当前位置:文档之家› 洛热2011年7月14日6号发电机出口短路事故分析报告

洛热2011年7月14日6号发电机出口短路事故分析报告

洛热2011年7月14日6号发电机出口短路事故分析报告
洛热2011年7月14日6号发电机出口短路事故分析报告

大唐洛阳热电厂

2011年7月14日6号发电机出口短路事故分析报告

2011年7月14日,大唐洛阳热电厂6号机组发生一起因发电机氢气找漏在发电机下6米处搭设脚手架时,因带电部分对金属架杆放电,造成发电机出口短路,主变差动保护动作,机组跳闸,现将非停情况通报如下:

一、事件前运行方式及经过

当时运行方式:15时34分,6号机组负荷245MW,甲、乙侧引、送风机、一次风机、汽泵、三台磨煤机运行,协调投入,氢压291Kpa,定子冷却水量34t/h,机组运行正常。

15:35,正在进行5号机小修后热态验收的人员听到响声后立即到现场,发现6号发电机补氢管道上的取压表管断裂,氢气被引着,遂立即组织人员进行灭火,关闭氢压表管一次门后,火苗熄灭。正在现场搭设架子的架子工闫中连面部、上身、右臂被烧伤,架子工王建友立即组织人员帮助伤者离开现场,救援人员到场后把伤者送到电力医院急救,架子工闫中连随后立即送三院治疗,现伤者伤情稳定。

15:35,当听到机房内有异常响声后,随即6号机跳闸。检查DCS系统汽机首出为“电气主保护”动作,后检查故障录波器首出为“主变差动保护”动作,同时“机跳炉保护”动作,锅炉灭火。检查发现洛226开关断开,灭磁开关断开,汽轮机高中压主、调门关闭正常,转速下降。查快切装置动作,厂用电切换正常,保安段电压正常,交流润滑油泵联启,润滑油压正常,汽机本体振动、轴瓦温度等参数

正常,锅炉燃料已全部切断。

15:38,迅速将轴封汽源切至辅汽供汽,调整轴封压力正常。

15:40,启动3号电泵,停运汽动给水泵,维持汽包水位。

15:43查密封油系统运行正常,立即安排人员就地开启排氢门,导入二氧化碳。

15:46,调整各加热器、凝汽器、除氧器水位正常,查低缸喷水,疏扩减温水开启正常。

15:50,汽轮机转速降至2200转,顶轴油泵联启正常,油压正常,查看主机各瓦振动、瓦温正常。

15:58,停止送风机、引风机,密闭炉膛。

16:01,断开洛226开关操作电源41K、42K空开。

16:14,合上洛226刀闸操作电源8D4空开,拉开洛226刀闸。

16:25,汽轮机转速到零,投入盘车运行。

随后,立即将6号发电机解除备用,发变组装设安措,6号发电机彻底排查系统。

二、检查及处理过程

1、事后现场检查,发现紧挨瓷瓶的金属架杆上有放电痕迹;其另一端接触在发电机补氢压力开关的取压表管上,取压表管已断开,经仔细检查,补氢压力开关的取压表管上有明显被电弧熔断的痕迹。

2、经检查发电设备故障及损坏情况如下:发电机出口出线罩内

A、B、C三相均有电弧闪络放电现象,其中A相CT出线处瓷套管损坏,B、C两相出线瓷套管表面有闪络痕迹。

3、对发电机端部内隔板进行拆除,检查发电机内部未发现异常。

4、对主变、高厂变外观检查并对线圈进行绕组变形试验,正常;中性点变压器检查、试验正常;机端CT检查、试验正常。

5、经过几天的治疗,受伤人员其中一只眼睛视力已完全回复,另一只眼睛看东西有些模糊,正在恢复中;烧伤的部位已消肿,说话、吃饭全部正常,个人思维和情绪稳定。

三、原因分析

1、脚手架搭设时架子工将一根金属架杆接触到发电机出口出线罩A相CT瓷套管处,造成发电机A相对金属架杆接地放电,同时引发两相弧光短路,继而发生三相短路,主变差动保护动作,机组跳闸。根据故障录分析情况与现场短路现象基本吻合。

2、因发电机A相接地后,发电机中性点电压位移,接地电流骤增,将中性点母线两侧接头烧断。

四、暴露问题

1、发电机漏氢处理工作管理不到位,对于需要在发电机下封闭母线处搭设脚手架可能发生的事故预想不到位。

2、特殊区域脚手架搭设工作管理不到位,未提前组织进行分析,制定安全措施。

3、发电机引出线CT下部有裸露的带电部分,工作负责人、班长、专业管理人员、架子工等大多数电气专业人员均没有意识到该地方会有裸露的带电体,说明投产几年来,隐患排查工作不到位。

4、工作票执行不严格,危险点分析不到位。

5、配合工种现场作业监护不到位。

6、架子工安全意识不强,对现场环境不熟悉,对作业本身和周边环境存在风险估计不足,对于可能造成的人身伤害意识不到,自我防范意识欠缺,盲目施工。

五、整改措施

1、在全厂范围内开展大反思活动,要求厂领导带头反思,排查四个责任落实、风险防控、生产现场管理等方面存在的差距和问题(抢修结束后,再详细策划活动方案)。

责任人:张建宏活动时间:第三季度

2、开展安全生产专项整顿活动,针对“7.14”事件,组织开展大讨论,对全厂脚手架进行专项治理整顿,重点抓好规章制度在现场的执行。

责任人:卢海申完成时间:2011.7.30

3、狠抓三讲一落实工作,加强危险点分析,做好风险防范措施,抓好现场措施落实;对于安全风险较大的作业,安全措施必须经专业现场检查确认后方可进行。

责任人:全厂各部门完成时间:2011.12.30

4、加强配合工种管理力度,重点抓现场配合工种监护,坚决杜绝失去监护下进行脚手架、焊接等配合作业和盲目施工。

责任人:罗宇完成时间:长期

5、针对该起事故,认真查找工作票、脚手架管理上的问题,严肃两票、脚手架制度,认真落实防范措施;对于带电区域的脚手架工

作,更换为不导电的架杆、架板。

责任人:常小卷完成时间:长期

6、加强职工安全思想教育,开展以吸取身边典型事故案例的专题教育活动,增强职工安全意识和安全技能,增强职工责任心,提高执行规章制度的执行力,杜绝工作随意性。

责任人:韩广三完成时间:2011.8.10

7、针对此次事件,我们要举一反三,从设备的本质安全角度出发,对全厂重要区域设备进行重点排查,对存在高风险的隐患死角制定整改方案,确保现场人员、设备安全。

责任人:吴小川完成时间:即日起每天

8、本月完成发电机磁接线端子处防护设施,增加警示标示。

(1)、5号机悬挂警示牌,设置物理隔离措施

责任人:梁玲君完成时间:2011年7月20日(2)、6号机悬挂警示牌,设置物理隔离措施

责任人:梁玲君完成时间:2011年7月25日

六、责任考核:

依据相关规定对责任单位及责任人进行考核,并进一步分析,落实责任,拿出处理意见,上报分公司审核、批准。

大唐洛阳热电厂

2011年7月18日

附图1、故障录波图

说明:1、2、3通道为发电机机端电压A、B、C,4为发电机中性点电压。

5、6、7通道为发电机机端电流A、B、C ,K21通道为主变

差动速断动作开关量。

附图2、瓷绝缘子闪络图片

B相发电机出线瓷绝缘子

A相发电机出线瓷绝缘子

6.3-同步发电机突然三相短路的物理过程及短路电流分析资料

6.3-同步发电机突然三相短路的物理过程及短路电流分析资料

6.3 同步发电机突然三相短路的物理过程及短路电流分析 6.3.1 同步发电机在空载情况下突然三相短路的物理过程 上一节讨论了无限大电源供电电路发生三相对称短路的情况。实际上电力系统发生短路故障时,大多数情况下作为电源的同步发电机不能看成无限大容量,其内部也存在暂态过程,因而不能保持其端电压和频率不变。所以一般在分析和计算电力系统短路时,必须计及同步发电机的暂态过程。由于发电机转子的惯量较大,在分析短路电流时可以近似地认为发电机转子保持同步转速,只考虑发电机的电磁暂态过程。 同步发电机稳态对称运行时,电枢磁势的大小不随时间而变化,在空间以同步速度旋转,由于它与转子没有相对运动,因而不会在转子绕组中感应出电流。但是在发电机端突然三相短路时,定子电流在数值上将急剧变化。由于电感回路的电流不能突变,定子绕组中必然有其它自由电流分量产生,从而引起电枢反应磁通变化。这个变化又影响到转子,在转子绕组中感生出电流,而这个电流又进一步影响定子电流的变化。定子和转子绕组电流的互相影响是同步电机突然短路暂态过程区别于稳态短路的显著特点,同时这种定、转子间的互相影响也使暂态过程变得相当复杂。 图6-6 凸极式同步发电机示意图 图6-6为凸极同步发电机的示意图。定子三相绕组分别用绕组,,表示,绕组的中心轴,,轴线彼此相差120o。转子极中心线用轴表示,称为纵轴或直轴;极间轴线用轴表示,称为横轴或交轴。转子逆时针旋转为正方向,轴超前轴90o。励磁绕组的轴线与轴重合。阻尼绕组用两个互相正交的短接绕组等效,轴线与轴重合的称为阻尼绕组,轴线与轴重合的称为阻尼绕组。 定子各相绕组轴线的正方向作为各绕组磁链的正方向,各相绕组中正方向电流产生的磁链的方向与绕组轴线的正方向相反,即定子绕组中正电流产生负磁通。励磁绕组及轴阻尼绕组磁链的正方向与轴正方向一致,轴阻尼绕组磁链的正方向与轴正方向一致,转子绕组中正向电流产生的磁链与轴线的正方向相同,即在转子方面,正电流产生正磁通。下面分析发电机空载突然短路的暂态过程。 1.定子回路短路电流 设短路前发电机处于空载状态,气隙中只有励磁电流产生的磁链,忽略漏磁链后,穿过主磁路为主磁链匝链定子三相绕组,又设为转子轴与A相绕组轴线的初始夹角。由于转子以同步转速旋转,主磁链匝链定子三相绕组的磁链随着的变化而变化,因此 (6-17)

基于MATLAB的同步发电机突然短路设计

第1章绪论 电力系统仿真是将电力系统的模型化、数学化来模拟实际的电力系统的运行,由于电力系统是个复杂的系统,运行方式也十分复杂,因此采用传统的方式进行仿真计算工作量大,也不直观。随着电力工业的发展,电力系统的规模越来越大。在这种情况下,许多大型的电力科研试验很难进行,一是实际的条件难以满足;二是从系统的安全角度来讲也是不允许进行实验的。因此,寻求一种最接近于电力系统实际运行状况的数字仿真工具必不可少。而在众多的仿真工具中,MATLAB 以其优越的运算能力、方便和完善的绘图功能脱颖而出。 1.1设计目的 让学生综合运用Matlab/Simulink仿真工具箱,建立电力系统仿真模型,对系统三相短路和单相短路等故障形式进行设计、仿真、分析,加深对供电和电力系统知识的了解,并进一步熟悉MATLAB电力系统这一仿真工具。 1.2设计任务 1.运用Simulink建立简单的单机-无穷大系统进行仿真,对系统运行出现短路情况时的仿真结果进行详细的分析。 2.建立带励磁系统的发电机系统,通过仿真结果分析带上励磁系统时电压和电流的变化情况。 1.3设计要求 1.要求每个学生独立完成设计任务。 2.针对每个仿真要给出详细的结果分析。 3.完成实训任务书。 4.要求提交成果:报告书一份。

第2章MATLAB语言的概述 2.1 MATLAB简介 MATLAB是将计算、可视化、程序设计融合在一起的功能强大的平台,所具有的程序设计灵活,直观,图形功能强大的优点使其已经发展成为多学科,多平台的强大的大型软件。MATLAB提供的Simulink工具箱是一个在MATLAB环境下用于对动态系统进行建模、仿真和分析的软件包。它提供了用方框图进行建模的接口,与传统的仿真建模相比,更加直观、灵活。Simulink的作用是在程序块间的互联基础上建立起一个系统。每个程序块由输入向量,输出向量以及表示状态变量的向量等3个要素组成。在计算前,需要初始化并赋初值,程序块按照需要更新的次序分类。然后用 ODE计算程序通过数值积分来模拟系统。MATLAN含有大量的 ODE计算程序,有固定步长的,有可变步长的为求解复杂的系统提供了方便。MATLAB在电力系统建模和仿真的应用主要由电力系统仿真模块SimPowerSystem 来完成的。 由于电力系统是个复杂的系统,运行方式也十分复杂,因此采用传统的方式进行仿真计算工作量大,也不直观。MATLAB 的出现给电力系统仿真带来了新的方法和手段。通过MATLAB 的 SimPowerSystem的模块对电力系统中的应用进行仿真,从而说明其在电力系统仿真中的运用电力系统的仿真可以帮助人们通过计算机手段分析实际电力系统的各种运行情况,通过故障仿真得出了相关的电压稳定性方面的结论,从而证明了这种仿真的正确性和在分析应用中的可行性。 2.2 Simulink简介 Simulink是Matlab软件下的一个附加组件,是一个用来对动态系统进行建模、仿真和分析的MATLAB软件包。支持连续、离散以及两者混合的线性和非线性系统,同时它也支持具有不同部分拥有不同采样率的多种采样速率的仿真系统。 由于 Simulink可以很方便地创建和维护一个完整的模型,评估不同算法和结构并验证系统性能,另外Simulink还可以与MATLAB中的DSP工具箱、信号处理工具箱以及通讯工具箱等联合使用,进而实现软硬件的接口,从而成为实用的

大型汽轮发电机常见故障的检查及状态监测

大型汽轮发电机常见故障的检查及状态监测 内容预览 李伟清 东北电力科学研究院,辽宁沈阳 110006 近十几年来,已并网发电的200 MW以上汽轮发电机组大部分能达到额定出力并持续运行,各项技术参数和性能也基本上能满足各种正常或非正常运行方式的要求。据原电力部可靠性中心统计,1991~1995年国产200 MW机组的等效可用率(EAF)由80.54%提高至86.68%;300 MW机组由76.82%提高至81.86%。尽管如此,由于设计及工艺原因,特别是制造工艺和质量检验等存在问题较多,导致发电机各类事故频繁,延续时间长,性质严重,损失巨大;其次,电机的安装、检修质量及运行维护水平也存在诸多问题,常常成为事故发生的诱因。以下论述汽轮发电机运行中常见故障的检查处理方法以及状态监测技术。 1 水内冷定子绕组漏水 国产及引进200~600 MW汽轮发电机采用水氢氢冷却方式的比重很大,定子水内冷绕组渗漏水是一种常见故障,严重者往往导致接地和相间短路事故。这类事故发生的主要原因是设计、工艺及材质等问题。渗漏部位多为空心导线并头套封焊处,聚四氟乙烯绝缘管交叉碰磨处,或因空心铜线材质不好(有砂眼或裂隙)和在运行中断裂等。如渗漏部位系微细裂纹或孔洞,则压力较高的氢气往往渗入水中,并可在定子内冷水箱顶部发现氢气;渗漏部位的裂缝或孔洞较大时,则水渗出与氢渗入并存,极易造成定子接地事故。 多年来,现场一直采用水压试验法来检查线棒漏水,但这种方法对由空心导体金属组织致密性差,而引起的微泄漏现象就显得灵敏度不够,常常无法查出。如某电厂对一台300 MW发电机进行1 MPa、8 h水压试验,未发现漏点,后提高至1.2 MPa,8 h亦未找出漏点,但进行1 MPa

同步发电机短路实验

同步发电机突然短路的分析 一、实验目的 1.学会使用MATLAB软件对电力系统进行时域仿真分析,加深对电力系统短路时暂态过程的理解。 2.通过实验,进一步理解有限容量系统和无穷大系统短路时暂态过程的不同 二、实验原理 同步电机是电力系统中的重要元件,由多个有磁耦合关系的绕组构成,同步电机突然短路的暂态过程要比恒定电压源电路复杂很多,所产生的冲击电流可能达到额定电流的十几倍,对电机本身和相关的电气设备都可能产生严重的影响。 同步电机短路时,由于定子绕组中周期分量电流突变将对转子产生电枢反应,该反应产生交链励磁绕组的磁链。为了维持励磁绕组在短路瞬间总磁链不变,励磁绕组内将产生直流电流分量,其方向与原有的励磁电流方向相同,它产生的磁通也有一部分要穿过定子绕组,从而使定子绕组的周期分量电流增大。因此在有限容量系统突然发生三相短路时,短路电流的初值将大大超过稳态短路电流,最终衰减为稳态短路电流。 三、实验内容 电力系统时域分析实例(仿真) 范例:同步电机突然短路模型如图所示—使用简化的同步电机(Simplified Synchronous Machine),使用三相并联RLC负载并通过三相电路短路故障发生器元件实现同步电机的三相短路。 图1 同步电机突然短路电路模型

1、从电机元件库选择简化的同步电机(Simplified Synchronous Machine)元件,设置参数如下 2、从测量元件库中选择三相电压—电流测量元件,进行参数设置。电压测 量选项中选择测量相电压(phase-to-ground)用来测量同步发电机突然短路后三相电压的变化。 3.从线路元件库中选择三相短路故障发生器(3-phase-Fault),双击将三 相故障同时选中并设置转换时间。 4.从线路元件库中选择三相并联RLC负载元件,参数设置如下:

同步发电机突然三相短路的仿真研究_高仕红

第26卷第1期 湖北民族学院学报(自然科学版) V o.l26 N o.1 2008年3月 J ourna l o fHubei Institute for N ati ona liti es(N at ural Science Editi on) M a r.2008同步发电机突然三相短路的仿真研究 高仕红 (湖北民族学院电气工程系,湖北恩施445000) 摘要:同步发电机的突然三相短路,是电力系统最严重的故障,对电机本身和相关的电气设备都可能产生严重的影响,研究它有着非常重要的意义.在d-p坐标系统下,构建了同步发电机的数学模型以及动态等效电路.利用M a tlab7.1/Si m uli nk6.3的强大功能,构建了同步发电机机端突然三相短路的仿真模型,并对同步发电机的各物理量在短路期间进行了仿真研究.通过理论和仿真对比分析,同步发电机的各物理量在突然短路的暂态过程中产生很大的冲击和振荡,最后稳定在短路前的状态,仿真结果与理论分析相吻合.此方法还可用来研究同步发电机某些动态过程,从而为电机的优化设计提供必要的理论依据. 关键词:同步发电机;突然三相短路;数学模型;动态等效电路;仿真模型 中图分类号:TM301文献标识码:A文章编号:1008-8423(2008)01-0036-05 Si m ul ati on Study of Synchronous G enerator on Sudden Three-phase Short C ircuit GAO Sh i-hong (Depart m ent o f E l ec trical Eng i neeri ng,H ube i Institute f o r N a ti ona li ties,Enshi445000,Chi na) Abst ract:Three-phase short circuit of synchr onous generator is a seri o us fau lt i n t h e electric po w er sys-te m,wh ich is like l y to i n fl u ence bad l y on the nou m enon of electr icm ach i n e and correlati v e electric equ i p-m en,t so it is i m portant to study i.t In the reference fra m e,m athe m atic m ode l and dyna m ic equivalent c ir-cu itw as bu il.t By m aking use of po w erful f u ncti o n ofM atlab7.1/S i m uli n k6.3,si m ulati o n mode l of syn-chronous generator on sudden three-phase short circu it w as buil,t vari o us physica l quantities were stud-ied by si m u lation duri n g t h e short c ircu i.t By co mpari n g theoretics w ith si m ulati o n,various physica l quan-tities o f synchronous generator produced tre m endous i m pact and surge duri n g the sudden circu it and they stabilized in the pr oceedi n g state of short c ircu i.t The e m u lational resu lts are consi s tent w ith theore tic a-nalysis.Th ism ethod is a lso for the use o f researching certa i n dyna m ic course of synchronous generator, w hich provided necessary theoreti c basis for opti m u m desi g n of e lectric m ach i n e. K ey w ords:synchronous generator;sudden three-phase short c ircu i;t m athe m atic m ode;l dyna m ic equ i v-alent circu i;t si m ulati o n m odel 同步发电机是电力系统中最重要和最复杂的元件,由多个具有电磁耦合关系的绕组构成.同步发电机突然短路的暂态过程所产生的冲击电流可能达到额定电流的十几倍,对电机本身和相关的电气设备都可能产生严重的影响,因此对同步发电机动态特性的研究历来是电力系统中的重要课题之一[1~3].而同步电机的突然三相短路,是电力系统的最严重的故障,它是人们最为关心、研究最多的过渡过程.虽然短路过程所经历的时间是极短的(通常约为0.1~0.3s),但对电枢短路电流和转子电流的分析计算,却有着非常重要的意 收稿日期:2007-12-12. 基金项目:湖北省教育厅科学研究计划项目(B20082908). 作者简介:高仕红(1971-),男,硕士,讲师,主要从事电机控制和同步电机励磁控制.

发电机匝间短路故障诊断

目录 1 引言 (1) 1.1 研究目的与意义 (1) 1.2 发电机故障诊断技术的发展状况 (1) 1.3 发电机转子绕组匝间短路故障检测的研究现状 (2) 1.4 本文的内容和主要工作 (4) 2 汽轮发电机转子绕组匝间短路的理论分析 (6) 2.1 汽轮发电机的转子结构 (6) 2.2 转子绕组发生匝间短路的原因 (6) 2.3 匝间短路的磁场分析 (7) 2.3.1 发电机发生匝间短路的磁场分析 (9) 3 发电机转子绕组匝间短路故障的探测线圈法 (12) 3.1 探测线圈法的测试原理 (12) 3.2 探测线圈的结构及置放 (14) 3.2.1 诊断系统及其功能组成 (15) 3.2.2 基本参数 (16) 3.2.3 传感器安装和定位 (16) 3.3.3 故障判断 (16) 3.3 大亚湾核电站发电机组的探测线圈法实例分析 (17) 参考文献 (20)

1引言 1.1研究目的与意义 随着我国国民经济的快速发展,电力工业正处于大电机和大电网的发展阶段。人们的生活和生产水平迅速提高,使得电能需求量日益增长,进而对电力系统的供电质量、可靠性及经济性等指标的要求也不断提高。发电机是电能生产的重要设备,它为整个电力系统提供电能,是整个电网的心脏,因此如果发电机发生故障,可能会导致局部停电甚至整个系统崩溃。 发电机转子作为发电机的重要组成部分,主要由励磁绕组线圈、线圈引线以及阻尼绕组等部分组成。发电机运行时,由于转子处于高速旋转状态,这些部件将承受很大的机械应力和热负荷,若超过其极限值时将导致部件的损坏。转子绕组是发电机经常出现故障的部位,除本体故障外,主要是转子绕组的短路故障,如匝间短路、一点接地短路、两点接地短路等。发电机正常运行时,转子绕组对地之间会有一定的分布电容和绝缘电阻,绝缘甩阻的阻值通大于1兆欧。但是因某种原因导致对地绝缘损坏或绝缘电阻严重下降时,就会发生转子绕组接地事故。当发电机转子发生一点接地故障时,因为励磁电源的泄漏电阻很大,一般不会造成多大的伤害,限制了接地泄露电流的数值。但是,发电机转子两点接地故障将会产生很大的电流,经故障点处流过的故障电流会烧坏转子本体。而部分转子绕组的短接,励磁绕组中增加的电流可能会导致转子因过热而烧坏,气隙磁通也会失去平衡,从而引起发电机的振动,还可能使转子大轴磁化,甚至会导致灾难性的后果,因此两点接地故障的后果是很严重的。 目前,在国内运行的大型发电机组中,发电机匝间短路故障占故障总数的比重较大,大多数发电机都发生过或已经存在转子绕组匝间短路的故障。由于转子绕组绝缘的损坏,转子绕组匝间短路后会形成短路电流,从而导致局部过热。发电机长期在这种环境下运行,会进一步引起绝缘的损坏,导致更为严重的匝间短路,最终形成恶性循环。据统计资料表明,发电机转子匝间短路故障并不会影响机组的正常运行,所以常常被忽略,但是如果任其发展,转子电流将会显著增加,绕组温升过高,无功输出降低,电压波形畸变,机组振动加剧,并且还会引起其它的机械故障,严重时还会影响发电机的无功出力。如果发生的是不对称的匝间短路故障,发电机组的振动将会加剧,转子绕组的绝缘也有可能进一步的损坏,进而发展成为接地故障,对发电机组的安全稳定运行构成了严重的威胁。因此,对发电机绕组匝间短路故障的诊断与识别是十分必要的。 1.2 发电机故障诊断技术的发展状况 早期的故障诊断主要依靠人工经验,如:看、听、触、摸等方法进行诊断,

同步发电机突然三相短路中的几问题

第2章作业参考答案 2-1 为何要对同步发电机的基本电压方程组及磁链方程组进行派克变换答:由于同步发电机的定子、转子之间存在相对运动,定转子各个绕组的磁路会发生周期性的变化,故其电感系数(自感和互感)或为1倍或为2倍转子角θ的周期函数(θ本身是时间的三角周期函数),故磁链电压方程是一组变系数的微分方程,求解非常困难。因此,通过对同步发电机基本的电压及磁链方程组进行派克变换,可把变系数微分方程变换为常系数微分方程。 2-2 无阻尼绕组同步发电机突然三相短路时,定子和转子电流中出现了哪些分量其中哪些部分是衰减的各按什么时间常数衰减试用磁链守恒原理说明它们是如何产生的 答:无阻尼绕组同步发电机突然三相短路时,定子电流中出现的分量包含:a)基频交流分量(含强制分量和自由分量),基频自由分量的衰减时间常数’。 为T d 。 b)直流分量(自由分量),其衰减时间常数为T a 。 c)倍频交流分量(若d、q磁阻相等,无此量),其衰减时间常数为T a 转子电流中出现的分量包含: ’。 a)直流分量(含强制分量和自由分量),自由分量的衰减时间常数为T d b)基频分量(自由分量),其衰减时间常数为T 。 a 产生原因简要说明: 1)三相短路瞬间,由于定子回路阻抗减小,定子电流突然增大,电枢反应 使得转子f绕组中磁链突然增大,f绕组为保持磁链守恒,将增加一个自 由直流分量,并在定子回路中感应基频交流,最后定子基频分量与转子 直流分量达到相对平衡(其中的自由分量要衰减为0). 2)同样,定子绕组为保持磁链守恒,将产生一脉动直流分量(脉动是由于d、 q不对称),该脉动直流可分解为恒定直流以及倍频交流,并在转子中感 应出基频交流分量。这些量均为自由分量,最后衰减为0。 2-3 有阻尼绕组同步发电机突然三相短路时,定子和转子电流中出现了哪些分量其中哪些部分是衰减的各按什么时间常数衰减

发电机试验大纲

发电机电气设备大修后调试方案与措施 一、试验项目 1、不同转速下的发电机转子的绝缘电阻,交流阻抗测试. 2、励磁机空载特性试验. 3、发电机短路特性试验,励磁机负载特性试验. 4、发电机电流保护定值校对. 5、发电机电压回路检查. 6、发电机空载特性试验. 7、发电机及PT、引出线核相检查. 8、发电机差动相量检查. 9、发电机轴电压测量. 二、组织措施 1、试验总指挥: 2、试验负责人: 3、试验人员: 三、试验时间安排 1、试验前由值长下达电气准备启动调试命令. 2、试验时间计划从汽轮机转速稳定在3000r/min移交电气共4小时. 四、安全措施(负责人:运行班长) 1、试验前应收回1#发电机系统的全部工作票,并有发电机本体、小间及发电机引出线母线、电缆、开关、CT、PT的有关报告及保护传动报告. 2、发电机系统核相前,应由操作班运行人员再次检查回路清洁,无关人员撤离现场. 3、设备带电后,检查本体,主控及相关回路的设备有无异常,所有人员禁止接触带电设备的绝缘部分,已防漏电伤人. 4、做短路特性的短路排应能承受800A 、10分钟无异常. 五、试验前的准备工作 1、准备好在1#发电机出口断路器021、开关下接线座装设短路排,备做短路特性试验用. 2、准备好各项试验用的表格记录;负责人根据试验内容进行人员分工. 3、仪器、仪表接线 ①、准备一块双钳相位表,一块相序表,一块数字万用表和试验用的引线及一次定相杆. ②、在发电机本体处接好做交流阻抗、功率损耗试验用的电压、电流和瓦特表. ③、在励磁机励磁电流RC回路613中串接一块0.5级0-5A的直流电流表,在发电机小间400A/75mV的分流器606和608线引到主控处接入0.5级0-75mV的直流电压表,并把表盘电流表拆掉. ④、在发电机控制屏转子电压表601、602并接一块0.5级的0-300V的直流电压表 ⑤、在发电机控制屏端子排A451、C451串接两块0.5级0-5A电流表,在A613、B600,C613、B600并接两块0.5级0-150V电压表及N461串接一块电流表. 六、试验的检查工作 1、发电机、励磁机碳刷齐全,接触良好. (检查人: ) 2、测量发电机定子、转子及回路绝缘合格. (检查人: ) 3、021开关油位正常,一次系统接头良好,清洁无杂物.(检查人: ) 4、检查CT测量、保护、计量回路不开路. (检查人: ) 5、检查PT二次回路不应有短路现象. (检查人: ) 6、检查PT一、二次保险齐全,无熔断现象. (检查人: )

同步发电机突然三相短路的物理过程及短路电流分析

6.3 同步发电机突然三相短路的物理过程及短路电流分析 6.3.1 同步发电机在空载情况下突然三相短路的物理过程 上一节讨论了无限大电源供电电路发生三相对称短路的情况。实际上电力系统发生短路故障时,大多数情况下作为电源的同步发电机不能看成无限大容量,其内部也存在暂态过程,因而不能保持其端电压和频率不变。所以一般在分析和计算电力系统短路时,必须计及同步发电机的暂态过程。由于发电机转子的惯量较大,在分析短路电流时可以近似地认为发电机转子保持同步转速,只考虑发电机的电磁暂态过程。 同步发电机稳态对称运行时,电枢磁势的大小不随时间而变化,在空间以同步速度旋转,由于它与转子没有相对运动,因而不会在转子绕组中感应出电流。但是在发电机端突然三相短路时,定子电流在数值上将急剧变化。由于电感回路的电流不能突变,定子绕组中必然有其它自由电流分量产生,从而引起电枢反应磁通变化。这个变化又影响到转子,在转子绕组中感生出电流,而这个电流又进一步影响定子电流的变化。定子和转子绕组电流的互相影响是同步电机突然短路暂态过程区别于稳态短路的显著特点,同时这种定、转子间的互相影响也使暂态过程变得相当复杂。 图6-6 凸极式同步发电机示意图 图6-6为凸极同步发电机的示意图。定子三相绕组分别用绕组,,表示,绕组的中心轴,,轴线彼此相差120o。转子极中心线用轴表示,称为纵轴或直轴;极间轴线用轴表示,称为横轴或交轴。转子逆时针旋转为正方向,轴超前轴90o。励磁绕组的轴线与轴重合。阻尼绕组用两个互相正交的短接绕组等效,轴线与轴重合的称为阻尼绕组,轴线与轴重合的称为阻尼绕组。 定子各相绕组轴线的正方向作为各绕组磁链的正方向,各相绕组中正方向电流产生的磁链的方向与绕组轴线的正方向相反,即定子绕组中正电流产生负磁通。励磁绕组及轴阻尼绕组磁链的正方向与轴正方向一致,轴阻尼绕组磁链的正方向与轴正方向一致,转子绕组中正向电流产生的磁链与轴线的正方向相同,即在转子方面,正电流产生正磁通。下面分析发电机空载突然短路的暂态过程。 1.定子回路短路电流 设短路前发电机处于空载状态,气隙中只有励磁电流产生的磁链,忽略漏磁链后,穿过主磁路为主磁链匝链定子三相绕组,又设为转子轴与A相绕组轴线的初始夹角。由于转子以同步转速旋转,主磁链匝链定子三相绕组的磁链随着的变化而变化,因此

大型汽轮发电机振动故障诊断与分析

大型汽轮发电机振动故障诊断与分析 摘要:汽轮发电机是电力系统的重要设备之一,其安全可靠运行对整个电力系 统的稳定有着重要的意义。发电机振动状态是评价机组能否持续可靠运行的重要 指标。本文介绍了大型汽轮发电机振动故障的类型及产生原因,阐述了振动故障 诊断和分析的方法。 关键词:大型汽轮发电机;振动故障;故障诊断方法 振动故障是大型汽轮发电机组最常见的故障之一,由于大型汽轮发电机组一般自动化 程度较高,而且机组主要机构在运行过程中由于旋转作用使得产生振动,这在日常工作中往 往是不可避免的,再加上大型汽轮发电机本身结构的复杂性,就更增加了其振动故障诊断的 复杂性。发电机振动超过允许值会引起动、静部分摩擦,加速部件的磨损、产生偏磨、电刷 冒火;使机组轴系不能正常工作;严重时将会导致机组密封系统遭到破坏;定子铁心松弛片 间绝缘损坏,导致短路故障等。因此研究大型汽轮发电机振动故障的产生原因,并采取有效 的振动故障诊断措施使故障被及时发现、及时消除具有十分重要的意义。 1 大型汽轮发电机振动故障分类及原因分析 1.1 大型汽轮发电机组振动的分类 大型汽轮发电机组的振动根据振动的性质不同可分为强迫振动和自激振动两大类,其 中强迫振动分为普通强迫振动、电磁激振、高次谐波共振、分谐波共振、撞击震动、拍振、 随机振动;自激振动包括轴瓦自激振动、参数振动、汽流激振、摩擦涡动等,在我国当前投 入运行的大型汽轮发电机中,气流激振和摩擦涡动这两种振动形式一般不作考虑。而根据产 生的原因不同大型汽轮发电机振动又可分为机械振动和电磁振动两大类。因此,在分析大型 汽轮发电机振动故障时要先弄清楚其振动的原因是机械方面的还是电磁方面的,从而制定有 针对性的消振措施。 1.2 大型汽轮发电机组振动故障的类型及原因分析 汽轮发电机组常见的十二种机械振动故障有:动静碰摩、汽流激振、转子质量不平衡、汽轮 机转子热弯曲、发电机转子热弯曲、转子部件脱落、转子不对中、油膜涡动、油膜振荡、参 数振动、转子横向裂纹、支承松动。 汽轮发电机组的电磁故障主要发生在发电机上,也能通过轴系传到机组的其他部常见 的部位,电磁故障有:转子绕组匝间短路、定转子之间气隙不均、定子绕组端部振转子中心 位置偏移、不对称负荷和电磁谐振等。 在上述诸多振动故障中,动静碰磨与气流激振是最常见的两种振动故障,因此本文将 这两种振动故障作为典型分析其产生的原因。 1.2.1 动静碰磨 动静碰磨指的是在大型汽轮发电机中转子与定子之间发生碰撞、摩擦从而产生振动的 现象,动静碰磨是机械振动故障里最常见也是危害最大的,产生动静碰磨的原因有很多,究 其内在来说,主要是由于转子与定子之间的间隙过小,同时由于安装、检修等过程中导致了 动静间隙沿圆周方向不均匀,或者由于气缸、轴承座受热变形跑偏造成的动静摩擦、碰撞等 导致的振动。图1为动静碰磨原理图,当转子旋转中心O′偏离了原本的中心O,在转子以角 速度w旋转时与定子碰撞时就会产生径向冲击力N以及反向摩擦力f。 1.2.2 气流激振 在大容量汽轮发电机组中,尤其是超临界或超超临界机组,当运行负荷增大,导致作 用在转子上的气流激振力也随之增大,当增大到一定程度时,就会在汽轮机转子上会诱发产 生振动现象,这种振动一般具有突发性的特点。 2 大型汽轮发电机组振动故障诊断与分析方法 2.1 传统方法 传统振动故障诊断方法就是利用工作人员、专家的听觉、触觉或使用频谱仪、声压计 等设备来确定振动故障的原因及发生故障的部位,更多的是依靠专家的主观经验和业务能力,综合频谱分析、概率统计等学科的知识,是一种常用的故障诊断方法,对线性特征明显的振

发电机电气试验方法及标准

发电机电气试验方法及标准 一.高压发电机 第一部分:定子部件 1.直流电阻 2.目的:检查绕组的焊头是否出问题等原因 测试环境:冷状态下进行 测试工具:直流电阻电桥 数据处理:各项的测试应做以下处理 数据处理(I max-I min)/I平均≤2% 结果判定:测试值必须满足以上的关系,不满足就应检查定子线圈。 3.绝缘电阻 目的:检测线圈的绝缘电阻的大小,为以后的试验确定安全保证。 测试环境:常温下测试,记录数据要记录当前的温度。 测试工具:兆欧表 注意事项:在绝缘电阻测试的过程中,在每项测试完之后应该对绕组充分放电,不然会造成严重的后果 测试方法:在测量前应充分对地放点,注意机械调零,在测试的时候除开被测项,其他的各项都应该接地,测试的时候记录测试时间为15s和60s时的电阻值,在测试后计 算吸收比,吸收比=R60/R15吸收比应满足大于2,而且各个项的绝缘电阻不平衡 系数不应大于2(不平衡系数指最大一项的R60与最小一项R60之比) 4.直流耐电压. 目的:在较高的电压下发现绕组绝缘的缺陷 测试环境:常温下进行试验 测试工具:直流耐压设备一套 测试方法:利用调压器调节电压使高压侧直流电压为0.5U N、1.0 U N、1.5 U N、2.0 U N、2.5 U N、 3.0U N每阶段要停留一分钟的耐压试验时间,并在试验的时候记录各个电压时候 的电流值。每项在测试的时候其他项都必须接地。而且在电压相同的时候各个项 的电流值应该比较相近。在规定的试验电压下,各相泄漏电流的差别不应大于最小 值的50%。 注意事项:在测试的时候由于是高压,因此在测试的时候要注意安全,小心周围环境。在每项测试完之后必须充分放电,否则容易造成事故。必须注意的就是,测温线圈的 接线头必须接地。 5.交流耐电压 目的:检查线圈之间的绝缘性能 测试环境:常温下进行试验 测试工具:耐电压试验设备一套 测试方法:发电机定子的交流耐压试验在制作的过程中一共有三个阶段要测试,下面就分别介绍试验的方法: (1)、单个线圈的交流耐电压试验,每次基本上做10个线圈的耐电压试验,试验 方法是:在工作台上面放木方,木方里面用海绵等软性有弹性的材料包扎一圈, 必须要厚点的,外面包0.1mm左右的铝铂,并且用铜丝将其绑好,在整个线圈的 低阻部分必选全放在木方上方。试验的电压计算公式见后表格 (2)、在下线的过程中耐电压试验,每次基本上下线下到10个左右就要做该试验, 在做线圈试验的时候,除开试验的线圈其他线圈都必选接地,试验电压计算公式

发电机短路升流试验

发电机短路升流试验 (一)试验条件 1、水轮发电机检修工作全部完毕,具备启动条件; 2、励磁变具备带电条件; 3、发电机出口三相短接; 4、试验前准备工作; 5、用2500V兆欧表测定3F定子绕组对地吸收比不小于1.6,用500V兆欧表测量转子绕组对地绝缘不小于0.5MΩ,测量结果合格; 6、检查发电机出口断路器3在拉开位置,合上发电机中性点刀闸; 7、检查主变已投运; 8、投入发电机空冷器xx 励磁部分准备工具:小起子、短接线、万用表、图纸、钳形电流表、说明书 (二)试验xx 1、发变组保护功能只投A套转子接地保护 注释:发电机转子充磁后励磁系统首次工作且励磁电流电压较高,励磁电流最大为,该过程同运行时一致仅投A套转子接地保护,出口仅跳灭磁开关。 2、两套低压记忆过流保护的第二时限并将该时限缩短为0秒,两套发变组保护出口仅投跳灭磁开关,过流定值按增容后定值整定。 注释:发电机转子充磁后励磁系统首次工作,由于主保护差动保护退出且发电机定子电流较大约为且仅发电机中性点电流互感器二次侧有电流,故该过程将低压记忆过流保护作为发电机试验运行方式下的主保护投入(过流定值1.21A),出口仅跳灭磁开关。低压记忆过流保护跳闸分两个时限,第一时限跳母联分段断路器故必须退出该时限,在保护功能层面杜绝误出口的可能性。

操作过程:“过流t1投退”改为“0”;“t2延时”由原定值“4.6s”改为“0S”实际只能改为“0.1s”;投入该保护软压板,出口投双套保护跳灭磁开关。试验结束恢复原定值,坚决杜绝误整定。 3、投入保护装置电源,拉开发电机交直流配电屏内机组出口开关控制盘直流1路、2路电源。 注释:拉开断路器操作电源,防止出口开关误分闸。 4、投入水机保护回路。 5、检查发电机出口及中性点母线各CT回路应不开路,电气测量仪表指示应正确。 6、在做短路试验时,必须将励磁调节柜内调节器的“残压起励”、“系统电压跟踪”以及“通道跟踪”功能退出,其中“系统电压跟踪”自运行以来均未投过。试验完成后将“残压起励”、“通道跟踪”功能恢复投入。断开起励电源开关,同时严禁操作起励按键和进行通道切换,以防止励磁系统出现误强励。 7、短路点设置 短路点在发电机机端近端出口处,将发电机机端母排解开,此时可以采用合上发电机出口断路器,从系统倒送电方式供电,励磁变和出口PT将有电源,此种模式将不需要调压器给调节器PT供电,以满足机组短路升流要求。 (三)试验危险点分析 1、增加励磁时,一定要使用恒电流模式以防止励磁电流和定子电流失控。 2、试验过程中对所有带电部分进行检查时注意保持安全距离。 3、试验完毕拆除短接线时要注意放电。 (四)试验目的 1、检查定子三相电流的对称性。 2、判断转子绕组有无匝间短路。

汽轮发电机的工作原理及故障处理

汽轮发电机的工作原理及故障处理 一、汽轮机的基本概念及工作原理 汽轮机是用具有一定温度和压力的蒸汽来做功的回转式原动机。由于其具有热效率高、运转平稳、输出功率大、事故率低等优点,广泛应用于拖动发电机、大型风机水泵及船舶的动力设备。依其做功原理的不同,可分为冲动式汽轮机和反动式汽轮机两种类型。两种类型各具特点,各有其发展的空间。 冲动式汽轮机:蒸汽的热能转变为动能的过程,仅在喷嘴中发生,而工作叶片只是把蒸汽的动能转变成机械能的汽轮机。即蒸汽仅在喷嘴中产生压力降,而在叶片中不产生压力降。 反动式汽轮机:蒸汽的热能转变为动能的过程,不仅在喷嘴中发生,而且在叶片中也同样发生的汽轮机。即蒸汽不仅在喷嘴中进行膨胀,产生压力降,而且在叶片中也进行膨胀,产生压力降。 冲动式与反动式在构造上的主要区别在于: 冲动式:动叶片出、入口侧的横截面相对比较匀称,汽流通道从入口到出口其面积基本不变。 反动式:动叶片出、入口侧的横截面不对称,叶型入口较肥大,而出口侧较薄,汽流通道从入口到出口呈渐缩状。 最简单的汽轮机单级汽轮机结构由轴、转轮、叶片和喷嘴组成,工作原理为:具有一定压力和温度的蒸汽通入喷嘴膨胀加速,此时蒸汽压力、温度降低,速度增加,蒸汽热能转变为动能,然后,具有较高速度的蒸汽由喷嘴流出,进入动叶片流道,在弯曲的动叶片流道内,改变汽流方向,给动叶片以冲动力,产生了使叶轮旋转的力矩,带动主轴旋转,输出机械功,完成动能到机械能的转换。 热能→动能→机械能,这样一个能量转换的过程,便构成了汽轮机做功的基本单部分元,通常称这个做功单元为汽轮机的级。由于单级汽轮机的功率较小,且损失大,故使汽轮机发出更大功率,需要将许多级串联起来,制成多级汽轮机。多级汽轮机的第一级又称为调节级,该级在机组负荷变化时,是通过改变部分进汽量来调节汽轮机负荷,而其它级任何工况下都为全周进汽,称为非调节级。 汽轮机分类按热力过程可分为: 1、凝汽式汽轮机:进入汽轮机做功的蒸汽,除少量漏汽外,全部或大部分排入凝汽器,形成凝结水。 2、背压式汽轮机:蒸汽在汽轮机内做功后,以高于大气压力被排入排汽室,以供热用户采暖和工业用汽。

基于MATLAB的同步发电机短路故障仿真研究

毕业设计(论文) 题目基于MATLAB的同步发电机短路故障仿真研究学院计算机与控制工程学院 专业班级电气xxx 学生姓名 指导教师 成绩 2014 年6 月26 日

摘要 众所周知,同步发电机在电力系统中发挥着至关重要的作用,现代社会中使用的电能几乎由同步发电机所产生,同步发电机在人类社会的生活生产中占据着非常重要的地位。为了更直观地了解同步发电机短路故障状态下的特性指标,尽量避免发生短路故障或及时对短路故障做出相应的正确措施,更合理选择保护装置,研究同步发电机的短路故障状态就成了当务之急的问题。随着科技进步与自动化水平的提高,人们要求能够快速分析故障和解决故障,在电力系统中,因运行环境、可操作性问题的限制,现场对同步发电机测试不太现实,因此,利用软件仿真的方法对同步发电机进行仿真研究就显得极其重要。本论文通过MATLAB软件建立同步发电机的仿真模型,对常见的短路故障进行仿真研究,以便更好地掌握同步发电机短路故障状态下的各特性,并设计了GUI 用户界面,更好的实现了人机交互。文中对各短路故障进行了仿真实验,从仿真结果可以看出,本文所设计的仿真系统满足对同步发电机短路故障的研究需求,实现论文设计的目标。 关键词:同步发电机;短路故障;MATLAB;GUI I

Abstract As is known to all, synchronous generator plays an important role in power system. Now the electric power used in our society almost produce by synchronous generators.Synchronous generator occupies a very important position in human society.In order to learning the characteristic parameters of synchronous generator more intuitive in fault condition, and trying to avoid short circuit fault or to make corresponding measures to correct vision in time or to protect device in the method of reasonable, studying the synchronous generator fault status has become an urgent problems. With the progress of science and technology and the improvement of automation level, people require to be able to quickly analyze fault and solve the problem in the electric power system. With the limitation of the environment in running a synchronous generator, doing a test of generators directly is unlikely.Therefore, with the aid of MATLAB software powerful computing and graphics processing simulation to study the synchronous generator is extremely important.In this paper, a simulation model of the synchronous generator is established by MATLAB software in order to better grasp the performance index of synchronous generator in fault condition.And we also design the Graphical User Interface(GUI) for better realizing the human-computer interaction. Each short circuit fault simulation experiments was carried out in this paper, as can be seen from the simulation results, the simulation system is designed to satisfy demands for synchronous generator short circuit fault research, realizing the target of this paper. Key words: Synchronous generator;Short circuit fault;MATLAB;GUI II

发电机组黑启动试验方案

伟星水电倮马河电站 #1发电机组黑启动试验方案 批准: 审核:周非唐多生 编写:文睿 倮马河电站 2011年5月

#1发电机组黑启动试验方案 1 试验目的 本次试验模拟倮马河水电站#1机组在站用交流电源消失,启动#1发电机组带#1主变零起升压,检验该机组的启动及启动后恢复厂用电的能力。 2 试验项目 2.1 #1调速器压力油罐压力情况及油位下降速度测试试验; 2.2 #1机组启动带1#主变零起升压试验; 2.3 #1发电机组带#1厂变试验。 3 试验准备 3.1 主系统方式:#1发电机停机备用、#1主变转冷备用(仅断开201及2011刀闸),其它元件按正常方式运行。 3.2 厂用电方式:#2厂变带400V I、II段母线运行(022、402、403断路器在 合闸位置);#1厂变热备用(011断路器分闸位置、401断路器试验位置)。(注:将#2机组技术供水泵由#2泵运行)。 4 试验步骤(要求) 4.1压力油罐压力及油位下降速度测试试验 4.1.1 试验条件:#1机组处于停机状态。 4.1.2 试验步骤: (1)将#1机组#1、2调速器压油泵控制方式置“切除”; (2)将#1机组事故低油压压板X02“退出”; (3)记录压力油罐压力机组由自动启动值(5.7MPa)降到事故低油压值(5.0MPa或零升成功)所用时间;操作机组折向器全开、关动作两个行程记录压力油罐压力由自动启动值(5.7MPa)降到操作完毕后压力下降值; (4)调整压力油罐压力至5.7MPa; ( 5 ) 退出励磁风机交流电源;退出励磁调节器交流电源(拉开交流空开 Q1、Q2)。 (6)复归事故低油压动作信号,将#1机组事故低油压压板X02“投入”。 4.2 #1机组启动带#1主变零起升压试验

相关主题
文本预览
相关文档 最新文档