当前位置:文档之家› 机械设计液压缸设计

机械设计液压缸设计

机械设计液压缸设计
机械设计液压缸设计

浙江科技学院毕业设计(论文)、学位论文

版权使用授权书

本人杨益峰学号 106015086 声明所呈交的毕业设计(论文)、学位论文《激振器用液压缸设计》,是在导师指导下进行的研究工作及取得的研究成果。除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果,与我一同工作的人员对本研究所做的任何贡献均已在论文中作了明确的说明并表示谢意。

本毕业设计(论文)、学位论文作者愿意遵守浙江科技学院关于保留、使用学位论文的管理办法及规定,允许毕业设计(论文)、学位论文被查阅。本人授权浙江科技学院可以将毕业设计(论文)、学位论文的全部或部分内容编入有关数据库在校园网内传播,可以采用影印、缩印或扫描等复制手段保存、汇编毕业设计(论文)、学位论文。

(保密的学位论文在解密后适用本授权书)

论文作者签名:导师签名:

签字日期:年月日签字日期:年月日

激振器用液压缸设计

学生姓名:杨益峰指导教师:杨礼康

浙江科技学院机械与汽车工程学院

摘要

减振器是车辆悬挂系统中主要的阻尼元件,它能缓和车辆的振动,提高乘坐舒适性,降低车体给各部分的动应力,提高整车寿命和安全性。减振器性能的优劣直接影响到车辆的性能。因此,设计生产高质量的减振器是提高车辆技术性能的重要内容。然而,设计生产高质量的减振器需要性能完善、先进的实验与测试设备做保证。液压激振试验台就是其中最重要的一种。

本论文以最新试验台技术及先进液压技术为基础,着眼于液压缸的结构设计,根据车辆减振器实验装置的要求,应用液压传动及相关理论,针对液压激振装置中液压系统的特点,计算并选择其必须的关键部件,同时设计相应的液压缸结构,最终设计出可实现正弦、随机振动等试验和符合相关技术要求的较为可靠的液压缸系统。

关键词:液压激振器液压缸设计

i

Vehicle shock absorber test equipment

hydraulic cylinder design

Student: Yifeng Yang Advisor: Dr.Ling-Kang Yang

School of Mechanical and Automotive Engineering

Zhejiang University of Science and Technology

Abstract

Shock is the main vehicle suspension damping components, it can ease the vehicle vibration and improve comfort and reduce the body to various parts of dynamic stress, increase vehicle life and safety. Damper merits of a direct impact on vehicle performance. Therefore, the design and production of high quality shock absorber is to improve the technical performance of the important vehicles. However, the design and production of high-quality performance shock absorbers need to complete and modern equipment to do experiments and testing guarantee. Hydraulic vibration test stand is one of the most important one.

In this thesis, the latest technology and advanced hydraulic test bench technology, focusing on the structural design of hydraulic cylinder, shock absorber test unit according to the vehicle requirements and the application of the theory of hydraulic transmission, hydraulic vibration device for the hydraulic characteristics of the system, calculate and select the necessary key components, while the corresponding hydraulic cylinder design the structure of the final design can be realized sine, random vibration test and meet the relevant technical requirements of the more reliable hydraulic cylinder system.

Keywords:Hydraulic Vibrator Hydraulic cylinder Design

ii

目录

中文摘要 (i)

英文摘要 (ii)

目录 (iii)

第一章绪论 (1)

1.1研究背景 (1)

1.2研究目的与系统描述 (1)

1.3 电液式激振器 (2)

1.4 电液式激振器的优点 (3)

第二章试验台方案设计 (4)

2.1 激振形式的选择 (4)

2.2 试验台测试原理 (5)

2.3 试验台方案设计 (5)

2.4 试验台主机结构 (6)

2.5液压缸的种类选择 (7)

第三章液压缸的主要部件设计 (10)

3.1工作压力的确定 (10)

3.2缸筒设计 (10)

3.3活塞设计 (14)

3.4活塞杆设计 (15)

第四章液压油缸其他部件设计 (19)

4.1法兰设计 (19)

4.2力变送器接头设计 (20)

4.3导向座设计 (20)

4.4位移传感器座设计 (22)

4.5透盖设计 (22)

iii

第五章总结 (24)

致谢 (25)

参考文献 (26)

iv

第一章绪论

1.1 研究背景

当今社会,汽车已成为人们生活生产中不可或缺的重要组成部分。近几年,在我国汽车工业也迎来了井喷式的快速发展期。根据汽车工业协会有关资料,以今年4月份为例:全国乘用车市场继续保持较好的增长态势,销售环比虽有所回落,但同比仍高速增长;前四个月,乘用车销售达到463万辆,已超2009年上半年的销量,同比增长64%。

4月,乘用车共销售111.09万辆,环比下降12.18%,同比增长33.21%。基本型乘用车(轿车)销售75.98万辆,同比增长27.88%;多功能乘用车(MPV)销售3.85万辆,环比增长0.69%,同比增长97.85%;运动型多用途乘用车(SUV)销售10.40万辆,与上月持平,同比增长1.1倍;交叉型乘用车销售20.86万辆,同比增长21.55%。1-4月,乘用车销售463.48万辆,同比增长63.64%。由这组数据可知汽车工业的重要性。

减振器是车辆悬挂系统中主要的阻尼元件,它能缓和车辆的振动,提高乘坐舒适性,降低车体给各部分的动应力,提高整车寿命和安全性。减振器性能的优劣直接影响到车辆的性能。因此,设计生产高质量的减振器是提高车辆技术性能的重要内容。然而,设计生产高质量的减振器需要性能完善、先进的实验与测试设备做保证。液压激振试验台就是其中最重要的一种。

在上世纪八十年代,使用较多的机械式试验台是J85试验台,它通过曲柄连杆机构驱动减振器做近似的简谐振动。通过弹性扭杆测力和振幅,并依靠人工处理数据。由于它只能够得到一定振动速度下的示功图,并且效率低,数据的准确性差,只能够垂向减振器试验,不能够完成横向以及抗蛇行减振器检测,现在基本上已经淘汰不用。取而代之就是液压式激振试验台。

1.2 研究目的与系统描述

为了适应当前汽车工业的飞速发展,汽车用新技术层出不穷,但是,新技术总是会存在一些缺陷和不足,出于安全等因素的考虑,一项新技术的真正投入使用,需要经过各种评测与实验。而减振器关系到汽车的舒适、安全性能,不断出现技术更新,这就要求减振器的检测——激振试验台不断技术革新,采用其他更为先进的激振测试技术,设计试验装置,测试新型产品的性能,检验以及修正设计结果。液压缸作为激振器的核心部件,显得

尤为重要。本论文就以此为背景进行激振器用液压缸的设计。

常用的激振器有电动式、电磁式和电液式等几种,此外还有用于小型、薄壁结构的压电激振器、高频激振的磁致伸缩激振器和高声强激振器等。电液激振台一般由作动器、伺服阀、液压源、作动器控制装置和油源控制及测量仪表等五部分组成。作动器由液压缸、台面和位移传感器等组成;伺服阀是将微小电信号转换为大功率液压作动的核心部件;液压源通常由驱动电机、液压泵、溢流阀、过滤器、蓄能器及其它液压阀等组成,向作动器提供流体动力;控制装置根据台面位移传感器的反馈信号及信号源计算对伺服阀的控制电流。

1.3 电液式激振器

在激振大型设备时,为得到较大的响应,此时则需要很大的激振力,这时可采用电液式激振器。其结构原理如图1-1所示。

1-顶杆 2-伺服阀 3-活塞

图1-1 电液式激振器

信号发生器的信号经过放大后,经由电动激振器,操纵阀和功率阀所组成的电液伺服阀2,控制油路使活塞3作往复运动,并以顶杆1去激励被激对象。活塞端部输入一定油压的油,形成静压力p,对被激对象施加预载荷。用力传感器测量交变激励力p1和静压力p。

电液式激振器激振力大,行程亦大,单位力的体积小。但由于油液的可压缩性和调

整流动压力油的摩擦,使电液式激振器的高频特性变差,一般只适用于较低的频率范围,通常为零点几赫兹到数百赫兹,其波形也比电动式激振器差。此外,它的结构复杂,制造精度要求也高,并需一套液压系统,成本较高。

1.4 电液式激振器的优点

与电动式激振、电液激振和电磁激振相比,液压激振不但可以实现无级调频和调幅,而且使传动系统大大简化,操作简便、省力且成本也较低。

目前工业生产中使用的液压激振器一般是由振动液压缸、液控换向阀和弹性元件等组成,通常采用液压系统保证振动频率稳定且使之可调。激振器液压缸为双出杆差动液压缸,活塞杆的一端连结在弹性元件上,另一端则作为输出振动元件。而激波式液压激振器是基于激波原理而研制的新型液压元件,它由壳体、激波器、液压缸及其拖动装置组成,采用激波器控制双作用液压缸产生振动,可以实现振幅、频率无级可调。因此,调整这种激振器的输出振幅和振动频率,即可满足多种工作点的振动机械的要求,做到一机多能。另外,激波式液压激振器输出响应速度快,在带负载起动和停止时,不存在振动频率越过共振区的问题,使机器能平稳起动和停车。采用激波器控制差动液压缸活塞的位移(振幅)是通过激波器以全流量供液状态下产生的,因此,节流损失极少,工作效率高。

第二章试验台设计方案

2.1 激振形式的选择

激振试验台发展到现在,激振器大致可以分为以下几类:

表2-1激振台种类及性能特点

各激振台的主要性能特点如表2-1所示,常用的工作频率范围如表2-2所示。

表2-2不同激振台常用的工作频率范围

类型可能的工作频率范围

机械式1~300Hz

电动式5~10,000Hz

电磁式20~2000Hz

压电式20~50,000Hz

磁致伸缩式可达几十千赫兹

电液式甚低频~500Hz

从表2-1和表2-2中可以看出仅电液式有甚低频,推力大,并且可以产生各种形式的激振力。实际上,电液激振台在振动试验设备中占有重要的地位。电液激振台可获得大位移量的振动,低频时最大振幅可达2.5m;频率可以很低,接近零频,激振力最大可达107N;并且台面无磁场干扰(很适于基于磁流变技术的悬挂系统);特别适于大负荷、大激振力、频宽适中的场合,尤其是适于车辆悬挂系统真实工况的模拟,所以本次毕业设计以电液式激振器为主题,进行液压缸的设计计算。

电液激振台一般由作动器、伺服阀、液压源、作动器控制装置和油源控制及测量仪表等五部分组成。作动器由液压缸、台面和位移传感器等组成;伺服阀是将微小电信号转换为大功率液压作动的核心部件;液压源通常由驱动电机、液压泵、溢流阀、过滤器、蓄能器及其它液压阀等组成,向作动器提供流体动力;控制装置根据台面位移传感器的反馈信号及信号源计算对伺服阀的控制电流。

2.2 试验台测试原理

试验台主要用于减振器特性(示功特性、速度特性等)的试验。为此需要模拟减振器的实车工况,为减振器试验提供各种激振。如筒谐波、方波、三角渡、随机路面谱等。试验台采用如下测控方案:采用微机作为主测控机,通过数据采集卡对试验系统进行测控。试验台动作指令由主测控机发出,通过D/A接口进入伺服控制器进行信号放大和PID调节,然后输出电流信号,驱动电液伺服阀;电液伺服阀根据信号,使液压缸按要求的方向和速度运动;液压缸在运动的同时带动减振器运动,并分别通过位移传感器测量位移、力传感器测量阻尼力。检测的位移信号和力信号通过适当调理分别进入数据采集卡的两路A/D中,然后计算机通过数据处理得到要求的减振器特性曲线。本测控方案采用位置反馈控制,因此位移信号还同时送到伺服控制器中。

2.3 试验台方案设计

本试验台采用伺服阀控制液压缸往复运动,直接形成激振波形。试验台测试系统原理如图2-1所示。

图2-1 测试系统原理图

2.4 试验台主机结构

试验台主机结构如图2-2所示:

图2-2 减振器测试台示意图

1 —底架

2 —旋转机构

3 —夹紧块

4 —上活动台

5 —立柱

6 —上固定台

7 —调节丝杆

8 —力传感器(YZ101C/2T)

9 —减振器10 —下活动台11 —下固定台

12 —伺服缸13 —位移传感器(IC-F-300-E-M)

2.5 液压缸的种类选择

表2-3 常见液压缸类型及种类

+

根据主要内容与基本要求:

1 最大激振力 23kN

2 激振频率范围0.1~18Hz

3 行程范围 +/-100mm

4 最大速度 1m/s

5 可实现正弦、随机振动等试验

根据设计要求,因为行程范围在+/-100mm,而柱塞式液压缸是一种单作用式液压缸,靠液压力只能实现一个方向的运动,柱塞回程要靠其它外力或柱塞的自重,无法满足设计要求,其余几种同样无法满足设计要求或结构过于复杂,故选定用液压缸为活塞式液压缸。而活塞式液压缸分为单杆与双杆,设计要求满足正弦、随机振动,故选择单杆双作用活塞式液压缸.如图2-3所示

图2-3 液压缸示意图

第三章液压缸的主要部件设计

液压缸的主要尺寸参数包括液压缸的内径d、外径D、壁厚δ、缸的长度L、活塞杆直径

d。主要根据液压缸的负载、活塞运动速度和行程等因素来确定上述几项参数。

l

3.1 液压缸工作压力的确定

液压缸要承受的负载包括有效工作负载、摩擦阻力和惯性力等。液压缸的工作压力按负载确定。对于不同用途的液压设备,由于工作条件不同,采用的压力范围也不同。设计时,液压缸的工作压力可按负载大小及液压设备类型参考表3-1、表3-2来确定。

表3-1 各类液压设备常用的工作压力(单位:MPa)

表3-2公称压力和内径参考表

初定液压缸工作压力为25Mpa。

3.2 缸筒设计

液压缸行程L选为250mm,因设计要求是200mm。若负载特性较明确,则按最大功率传输条件(pL≤2/3ps),可确定活塞最小理论有效面积为0.92?10-3m2,则活塞杆直径为42mm,

d=50mm,则实际最大考虑到功率损失,并依据液压手册选缸内径为D=63mm,活塞杆直径l

10-m2。活塞最大速度为1m/s。

有效面积为Ap=1.30?3

则确定液压缸行程为300mm,设计该液压缸为等速等行程的双活塞杆液压缸,缸筒内

d=50mm,最大激振力23KN,额定压力P=25Mpa,属于高压油缸。

径D=63mm,活塞杆直径l

缸筒结构、材料选择及性能要求

根据设计要求,该液压缸的激振频率范围为0.1~18HZ,需要承受较大的冲击负荷,属

于中型缸。故缸筒结构选用法兰连接。

一般要求材料有足够的强度和冲击韧性,对焊接的缸筒还要求有良好的焊接性能。根据液压缸的参数、用途选用35号钢,机械预加工后再调质处理。

要求:1有足够的强度,能长期承受最高工作压力及长期动态试验压力而不致产生永久变形。2内表面在活塞密封件及导向环的摩擦力作用下,能长期工作而磨损少,尺寸公差等级和形位公差等级足以保证活塞密封件的密封性。3缸筒还要求有良好的可焊性,以便在焊接上法兰或管接头后不至于产生裂纹或过大的变形。 液压缸壁厚的确定

当液压缸壁厚δ大于缸径D 的101倍时即δ>10D 时,按壁厚公式计算

13.1][4.0][2--+=p

p

D σσδ (3-1) 当液压缸壁厚δ小于缸径D 的101倍时,按薄壁筒公式计算

]

[2σδpD

=

(3-2) 式中p ——液压缸最大工作压力(MPa )

[σ]——许用应力(MPa ),[σ]=n b σ,其中,b σ为材料强度极限,n 为安全系数,通常限n =3.5~5。

δ——缸筒壁厚(mm ),35号钢的强度极限b σ=540MPa ,对于液压激振器而言,属于高压工况,故取n =5,对应的[σ]=5/540=108MPa 。

由于课题所设计的是双活塞杆液压缸,故最大压力为系统压力p =25MPa ,应用公式(6.10),可算得壁厚约为8.5mm ,综合考虑后取壁厚δ=10mm 。缸筒外径1D =83mm

验算:

对最终采用的缸筒壁厚应进行以下的验算 额定压力P N 应低于一定极限值,以保证工作安全

(

)2

1

2

2135

.0D D D PN s -≤σ ( MPa ) (3-3)

(

)4

4

12

2135

.0D D D D PN s +-≤σ ( MPa ) (3-4)

同时额定压力也应与完全塑性变形压力有一定的比例范围,以避免塑性变形的发生,即

()rL P PN 42.035.0-≤ ( MPa ) (3-5)

此外,尚需验算缸筒径向变形△D 应处在允许范围内

??

?

? ??+-+=

?v D D D D E

DP D r

221221 ( m ) (3-6) 变形量△D 不应超过密封圈允许范围 最后,还应验算缸筒的爆裂压力P E

D

D P b

E 1

lg

3.2σ= ( MPa ) (3-7) 也可用费帕尔(FAUPEL)公式

D

D

P b b E 1lg )2(65.2σσσ-

= ( MPa ) (3-8) 计算的P E 值应远超过耐压试验压力P r ,即P E >>P r

s σ — 缸筒材料屈服点,MPa

P rL — 缸筒发生完全塑性变形的压力,MPa ,P r L ≤D

D s 1

lg 3.2σ P r — 缸筒耐压试验压力,MPa E — 缸筒材料弹性模量,MPa v — 缸筒材料泊松比,钢材v =0.3 额定压力

PN=25MPa ≤(

)()2

2

2

2

1

2

21636383

32035.035.0-??=-D D D s σ=82.4MPa

完全塑性变形压力

D

D P s rL 1

lg

3.2σ≤=2.3×320×lg1.317=88MPa PN ≤( 10.35~0.42 )P rL ≤0.35×88=30.8MPa

此外缸筒径向变形 取试验压力为P r =25MPa

???? ??+-+??=???

? ??+-+=

?3.06383638320600030632

222221221v D D D D E

DP D r

=0.0369mm 爆裂压力

P E =D

D b 1

lg

3.2σ=2.3×540×lg1.317=148.5 Mpa >>P r 验算可知该缸筒壁厚满足强度要求

缸筒连接方式及强度计算

根据强度及各连接方式的优缺点,综合考虑初定选用法兰连接方式,以螺栓绞合。 螺栓的强度计算如下:

螺纹处的拉应力

62

1104

-?∏=

z d KF

σ ( MPa ) (3-9) 螺纹处的切应力

63

101102.0-?=

z

d KFd K τ ( MPa ) (3-10)

合成应力

p n σστσσ≤≈+=3.1322 (3-11)

F — 缸筒端部承受的最大推力,N d 1 — 螺纹底径,m

K — 拧紧螺纹的系数,不变载荷取K=1.25~1.5,变载荷取K=2.5~4 K 1 — 螺纹连接的摩擦因数,K 1=0.07~0.2,平均取K 1=0.12 z — 螺栓的数量

参考机械设计手册,为了保证设计要求,上下两端的法兰与导向座之间采用8个M20的螺栓相连

螺纹处的拉应力

802.04

10233104236

21??∏??=?∏=-z d KF σ=27.47 MPa

螺纹处的切应力

54.11802.02.010835.171023312.0102.03

3

36

310

1=???????=?=--z

d KFd K τMPa 合成应力

97.3354.11347.2732222=?+=+=τσσn MPa 1085

540

==

≤p σMPa 经验算,采用法兰连接并用螺栓绞合满足强度要求。故确定液压缸缸筒与缸盖采用法兰连接。

3.3 活塞设计

图3-1 活塞

液压压力的大小与活塞的有效工作面积有关,活塞直径应与缸筒内径一致。设计活塞时,主要任务就是确定活塞的结构型式。 活塞结构型式

考虑激振器液压缸的性能特性,采用整体活塞结构型式。其结构形式如图3-1所示。 活塞与活塞杆连接型式

活塞与活塞杆连接有多种型式,为了满足工作稳定的设计要求,防止工作时由于往复运动而密封不良活塞与活塞杆采用同轴一体化加工的型式。 活塞密封结构

液压缸设计

液压缸设计指导书 机械工程学院 机设教研室

一、设计目的 油缸是液压传动系统中实现往复运动和小于360°回摆运动的液压执行元件。具有结构简单,工作可靠,制造容易以及使用维护方便、低速稳定性好等优点。因此,广泛应用于工业生产各部门。其主要应用有:工程机械中挖掘机和装载机的铲装机构和提升机构,起重机械中汽车起重机的伸缩臂和支腿机构,矿山机械中的液压支架及采煤机的滚筒调高装置,建筑机械中的打桩机,冶金机械中的压力机,汽车工业中自卸式汽车和高空作业车,智能机械中的模拟驾驶舱、机器人、火箭的发射装置等。它们所用的都是直线往复运动油缸,即推力油缸。所以进一步研究和改进液压缸的设计制造,提高液压缸的工作寿命及其性能,对于更好的利用液压传动具有十分重要的意义。 通过学生自己独立地完成指定的课程设计任务,提高理论联系实际、分析问题和解决问题的能力,学会查阅参考书和工具书的方法,提高编写技术文件的能力,进一步加强设计计算和制图等基本技能的训练,为毕业后成为一名出色的机械工程师打好基础。 为此,编写了这本“液压缸设计指导书”,供机械专业学生学习液压传动课程及课程设计时参考。 二、设计要求 1、每个参加课程设计的学生,都必须独立按期完成设计任务书所规定的设计任务。 2、设计说明书和设计计算书要层次清楚,文字通顺,书写工整,简明扼要,论据充分。计算公式不必进行推导,但应注明公式中多符号的意义,代入数据得出结果即可。 3、说明书要有插图,且插图要清晰、工整,并选取适当此例。说明书的最后要附上草图。 4、绘制工作图应遵守机械制图的有关规定,符合国家标准。 5、学生在完成说明书、图纸后,准备进行答辩,最后进行成绩评定。 三、设计任务 设计任务由指导教师根据学生实际情况及所收集资料情况确定。最后人均一题,避免重复。 四、设计依据和设计步骤 油缸是液压传动的执行元件,它与主机及主机的工作结构有着直接的联系。不同的机型和工作机构对油缸则有不同的工作要求。因此在设计油缸之前,首先应了解下列这些作为设计原始依据的主要内容。主机的用途和工作条件,工作机构的结构特点,负载值,速度,行程大小和动作要求,液压系统所选定的工作压力和流量等。 油缸的设计内容和步骤大致如下: 1、液压缸类型和多部分结构的选择。 2、确定基本参数。主要包括工作负载、工作速度(当有速度要求时)、工作行程、导向长度、缸筒内径及活塞杆直径等。 3、强度和稳定性计算。其中包括缸筒壁厚、外径和缸底厚度的强度计算,活塞杆强度和稳定性验算,以及各连接部分的强度计算。 4、导向、密封、防尘、排气和缓冲等装置的设计。 5、整理设计说明书。绘制工作图。 应该指出,不同类型和结构的油缸,其设计内容量是不同的,而且各参数之间需要综合考虑反复验算才能得出比较满意的结果。因此设计步骤不可能是固定不变的。 五、结构型式的确定

液压缸设计说明书范本

液压缸设计说明书

1 设计课题 1.1设计要求 设计一台铣削专用机床液压系统用液压缸,要求液压系统完成的工作循环是:工件夹紧→工作台快进→工作台工进→工作台快退→工件松开。 1.2原始数据 运动部件的重力为25000N,快进、快退速度为5m/min,工进速度为100~1200mm/min,最大行程为400mm,其中工进行程为180mm,最大切削力为0N,采用平面导轨,夹紧缸的行程为20mm,夹紧力为30000N,夹紧时间为1s。

2 液压系统的发展概况 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。 由于液压技术广泛应用了高技术成果,如自动控制技术、计算机技术、微电子技术、磨擦磨损技术、可靠性技术及新工艺和新材料,使传统技术有了新的发展,也使液压系统和元件的质量、水平有一定的提高。尽管如此,走向二十一世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求。 液压系统在将机械能转换成压力能及反转换方面,已取得很大进展,但一直存在能量损耗,主要反映在系统的容积损失和机械损失上。如果全部压力能都能得到充分利用,则将使能量转换过程的效率得到显著提高。为减少压力能的损失,必须解决下面几个问题:减少元件和系统的内部压力损失,以减少功率损失。主要表现在改进元件内部流道的压力损失,采用集成化回路和铸造流道,可减少管道损失,同时还可减少漏油损失。

减少或消除系统的节流损失,尽量减少非安全需要的溢流量,避免采用节流系统来调节流量和压力。采用静压技术,新型密封材料,减少磨擦损失。发展小型化、轻量化、复合化、广泛发展通径电磁阀以及低功率电磁阀。改进液压系统性能,采用负荷传感系统,二次调节系统和采用蓄能器回路。为及时维护液压系统,防止污染对系统寿命和可靠性造成影响,必须发展新的污染检测方法,对污染进行在线测量,要及时调整,不允许滞后,以免由于处理不及时而造成损失。 液压系统维护已从过去简单的故障拆修,发展到故障预测,即发现故障苗头时,预先进行维修,清除故障隐患,避免设备恶性事故的发展。 要实现主动维护技术必须要加强液压系统故障诊断方法的研究,当前,凭有经验的维修技术人员的感宫和经验,经过看、听、触、测等判断找故障已不适于现代工业向大型化、连续化和现代化方向发展,必须使液压系统故障诊断现代化,加强专家系统的研究,要总结专家的知识,建立完整的、具有学习功能的专家知识库,并利用计算机根据输入的现象和知识库中知识,用推理机中存在的推理方法,推算出引出故障的原因,提高维修方案和预防措施。要进一步引发液压系统故障诊断专家系统通用工具软件,对于不同的液压系统只需修改和增减少量的规则。 另外,还应开发液压系统自补偿系统,包括自调整、自润滑、自校正,在故障发生之前,进市补偿,这是液压行业努力的方向。 电子技术和液压传动技术相结合,使传统的液压传协与控制技术增加了活力,扩大了应用领域。实现机电一体化能够提高工作可靠性,实

液压缸设计

液压缸设计 指导书 河南理工大学机械与动力工程学院 热能与动力工程系

一、设计目的 油缸是液压传动系统中实现往复运动和小于360°回摆运动的液压执行元件。具有结构简单,工作可靠,制造容易以及使用维护方便、低速稳定性好等优点。因此,广泛应用于工业生产各部门,如:工程机械中挖掘机和装载机的铲装机构和提升机构,起重机械中汽车起重机的伸缩臂和支腿机构,矿山机械中的液压支架及采煤机的滚筒调高装置,建筑机械中的打桩机,冶金机械中的压力机,汽车工业中自卸式汽车和高空作业车,智能机械中的模拟驾驶舱、机器人,火箭的发射装置等。它们所用的都是直线往复运动油缸,即推力油缸。所以,研究和改进液压缸的设计制造,提高液压缸的工作寿命及其性能,对于更好的利用液压传动具有十分重要的意义。 通过学生自己独立地完成指定的液压缸设计任务,提高理论联系实际、分析问题和解决问题的能力,学会查阅参考书和工具书的方法,提高编写技术文件的能力,进一步加强设计计算和制图等基本技能的训练,为毕业后成为一名合格的机械工程师打好基础。 为此,编写了这本“液压缸设计指导书”,供热能专业学生学习液压传动课程及课程设计时参考。 二、设计要求 1、每个参加课程设计的学生,都必须独立按期完成设计任务书所规定的设计任务。 2、设计说明书和设计计算书要层次清楚,文字通顺,书写工整,简明扼要,论据充分。计算公式 不必进行推导,但应注明公式中各符号的意义,代入数据得出结果即可。 3、说明书要有插图,且插图要清晰、工整,并选取适当此例。说明书的最后要附上草图。 4、绘制工作图应遵守机械制图的有关规定,符合国家标准。 5、学生在完成说明书、图纸后,准备进行答辩,最后进行成绩评定。 三、设计任务 设计任务由指导教师根据学生实际情况及所收集资料情况确定。 四、设计依据和设计步骤 油缸是液压传动的执行元件,它与主机及主机的工作结构有着直接的联系。不同的机型和工作机构对油缸则有不同的工作要求。因此在设计油缸之前,首先应了解下列这些作为设计原始依据的主要内容:主机的用途和工作条件,工作机构的结构特点,负载值,速度,行程大小和动作要求,液压系统所选定的工作压力和流量等。 油缸的设计内容和步骤大致如下: 1、液压缸类型和多部分结构的选择。 2、确定基本参数。主要包括工作负载、工作速度(当有速度要求时)、工作行程、导向长度、缸筒 内径及活塞杆直径等。 3、强度和稳定性计算。其中包括缸筒壁厚、外径和缸底厚度的强度计算,活塞杆强度和稳定性验

液压缸设计与计算

液压缸是液压传动的执行元件,它和主机工作机构有直接的联系,对于不同的机种和机构,液压缸具有不同的用途和工作要求。因此,在设计液压缸之前,必须对整个液压系统进行工况分析,编制负载图,选定系统的工作压力(详见第九章),然后根据使用要求选择结构类型,按负载情况、运动要求、最大行程等确定其主要工作尺寸,进行强度、稳定性和缓冲验算,最后再进行结构设计。 1.液压缸的设计内容和步骤 (1)选择液压缸的类型和各部分结构形式。 (2)确定液压缸的工作参数和结构尺寸。 (3)结构强度、刚度的计算和校核。 (4)导向、密封、防尘、排气和缓冲等装置的设计。 (5)绘制装配图、零件图、编写设计说明书。 下面只着重介绍几项设计工作。 2.计算液压缸的结构尺寸液压缸的结构尺寸主要有三个:缸筒内径D、活塞杆外径d和缸筒长度L。 (1)缸筒内径D。液压缸的缸筒内径D是根据负载的大小来选定工作压力或往返运动速度比,求得液压缸的有效工作面积,从而得到缸筒内径D,再从GB2348—80标准中选取最近的标准值作为所设计的缸筒内径。 根据负载和工作压力的大小确定D: ①以无杆腔作工作腔时 (4-32) ②以有杆腔作工作腔时 (4-33) 式中:pI为缸工作腔的工作压力,可根据机床类型或负载的大小来确定;Fmax 为最大作用负载。 (2)活塞杆外径d。活塞杆外径d通常先从满足速度或速度比的要求来选择,然后再校核其结构强度和稳定性。若速度比为λv,则该处应有一个带根号的式子: (4-34) 也可根据活塞杆受力状况来确定,一般为受拉力作用时,d=0.3~0.5D。 受压力作用时: pI<5MPa时,d=0.5~0.55D 5MPa<pI<7MPa时,d=0.6~0.7D pI>7MPa时,d=0.7D (3)缸筒长度L。缸筒长度L由最大工作行程长度加上各种结构需要来确定,即:L=l+B+A+M+C 式中:l为活塞的最大工作行程;B为活塞宽度,一般为(0.6-1)D;A为活塞杆导

液压缸的设计_毕业论文设计-液压缸的设计

(此文档为word格式,下载后您可任意编辑修改!) 毕 业 设 计 液压缸的设计 姓名:_______________ 学号:_______________ 专业:_______________ 班级:_______________ 指导老师:_______________

2013 年11 月28 日

摘要 将液压缸提供的液压能重新转换成机械能的装置称为执行元件。执行元件是直接做功者,从能量转换的观点看,它与液压泵的作用是相反的。根据能量转换的形式,执行元件可分为两类三种:液压马达、液压缸、和摆动液压马达,后者也可称摆动液压缸。液压马达是作连续旋转运动并输出转矩的液压执行元件;而液压缸是作往复直线运动并输出力的液压执行元件。此说明书是针对液压缸的工作环境和工作要求来确定液压缸的工作压力和承载能力,来确定其缸筒内径、壁厚和活塞杆的直径。再根据液压缸的零部件的工作要求确定零件的工艺,根据零件的精度要求确定零件的加工方法,并生成工艺卡片,完成零件的加工。 关键字:液压缸、机械能、转矩、执行元件 Abstract Hydraulic cylinder will be able to provide the device called actuators. Work is a direct implementation of components, from the point of view of energy conversion; it is the role of the in the form of implementation of the three components can be divided into two categories: and the output of the of components

液压缸设计分析

第一章液压系统设计 1.1液压系统分析 1.1.1 液压缸动作过程 3150KN热压成型机液压系统属于中高压液压系统,涉及快慢速切换、多级调压、保压补压等多个典型的液压回路。工作过程为电机启动滑块快速下行滑块慢速下行保压预卸滑块慢速回程滑块快速回程推拉缸推出推拉缸拉回循环结束。按液压机床类型初选液压缸的工作压力为28Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。1.1.2液压系统设计参数 (1)合模力; (2)最大液压压28Mp; (3)主缸行程700㎜; (4)主缸速度υ 快=38㎜/s、 υ 慢=4.85㎜/s。 1.1.2分析负载 (一)外负载压制过程中产生的最大压力,即合模力。 (二)惯性负载 设活塞杆的总质量m=100Kg,取△t=0.25s (三)阻力负载 活塞杆竖直方向的自重 活塞杆质量m≈1000Kg,同时设活塞杆所受的径向力等于重力。 静摩擦阻力 动摩擦阻力 由此得出液压缸在各个工作阶段的负载如表****所示。

表*** 液压缸在各个工作阶段的负载F 工况负载组成负载值F工况负载组成负载值F 启动981保压3150×103加速537补压3150×103快速491快退+G10301按上表绘制负载图如图***所示。 F/N v/mm·s-1 537 491 981 38 4.85 0 l/mm 0 l/mm -491 -981 -38 由已知速度υ 快=38㎜/s、 υ 慢=4.85㎜/s和液压缸行程s=700mm,绘制简略速度图,如 图***所示。 1.2确定执行元件主要参数 1.2.1 液压缸的计算 (一)液压缸承受的合模力为3150KN,最大压力p1=28Mp。 鉴于整个工作过程要完成快进、快退以及慢进、慢退,因此液压缸选用单活塞杆式的。在液压缸活塞往复运动速度有要求的情况下,活塞杆直径d根据液压缸工作压力选取。 由合模力和负载计算液压缸的面积。 将这些直径按GB/T 2348—2001以及液压缸标准圆整成就近标准值,得:

液压缸组件设计说明书

晋中学院本科毕业设计 题目液压缸组件设计 院系机械学院 专业机械设计制造及其自动化姓名刘晓萍 学号0914112114 学习年限2009年9月至2013年6月指导教师李彩联职称讲师 申请学位工学学士学位 2013年05 月30 日

液压缸组件设计 学生姓名:刘晓萍指导教师:李彩联 摘要:在液压与气压传动系统中,会经常用到液压活塞缸的形式,它广泛地存在于各个领域中。通常活塞缸的组成部分是缸底、缸筒、活塞、活塞杆和端盖等主要部件。有时,在液压缸的连接处,比如缸体和缸盖法兰部分,缸盖与活塞部分,活塞与活塞杆部分等需要安装密封装置,以减少和防止外部灰尘或者内部油液的进出和泄露。缸体的运动过程中,由于惯性、速度、质量等原因,活塞在运动到行程终端时会与缸底发生碰撞,从而引起能量的损失和传动失衡,因此需要在缸体内部安装缓冲装置。此外,在必要时还需要在液压缸体的某些部位安装排气装置和防尘装置以使整个传动机构精度提高、效率提升。液压缸的设计需要根据已给数据和要求来进行,对液压缸的结构进行设计、选择、检验、制造等方面的考虑。 关键字:活塞;活塞杆;缸盖;缸体;

Design specification of the hydraulic cylinder assembly Author’s Name:Liu Xiaoping Tutor:Li Cailian ABSTRACT:The piston cylinder usually be used in the hydraulic and pneumatic drive system,the main part of the piston cylinder is bottom, cylinder, piston, piston rod and cover. To prevent the working medium to the outside of the cylinder or by a high-pressure chamber to the low pressure chamber leakage, a seal between the cylinder cover, piston and piston rod, piston rod with end caps, piston and cylinder device. The outside of the end cap is also equipped with dust-proof device. In order to prevent impact cylinder head, piston rapid movement to the stroke end cushioning device may also be provided in the end portion of the cylinder. The basic part of the cylinder by cylinder assembly, the piston assembly, the sealing member, and a buffer, the connection member. Further, according to the needs cylinder is also provided with the exhaust means and dustproof device. During the design of the hydraulic cylinder, in accordance with the requirements of the working pressure, velocity, working conditions, processing and disassembly repair sum considering the structure of the various parts of the cylinder. KEYWORDS:piston;piston rod;cylinder head;cylinder

液压缸尺寸计算Word版

A、大腿液压缸结构尺寸设计计算 ①、大腿缸的负载组成 1、工作载荷(活塞杆在抬腿过程中始终受压) 2、惯性载荷(由于所选用液压缸尺寸较小,即不计 重量,且执行元件运动速度变化较小,故不考虑惯性载 荷) 3、密封阻力,其中是作用于活塞上的载 荷,且,是外载荷,,其中是 液压缸的机械效率,取 综上可得:外载荷,密封阻力, 总载荷。 ②、初选系统工作压力 1、按载荷选定工作压力,取工作腔压力为 (由于总载荷为61988N大于50000N,故根据手册 选取工作压力为12MPa) 2、选择执行元件液压缸的背压力为(由于回 油路带有调速阀,且回油路的不太复杂,故根据手册 选取被压压力为1MPa) ③、液压缸主要结构尺寸的计算 1、在整个抬腿过程中活塞杆始终受压,故可得下式: 活塞杆受压时:

----------液压缸工作腔压力(Pa) ----------液压缸回油腔压力(Pa) ----------无杆腔活塞有效作用面积,,D为活塞直径(m)----------有杆腔活塞有效作用面积,,d为活塞杆直径(m) 选取d/D=0.7(由于工作压力为12MPa大于5MPa,故根据手册选取d/D=0.7) 综上可得:D=82.8mm,根据手册可查得常用活塞杆直径,可取D=90mm,d=60mm。 校核活塞杆的强度,其中活塞杆的材料为45钢,故。 由于活塞杆在受负载的工作过程中仅收到压力作用,故仅校核其 压缩强度即可。,故满足强度要求。 即d=60mm,则D=90mm。 由此计算得工作压力为: 根据所选取的活塞直径D=90mm,可根据手册选的液压缸的外径为108mm,即可得液压缸壁厚为。 校核液压缸缸壁的强度,其中液压缸的材料为45钢,故

液压缸的机械锁紧装置理论分析和优化设计

目录 第1章绪论 (4) 1.1课题背景及研究的目的和意义 (4) 1.2诸多可行性方案的比较以及局限性分析 (5) 1.2.1钢球式锁紧液压缸 (5) 1.2.2滚子式锁紧液压缸 (6) 1.2.3套筒式锁紧液压缸 (7) 1.3国内外技术研究现状 (8) 1.3.1国内研究现状 (8) 1.3.2国外有关科研成果 (8) 1.4本文的主要研究内容 (11) 1.4.1本设计的工作原理及技术参数 (11) 1.4.2本设计相对前文几种可行性方案的优势 (12) 1.5本设计的主要内容 (13) 1.5.1内锥套内外表面摩擦副的摩擦磨损试验 (13) 1.5.2锁紧装置理论设计计算 (13) 1.5.3锁紧装置简化模型的静力学有限元分析及参数优化 (13) 1.5.4锁紧装置的样机试验 (13) 第2章摩擦副材料的选用及其摩擦磨损试验的设计 (14) 2.1引言 (14) 2.2 内锥套内表面材料的选择 (14) 2.2.1 铜或铜合金材料作对偶件 (15) 2.2.2铸铁材料作对偶件 (16) 2.2.3钢材料作对偶件 (17) 2.2.4其他材料作对偶件 (17) 2.3内锥套外表面摩擦副材料选择 (17) 2.4试验方案 (19) 2.4.1试验器材及用品 (19) 2.4.2试验方案 (20) 2.4.3试验数据处理 (21) 2.5本章小结 (24) 第3章液压缸锁紧装置的理论计算和设计 (25)

3.1 引言 (25) 3.2 核心零件的关键尺寸及基本算法 (25) 3.2.1假设条件的提出 (26) 3.2.2简化模型力学求解方程的建立 (27) 3.3.1弹簧弹力—内锥套斜角函数关系 (29) 3.4内锥套厚度的设计计算 (31) 3.5 碟形弹簧的设计计算 (33) 3.6 MATLAB计算程序 (36) 3.7本章小结 (37) 第4章锁紧装置的ANSYS有限元仿真优化试验 (38) 4.1引言 (38) 4.2简化模型的建立 (39) 4.3接触组设置 (39) 4.4约束设置 (40) 4.5外部载荷设置 (41) 4.5.1加载碟簧弹力F K (41) 4.5.2加载活塞杆负载F (41) 4.5.1负载施加时序 (42) 4.6网格划分 (42) 4.7 计算结果处理 (43) 4.7.1内锥套应力分布 (44) 4.7.2外锥套应力分布 (44) 4.7.3 活塞杆应力分布 (45) 4.7.4 内锥套-活塞杆接触压应力 (45) 4.7.5 内锥套-活塞杆接触摩擦应力 (46) 4.8 数据分析处理 (47) 4.8.1 各因素对根部圆弧槽最大应力的影响关系 (48) 4.8.2 综合评估 (50) 4.9 活塞杆负载力作用方向对内锥套应力分布的影响 (52) 4.10本章小结 (54) 第5章液压缸锁紧装置试验台设计 (55) 5.1引言 (55) 5.2样机试验主要内容 (56)

液压油缸课程设计说明书

课程设计说明书(液压油缸的压力和速度控制)

目录 1、设计课题 (3) 1.1设计目的 (3) 1.2设计要求 (3) 1.3设计参数 (3) 1.4设计方案 (3) 2、设计方案 (4) 2.1工况分析 (4) 2.2拟定液压系统 (6) 3、机械部分计算 (9) 3.1液压缸的设计计算 (9) 3.2液压缸的校核计算 (12) 3.3液压缸结构设计 (15) 3.4选择液压元件 (17) 4 、系统的验算 (20) 4.1.压力损失的验算 (20) 4.2 系统温升的验算 (21) 5、电气部分设计 (23) 5.1控制系统基本组成 (23) 5.2PLC控制系统的流程图 (24)

1 设计课题 1.1设计目的 通过课程设计培养学生综合运用所学知识和技能、提高分析和解决实际问题能力的一个重要环节,专业课程设计是建立在专业基础课和专业方向课的基础上的,是学生根据所学课程进行的工程基本训练,课程设计的目的在于: 1、培养学生综合运用所学的基础理论和专业知识,独立进行机电控制系统(产品)的初步设计工作,并结合设计或试验研究课题进一步巩固和扩大知识领域。 2、培养学生搜集、阅读和综合分析参考资料,运用各种标准和工具书籍以及编写技术文件的能力,提高计算、绘图等基本技能。 3、培养学生掌握机电产品设计的一般程序和方法,进行工程师基本素质的训练。 4、树立正确的设计思想及严肃认真的工作作风。 1.2设计要求 执行元件:液压油缸; 传动方式:电液比例控制; 控制方式:PLC控制; 控制要求:速度控制; 控制精度:0.01 1.3设计参数 油缸工作行程——600 mm; 额定工作油压——6.5MPa; 移动负载质量——1000 kg; 负载移动阻力——5000 N; 移动速度控制——0.2m/s; 1.4设计方案 利用设计参数和控制要求设计出液压油缸,进而设计出液压系统,通过PLC 对液压油缸进行速度控制。

液压缸设计说明书

1 设计课题 1.1设计要求 设计一台铣削专用机床液压系统用液压缸,要求液压系统完成的工作循环是:工件夹紧→工作台快进→工作台工进→工作台快退→工件松开。 1.2原始数据 运动部件的重力为25000N,快进、快退速度为5m/min,工进速度为100~1200mm/min,最大行程为400mm,其中工进行程为180mm,最大切削力为20000N,采用平面导轨,夹紧缸的行程为20mm,夹紧力为30000N,夹紧时间为1s。

2 液压系统的发展概况 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。 由于液压技术广泛应用了高技术成果,如自动控制技术、计算机技术、微电子技术、磨擦磨损技术、可靠性技术及新工艺和新材料,使传统技术有了新的发展,也使液压系统和元件的质量、水平有一定的提高。尽管如此,走向二十一世纪的液压技术不可能有惊人的技术突破,应当主要靠现有技术的改进和扩展,不断扩大其应用领域以满足未来的要求。 液压系统在将机械能转换成压力能及反转换方面,已取得很大进展,但一直存在能量损耗,主要反映在系统的容积损失和机械损失上。如果全部压力能都能得到充分利用,则将使能量转换过程的效率得到显著提高。为减少压力能的损失,必须解决下面几个问题:减少元件和系统的部压力损失,以减少功率损失。主要表现在改进元件部流道的

压力损失,采用集成化回路和铸造流道,可减少管道损失,同时还可减少漏油损失。 减少或消除系统的节流损失,尽量减少非安全需要的溢流量,避免采用节流系统来调节流量和压力。采用静压技术,新型密封材料,减少磨擦损失。发展小型化、轻量化、复合化、广泛发展通径电磁阀以及低功率电磁阀。改善液压系统性能,采用负荷传感系统,二次调节系统和采用蓄能器回路。为及时维护液压系统,防止污染对系统寿命和可靠性造成影响,必须发展新的污染检测方法,对污染进行在线测量,要及时调整,不允许滞后,以免由于处理不及时而造成损失。 液压系统维护已从过去简单的故障拆修,发展到故障预测,即发现故障苗头时,预先进行维修,清除故障隐患,避免设备恶性事故的发展。 要实现主动维护技术必须要加强液压系统故障诊断方法的研究,当前,凭有经验的维修技术人员的感宫和经验,通过看、听、触、测等判断找故障已不适于现代工业向大型化、连续化和现代化方向发展,必须使液压系统故障诊断现代化,加强专家系统的研究,要总结专家的知识,建立完整的、具有学习功能的专家知识库,并利用计算机根据输入的现象和知识库中知识,用推理机中存在的推理方法,推算出引出故障的原因,提高维修方案和预防措施。要进一步引发液压系统故障诊断专家系统通用工具软件,对于不同的液压系统只需修改和增减少量的规则。 另外,还应开发液压系统自补偿系统,包括自调整、自润滑、自校正,在故障发生之前,进市补偿,这是液压行业努力的方向。 电子技术和液压传动技术相结合,使传统的液压传协与控制技术增加了活力,扩大了应用领域。实现机电一体化可以提高工作可靠性,实现液压系统柔性化、智能化,改变液压系统效率低,漏油、维修性差等缺点,充分发挥液压传动出力大、贯性小、响应快等优点,其主要发展动向如下:[1]

液压缸设计计算

第一部分 总体计算 1、 压力 油液作用在单位面积上的压强 A F P = Pa 式中: F ——作用在活塞上的载荷,N A ——活塞的有效工作面积,2 m 从上式可知,压力值的建立是载荷的存在而产生的。在同一个活塞的有效工作面积上,载荷越大,克服载荷所需要的压力就越大。换句话说,如果活塞的有效工作面积一定,油液压力越大,活塞产生的作用力就越大。 额定压力(公称压力) PN,是指液压缸能用以长期工作的压力。 最高允许压力 P max ,也是动态实验压力,是液压缸在瞬间所能承受的极限压力。通常规定为:P P 5.1max ≤ MPa 。 耐压实验压力P r ,是检验液压缸质量时需承受的实验压力,即在此压力下不出现变形、裂缝或破裂。通常规定为:PN P r 5.1≤ MPa 。 液压缸压力等级见表1。 2、 流量 单位时间内油液通过缸筒有效截面的体积: t V Q = L/min 由于310?=At V ν L 则 32104 ?= =νπ νD A Q L/min 对于单活塞杆液压缸: 当活塞杆伸出时 32104 ?= νπ D Q 当活塞杆缩回时 32210)(4 ?-=νπ d D Q 式中: V ——液压缸活塞一次行程中所消耗的油液体积,L ;

t ——液压缸活塞一次行程所需的时间,min ; D ——液压缸缸径,m ; d ——活塞杆直径,m ; ν——活塞运动速度,m/min 。 3、速比 液压缸活塞往复运动时的速度之比: 2 2 2 12d D D v v -==? 式中: 1v ——活塞杆的伸出速度,m/min ; 2v ——活塞杆的缩回速度,m/min ; D ——液压缸缸径,m ; d ——活塞杆直径,m 。 计算速比主要是为了确定活塞杆的直径和是否设置缓冲装置。速比不宜过大或过小,以免产生过大的背压或造成因活塞杆太细导致稳定性不好。 4、液压缸的理论推力和拉力 活塞杆伸出时的理推力: 626 11104 10?= ?=p D p A F π N 活塞杆缩回时的理论拉力: 6226 2210)(4 10?-= ?=p d D p F F π N 式中: 1A ——活塞无杆腔有效面积,2 m ; 2A ——活塞有杆腔有效面积,2m ; P ——工作压力,MPa ; D ——液压缸缸径,m ; d ——活塞杆直径,m 。 5、液压缸的最大允许行程 活塞行程S ,在初步确定时,主要是按实际工作需要的长度来考虑的,但这一工作行程并不一定是油缸的稳定性所允许的行程。为了计算行程,应首先计算出活塞的最大允许计算长度。因为活塞杆一般为细长杆,由欧拉公式推导出: k k F EI L 2π= mm 式中:

手动液压叉车设计说明书

手动液压叉车课程设计设计报告 课程:专业综合实践 班级:机自3093 学院:机械工程学院 指导老师:吴彦农 设计:王晓波王彬谷泓毅 日期: 2012.12.30

叉车设计摘要 叉车是物流系统中最常用的装卸、搬运设备。本文介绍了世界范围内叉车的市场,叉车发展趋势以及叉车的结构特点,了解液压起重机械设计的主要参数:根据液压起重机械的特点,设计液压手动叉车参数有:起重量、跨距、幅度起重高度、各机构的工作速度及起重机各机构的工作类型。叉车的主要参数首先由使用单位根据生产需要提出,具体数字应按国家标准或工厂标准来确定,同时也要考虑到制造厂的现实生产条件。因此,在确定参数时应当进行调查研究,充分协商和慎重确定。 现代叉车技术发展的主要趋势是充分考虑舒适性、安全可靠性和可维护性 ,产品专业化、系列多样化,大量应用新技术,完善操控系统,重视节能和环保 ,全面提升产品的性能和品质。 通过对国际国内叉车造型设计的现状分析运用工业设计的理论和方法,研究了叉车造型设计的要素及设计原则:造型要求简洁明快、线条流畅,以体现车身的力度感与坚实稳重的感;色彩.力求单纯,给人以轻松、愉悦的感觉,主色调以明度较高的黄色、橙色为宜;车身前后左右要求有宽大的玻璃,仪表具有良好的可读性。研究结果对叉车设计具有重要的实际指导意义。 关键词:叉车;载重;提升机构 第 1章绪论 1.1课题发展现状和前景展望 叉车是应用十分广泛的流动式装卸搬运机械,是物料搬运机械(国外称为工业车辆或地面运输车辆)的一种,是实现物流机械化作业,减轻工人搬运劳动强度,提高作业效率的主要工具。叉车又名铲车、万能装卸车或自动装卸车。它是由在无轨底盘上加装专用装卸工作装置构成的。叉车具有通用性强、机动灵活、活动范围大等特点,所以它广泛用于车站、港口码头、机场、仓库以及工矿企业等部门,用来实现机械化装卸、堆垛和短距离运输,是物流系统不可缺少的机械设备。而叉车中进行装卸作业的直接工作的装置是叉车起重系统,货物的卸放、堆垛最终都是由其完成的,所以它是叉车最重要的组成部分。在我国国民经济的发展中,各行各业对叉车的需求量逐年增加。据国家权威机构研究预测,在今后几年我国叉车年需求量将超过15万台。叉车产业市场潜力巨大,发展前景广阔。 1.2课题主要内容和要求 实验室提供液压千斤顶,螺旋千斤顶实物样品,要求参照其工作原理设计用于较重货物的装卸、移动的省

液压油缸设计计算公式

液压油缸的主要设计技术参数 一、液压油缸的主要技术参数: 1.油缸直径;油缸缸径,内径尺寸。 2. 进出口直径及螺纹参数 3.活塞杆直径; 4.油缸压力;油缸工作压力,计算的时候经常是用试验压力,低于16MPa乘以1.5,高于16乘以1.25 5.油缸行程; 6.是否有缓冲;根据工况情况定,活塞杆伸出收缩如果冲击大一般都要缓冲的。 7.油缸的安装方式; 达到要求性能的油缸即为好,频繁出现故障的油缸即为坏。应该说是合格与不合格吧?好和合格还是有区别的。 二、液压油缸结构性能参数包括:1.液压缸的直径;2.活塞杆的直径;3.速度及速比;4.工作压力等。 液压缸产品种类很多,衡量一个油缸的性能好坏主要出厂前做的各项试验指标,油缸的工作性能主要表现在以下几个方面: 1.最低启动压力:是指液压缸在无负载状态下的

最低工作压力,它是反映液压缸零件制造和装配 精度以及密封摩擦力大小的综合指标; 2.最低稳定速度:是指液压缸在满负荷运动时没 有爬行现象的最低运动速度,它没有统一指标, 承担不同工作的液压缸,对最低稳定速度要求也 不相同。 3.内部泄漏:液压缸内部泄漏会降低容积效率, 加剧油液的温升,影响液压缸的定位精度,使液 压缸不能准确地、稳定地停在缸的某一位置,也 因此它是液压缸的主要指标之。 液压油缸常用计算公式 液压油缸常用计算公式 项目公式符号意义 液压油缸面积(cm 2 ) A =πD 2 /4 D :液压缸有效活塞直径(cm) 液压油缸速度(m/min) V = Q / A Q :流量(l / min) 液压油缸需要的流量(l/min) Q=V×A/10=A×S/10t V :速度(m/min) S :液压缸行程(m) t :时间(min) 液压油缸出力(kgf) F = p × A F = (p × A) -(p×A) ( 有背压存在时) p :压力(kgf /cm 2 ) 泵或马达流量(l/min) Q = q × n / 1000 q :泵或马达的几何排量(cc/rev) n :转速(rpm ) 泵或马达转速(rpm) n = Q / q ×1000 Q :流量(l / min) 泵或马达扭矩(N.m) T = q × p / 20π 液压所需功率(kw) P = Q × p / 612 管内流速(m/s) v = Q ×21.22 / d 2 d :管内径(mm) 管内压力降(kgf/cm 2 ) △ P=0.000698×USLQ/d 4 U :油的黏度(cst) S :油的比重

液压系统的设计说明

目录 摘要 (2) 前言 (3) 第1章液压传动概述 (4) 1.1 液压传动的工作原理及组成 (4) 1.2 液压传动的特点 (5) 1.3 液压工作的介质 (6) 第2章总评方案 (8) 2.1 工况分析 (8) 2.2 确定液压系统方案 (9) 第3章确定主要参数 (15) 3.1 计算液压缸的尺寸流量 (15) 3.2 计算液压泵的电机功率 (19) 3.3 液压泵的气穴、噪声 (23) 第4章选择液压元件 (25) 4.1 选择阀的类型 (25) 4.2 选择液压元件确定辅助装置 (27) 总结 (32) 致谢 (33) 参考文献 (34)

摘要 面对我国经济近年来的快速发展,机械制造工业的壮大,在国民经济中占重要地位的制造业领域得以健康快速的发展。制造装备的改进,使得作为制造工业重要设备的各类机加工艺装备也有了许多新的变化,尤其是孔加工,其在今天的液压系统的地位越来越重要。 镗床液压系统的设计,除了满足主机在动作和性能方面规定的要求外,还必须符合体积小、重量轻、成本低、效率高、结构简单、工作可靠、使用和维修方便等一些公认的普遍设计原则。液压系统的设计主要是根据已知的条件,来确定液压工作方案、液压流量、压力和液压泵及其它元件的设计。 综上所述,完成整个设计过程需要进行一系列艰巨的工作。设计者首先应树立正确的设计思想,努力掌握先进的科学技术知识和科学的辩证的思想方法。同时,还要坚持理论联系实际,并在实践中不断总结和积累设计经验,向有关领域的科技工作者和从事生产实践的工作者学习,不断发展和创新,才能较好地完成机械设计任务。 关键词:液压缸液压泵换向阀

液压缸的设计计算

液压缸的设计计算-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

液压缸的设计计算 作为液压系统的执行元件,液压缸将液压能转化为机械能去驱动主机的工作机构做功。由于液压缸使用场合与条件的千差万别,除了从现有标准产品系列选型外,往往需要根据具体使用场合自行进行设计。 设计内容 液压缸的设计是整个液压系统设计中的一部分,它通常是在对整个系统进行工况分析所后进行的。其设计内容为确定各组成部分(缸筒和缸盖、活塞和活塞杆、密封装置、排气装置等)的 结构形式、尺寸、材料及相关技术要求等,并全部通过所绘制的液压缸装配图和非标准零件工作图反映这些内容。 液压缸的类型及安装方式选择 液压缸的输入是液体的流量和压力,输出的是力和直线速速,液压缸的结构简单,工作可靠性好,被广泛地应用于工业生产各个部门。为了满足各种不同类型机械的各种要求,液压缸具有多种不同的类型。液压缸可广泛的分为通用型结构和专用型结构。而通用型结构液压缸有三种典型结构形式: (1)拉杆型液压缸 前、后端盖与缸筒用四根(方形端盖)或六根(圆形端盖)拉杆来连接,前、后端盖为正方形、长方形或圆形。缸筒可选用钢管厂提供的高精度冷拔管,按行程长度所相应的尺寸切割形成,一般内表面不需加工(或只需作精加工)即能达到使用要求。前、后端盖和活塞等主要零件均为通用件。因此,拉杆型液压缸结构简单、拆装简便、零件通用化程度较高、制造成本较低、适于批量生产。但是,受到行程长度、缸筒内径和额定压力的限制。如果行程长度过长时,拉杆长度就相应偏长,组装时容易偏歪引起缸筒端部泄漏;如缸筒内径过大和额定压力偏高时,因拉杆材料强度的要求,选取大直径拉杆,但径向尺寸不允许拉杆直径过大。 (2)焊接型液压缸 缸筒与后端盖为焊接连接,缸筒与前端盖连接有内螺纹、内卡环、外螺纹、外卡环、法兰、钢丝挡圈等多种形式。 焊接型液压缸的特点是外形尺寸较小,能承受一定的冲击负载和严酷的外界条件。但由于受到前端盖与缸筒用螺纹、卡环或钢丝挡圈等连接强度的制约缸筒内径不能太大和额定压力不能太高。 焊接型液压缸通常额定压力Mpa P n 25≤、缸筒内径mm D 320≤,在活塞杆和缸筒的加工条件许可下,允许最大行程m S 1510-≤。

液压缸的设计计算

液压缸的设计计算 作为液压系统的执行元件,液压缸将液压能转化为机械能去驱动主机的工作机构做功。由于液压缸使用场合与条件的千差万别,除了从现有标准产品系列选型外,往往需要根据具体使用场合自行进行设计。 设计内容 液压缸的设计是整个液压系统设计中的一部分,它通常是在对整个系统进行工况分析所后进行的。其设计内容为确定各组成部分(缸筒和缸盖、活塞和活塞杆、密封装置、排气装置等)的 结构形式、尺寸、材料及相关技术要求等,并全部通过所绘制的液压缸装配图和非标准零件工作图反映这些内容。 液压缸的类型及安装方式选择 液压缸的输入是液体的流量和压力,输出的是力和直线速速,液压缸的结构简单,工作可靠性好,被广泛地应用于工业生产各个部门。为了满足各种不同类型机械的各种要求,液压缸具有多种不同的类型。液压缸可广泛的分为通用型结构和专用型结构。而通用型结构液压缸有三种典型结构形式: (1)拉杆型液压缸 前、后端盖与缸筒用四根(方形端盖)或六根(圆形端盖)拉杆来连接,前、后端盖为正方形、长方形或圆形。缸筒可选用钢管厂提供的高精度冷拔管,按行程长度所相应的尺寸切割形成,一般内表面不需加工(或只需作精加工)即能达到使用要求。前、后端盖和活塞等主要零件均为通用件。因此,拉杆型液压缸结构简单、拆装简便、零件通用化程度较高、制造成本较低、适于批量生产。但是,受到行程长度、缸筒内径和额定压力的限制。如果行程长度过长时,拉杆长度就相应偏长,组装时容易偏歪引起缸筒端部泄漏;如缸筒内径过大和额定压力偏高时,因拉杆材料强度的要求,选取大直径拉杆,但径向尺寸不允许拉杆直径过大。 (2)焊接型液压缸 缸筒与后端盖为焊接连接,缸筒与前端盖连接有内螺纹、内卡环、外螺纹、外卡环、法兰、钢丝挡圈等多种形式。 焊接型液压缸的特点是外形尺寸较小,能承受一定的冲击负载和严酷的外界条件。但由于受到前端盖与缸筒用螺纹、卡环或钢丝挡圈等连接强度的制约缸筒内径不能太大和额定压力不能太高。 焊接型液压缸通常额定压力Mpa P n 25≤、缸筒内径mm D 320≤,在活塞杆和缸筒的加工条件许可下,允许最大行程m S 1510-≤。

液压缸的设计说明书

设计内容: 1.液压传动方案的分析 2.液压原理图的拟定 3.主要液压元件的设计计算(例游缸)和液压元件,辅助装置的选择。 4.液压系统的验算。 5.绘制液压系统图(包括电磁铁动作顺序表,动作循环表,液压元件名称)A4一张;绘制集成块液压原理图A4一张;油箱结构图 A4一张;液压缸结构图A4一张。 6.编写设计计算说明书一分(3000-5000字左右)。 一、明确液压系统的设计要求 对油压机液压系统的基本要求是: 1)为完成一般的压制工艺,要求主缸驱动滑块实现“快速下降——压制——保压——快速回退——原位停止”的工作循环,具体要求可参看题目中的内容。 2)液压系统功率大,空行程和加压行程的速度差异大,因此要求功率利用合理。 3)油压机为高压大流量系统,对工作平稳性和安全性要求较高。 二、液压系统的设计计算 1. 进行工况分析,绘制出执行机构的负载图和速度图 液压缸的负载主要包括:外负载、惯性阻力、重力、密封力和背压阀阻力 (1) 外负载:

压制时外负载:=50000 N 快速回程时外负载:=8000 N (2) 移动部件自重为: N (3) 惯性阻力: 式中:g——重力加速度。单位为。 G——移动部件自重力。单位为。 ——在t时间内速度变化值。单位为。 ——启动加速段或减速制动段时间。单位为。 (4) 密封阻力: 一般按经验取(F为总负载) 在在未完成液压系统设计之前,不知道密封装置的系数,无法计算。一般用液压缸的机械效率加以考虑,。 (5) 背压阻力:

这是液压缸回油路上的阻力,初算时,其数值待系数确定后才能定下来。根据以上分析,可计算出液压缸各动作阶段中负载,见表1: 工况计算公式液压缸的负载(N)启动、加速阶段 稳定下降阶段F = 压制、保压阶段 快退阶段 表1 (6) 根据上表数据,绘制出液压缸的负载图和速度图

相关主题
相关文档 最新文档