4?0.9 5.50.30.30.0071995.611.16 RAS482.30646.12128.3 4.00.4 4.20.70.70.0392000.6 4.05 RGA475.19543.17426.7 4.3?1.6 2.60.50.50.0141995.6 6.84 RKA479.14241.96429.013.00.512.50.80.80.0081998.8 2.74 RKR474.74241.72627.77.8?0.8 6.20.40.40.0011997.79.17 RKT479.06642.12129.111.20.710.70.40.4?0.0051998.88.06 RSO475.37041.76028.78.20.0 6.70.30.30.0041995.511.29 RSR475.73241.69728.29.3?0.27.80.30.30.0041995.810.99 RTC470.39139.86427.47.2?1.1 4.30.60.60.0421999.6 4.84 RTR472.66742.70627.0 4.6?1.4 2.30.50.50.0071995.6 6.85 RTS478.90642.54828.710.90.310.40.40.4?0.0021998.88.07 RYB476.10342.52329.67.2 1.1 5.60.40.40.0131995.8 6.04 SAAZ79.74042.90529.910.1 2.08.40.60.60.0091994.7 4.03 SAK476.71542.25029.58.0 1.1 6.80.40.40.0051999.57.06 SAL482.55049.47125.70.0?1.80.40.70.70.0142000.6 4.05 SAN168.24639.69427.18.1?1.0 4.10.40.40.0021994.78.14 SAN470.88141.69726.8 5.7?1.5 2.80.40.40.0161995.58.97 SAR485.79449.19324.7 1.7?2.8 2.90.70.70.0112000.6 4.05 SARY71.70140.77426.58.7?1.7 5.60.40.40.0031994.78.13 SAS478.97242.75129.37.70.97.10.30.30.0081995.810.98 SAST70.02442.52626.37.5?1.2 3.30.60.60.0011994.7 4.03 SATY78.40843.05730.0 6.4 1.5 6.00.70.70.0042004.4 2.14 SAUK72.24839.43923.719.6?3.814.40.90.90.0191994.7 2.03 SBA480.11742.50330.310.6 2.010.30.70.70.0041998.8 3.74 SDT481.18647.38125.90.8?1.90.80.70.70.0362000.6 4.05 SDY474.15342.05227.4 6.8?1.1 5.00.30.30.0041995.611.16 SELE b77.01743.17928.0 5.5?0.3 4.40.30.30.0021997.410.142 SEM476.04542.27528.48.10.0 6.80.30.30.0081995.610.87 SEX478.74243.90029.0 4.80.7 4.20.50.60.0171998.8 4.85 SGD478.81343.43029.2 6.20.8 5.70.40.50.0071998.8 6.89 SHA575.39742.62228.5 6.90.2 5.10.40.40.0671995.59.94 SHAC77.24838.41225.722.6?2.721.90.90.90.0151998.9 2.73 SHB472.08039.86130.310.4 1.87.80.90.90.0611999.6 4.84 SHD480.48743.25129.77.7 1.47.50.50.50.0151998.8 6.84 SHE478.93643.69029.4 6.0 1.2 5.50.60.60.0181997.8 4.74 SHI471.53242.45427.3 5.3?0.9 2.70.30.30.0101995.512.07 SHL479.30442.86829.77.0 1.3 6.50.40.40.0061998.87.88 SHY572.78941.30225.87.9?2.4 5.4 1.0 1.00.0362001.7 2.83 SJK477.95942.09528.612.10.111.20.40.4?0.0021998.88.06 SKA472.92042.41027.2 5.6?1.0 3.30.30.30.0131995.512.07 SKR479.32242.60430.310.9 1.810.40.40.40.0021998.88.06 SKT476.35442.24629.28.20.8 6.60.40.50.0111999.57.06 SLP483.49149.54125.0 1.0?2.5 1.90.60.60.0082000.6 4.05 SME475.77240.47628.713.90.212.40.60.60.0152002.6 4.04 SMO477.62741.91828.912.00.411.00.40.4?0.0021998.88.06 SON475.42341.91427.58.6?1.07.10.30.30.0031995.511.29 SOS473.90142.64427.4 5.1?0.9 3.10.50.60.0141995.6 5.93 SRB478.30742.78628.67.10.2 6.30.30.30.0071995.810.98 SRT478.27543.22729.0 5.60.7 4.80.50.50.0041998.8 6.85

Table1.(continued)

Name Longitude(°N)Latitude(°E)VxI VyI VxE VyE Sx Sy Cor SYear Dur n SSR477.89042.34928.310.7?0.39.70.40.4?0.0011998.88.07 STE475.81442.12828.77.40.3 6.00.80.80.0172002.6 3.83 SUG478.22643.43329.2 5.00.9 4.30.60.60.0201998.8 4.85 SUGU76.51239.80628.320.2?0.218.70.60.6?0.0161998.9 4.34 SUM480.41242.90629.67.8 1.17.70.40.40.0081998.87.88 SUMK b73.99744.20826.8 3.8?1.3 1.90.40.40.0022000.7 6.722 SUU473.55542.20628.4 6.60.1 4.50.40.40.0071995.59.97 SYT473.25739.73228.011.8?0.59.60.60.60.0231999.6 4.84 TAKR67.80942.23325.3 5.7?2.4 1.40.70.70.0061995.7 3.03 TALA b72.21042.44627.0 5.2?1.2 2.70.30.30.0031998.88.732 TALD73.65744.23827.8 5.0?0.1 2.30.70.80.0091995.7 3.03 TAM477.55342.13728.411.3?0.110.20.40.40.0051998.87.77 TASH b75.23437.77524.024.9?4.623.20.40.40.0031998.9 6.36 TEG476.59442.13728.89.70.48.40.30.30.0121995.810.77 TEK478.84244.85527.2 3.7?1.0 3.30.50.50.0051997.8 6.86 TEM473.33341.78527.0 6.6?1.3 4.40.40.40.0111995.68.85 TEN480.86646.08127.0 3.6?1.0 3.50.60.70.0322000.6 4.05 TER471.14641.53926.5 5.7?1.8 3.00.30.30.0111995.512.08 TGU474.72241.51127.58.2?0.8 6.50.40.40.0061997.78.98 THR475.26340.88927.812.3?0.710.80.40.40.0061997.78.98 TOK675.83742.35528.7 6.70.3 5.20.30.30.0081995.511.08 TON477.05242.15729.010.10.58.80.40.40.0041998.87.77 TOR473.16041.89527.6 5.7?0.7 3.50.40.40.0131995.58.97 TOS477.31142.17628.610.90.39.90.30.30.0111995.810.79 TRG475.38340.57828.313.4?0.211.90.40.40.0061997.78.99 TRM483.63050.38225.1 1.3?2.2 2.00.60.70.0052000.6 4.05 TRY480.12645.51425.5 3.7?2.6 3.50.70.70.0322000.6 4.05 TSH574.79042.05527.97.9?0.5 6.20.40.4?0.0071997.79.14 TUA478.94842.41529.211.50.810.90.30.30.0071995.810.98 TUM479.29743.02929.9 6.5 1.4 6.10.40.40.0071998.87.88 TUR477.64243.31529.4 5.3 1.1 4.40.50.60.0061997.8 5.74 TURG75.38840.51728.314.0?0.212.60.50.50.0061998.9 6.37 TUS473.82442.32027.8 4.9?0.5 2.90.30.30.0051995.511.27 TUT471.20340.21227.67.8?0.8 5.00.70.60.0451999.6 4.84 TYUP78.50942.63228.39.6?0.19.00.30.30.0031995.511.29 TZB473.33440.56927.010.4?1.58.30.50.50.0171997.7 6.88 UGAM70.25442.28026.5 5.5?1.7 2.40.40.40.0151995.57.08 UKO475.95941.93427.89.3?0.77.90.30.30.0051995.611.17 ULT478.92642.85828.97.90.47.50.40.40.0041998.87.88 ULU475.08042.34628.0 6.6?0.4 4.90.50.50.0161995.6 6.04 ULUG74.33639.84227.117.7?1.415.60.60.60.0041998.9 4.34 URD175.08643.37927.4 6.6?0.3 3.40.70.70.0051994.7 4.07 URM471.95842.35427.4 5.2?0.8 2.70.30.30.0131995.512.07 URS476.33842.11028.18.8?0.47.60.40.40.0011995.610.17 URUM b87.60143.80830.47.0 2.48.90.40.30.0031998.98.633 USH477.96945.73927.3 4.2?0.7 3.30.60.60.0132000.6 4.05 UUM473.47841.21926.59.9?2.07.90.40.40.0011997.77.17 UYG479.53244.47826.4 4.9?1.9 4.40.80.90.0422000.6 3.04 UZB474.92941.93627.88.0?0.6 6.20.30.30.0041995.611.16 UZG474.78041.06927.310.7?1.29.10.50.50.0082000.5 6.15 UZL479.02243.14429.6 6.8 1.2 6.30.40.50.0061998.8 6.88 UZU472.49841.98027.9 5.9?0.4 3.60.40.40.0041995.59.37 VAV481.41450.66725.0 1.4?2.4 1.60.70.70.0292000.6 4.05 VJK477.86342.03128.612.10.211.20.40.4?0.0071998.88.06 VKA479.39242.54629.810.3 1.39.90.40.40.0041998.88.06 VKE478.83342.89829.47.4 1.0 6.80.50.50.0011998.8 6.84 VKR476.33642.18529.48.5 1.17.20.40.40.0051999.57.06 VSE474.99942.22128.0 6.9?0.4 5.20.30.30.0071995.611.16 VTG476.74442.04029.010.80.69.60.40.40.0061998.87.76 VTU476.98142.02128.411.2?0.110.00.40.40.0041998.87.77 WARZ68.96738.85426.29.1?1.7 4.30.60.60.0031994.7 4.04 WUPA75.51039.31129.823.8 1.122.20.60.60.0021998.9 5.25 WUQI75.25039.71827.616.2?1.014.30.60.60.0021998.9 4.34 WUSH b79.21041.20229.316.20.815.70.40.40.0021998.9 6.37 YENG76.17438.93529.023.00.421.40.60.6?0.0041998.9 4.33 YUZ475.74141.97927.89.1?0.67.70.30.30.0071995.611.08 YZG473.20741.33526.68.9?1.9 6.90.70.6?0.0042000.5 4.34

of shortening suffices to account for the Cenozoic structure of the Kyrgyz Tien Shan.Heermance et al.[2008]offered a minimum bound of10to32km of shortening on the south side of the range.If between100and200km of crustal shortening occurred within the Kyrgyz and Chinese Tien Shan,then at the current rate,the entire range would have been built in only5to10Myr.

[16]The rapid shortening today corroborates other infer-ences of a recent acceleration of deformation within the Tien Shan long after India collided with Eurasia[e.g., Abdrakhmatov et al.,1996,2001].Abrupt increases in sedimentation in basins both within the Tien Shan and on its margins are commonly interpreted as evidence for the emergence of high terrain near or since~10Ma[e.g., Abdrakhmatov et al.,2001;Bullen et al.,2001;Charreau et al.,2005,2006,2008,2009;Ji et al.,2008;Makarov,1977; Shultz,1948;Sun and Zhang,2009;Sun et al.,2004,2009; Trifonov et al.,2008].Rapid cooling of rock within the Kyrgyz Range beginning near11Ma also suggests an abrupt increase in exhumation rates at that time[Bullen et al.,2003;Sobel and Dumitru,1997;Sobel et al.,2006a]. Neither this evidence,however,nor the present‐day high convergence rate requires that the Tien Shan formed in late Cenozoic time.Mountain building deformation of the crust of the Tien Shan started near the end of the Oligocene or the beginning of the Miocene Epoch[Chedia,1986;Makarov, 1977;Shultz,1948;Sinitsyn,1962].Similarly,dating of deformation on the south side of the Tien Shan demonstrates active faulting beginning at20–25Ma[Heermance et al., 2008;Yin et al.,1998],an inference consistent with both cooling ages near25Ma[Hendrix et al.,1994;Sobel and Dumitru,1997;Sobel et al.,2006b]and changes in sedi-mentation rates in basins flanking the Tien Shan[e.g., Charreau et al.,2009;Huang et al.,2006,2010;Ji et al., 2008].Thus,an acceleration of convergence across the Tien Shan beginning at or since~10Ma seems to be re-quired,but we cannot distinguish a continuously increasing rate from an abrupt change near or since~10Ma and a constant rate since that time.

3.2.Deformation Within the Tien Shan

[17]As is clear both on maps of velocities(Figures3and6) and on profiles of components of velocity(Figure4),components perpendicular to the Tien Shan show a mono-tonically decreasing rate across the belt,from Tarim to the southern part of the Kazakh Platform.The velocity gradient is steepest at distances between~400and~700km for profiles A‐A′to D‐D′in Figures2and4.In an analysis of active faulting in the area crossed by profile A‐A′(Figures2 and4a),Makarov[1977][see also Makarov et al.,2010]not only reported active faults on the edge of the Tien Shan,but they also described active faulting within the https://www.doczj.com/doc/5c4631667.html,ter, Thompson et al.[2002]and Abdrakhmatov et al.[2007] discussed four such faults within the high terrain of the range slipping at~1mm/yr or more,and other more minor faults.In a profile of GPS velocities across this region,they showed steep gradients and high strain rates where they had mapped active faults.Moreover,the differences in velocity across these steep gradients matched(with allowance for uncertainties)the slip rates that they had determined for the faults.Our profile A‐A′shows a difference of8–10mm/yr across the southern margin of the Tien Shan between300 and350km on the profile(Figure2),where Scharer et al. [2004]had inferred a Quaternary rate of~5to7.8mm/yr, a second difference of3–4mm/yr across the Naryn Basin (near500km)and near where Thompson et al.[2002]had inferred slip at~4mm/yr by dating warped terraces and off-sets on faults,and hints of smaller differences of1–2mm/yr across steep gradients farther north near600and650km, again near faults that they had mapped.Moreover,as is clearer farther east on profiles C‐C′and D‐D′(Figures4c and 4d),GPS points just north of the Kyrgyz Range move northward at1–2mm/yr with respect to the Kazakh Platform and Eurasia.Some shortening seems to occur not only within the Dzungarian Alatau(the high terrain between44.5°N and 45.5°N on the eastern margin of Figure6)and its westward continuation,but also north of it within the Kazakh Platform (Figures2–4).

[18]Indications of steep gradients in the velocity field are also present along profile B‐B′(Figures2and4b)at three places:(1)a difference of~5mm/yr between~300and 450km,north of the southern edge of the Tien Shan and north of or within the fold‐and‐thrust belt that bounds the belt;(2)another of~5–6mm/yr near600km,within the Tien Shan between the southern and northern edges of Issyk‐Kul and the large basin that it occupies;and(3)a hint

Table1.(continued)

Name Longitude(°N)Latitude(°E)VxI VyI VxE VyE Sx Sy Cor SYear Dur n ZAR482.32249.93425.3 1.2?2.1 1.60.70.70.0162000.6 4.05 ZAS484.85647.43427.6 3.1?0.2 4.00.70.70.0342000.6 4.05 ZBA475.00941.09227.311.1?1.29.40.40.40.0061997.78.99 ZEPU77.27738.17427.919.4?0.218.4 1.00.80.0041998.9 4.34 ZES480.88949.61925.5 1.2?2.2 1.20.70.70.0292000.6 4.05 ZKK474.37942.30227.6 5.7?0.9 4.00.40.40.0021997.79.17 ZTR482.56647.61127.3 1.4?0.5 1.80.70.70.0282000.6 4.05 a VxI and VyI give eastward and northward components of velocity in the ITRF2005reference frame.VxE and VyE give eastward and northward components of velocity in reference frame tied to Eurasia.Sx and Sy give standard errors in eastward and northward components of velocity,and Cor gives the correlation coefficient between these uncertainties.SYear gives the date when the site was first measured,Dur gives the elapsed time between that first measurement and the most recent measurement campaign,and n gives the number of campaigns during which a site was measured.

b Continuously recording site.

Figure4.(a–d)Profiles of components of velocity across the Tien Shan relative to Eurasia(profiles A‐A′to D‐D′in Figure2).As shown in the legend below profile A,components perpendicular to the Tien Shan (and parallel to profiles)are shown with red squares and black diamonds,and components parallel to the Tien Shan(and perpendicular to profiles)are shown with blue and green triangles.Thus,positive values show convergent(approximately northward)components,or movement to the right(approximately east-ward).Error bars give1s uncertainties.Black squares and blue upward pointing triangles show rates of points that lie within75km to the west,and red squares and green downward pointing triangles show points within75km to the east of the profiles in Figure2.Thrust fault symbols are shown where active thrust faults have been mapped,as by Thompson et al.[2002]for profile A,or inferred from sharp breaks in the

topography.

Figure4.(continued)

of a steep gradient with a difference of ~2mm/yr near 700km across the northern edge of the Tien Shan,where it bounds the southern edge of the Ili Basin (Figure 6).There is evidence for shortening between the Ili Basin and the Kazakh Platform,with 3–5mm/yr of shortening across the westward continuation of the Dzungarian Alatau (Figure 6).[19]Indications of steep gradients suggestive of faults like those inferred by Thompson et al.[2002]are present on profile C ‐C ′(Figures 2and 4c)again in three places:(1)a difference of ~4mm/yr between 500and 550km,north of the southern edge of the Tien Shan and north of the fold ‐and ‐thrust belt that bounds the belt;(2)another steep gra-dient with a difference of ~4mm/yr near 650km,within the Tien Shan,just east of Issyk ‐Kul and the large basin that it occupies;and (3)the suggestion of steep gradient with a small difference of ~2mm/yr near 750km across the northern edge of the Tien Shan,where it bounds the southern edge of the Ili Basin (Figures 4c and 6).Points at the western end of the Ili Basin move 2–3mm/yr with respect to Eurasia.[20]With only sparse data,steep velocity gradients can be inferred for profile D ‐D ′(Figures 2and 4d),but they cannot

be defined as well as on profiles A ‐A ′,B ‐B ′,and C ‐C ′.Several points in the Ili Basin,however,move northward with respect to Eurasia at ~2–3mm/yr,and that movement is absorbed,at least partly,by shortening across the Dzun-garian Alatau.

3.3.Strike ‐Parallel Deformation Within the Tien Shan [21]Convergence of the Tarim Basin toward the Kazakh Platform is clearly oblique to the strike of the Tien Shan,and accordingly there is a left ‐lateral strike ‐slip component of movement parallel to the belt (Figures 3,4,and 6).Because inferred axes of rotation of the Tarim Basin with respect to Eurasia lie south of the southeastern end of the Tarim Basin [Calais et al.,2006;England and Molnar ,2005;Meade ,2007;Reigber et al.,2001;Shen et al.,2001;Thatcher ,2007]and therefore only 1000–1500km from the Kyrgyz Tien Shan,directions of relative movement vary measurably over short distances (Figure 6).Points just south of the Tien Shan along profile D ‐D ′move with a left ‐lateral component of ~4mm/yr with respect to Eurasia,but points farther

west

Figure 5.Profile of components of velocity across the eastern Pamir into the Tarim Basin relative to Eurasia (profile E ‐E ′in Figure 2).Positive values for black diamonds and red squares indicate approx-imately eastward components,and the more negative values at points to the west imply divergence along the profile.Positive values for blue upward pointing triangles and green downward pointing triangles indicate movement to the right of the profile and hence approximately southward movement relative to Eurasia.Error bars give 1s uncertainties.Black diamonds and blue upward pointing triangles show rates of points within 75km to the north of profile E ‐E ′in Figure 2,and red squares and green downward pointing triangles show points within 75km to the south it.

along profile B ‐B ′move with a left ‐lateral component of only ~2mm/yr (Figures 4and 6).The left ‐lateral component on profile D ‐D ′seems to be absorbed by shear in two zones,one (between 400and 600km)within the Tien Shan,and the other (near 800km)at the edge of the Tien Shan and Ili Basin (Figures 2,3,and 4d).On profile C ‐C ′,the left ‐lateral component seems to be absorbed by more localized shear than data on profile D ‐D ′can resolve and again in two zones,one near the southern edge of the Issyk ‐Kul Basin,and the other at the edge of the Tien Shan and Ili Basin (Figures 3and 4c).Localized shear zones are less clearly defined on profiles A ‐A ′and B ‐B ′,in part because the

component of left ‐lateral shear along the Tien Shan is smaller there.

[22]The west to east increase in the left ‐lateral strike ‐slip component along the Tien Shan requires greater eastward components of velocity at sites in the eastern part of the Tien Shan than in the western part (Figures 3,4,and 6).In the west,velocities are nearly parallel to profile A ‐A ′,but for profile D ‐D ′in the east,they show clear eastward compo-nents.Thus,there might be a small ENE –WSW component of extension along and within the Tien Shan,despite the dominance of thrust faulting shown by fault plane solutions of nearly all earthquakes in the region [e.g.,Ghose et al.

,

Figure 6.Map of Tien Shan with GPS velocities relative to Eurasia (box 1in Figure 2).Error ellipses show 95%confidence ellipses.

1998;Maggi et al.,2000;Nelson et al.,1987;Tapponnier and Molnar ,1979]and by the absence of evidence of nor-mal faulting.We presume that any extensional component of strain is accommodated by strike ‐slip faulting or shear on planes oriented obliquely to the belt.

3.4.The Pamir and Shortening Across the Alay Valley [23]The network of GPS sites that we analyzed includes several sites in the northern part of the Pamir (Figures 2and 3).Maximum north ‐northwestward components of velocity relative to Eurasia exceed those from the Tarim Basin (Figures 2and 4).This difference in velocity would be consistent with a small component of right ‐lateral shear across the eastern part of the Pamir,where right ‐lateral faults have been mapped [e.g.,Cowgill ,2010;Peive et al.,1964;Ruzhentsev ,1963].Such right ‐lateral shear might be present,but when south –southeastward components of ve-locity are plotted on an east –northeast profile from the Pamir to the Tarim Basin (blue and green points on profile E ‐E ′;Figure 5),no obvious step in rates is seen.Rather this component of velocity increases smoothly from east to west.Because the strike ‐slip component,which clearly exists in the southern Pamir,dies out to the north,it is possible that the GPS sites within the Pamir lie too far to the north to measure a strike ‐slip component.

[24]By contrast,east –northeastward components of ve-locity increase eastward,with a difference of 5–8mm/yr between those within the Pamir and within the Tarim Basin (near 300km on profile E ‐E ′;Figure 5).Hence,the interior of the Pamir diverges from the Tarim Basin,despite the presence of folds and thrust faults along their boundary [e.g.,Jin et al.,2003].This divergence attests to both east ‐west extension within the Pamir,a result consistent with fault plane solutions of earthquakes [e.g.,Burtman and Molnar ,

1993;

Figure 7.Profile of components of velocity across the Pamir,parts of Ferghana Valley and Tien Shan,and regions farther north relative to Eurasia (profile F ‐F ′in Figure 2).Components perpendicular to the Alay Valley and Trans ‐Alay Range (and parallel to the profile)are shown with red squares and black diamonds,and components parallel to them (and perpendicular to profiles)are shown with blue and green triangles.Positive values show convergent (approximately northward)components,or movement to the right (approximately eastward).Error bars give 1s uncertainties.Black squares and blue upward pointing triangles show rates of points that lie within 75km to the west,and red squares and green downward pointing triangles show points within 75km to the east of profile F ‐F ′in Figure 2.Thrust fault symbols are shown where active thrust faults have been mapped by Arrowsmith and Strecker [1999],inferred from seismicity [e.g.,Burtman and Molnar ,1993],or from sharp breaks in the topography,and the position of the Talas ‐Ferghana strike ‐slip fault is inferred from its obvious expression in the topography.

Strecker et al.,1995],with the presence of grabens along the eastern part of the Pamir[e.g.,Cowgill,2010;Tapponnier and Molnar,1979],and with velocities of a few continuous GPS sites in the Pamir and surroundings[Mohadjer et al., 2010].The folding of Mesozoic and Cenozoic sedimentary rock along the western edge of the Tarim Basin implies convergence perpendicular to the eastern margin of the Pamir [e.g.,Jin et al.,2003],but at present this convergence must be slow compared with the rate of divergence across a wider belt (Figure5).We are unaware of evidence that constrains either when the divergence began or when convergence on the eastern margin occurred most rapidly.

[25]Because of the paucity of GPS sites within the Pamir, its deformation field cannot be quantified in full.Never-theless,as shown by profile F‐F′(Figures2and7),rates relative to Eurasia decrease by at least10and possibly by15 mm/yr over a short distance that spans the Trans‐Alay Range(near250km;Figure7),which marks the northern margin of the Pamir,and the Alay Valley just to its north. Although the rotation of the Ferghana Valley relative to Eurasia(discussed below)can account for~5mm/yr of nearly~25mm/yr of north‐northwestward convergence of the central Pamir with Eurasia,it appears that thrust faulting at the northern margin of the Pamir absorbs at least10and maybe15mm/yr of that~25mm/yr of convergence be-tween the Pamir and Eurasia.Such a rate is similar to the13±4mm/yr that Reigber et al.[2001]had inferred,and consistent with triangulation measurements made farther west[e.g.,Guseva,1986;Konopaltsev,1971a,1971b]. [26]Most,if not all,of this convergence between the Pamir and Eurasia may be absorbed at the system of thrust faults in the Alay Valley.The high level of seismicity in this region attests to localized deformation(Figure1),and evi-dence of thrust faulting in this region abounds[e.g., Coutand et al.,2002;Nikonov,1974,1975,1977;Nikonov et al.,1983;Strecker et al.,2003].Arrowsmith and Strecker [1999]measured a lower bound of6mm/yr for Holocene convergence at one location near39.5°N,72.6°E.The GPS measurements reported here suggest that localized conver-gence may be much more rapid than just6mm/yr,and perhaps occurs by slip on more than one thrust,or reverse, fault in this region.Obviously,with so few measurement points we cannot eliminate north–south crustal shortening within the Pamir as well,but both fault plane solutions of earthquakes and evidence of active faulting imply a pre-ponderance of normal faulting and east‐west extension within the high axial portion of the Pamir[e.g.,Burtman and Molnar,1993;Strecker et al.,1995].Thus,we doubt that reverse faulting and contraction at more than a couple of mm/yr occurs in this region.

[27]This zone of thrust or reverse faulting along the Trans‐Alay Range seems to mark a zone of intracontinental subduction[e.g.,Burtman and Molnar,1993;Chatelain et al.,1980;Hamburger et al.,1992],where the eastern con-tinuation of the Tajik Depression has been subducted southward beneath the Pamir.The suggestion of localized deformation at the foot of the Trans‐Alay Range,therefore, accords with this region being the surface manifestation of such subduction.3.5.Rotation of the Ferghana Valley and Slip on the Talas‐Ferghana Fault

[28]West of the segment of the Tien Shan that separates the effectively rigid Tarim Basin from the Kazakh Platform to the north,the high terrain of the Tien Shan west of the Talas‐Ferghana fault splits into two belts that surround the Ferghana Valley,which also seems to behave as a block that deforms at most only slowly(Figures2and8).With thick, poorly consolidated sedimentary rock,the Ferghana Valley offers poor sites for GPS points,and most sites have been installed in sedimentary rock exposed in folds on the mar-gins of the valley.Rates of movement relative to Eurasia increase from low rates at sites in the southwestern part of the basin to higher rates near its northeast margin,consistent with rotation of the basin,with respect to Eurasia,about an axis near its southwest end[e.g.,Reigber et al.,2001; Thomas et al.,1993].Sites on the southeast side,however, move faster toward Eurasia than those on the northwest side, presumably because they lie within the deforming margins of the Ferghana Valley.On the northwest margin,crustal shortening occurs with a NW‐SE orientation,and on its southern margin,north‐south shortening occurs.Field observations,geophysical profiling,and fault plane solu-tions of earthquakes suggest that the east‐west trending South Tien Shan,which is cored largely by Paleozoic metamorphic rock,has been thrust atop the southern edge of the Ferghana Valley[e.g.,Burtman and Molnar,1993; Laverov and Makarov,2005].Thus,the counterclockwise rotation of the Ferghana Valley converts roughly north‐south movement of the South Tien Shan with respect to Eurasia,into NW‐SE shortening across the Chatkal and adjacent ranges that lie northwest of the https://www.doczj.com/doc/5c4631667.html,ing sites on the margins of the Ferghana Valley and allowing uniform strain among them,we estimate an angular velocity of the valley with respect to Eurasia given by counterclockwise rotation at?0.73°(±0.08°)Myr?1about an axis of rotation that is located just southwest of the valley at39.9°N(±0.4), 67.5°E(±0.7)(Figure8).To determine that angular velocity, we used those points shown in Figure8with blue arrows superimposed on them;the blue arrows show calculated velocities for those points.

[29]The eastern end of the Ferghana Valley is bounded by high terrain through which a clear right‐lateral strike‐slip fault passes,the Talas‐Ferghana fault[e.g.,Burtman,1963, 1964,1975].From several upper bounds of~10mm/yr for the Holocene slip rate on the fault,Burtman et al.[1996] suggested that the fault currently slips at that rate.By con-trast,Trifonov et al.[1992]inferred that Late Quaternary and Holocene right‐lateral slip along the fault was not uni-form along the fault,and that the highest rate of about15 mm/yr occurs in its central part just opposite the Ferghana Valley.GPS data,however,including both analyses of a subset of the data that we present here[e.g.,Meade and Hager,2001;Zubovich et al.,2007]and of other,inde-pendent data[Mohadjer et al.,2010],showed that the rate must be much lower,<~2mm/yr.The modest differences in velocities of sites on the two sides of the fault(Figures8and 9)demonstrate that the slip rate indeed is small,no more than~1–2mm/yr.Profiles of GPS velocities(Figure9),in

fact,give little indication of any slip at all.Moreover,the obliquity of the fault to the direction of movement of the Ferghana Valley,relative to Eurasia,attest to a small com-ponent of convergence perpendicular to the fault,which presumably manifests itself,at least in part,in the presence of high terrain southwest of the fault.

4.Conclusions

[30]The GPS data presented here demonstrate that the western part of the Tarim Basin converges with Eurasia at 20±2mm/yr (Figures 2and 4,profiles A ‐A ′and B ‐B ′),where convergence between India and Eurasia is only ~33mm/yr [Argus et al.,2010].At a convergence rate of 20mm/yr the entire Tien Shan would have been built in less than 10Ma.Thus,these data suggest that following slow initial growth,the Tien Shan did not develop into a major mountain belt until late in the history of convergence between India and Eurasia [Abdrakhmatov et al.,1996;Reigber et al.,2001].

[31]Most of the convergence between the Tarim Basin and the Kazakh Platform is absorbed within the Tien Shan,presumably by slip on thrust or reverse faults;localized

zones of shortening at rates of ~2mm/yr to as many as 6mm/yr lie within the Tien Shan.In addition,shortening at ~1–3mm/yr occurs north of the belt,within the Dzungarian Alatau and its westward continuation,and possibly also in the southern part of the Kazakh Platform.Moreover,the movement of the Tarim Basin toward the Kazakh Platform includes a left ‐lateral strike ‐slip component parallel to the Tien Shan of ~4mm/yr in the eastern part of our network,decreasing to only ~2mm/yr at the western end of the belt,which we associate with clockwise rotation of the Tarim Basin with respect to Eurasia.

[32]GPS data surrounding the Ferghana Valley corrobo-rate the inference that this basin has rotated around an axis southwest of the valley [Reigber et al.,2001;Thomas et al.,1993],and refine the angular velocity of that motion (Figure 8).Shortening across the Chatkal and parallel mountain ranges that lie along the northwestern margin of the valley occurs at ~5mm/yr.Slip on the Talas ‐Ferghana fault,at the eastern end of the Ferghana Valley,occurs at <~2mm/yr (Figure 9)[Meade and Hager ,2001;Mohadjer et al.,2010;Zubovich et al.,2007].

[33]Convergence between the Tarim Basin and the Kazakh Platform is absorbed over a region more than 200km

wide,

Figure 8.Map of Ferghana Valley and surrounding region with GPS velocities (black and red arrows)relative to Eurasia (region 2in Figure 2).Red arrows show points that are assumed to be part of the Ferghana Valley,and blue arrows show velocities calculated assuming that the region including those points (1)contracts at rates of 15×10?9yr ?1oriented N157°E,and at 1.5×10?9yr ?1at N67°E,and (2)rotates about an axis at 67.5°E ±0.7°E,39.9°N ±0.4°N at a rate of ?0.73°±0.08°Myr ?1with respect to Eurasia.Error ellipses show 95%confidence regions.

Figure9.Profiles of components of velocity across the Ferghana Valley,Talas‐Ferghana fault,and western Tien Shan relative to Eurasia(profiles G‐G′and H‐H′in Figure2).Positive values for black diamonds and red squares indicate approximately eastward components,and those for blue and green triangles show movement to the right of the profiles,approximately southward.Error bars give1s uncertainties.Black diamonds and blue upward pointing triangles show rates for points within75km to the north of profiles G‐G′and H‐H′in Figure2,and red squares and green downward pointing triangles show points within75km to the south of those profiles.Symbols showing strike‐slip faulting indicate the

position of the Talas‐Ferghana fault,as inferred from the detailed topography.

自动化英语单词

后验估计 a posteriori estimate 先验估计 a priori estimate 交流电子传动AC (alternating current) electric drive 验收测试acceptance testing 可及性accessibility 累积误差accumulated error 交-直-交变频器AC-DC-AC frequency converter 主动姿态稳定active attitude stabilization 驱动器,执行机构actuator 线性适应元adaline 适应层adaptation layer 适应遥测系统adaptive telemeter system 伴随算子adjoint operator 容许误差admissible error 集结矩阵aggregation matrix 层次分析法AHP (analytic hierarchy process) 放大环节amplifying element 模数转换analog-digital conversion 信号器annunciator 天线指向控制antenna pointing control 抗积分饱卷anti-integral windup 姿态轨道控制系统AOCS (attritude and orbit control system) 非周期分解aperiodic decomposition 近似推理approximate reasoning 关节型机器人articulated robot 配置问题,分配问题assignment problem 联想记忆模型associative memory model 联想机associatron 渐进稳定性asymptotic stability 实际位姿漂移attained pose drift 姿态捕获attitude acquisition 姿态角速度attitude angular velocity 姿态扰动attitude disturbance 姿态机动attitude maneuver 吸引子attractor 可扩充性augment ability 增广系统augmented system 自动-手动操作器automatic manual station 自动机automaton 自治系统autonomous system 间隙特性backlash characteristics 基座坐标系base coordinate system 贝叶斯分类器Bayes classifier 方位对准bearing alignment 波纹管压力表bellows pressure gauge 收益成本分析benefit-cost analysis 双线性系统bilinear system 生物控制论biocybernetics 生物反馈系统biological feedback system 黑箱测试法black box testing approach 盲目搜索blind search 块对角化block diagonalization 玻耳兹曼机Boltzman machine 自下而上开发bottom-up development 边界值分析boundary value analysis 头脑风暴法brainstorming method 广度优先搜索breadth-first search 蝶阀butterfly valve 计算机辅助工程CAE (computer aided engineering) 清晰性calrity 计算机辅助制造CAM (computer aided manufacturing) 偏心旋转阀Camflex valve 规范化状态变量canonical state variable 电容式位移传感器capacitive displacement transducer 膜盒压力表capsule pressure gauge 计算机辅助研究开发CARD 直角坐标型机器人Cartesian robot 串联补偿cascade compensation 突变论catastrophe theory 集中性centrality 链式集结chained aggregation 混沌chaos 特征轨迹characteristic locus 化学推进chemical propulsion 经典信息模式classical information pattern 分类器classifier 临床控制系统clinical control system 闭环极点closed loop pole 闭环传递函数closed loop transfer function 聚类分析cluster analysis 粗-精控制coarse-fine control 蛛网模型cobweb model 系数矩阵coefficient matrix 认知科学cognitive science 认知机cognitron 单调关联系统coherent system 组合决策combination decision 组合爆炸combinatorial explosion 压力真空表combined pressure and vacuum gauge 指令位姿command pose 相伴矩阵companion matrix 房室模型compartmental model 相容性,兼容性compatibility 补偿网络compensating network 补偿,矫正compensation

Ant常用语法及选项

1. 把build.properties文件里的键值对导入到build.xml ,以后就可以在build.xml 里使用${db.driver}来读到build.properties里配置的值org.hsqldb.jdbcDriver 这个很有用,需要改变值的时候,只需改变build.properties的值,但build.xml文件不用修改 db.url=jdbc:hsqldb:hsql://localhost/training db.driver=org.hsqldb.jdbcDriver https://www.doczj.com/doc/5c4631667.html,ername=sa db.password= hibernate.dialect=net.sf.hibernate.dialect.HSQLDialect 2. 指定了一个路径,路径下放着指定的jar文件 3. 指定了一个路径里的所有文件 4. 这个表示把路径${xdoclet.lib.dir}里的所有的.jar文件包括进 来,不包括子文件夹里的.jar文件 如果用这个,表示包括这个文件夹里所有的 .jar文件,包括所有子文件夹里的.jar文件 5.

velocity入门使用教程

V elocity入门使用教程 一、使用velocity的好处: 1.不用像jsp那样编译成servlet(.Class)文件,直接装载后就可以运行了,装载的过程在web.xml里面配置。【后缀名为.vhtml是我们自己的命名方式。也只有在这里配置了哪种类型的文件,那么这种类型的文件才能解析velocity语法】 2.web页面上可以很方便的调用java后台的方法,不管方法是静态的还是非静态的。只需要在toolbox.xml里面把类配置进去就可以咯。【调用的方法$class.method()】即可。 3.可以使用模版生成静态文档html【特殊情况下才用】 二、使用 1、下载velocity-1.7.zip 、velocity-tools-2.0.zip 2、解压后引用3个jar文件velocity-1.7.jar、velocity-tools-2.0.jar、velocity-tools-view-2.0.jar 还有几个commons-…..jar 开头的jar包 三、配置文件: Web.xml velocity org.apache.velocity.tools.view.VelocityViewServlet 1 velocity *.vm velocity *.jsp velocity *.html

科技英语语法_同位语从句_名词性从句_定语从句

2015/12/2 Wednesday
西安电子科技大学
西安电子科技大学
§5. 2 同位语从句
1、一般情况 (1)公式
§5. 2 同位语从句 The latter(后一)form has the advantage that it can be extended(扩展) to complex quantities .
+ 某些抽象名词 +
the this a/an O no
形容词 物主代词
that从句[“that”在
从句中无词义、无 成分]
③ “动宾译法”:这时该“抽象名词” 来自于可带有宾语从句的及物动词。
西安电子科技大学
西安电子科技大学
§5. 2 同位语从句
(2)译法 ① “~ 这一 ……” 的
§5. 2 同位语从句 During the past several years, there has been an increasing [a growing] recognition [realization; awareness] within business(商务)and academic(学术的) circles(界)that certain nations have evolved(发展)into information societies .
The assumption that β = constant is often made to simplify analysis. R = r is the condition that power delivered(提供)by a given source is a maximum .
西安电子科技大学
西安电子科技大学
§5. 2 同位语从句 Here we have used the definition (定义)that acceleration(加速度)is the rate(速率)of change of velocity .
② 这一 ……:~ 以下的
§5. 2 同位语从句 The main theoretical development in this decade(十年)has been in the recognition that material properties should be included in analytical models . This is equivalent to a statement that everything is attracted by the earth.
This account for(解释)the observation(观察到的情况)that the resistivity of a metal increases with temperature .
1

VRay中文使用手册

VRay中文使用手册 9030 目录 1. license 协议 2. VRay的特征 3. VRay软件的安装 4. VRay的渲染参数 5. VRay 灯光 6. VRay 材质 7. VRay 贴图 8. VRay 阴影 9. VRay的分布式渲染 10. Terminology术语 11. Frequently Asked Questions常见问题 VRay的特征 VRay光影追踪渲染器有Basic Package 和 Advanced Package两种包装形式。Basic Package具有适当的功能和较低的价格,适合学生和业余艺术家使用。Advanced Package 包含有几种特殊功能,适用于专业人员使用。 Basic Package的软件包提供的功能特点

·真正的光影追踪反射和折射。(See: VRayMap) ·平滑的反射和折射。(See: VRayMap) ·半透明材质用于创建石蜡、大理石、磨砂玻璃。(See: VRayMap) ·面阴影(柔和阴影)。包括方体和球体发射器。(See: VRayShadow) ·间接照明系统(全局照明系统)。可采取直接光照 (brute force), 和光照贴图方式(HDRi)。(See: Indirect illumination) ·运动模糊。包括类似Monte Carlo 采样方法。(See: Motion blur) ·摄像机景深效果。(See: DOF) ·抗锯齿功能。包括 fixed, simple 2-level 和 adaptive approaches等采样方法。(See: Image sampler) ·散焦功能。(See: Caustics ) ·G-缓冲(RGBA, material/object ID, Z-buffer, velocity etc.) (See: G-Buffer ) Advanced Package软件包提供的功能特点 除包含所有基本功能外,还包括下列功能: ·基于G-缓冲的抗锯齿功能。(See: Image sampler) ·可重复使用光照贴图 (save and load support)。对于fly-through 动画可增加采样。(See: Indirect illumination) ·可重复使用光子贴图 (save and load support)。(See: Caustics) ·带有分析采样的运动模糊。(See: Motion blur ) ·真正支持 HDRI贴图。包含 *.hdr, *.rad 图片装载器,可处理立方体贴图和角贴图贴图坐标。可直接贴图而不会产生变形或切片。

jetTemplate模板学习和使用

一、如何配置jetTemplate ? ? ? ? ?

拓展方法:可以非常好的进行格式化处理和一些小的模板处理。

?? ??? ???? ?

?o o

二、model and view 我们发现在这一块基本上没有什么区别,把数据对象放在map中,在后面的页面就可以帮我们完成整个的处理。 返回值表示对应的html文件。 这一块没有什么问题。这一块非常方便。 三、页面的布局 jetbrick-template samples

#for(UserInfo user: userlist) #end
ID 姓名 邮箱 书籍
${user.id} ${https://www.doczj.com/doc/5c4631667.html,} ${user.email} 书籍列表
#include("includes/footer.jetx")

整个的思路也非常简单,就是使用#include和#tag layout_block("mainContent")两个标志就可以搞定了。 四、页面渲染 这一块也很简单,看上面的例子和官网上的说明就OK了。

log4j学习

log4j 如同Hadoop一样,把需要的jar包(hadoop.jar )和配置文件,放到CLASSPATH中, 配置Log4j也要如此,把log4j-1.2.8.jar,log4j.properties放到classpath中。配置 文件配置的是Log输出到哪里,如何输出,何时输出,哪些类的log要输出(等级)(Where, How,When,Who) 代码中用到的 private final Log log = LogFactory.getLog(getClass()); 得到类的全名,Log4j框架就会去找相应的package是否有设置输出log,以及它的等级。 如果等级为DEBUG那么log.isDebugEnabled()为true。如下所示,如果等级为INFO, 那么log.isInfoEnabled()、log.isWarnEnabled()、log.isErrorEnabled()这三个为true, 其他的为false?(有待确认) 等级可分为OFF、FATAL、ERROR、WARN、INFO、DEBUG、ALL,如果配置OFF则 不打出任何信息,如果配置为INFO这样只显示INFO, WARN, ERROR的log信息,而 DEBUG信息不会被显示,具体讲解可参照第三部分定义配置文件中的logger。 if (log.isDebugEnabled()){ log.debug("111"); } if (log.isInfoEnabled()){ https://www.doczj.com/doc/5c4631667.html,("222"); } 完整的文章如下: 在强调可重用组件开发的今天,除了自己从头到尾开发一个可重用的日志操作类外,Apache为我们提供了一个强有力的日志操作包-Log4j。 Log4j是Apache的一个开放源代码项目,通过使用Log4j,我们可以控制日志信息输送的目的地是控制台、文件、GUI组件、甚至是套接口服务器、NT的事件记录器、UNIX Syslog守护进程等;我们也可以控制每一条日志的输出格式;通过定义每一条日志信息的级别,我们能够更加细致地控制日志的生成过程。最令人 感兴趣的就是,这些可以通过一个配置文件来灵活地进行配置,而不需要修改应用的代码。 此外,通过Log4j其他语言接口,您可以在C、C++、.Net、PL/SQL程序中使用Log4j,其语法和用法与在Java程序中一样,使得多语言分布式系统得到一个统一一致的日志组件模块。而且,通过使用各种第三方扩展,您可以很方便地将Log4j集成到J2EE、JINI甚至是SNMP应用中。 说明:下面分为三部分, 第一部分讲解如何配置log4j; 第二部分为对log4j.properties配置文件中的各个属性的讲解; 第三部分为对log4j的详细讲解。 如果只想配置上log4j,那么只需要看前两个部分就可以,如果想对log4j深入了解,则还需看第三部分。 一、Log4j配置

fluent 使用基本步骤

fluent 使用基本步骤 步骤一:网格 读入网格(*.msh) File →Read →Case 读入网格后,在窗口显示进程 检查网格 Grid →Check Fluent对网格进行多种检查,并显示结果。注意最小容积,确保最小容积值为正。 显示网格 Display →Grid 以默认格式显示网格 能够用鼠标右键检查边界区域、数量、名称、类型将在窗口显示,本操作关于同样类型的多个区域情形专门有用,以便快速区不它们。 网格显示操作 Display →Views 在Mirror Planes面板下,axis 点击Apply,将显示整个网格 点击Auto scale, 自动调整比例,并放在视窗中间 点击Camera,调整目标物体位置 用鼠标左键拖动指标钟,使目标位置为正 点击Apply,并关闭Camera Parameters 和Views窗口 步骤二:模型 1. 定义瞬时、轴对称模型 Define →models→Solver 保留默认的,Segregated解法设置,该项设置,在多相运算时使用。

在Space面板下,选择Axisymmetric 在Time面板下,选择Unsteady 2. 采纳欧拉多相模型 Define→Models→Multiphase (a) 选择Eulerian作为模型 (b)如果两相速度差较大,则需解滑移速度方程 (c)如果Body force比粘性力和对流力大得多,则需选择implicit b ody force 通过考虑压力梯度和体力,加快收敛 (d)保留设置不变 3. 采纳K-ε湍流模型(采纳标准壁面函数) Define →Models →Viscous (a) 选择K-ε( 2 eqn 模型) (b) 保留Near wall Treatment面板下的Standard Wall Function设置 在K-εMultiphase Model面板下,采纳Dispersed模型,dispersed湍流模型在一相为连续相,而材料密度较大情形下采纳,而且Stocks数远小于1,颗粒动能意义不大。 4.设置重力加速度 Define →Operating Conditions 选择Gravity 在Gravitational Acceleration下x或y方向填上-9.81m/s2 步骤三:材料 Define →Materials 复制液相数据作为差不多相 在Material面板。点击Database, 在Fluid Materials 清单中,选Water -Liquid (h2o(1))

词缀在英语词汇中的运用

词缀在英语词汇中的运用—— 浅淡构词法中的后缀 The Application of Affixes in English Vocabulary Memorization— A Brief Study on suffix of English Word Formation 摘要:词汇是英语学习者的主要障碍之一。它在运用语言进行交际过程中至关重要,它直接影响听、说、读、写各项能力的发挥,好么对于语言学习者来说,首先就要克服这个障碍。英语构词法可以帮助我们正确辩认单词的词形,词性和理解词意,并迅速扩大词汇量,有助于提高英语的阅读速度和理解能力,是学习英语和提高学习质量的有效的方法,被誉为“学习英语的最短最佳的途径”。而构词法中的后缀是构词能力最强的一种,也是英语扩充词汇的最主要的方法之一。后缀是加在词根或单词后面的部分,通常把它们的词性改变为名词、形容词、动词和副词[4]。一旦掌握这些规律,对词汇的获得就不再是那么困难了,而且还会大大激发学习兴趣,也就解决了学习者对词汇的习得的困难了,从而就能更有效地学习和掌握英语了。 关键词:英语词汇;英语构词法;后缀。 Abstract:Vocabulary is one of the main obstacles to the English learners.It is extremely crucial in the process of communication by using language,it directly influences the development of the ability of listening,speaking,reading,writing ect.therefore we must overcome the obstacle first as language learners. English Word Formation can help us distinguish the form and nature of word and apprehend the maening of word correctly,and enlarge our vocabulary quickly .It can help us enhance the velocity of reading English and the ability of apprehension.It is an efficient way and powerful weapon for English study ,and it is claimed to be one of the shortest and best way of English study.Affixation is one of the efficient ways of learning

LAMMPS手册中文讲解

LAMMPS手册-中文解析 一、简介 本部分大至介绍了LAMMPS的一些功能和缺陷。 1.什么是LAMMPS? LAMMPS是一个经典的分子动力学代码,他可以模拟液体中的粒子,固体和汽体的系综。他可以采用不同的力场和边界条件来模拟全原子,聚合物,生物,金属,粒状和粗料化体系。LAMMPS可以计算的体系小至几个粒子,大到上百万甚至是上亿个粒子。 LAMMPS可以在单个处理器的台式机和笔记本本上运行且有较高的计算效率,但是它是专门为并行计算机设计的。他可以在任何一个按装了C++编译器和MPI的平台上运算,这其中当然包括分布式和共享式并行机和Beowulf型的集群机。 LAMMPS是一可以修改和扩展的计算程序,比如,可以加上一些新的力场,原子模型,边界条件和诊断功能等。 通常意义上来讲,LAMMPS是根据不同的边界条件和初始条件对通过短程和长程力相互作用的分子,原子和宏观粒子集合对它们的牛顿运动方程进行积分。高效率计算的LAMMPS通过采用相邻清单来跟踪他们邻近的粒子。这些清单是根据粒子间的短程互拆力的大小进行优化过的,目的是防止局部粒子密度过高。在并行机上,LAMMPS采用的是空间分解技术来分配模拟的区域,把整个模拟空间分成较小的三维小空间,其中每一个小空间可以分配在一个处理器上。各个处理器之间相互通信并且存储每一个小空间边界上的”ghost”原子的信息。LAMMPS(并行情况)在模拟3维矩行盒子并且具有近均一密度的体系时效率最高。 2.LAMMPS的功能 总体功能:

可以串行和并行计算 分布式MPI策略 模拟空间的分解并行机制 开源 高移植性C++语言编写 MPI和单处理器串行FFT的可选性(自定义) 可以方便的为之扩展上新特征和功能 只需一个输入脚本就可运行 有定义和使用变量和方程完备语法规则 在运行过程中循环的控制都有严格的规则 只要一个输入脚本试就可以同时实现一个或多个模拟任务粒子和模拟的类型: (atom style命令) 原子 粗粒化粒子 全原子聚合物,有机分子,蛋白质,DNA 联合原子聚合物或有机分子 金属 粒子材料 粗粒化介观模型 延伸球形与椭圆形粒子 点偶极粒子

LAMMPS的语法中文解释

lammps做分子动力学模拟时,需要一个输入文 件(input script),也就是in文件,以及关于体系的 原子坐标之类的信息的文件(data file)。lammps在 执行计算的时候,从这个in文件中读入命令,所以对LAMMPS的使用最主要的就是对in 文件的编写和使 用。下面介绍一些关于in文件的事项 λ每一非空行都被认为是一条命令(大小写敏 感,但极少有命令或参数大写的)。 λ in文件中各命令的顺序可能会对计算产生影 响,但大部分情况下不会有影响。 每行后的“λ&” 表示续行(类似fortran)。 λ“#”表示注释(类似bash)。 λ每行命令中的不同字段由空格或者制表符分 隔开来,每个字段可以由字母、数字、下划线、或 标点符号构成。 λ每行命令中第一个字段表示命令名,之后的 字段都是相关的参数。 λ很多命令都是在需要修改默认值的情况下才 特别设置的。 in文件整体来看分为4个部分 1. Initialization 这一部分包含了关于计算体系最基本的信息, 例如: units: 单位系统(units style),lammps现在提供包 括lj、real、metal、si和cgs几种单位系统。 dimension: 定义了两维或者三维模拟(默认是三 维)。 boundary: 定义了分子动力学体系使用的边界条 件,例如周期性边界条件或者自由边界条件等。 atom_style: 定义模拟体系中的原子属性,这一 命令与力场设置的参数中的原子类型(atom type)不 同。 pair_style: 相互作用力场类型,例如范德化势或者硬球势等。 bond_style: 键合相互作用势类型。 angle_style: 键角作用势类型。 dihedral_style: 二面角作用势类型。 improper_style: 混合作用势类型。 其他还有一些参数设置,例如newton, processors, boundary, atom_modify等。 2. Atom definition lammps提供3种定义原子方式: 通过read_data或read_restart命令从data或restart文 件读入,这些文件可以包含分子拓扑结构信息,这 一方法在续算上也很有用。

Velocity教程

Velocity教程 关键字: velocity教程 Velocity是一个基于java的模板引擎(template engine)。它允许任何人仅仅简单的使用模板语言(template language)来引用由java代码定义的对象。当Velocity应用于web开发时,界面设计人员可以和java程序开发人员同步开发一个遵循MVC架构的web站点,也就是说,页面设计人员可以只关注页面的显示效果,而由java程序开发人员关注业务逻辑编码。Velocity将java代码从web页面中分离出来,这样为web站点的长期维护提供了便利,同时也为我们在JSP和PHP之外又提供了一种可选的方案。 官方网站:https://www.doczj.com/doc/5c4631667.html,/velocity/ Velocity脚本摘要 1、声明:#set ($var=XXX) 左边可以是以下的内容 Variable reference String literal Property reference Method reference Number literal #set ($i=1) ArrayList #set ($arr=["yt1","t2"]) 技持算术运算符 2、注释: 单行## XXX 多行#* xxx xxxx xxxxxxxxxxxx*# References 引用的类型 3、变量Variables 以"$" 开头,第一个字符必须为字母。character followed by a VTL Identifier. (a .. z or A .. Z). 变量可以包含的字符有以下内容: alphabetic (a .. z, A .. Z) numeric (0 .. 9) hyphen ("-") underscore ("_") 4、Properties $Identifier.Identifier $https://www.doczj.com/doc/5c4631667.html,

从句语法知识及真题解析

从句语法知识及真题解析 ●复合句——形容词性(定语)从句 1.尤其要注意whose的用法 whose在从句中做定语,修饰名词。所以,如果关系代词后面紧接的是名词,且关系代词又不在从句中做主语或宾语,那么,这个关系代词就应该是whose。如: 2.介词+ which的用法 如果从句中主宾成分齐全,考生便可考虑关系代词是否在从句中做状语,而状语通常用介词短语充当,于是可以得知,关系代词前面应有介词,再分析所给的选项,根据与名词的搭配作出正确选择。如: We are not conscious of the extent to which work provides the psychological satisfaction that can make the difference between a full and an empty life. 3.as 与which用作关系代词的区别 (1)as与the same, such, so, as等关联使用。如:As the forest goes, so goes its animal life. (2)as和which都可以引导非限定性定语从句,但as在句中的位置比较灵活,可出现在句首、句中、句末,而which只能出现在句末,尤其是当先行词是整个句子时。如: As is true in all institutions, juries are capable of making mistakes. As is generally accepted, economic growth is determined by the smooth development of production. 常见的这类结构有:as has been said before, as has been mentioned above, as can be imagined, as is known to all, as has been announced, as can be seen from these figures, as might/could be expected, as is often the case, as has been pointed out, as often happens, as will be shown等。 4.关系代词that与which用于引导定语从句的区别 (1)如果关系代词在从句中做宾语,用that, which都可以,而且可以省略; (2)先行词是不定代词anything, nothing, little, all, everything时,关系代词用that; (3)先行词由形容词最高级或序数词修饰或由next,last, only, very修饰时,用that; (4)非限定性定语从句只能用which引导; (5)关系代词前面如果有介词,只能用which。 5.but做关系代词,用于否定句,相当于who…not, that…n ot 这个结构的特点是主句中常有否定词或含有否定意义的词。如: There are few teachers but know how to use a computer. There is no complicated problem but can be solved by a computer. ●二、复合句——名词性从句 一个句子起名词的作用,在句中做主语、宾语/介词宾语、表语、同位语,那么这个句子就是名词性从句。 1.what/whatever的用法 考生应把握:what是关系代词,它起着引导从句并在从句中担当一个成分这两个作用。如: They lost their way in the forest, and what made matters worse was that night began to fall. (what既引导主语从句又在从句中做主语) Water will continue to be what it is today—next in importance to oxygen. (what既引导表语从句又在从句中做表语) 2.whoever和whomever的区别 whoever和whomever相当于anyone who,用主格与宾格取决于其在从句中做主语还是做宾语。如: They always give the vacant seats to whoever comes first. (whoever在从句中做主语) 3.有关同位语从句的问题 (1)引导词通常为that, 但有时因名词内容的需要,也可由whether及连接副词why, when, where, how引导。that不表示任何意义,其他词表示时间、地点、原因等。如: The problem, where I will have my college education, at home or abroad, remains untouched.

GOCAD中文手册

GOCAD综合地质与储层建模软件 简易操作手册 美国PST油藏技术公司 PetroSolution Tech,Inc.

目录 第一节 GOCAD综合地质与储层建模软件简介┉┉┉┉┉┉┉┉┉┉┉┉┉┉1 一、GOCAD特点┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉1 二、GOCAD主要模块┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉1 第二节 GOCAD安装、启动操作┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉2 一、GOCAD的安装┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉2 二、GOCAD的启动┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉3 第三节 GOCAD数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉5 一、井数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉5 二、层数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉11 三、断层数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉11 四、层面、断层面加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉12 五、地震数据加载┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉12 第四节 GOCAD构造建模┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉13 一、准备工作┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉13 二、构造建模操作流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉14 三、构造建模流程总结┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉40 第五节建立GOCAD三维地质模型网格┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉41 一、新建三维地质模型网格流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉41 二、三维地质模型网格流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉41 三、三维地质模型网格流程总结┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉47 第六节 GOCAD储层属性建模┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉48 一、建立属性建模新流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉48 二、属性建模操作流程┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉48 三、属性建模后期处理┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉66 四、网格粗化┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉74 第七节 GOCAD地质解释和分析┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉78

AVL-FIRE中文入门教程+AVL-FIRE软件的使用方法

A VL-FIRE中文入门教程+A VL-FIRE软件的使用方法 流场分析的基本流程(FIRE软件) ID:qxlqixinliang 一、网格自动生成 (2) 二、网格划分工具的使用 (5) 1、Mesh tools (5) 2、surface tools (7) 3、edge tools (7) 三、网格和几何信息工具 (8) 1、网格check (8) 2、Geo info (9) 四、流场求解求解器的设置 (9) AVL Fire 软件的使用方法 .................................................................错误!未定义书签。

一、网格自动生成 根据电池包内部流场的特点,我们一般使用fame的网格自动生成和手动划分网格,两者相结合基本上能完成网格划分。对于电池数量较少的模型(如下图)完全可以用网格自动生成功能来实现网格划分。 下面介绍网格自动生成的流程: 1)准备面surface mesh和线edge mesh:要求:面必须是封闭曲面,一般FIRE中可以应用的是.stl的文件,在PRO/E,CATIA 等三维的造型软件中都可以生成;与面的处理相似的还要准备边界的线数据 2)Hybrid assistant,选择start new meshing,分别定义表面网格define surface mesh和线网格define edge mesh 3)然后进入高级选项fame advanced hybrid,在这里定义最大网格尺寸和最小网格尺寸,最大网格尺寸是最小网格尺寸的2^n倍 4)选择connecting edge,一般在计算域的进出口表面建立face selection,这样可保证edge 处的网格贴体,否则网格在几何的边角会被圆滑掉,另外还可以保证进出口面的网格方向与气流方向正交,有利于计算的精确性和收敛性。通过add添加上进出口的selection 即可。

vr中文手册

VR中文手册 目录 1. VRay的特征 2. VRay的渲染参数 3. VRay 灯光 4. VRay 材质 5. VRay 贴图 6. VRay 阴影 一、VRay的特征 VRay光影追踪渲染器有Basic Package 和Advanced Package两种包装形式。Basic Package具有适当的功能和较低的价格,适合学生和业余艺 术家使用。Advanced Package 包含有几种特殊功能,适用于专业人员使用。 Basic Package的软件包提供的功能特点 ·真正的光影追踪反射和折射。(See: VRayMap) ·平滑的反射和折射。(See: VRayMap) ·半透明材质用于创建石蜡、大理石、磨砂玻璃。(See: VRayMap) ·面阴影(柔和阴影)。包括方体和球体发射器。(See: VRayShadow) ·间接照明系统(全局照明系统)。可采取直接光照(brute force), 和光照贴图方式(HDRi)。(See: Indirect illumination) ·运动模糊。包括类似Monte Carlo 采样方法。(See: Motion blur) ·摄像机景深效果。(See: DOF) ·抗锯齿功能。包括fixed, simple 2-level 和adaptive approaches等采样方法。(See: Image sampler) ·散焦功能。(See: Caustics ) · G-缓冲(RGBA, material/object ID, Z-buffer, velocity etc.) (See: G-Buffer ) Advanced Package软件包提供的功能特点 除包含所有基本功能外,还包括下列功能: ·基于G-缓冲的抗锯齿功能。(See: Image sampler) ·可重复使用光照贴图(save and load support)。对于fly-through 动画可增加采样。(See: Indirect illumination) ·可重复使用光子贴图(save and load support)。(See: Caustics) ·带有分析采样的运动模糊。(See: Motion blur ) ·真正支持HDRI贴图。包含*.hdr, *.rad 图片装载器,可处理立方体贴图和角贴图贴图坐标。可直接贴图而不会产生变形或切片。 ·可产生正确物理照明的自然面光源。(See: VRayLight) ·能够更准确并更快计算的自然材质。(See: VRay material) ·基于TCP/IP协议的分布式渲染。(See: Distributed rendering) ·不同的摄像机镜头:fish-eye, spherical, cylindrical and cubic cameras (See: Camera)

相关主题
相关文档 最新文档