当前位置:文档之家› DC-DC转换器和大电容负载

DC-DC转换器和大电容负载

电源模块--架构

欲打印此文章,从您的浏览器菜单中选择“文件”后再选“打印”。

(多图) DC-DC转换器和大电容负载

上网时间:2014年04月15日

DC-DC转换器输入端的电容在保持转换器稳定性方面发挥着重要的作用,并有助于滤除输入端的电磁干扰(EMI)。DC-DC转换器输出端的大电容则会给电源系统带来艰巨的挑战。DC-DC转换器的许多下游负载需要电容才能正确工作。这些负载可以是脉冲式功率放大器或输入端需要电容的其它转换器。如果负载端的电容值超过直流电源系统设计能够处理的极限,电源系统的电流可能在启动和正常工作期间超出其最大额定值。电容还能引起电源系统的稳定性问题,导致错误的系统操作和过早的电源系统失效。

遇到给大电容负载供电的情况下,在电源系统中实现一些简单的技术就能保持高效和可靠的设计。缩短启动时负载电容两端施加的电压上升时间可以使电源系统的电流保持在其额定范围内,在正常工作期间控制流入电容的充电电流可以使电源系统的功率保持在其额定范围内,而调整系统的控制环路可以保持电源系统的稳定,并使电源系统的电压保持在其额定范围内。

《电子设计技术》网站版权所有,谢绝转载

启动时的考虑因素

在电源系统启动时,典型的DC-DC转换器都有一个标准的上升时间,这个时间由内部误差放大器基准的上升时间来确定。放置在转换器输出端的放电电容将呈现为低阻抗负载。在这种低输出阻抗的情况下,转换器的少数开关周期可能导致电容上产生足够高的电压变化,并迫使转换器输出电流超出其额定值。这个电容可以通过转换器输出端较高阻抗路径进行预充电。这个高阻抗元件将限制进入电容的充电电流,直到电容被充电到一个预先定义好的电压值。一旦达到预先定义好的电压值,就可以将高阻抗路径移除或用一个低阻抗器件(如FET)短路掉。

转换器可以通过这条更低阻抗的路径提供最大额定电流。当FET将这条阻抗路径短路掉时,将允许转换器的满幅电压给电容充电。FET的导通时间以及电容与转换器电压之间的压差决定了将电容充电到满幅电压所需的充电电流,因此将预定义电压值设定为FET导通不会造成转换器超过其额定电流的那个点非常重要。图1所示的框图可以用来将电容充电到预设的最小电压。U2用于控制FET以便在必要时短路电阻Z,U1电路与U2一起用来设置导通电压和负载使能。

图1:电容预充电框图

《电子设计技术》网站版权所有,谢绝转载

在启动时,转换器将电容看作是负载以及电容之后的系统负载。如果在高阻抗预充电期间系统负载需要消耗来自电容的电流,那么电容可能就达不到预设的充电电压。DC-DC转换器的许多下游负载都有欠压锁定功能,在欠压锁定状态它们只需很小的电流。如果负载在预设充电电压之上没有欠压锁定功能,那就应该使用外部使能信号。如果负载本身是阻性的,可以在电容充电完成后用串联开关使能到负载的电压。图2显示了一个给10mF电容充电的系统的电压和电流。

图2:给一个10KuF电容充电的12V直流转换器

一旦电容被充电,负载就可以开始从电容和DC-DC转换器抽取电流。有些负载要求快速获得电流,如果这个要求超出了转换器带宽能力,电流将由电容来提供。一旦电流由电容来提供,电容上的电压就会下降:

其中Vdrop是电容上的压降,I是需要的电流值,C是电容值,dt是抽取电流的时长。转换器将把电容重新充电到最初的值,这样做的时候转换器输出电流可能超出其额定值。转换器和完全放电电容之间的压差除以

两个电压之间的电阻决定了想要的再次充电电流。为了减少系统损耗,两个电压之间的电阻通常很低,因此想要的再次充电电流可能高于转换器的最大值。由于电容电压接近转换器的设定点电压,超出转换器最大电流值也就可能意味着超过转换器的最大功率值。

《电子设计技术》网站版权所有,谢绝转载

为了防止转换器在正常工作时超过其额定电流和额定功率,可以使用图3中的电流控制框图来控制高di/dt事件之后的再次充电电流。这个电路可以监视分流电阻上的电流,并通过主动调低转换器电压来限制再充电电流。转换器和电容之间受限制的这个电压差将限制电容的再充电电流,从而保证转换器在其电流和功率极限范围内。当电容电压上升时,转换器电压也随之上升,直至达到它的设定值。

图3所示的限流方法可以与图1中的预充电方法结合起来使用,实现更快的启动过程。预充电电路可以将电容充电到转换器的最小调整电压,然后转换器再以最大额定电流给电容全速充电。控制输出电压的上升速率可以达到控制给电容充电的电流的目的。然而,大多数DC-DC转换器都只有距它们的标称设定电压很窄的控制或调整范围。典型的调整区间是±10%。有些制造商可以提供更宽的调整范围,转换器甚至可以调低到标称设定电压的-90%。电压调整范围越小,对使能电路的要求就越低,因为下游负载通常在接近它们的工作电压最小值时具有欠压锁定功能。

图3:外部电流限制框图

《电子设计技术》网站版权所有,谢绝转载

稳定性考虑

一旦转换器在启动和工作期间被保持在其极限范围之内,那么接下来我们必须确保系统的稳定性。DC-DC

转换器输出端的大电容可能降低系统的相位余量,从而引起振铃现象。为了保证转换器稳定工作,必须有一个最小值的电阻与电容串联在一起使用。引线或导线电阻、FET和电容的等效串联电阻都是这个电阻的有效组成部分。找到这个电阻最小值的最佳方法是使用网络分析仪,并通过运行系统分析功能来判断相位和增益的余量。如果没有网络分析仪,也可以在系统中连接阶跃负载来分析转换器的电压和电流波形,确保没有代表着不良稳定性的过多振铃。

一旦电压环路趋于稳定,就可以检查图3中的电流控制环路,分析它对系统稳定性的影响。这个电流控制环路位于DC-DC转换器的控制环路内,其带宽应远小于系统环路的交越频率,因此两个环路不会发生交互。在电力补偿网络集成在转换器内部的转换器系统中,转换器制造商可以提供足够的信息为电流控制环路设置一个合适的交越频率。一些转换器制造商允许设计师通过调整电力控制环路来优化特定应用的性能。

图4显示了一个具有外部控制环路的转换器。这个控制环路可以经过优化提供峰值系统性能。在电源系统的响应时间对正确系统工作至关重要的应用中,这种外部控制环路是很重要的。周期性脉冲负载应用就是这种情况,其中的转换器必须在下一个电源脉冲之前给电容再次充电。应该用网络分析仪或阶跃负载测试验证系统的稳定性。不稳定的系统可能产生超出电源系统元件额定值的电压偏移,最终导致电源系统故障。

图4:具有外部控制环路的转换器

《电子设计技术》网站版权所有,谢绝转载

此文章源自《EDN China电子技术设计》网站:

https://www.doczj.com/doc/5b4067384.html,/ART_8800516526_28_20002_AN_7c60335c.HTM https://www.doczj.com/doc/5b4067384.html,/ART_8800516526_28_20002_AN_7c60335c.HTM

返回文章页 | 返回主页

晶振负载电容

什么是晶振的负载电容?(ZT) 晶体元件的负载电容是指在电路中跨接晶体两端的总的外界有效电容。是指晶振要正常震荡所需要的电容。一般外接电容,是为了使晶振两端的等效电容等于或接近负载电容。要求高的场合还要考虑i c输入端的对地电容。应用时一般在给出负载电容值附近调整可以得到精确频率。此电容的大小主要影响负载谐振频率和等效负载谐振电阻。 晶振的负载电容=[(Cd*Cg)/(Cd+Cg)]+Cic+△C式中Cd,Cg为分别接在晶振的两个脚上和对地的电容,Cic(集成电路内部电容)+△C(P CB上电容).就是说负载电容15pf的话,两边个接27pf的差不多了,一般a为6.5~13.5pF 各种逻辑芯片的晶振引脚可以等效为电容三点式振荡器. 晶振引脚的内部通常是一个反相器, 或者是奇数个反相器串联. 在晶振输出引脚XO 和晶振输入引脚XI 之间用一个电阻连接, 对于CMOS 芯片通常是数M 到数十M 欧之间. 很多芯片的引脚内部已经包含了这个电阻, 引脚外部就不用接了. 这个电阻是为了使反相器在振荡初始时处与线性状态, 反相器就如同一个有很大增益的放大器, 以便于起振. 石英晶体也连接在晶振引脚的输入和输出之间, 等效为一个并联谐振回路, 振荡频率应该是石英晶体的并联谐振频率. 晶体旁边的两个电容接地, 实际上就是电容三点式电路的分压电容, 接地点就是分压点. 以接地点即分压点为参考点, 振荡引脚的输入和输出是反相的, 但从并联谐振回路即石英晶体两端来看, 形成一个正反馈以保证电路持续振荡. 在芯片设计时, 这两个电容就已经形成了, 一般是两个的容量相等, 容量大小依工艺和版图而不同, 但终归是比较小, 不一定适合很宽的频率范围. 外接时大约是数P F 到数十PF, 依频率和石英晶体的特性而定. 需要注意的是: 这两个电容串联的值是并联在谐振回路上的, 会影响振荡频率. 当两个电容量相等时, 反馈系数是0.5, 一般是可以满足振荡条件的, 但如果不易起振或振荡不稳定可以减小输入端对地电容量, 而增加输出端的值以提高反馈量. 设计考虑事项: 1.使晶振、外部电容器(如果有)与IC之间的信号线尽可能保持最短。当非常低的电流通过IC晶振振荡器时,如果线路太长,会使它对EMC、E SD 与串扰产生非常敏感的影响。而且长线路还会给振荡器增加寄生电容。 2.尽可能将其它时钟线路与频繁切换的信号线路布置在远离晶振连接的位置。 3.当心晶振和地的走线 4.将晶振外壳接地 如果实际的负载电容配置不当,第一会引起线路参考频率的误差.另外如在发射接收电路上会使晶振的振荡幅度下降(不在峰点),影响混频信号的信号强度与信噪. 当波形出现削峰,畸变时,可增加负载电阻调整(几十K到几百K).要稳定波形是并联一个1M左右的反馈电阻.

无源晶振的负载电容选取

负载电容(请参阅数据表中的具体说明) 注:有效负载电容 晶振制造商通常会在晶振的数据表中定义有效负载电容。从电子学角度来说,电容器以串行方式连接到引脚XIN 与XOUT上,这时有效负载电容为: C(eff) = {C(XIN) ? C(XOUT)}/{C(XIN) + C(XOUT)} 因此,晶振的数据表中规定12pF的有效负载电容要求在每个引脚XIN 与XOUT上具有22pF(2 * 12pF = 24pF = 22pF + 2pF 寄生电容)。MSP430x1xx 与MSP430x3xx 系列为32kHz振荡器提供了约12pF的固定集成负载电容器,并且无需任何其它外部负载电容器即可支持需要6pF有效负载电容的晶振。高频率XTAL 振荡器无内置负载电容器。MSP430x4xx 系列为低频率与高频率模式下的LFXT1 振荡器提供了软件可选的集成负载电容器。该器件数据表中提供了可选值。XT2 振荡器没有任何内置负载电容器。 ESR 为了确保振荡器操作稳定,MSP430x1xx 与MSP430x3xx 系列均需要ESR < 50kOhm的32kHz晶振。MSP430x4xx 系列的低功耗振荡器需要ESR < 100kOhm的32kHz 晶振。高频率晶振的建议ESR 值是<= 40Ohms(频率为8MHz时)。与建议的最大值相比,ESR 的值越低,振荡器启动性能与稳定性也越好。 设计考虑事项: 使晶振、外部电容器(如果有)与MSP430 之间的信号线尽可能保持最短。当非常低的电流通过MSP430晶振振荡器时,如果线路太长,会使它对EMC、ESD 与串扰产生非常敏感的影响。而且长线路还会给振荡器增加寄生电容。 如果MSP430在插座中:请注意插座会给振荡器增加寄生电容。 尽可能将其它时钟线路与频繁切换的信号线路布置在远离晶振连接的位置。 当心晶振和地的走线 将晶振外壳接地 当VCC < 2.5 V 时,MSP430x1xx 的LFXT1 振荡器要求在LF模式下使用从XOUT 到VSS 的5.1MOhm 电阻器。 一般电容的计算公式是: 两边电容为Cg,Cd, 负载电容为Cl cl=cg*cd/(cg+cd)+a 就是说负载电容15pf的话,两边个接27pf的差不多了,一般a为6.5~13.5pF

感性与容性负载

感性负载 容性负载 通常情况下,一般把带电感参数的负载,即符合电压超前电流特性的负载,称为感性负载。通俗地说,即应用电磁感应原理制作的大功率电器产品,如电动机、压缩机、继电器、日光灯等等。 这类产品在启动时需要一个比维持正 常运转所需电流大得多(大约在3-7倍)的启动电流。例如,一台在正常运转时耗电150瓦左右的电冰箱,其启动功率可高达1000瓦以上。 此外,由于感性负载在接通电源或者断开电源的一瞬间,会产生反电动势电压,这种电压的峰值远远大于车载交流供电器所 能承受的电压值,很容易引起车用逆变器的瞬时超载,影响逆变器的使用寿命。因此,这类电器对供电波形的需要较高。 低阻测量时,对于感性负载问题:1避免用脉冲式测量2决定于L/R时间常数。 电路中类似电容的负载,可以使电流超前电压降低电路功率因数 一般把带电容参数的负载,即符合电压滞后电流特性的负载称为容性负载。充放电时,电压不能突变。其对应的功率因数为负值。对应的感性负载的功率因数为正值。 在高频领域,是指负载虚部为负值的负载。 容性负载:和电源相比,负载电流超前负载电压一个相位差,此时负载为容性负载(如补偿电容负载)。 一般电源控制类产品所给出的负载,如未加说明则是给出的是视在功率,即总容量功率。它既包括有功功率,也包括无功功率。 而一般感性负载说明中给出的往往是有功功率的大小,例如荧光灯,标注为15~40瓦的荧光灯,镇流器消耗功率约为8瓦,实际在考虑用定时器、感应开关在控制它时,则需要加上这8瓦。 具体不同的产品感性部分,即无功功率的大小,可以通过其给出的功率因数来计算。 混联电路中,若容抗比感抗大,电路呈容性,反之则为感性。 通常的用电器中并没有纯感性负载和纯容性负载。因为这两种负载不做有用功,只有在补偿电路中才使用纯感性负载或纯容性负载。又因为绝大多数负载除阻性外,多数为感性负载,因此补偿的时候多数就用电容来补偿,所以,纯容性负载用得比纯感性负载多。如电动机、变压器等等,通常为感性负载。而部分日光灯为容性负载。

晶振的作用与原理以及负载电容

晶振的作用与原理 每个单片机系统里都有晶振,全程是叫晶体震荡器,在单片机系统里晶振的作用非常大,他结合单片机内部的电路,产生单片机所必须的时钟频率,单片机的一切指令的执行都是建立在这个基础上的,晶振的提供的时钟频率越高,那单片机的运行速度也就越快。 晶振用一种能把电能和机械能相互转化的晶体在共振的状态下工作,以提供稳定,精确的单频振荡。在通常工作条件下,普通的晶振频率绝对精度可达百万分之五十。高级的精度更高。有些晶振还可以由外加电压在一定范围内调整频率,称为压控振荡器(VCO)。 晶振的作用是为系统提供基本的时钟信号。通常一个系统共用一个晶振,便于各部分保持同步。有些通讯系统的基频和射频使用不同的晶振,而通过电子调整频率的方法保持同步。 晶振通常与锁相环电路配合使用,以提供系统所需的时钟频率。如果不同子系统需要不同频率的时钟信号,可以用与同一个晶振相连的不同锁相环来提供。 下面我就具体的介绍一下晶振的作用以及原理,晶振一般采用如图1a的电容三端式(考毕兹) 交流等效振荡电路;实际的晶振交流等效电路如图1b,其中Cv是用来调节振荡频率,一般用变容二极管加

上不同的反偏电压来实现,这也是压控作用的机理;把晶体的等效电路代替晶体后如图1c。其中Co,C1,L1,RR是晶体的等效电路。 分析整个振荡槽路可知,利用Cv来改变频率是有限的:决定振荡频率的整个槽路电容C=Cbe,Cce,Cv三个电容串联后和Co并联再和C1串联。可以看出:C1越小,Co越大,Cv变化时对整个槽路电容的作用就越小。因而能“压控”的频率范围也越小。实际上,由于C1很小(1E-15量级),Co不能忽略(1E-12量级,几PF)。所以,Cv变大时,降低槽路频率的作用越来越小,Cv变小时,升高槽路频率的作用却越来越大。这一方面引起压控特性的非线性,压控范围越大,非线性就越厉害;另一方面,分给振荡的反馈电压(Cbe上的电压)却越来越小,最后导致停振。通过晶振的原理图你应该大致了解了晶振的作用以及工作过程了吧。采用泛音次数越高的晶振,其等效电容C1就越小;因此频率的变化范围也就越小。 微控制器的时钟源可以分为两类:基于机械谐振器件的时钟源,如晶振、陶瓷谐振槽路;RC(电阻、电容)振荡器。一种是皮尔斯振荡器配置,适用于晶振和陶瓷谐振槽路。另一种为简单的分立RC振荡器。 用万用表测量晶体振荡器是否工作的方法:测量两个引脚电压是否是芯片工作电压的一半,比如工作电压是51单片机的+5V则是否

什么是阻性负载,感性负载,容性负载

什么是阻性负载?感性负载?容性负载? 解答这个问题前先解释几个名词:有功功率、无功功率、视在功率。 有功功率:在交流电路中,凡是消耗在电阻元件上,功率不可逆转换的那部分功率(如转变为热能,光能,或机械能),称为有功功率; 无功功率:电路中,电感元件建立磁场,电容元件建立电场消耗的功率称为无功率,这个功率是随交流电的周期,与电源不断的进行能量转换,而并不消耗能量; 视在功率:交流电源所能提供的总功率,称为视在功率,在数值上即是,电压与电流的乘积,单位VA,视在功率即是交流电源的容量;阻性负载: 即和电源相比当负载电流负载电压没有相位差时负载为阻性(如负载为白帜灯、电炉等)。通俗一点的讲,仅是通过电阻类的元件进行工作的纯阻性负载称为阻性负载。 感性负载 通常情况下,一般把负载带电感参数的负载,即符合和电源相比负载电流滞后负载电压一个相位差的特性的负载为感性(如负载为电动机、变压器)。通俗地说,即应用电磁感应原理制作的大功率电器产品,如电动机、压缩机、继电器、日光灯等等。 这类产品在启动时需要一个比维持正常运转所需电流大得多(大约在3-7倍)的启动电流。例如,一台在正常运转时耗电150瓦左右的电冰箱,其启动功率可高达1000瓦以上。 此外,由于感性负载在接通电源或者断开电源的一瞬间,会产生反电动势电压,这种电压的峰值远远大于车载交流供电器所能承受的电压值,很容易引起车用逆变器的瞬时超载,影响逆变器的使用寿命。因此,这类电器对供电波形的要求较高。

容性负载 电路中类似电容的负载,可以使负载电流超前负载电压一个相位差(和电源相比),降低电路功率因数。 一般把负载带电容参数的负载,即符合电压滞后电流特性的负载成为容性负载。充放电时,电压不能突变。其对应的功率因为为负值。对应的感性负载的功率因数为正值。 一般电源控制类产品,所给出的负载,如未加说明则是给出的是视在功率;即总容量功率;它既包括有功功率,也包括无功功率;而一般感性负载说明中给出的往往是有功功率的大小,例如荧光灯,标注为15~40瓦的荧光灯,镇流器消耗功率约为8瓦,实际在考虑用定时器,感应开关在控制它时,则要加上这8瓦;具体不同的产品感性部分,即无功功率的大小,可以通过其给出的功率因数来计算。 混联电路中容抗比感抗大,电路呈容性反之为感性。 通常的用电器中并没有纯感性负载和纯容性负载。因为这两种负载不做有用功。 只有在补偿电路中才使用纯感性负载或纯容性负载。又因为绝大多数负载除阻性外,多数为感性负载,因此补偿的时候多数就用电容来补偿,所以,纯容性负载用得比纯感性负载多。如电动机,变压器等等,通常为感性负载。部分日光灯为容性负载。举例: 纯感性负载就是一组电感。通常用来补偿电路中的容性电流。 在电路中带线圈的用电设备,其线圈部分即为纯感性负载。如电动机、变压器、电风扇、日光灯镇流器等。 纯感性负载的电流是不能突变。感性负载应用广泛。在电路中带电容的用电设备,其电容部分即为纯容性负载。如补偿电容

晶振电容计算

晶振电容设计的基本原则: 晶振两脚上的各种电容的等效电容等于晶振的负载电容,此时晶振的振动频率最准确。晶振的负载电容可以在厂商提供的规格书上找到,每种晶振的负载电容都可能不一样。晶振两脚上的各种电容包括:PCB走线上的电容,IC内部的电容等Crystal 基本參量以及計算公式: L1Crystal 内部串連電感C1Crystal 内部串連電容R1Crystal 内部串連電阻C0Crystal 内部並聯電容CL Crystal 外部並聯負載電容fs Crystal 内部串聯諧振頻率fp Crystal 内部並聯諧振頻率fL Crystal 外加CL 後諧振頻率Cstray 雜散電容P Drive Level Gain(pk)Crystal 與IC 閉環增益gm IC 內的互導放大係數 (1) Crystal 内部等效電路:(2) Crystal 内部阻抗與頻率特性曲綫: (3) 對於每一個Crystal 來講:有兩個頻率,一個是fs(串連諧振頻率) 另一個是fp(並連諧振頻率) Fs 可以通過以下公式計算: Fp 可以通過以下公式計算: (4) 雜散電容的計算:(一般包括Trace 線的,pad 之間的,pin 之間的) a(mil)Trace 線寬b(mil)Trace 線長 d(mil)Trace 到 ground 之間距離ε(PF/mil)單位線長的電容值Cpcb(pF) a×b×ε/d,

(5) IC 内部电容的计算: (6) 實際應用中,我們需要外加CL 來調整頻率來達到我們所需要的頻率值,同時我們還要需要了解Crystal 的頻率 所提供給的IC Spec 中的所建議使用的CL 值,而且我們還必須考慮電路中的雜散電容,CL 我們可以通過公式計算所得; CL 可以通過理論公式計算得出:FL 可以通過理論公式計算得出: (7) 在實際應用中,我們還需考慮一個重要的問題就是IC 的Drive Level,因此我們需要計算Crystal 震蕩 回路中的消耗功率,不能大於IC的Drive level 極限值 (8) 起振條件: Crystal (參考模型1) 實際中我們可以將Crystal 與其負載電容等效為一個增益為-1的倒相器 L R I P 2=

有效电容之和—负载电容

有效电容之和—负载电容 负载是指连接在电路中的电源两端的电子元件。电路中不应没有负载而直接把电源两极相连,此连接称为短路。常用的负载有电阻、引擎和灯泡等可消耗功率的元件。不消耗功率的元件,如电容,也可接上去,但此情况为断路。负载电容是指晶振的两条引线连接IC块内部及外部所有有效电容之和,可看作晶振片在电路中串接电容。 1、定义 负载电容是指晶振的两条引线连接IC块内部及外部所有有效电容之和,可看作晶振片在电路中串接电容。负载频率不同决定振荡器的振荡频率不同。标称频率相同的晶振,负载电容不一定相同。因为石英晶体振荡器有两个谐振频率,一个是串联揩振晶振的低负载电容晶振:另一个为并联揩振晶振的高负载电容晶振。所以,标称频率相同的晶振互换时还必须要求负载电容一致,不能冒然互换,否则会造成电器工作不正常。把电能转换成其他形式的能的装置叫做负载。电动机能把电能转换成机械能,电阻能把电能转换成热能,电灯泡能把电能转换成热能和光能,扬声器能把电能转换成声能。电动机、电阻、电灯泡、扬声器等都叫做负载。晶体三极管对于前面的信号源来说,也可以看作是负载。对负载最基本的要求是阻抗匹配和所能承受的功率。 2、负载分类 感性负载:即和电源相比当负载电流滞后负载电压一个相位差时负载为感性(如负载为 电动机;变压器;) 容性负载:即和电源相比当负载电流超前负载电压一个相位差时负载为容性(如负载为 补偿电容) 阻性负载:即和电源相比当负载电流负载电压没有相位差时负载为阻性(如负载为白帜灯;电炉) 容性负载,即具有电容的性质,(充放电,电压不能突变) 感性负载,即具有电感的性质,(磁场,电流不能突变) 混联电路中容抗比感抗大,电路呈容性反之为感性 3、负载柜 自动交流负载箱(柜)主要用于电力、电信等部门及生产厂家的在线大功率UPS、逆变器、开关电源及柴油发电机组的性能检测、老化等场合。统一分段式功率投入,能耗式工作模式,强制风冷式散热,大大保证了恒功率放电的可靠性;内部散热元件采用干式电阻,强制风冷式散热。用新功耗元件自主知识产权生产,具有功率密度高,无红热现象,过热自动保护功能,在风机不转的情况下,也不会发生过热、烧损的情况,安全寿命长;整机采用模块化设计,操作简单,维护方便;可根据客户要求测试电压、电流等参数,为大功率交流电源设备提供了科学的检测手段。 4、主要功能 可根据性能参数、检测要求,设定调整放电功率。可设定放电时间:定时时间到自动关断负载。数字表显示电压、电流等参数值。整机采用新型功耗元件,具有过热自动阻断的保护功能。交流负载箱(柜)有各种规格,系列齐全。有纯阻性负载或阻性、感性、容性负载。具有并机功能。

晶振的匹配电容选择修订稿

晶振的匹配电容选择 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

匹配电容是指晶振要正常震荡所需要的电容,一外接电容是为了使晶振两端的等效电容等于或接近于负载电容(晶体的负载电容是已知的,在出厂的时候已经定下来了,一般是几十PF,)。应用时一般在给出负载电容值附近调整可以得到精确频率,此电容的大小主要影响负载谐振频率,一般情况下,增大电容会使振荡频率下降,而减小电容会使振荡频率升高, 晶振的负载电容=[(Cd*Cg)/(Cd+Cg)]+Cic+△C] 式中Cd,Cg为分别接在晶振的两个脚上和对地的电容,Cic(集成电路内部电容)+△C(PCB上电容,一般情况下,Cd、Cg取相同的值并联后等于负载电容是可以满足振荡条件的, 在许可的范围内Cd和Cg的值越小越好,电容值偏大会虽然有利于震荡的稳定,但是电容过大会增加起振的时间。如果不易起振或振荡不稳定可以减小输入端对地电容量, 而增加输出端的值以提高反馈量。 在电路中输出端和输入端之间接了一个大的电阻,这是由于连接晶振的芯片端内部是一个线性运算放大器,将输入进行反向180度输出,晶振处的负载电容电阻组成的网络提供另外180度的相移,整个环路的相移360度,满足振荡的相位条件,同时还要求闭环增益大于等于1,晶体才正常工作。晶振输入输出连接的电阻作用是产生负反馈,保证放大器工作在高增益的线性区,一般在M欧级,输出端的电阻与负载电容组成网络,提供180度相移,同时起到限流的作用,防止反向器输出对晶振过驱动,损坏晶振,有的晶振不需要是因为把这个电阻已经集成到了晶振里面。 设计是注意事项: 1.使晶振、外部电容器(如果有)与 IC之间的信号线尽可能保持最短。当非常低的电流通过IC晶振振荡器时,如果线路太长,会使它对 EMC、ESD 与串扰产生非常敏感的影响。而且长线路还会给振荡器增加寄生电容; 2.尽可能将其它时钟线路与频繁切换的信号线路布置在远离晶振连接的位置; 3.当心晶振和地的走线; 4.将晶振外壳接地。

24M晶振匹配电容计算

从模块24M 晶振 (SMD3225-24MHz -7pF )电容匹配测试报告 图 1.1 24M 晶振原理图 1测试PCB 板寄生电容 如上图1.1,图中C1与C2为匹配电容,C3为测试使用表笔(5.6pf )。通过频率计测试电路频率偏移,结合晶振T/S 值(T/S 值按20ppm/pf 计算),可计算出PCB 寄生电容。使用频率计测试晶振电路频偏为-25.6ppm ,如下图1.2所示。 图 1.2 频率偏移 频偏-25.6ppm 换算成电容为1.28pf 。加入表笔后的频率影响,总电容为: pf C 14.52.8//2.86.5=+=)(总 根据公式: L C C C C +=+总频偏寄生 有: 1.28pf 7pf 14.5+=+寄生C pf 可算出寄生电容C 寄生:

pf 14.3=寄生C 2.根据寄生电容值进行匹配方案设计 使用的晶振为24.000MHz,CL=7pf 。根据C 寄生的取值,能够优化出以下几个备选方案: 表 1不同匹配电容的备选方案 可见方案B 串联后容值匹配效果较好。 已知匹配电容C1=C2=8.2pf ,表笔电容5.6pf ,晶振的T/S=20ppm/pf ,接下来可计算出实际的频率偏移。 使用表笔(5.6pf )测试出晶振电路频偏为-25.6ppm ,计算此时电路实配电容: 14.52 C 1C 2C 1C =++?+表笔表笔)(C C pf 同时,计算不加表笔时匹配电容: pf C C 1.42//1= 表笔令整个电路的匹配电容增加1.04pf ,即频偏增加了20.8ppm ,根据“电容容值越大,晶振电路频率越低”的原理,可得出电路未引入表笔时频偏为-4.8ppm 。 3. 测试方案B 的波形和特性阻抗。 图 1.3 方案B 芯片输入波形

感性容性

在电工或电子行业中对负载阻抗特性的定义,分为纯电阻型、电感型及电容型。简称阻性、感性、容性。几种负载在直流电路中的特点是: 电阻性负载:电流电压的关系符合基本欧母定律,I=U/R。 感性负载:允许电流流过,但电流滞后于电压,可储能于电感。 容性负载:阻止电流流过,也可储能于电容。 几种负载在交流电路中的特点是: 电阻性负载:电流电压的相位相同。 感性负载:电流滞后于电压。 容性负载:电流超前于电压。 发电机正常运行时,向系统提供有功的同时还提供无功,定子电流滞后于端电压一个角度,此种状态即迟相运行.当逐渐减少励磁电流使发电机从向系统提供无功而变为从系统吸收无功,定子电流从滞后而变为超前发电机端电压一个角度,此种状态即进相运行. 同步发电机进相运行时较迟相运行状态励磁电流大幅度减少,发电机电势Eq亦相应降低.从P-功角关系看,在有功不变的情况下,功角必将相应增大,比值整步功亦相应降低,发电机静态稳定性下降.其稳定极限与发电机短路比,外接电抗,自动励磁调节器性能及其是否投运等有关. 进相运行时发电机定子端部漏磁较迟相运行时增大.特别是大型发电机线负荷高,正常运行时端部漏磁比较大,端部铁芯压指连接片温升高,进相运行时因为漏磁增大,温升加剧.进相运行时发电机端部电压降低,厂用电电压也相应降低,如果超出10%,将影响厂用电运行. 因此,同步发电机进相运行要通过试验确定进相运行深度.即在供给一定有功状态下,吸收多少无功才能保持系统静态稳定和暂态稳定,各部件温升不超限,并能满足电压的要求. 发电机进相运行受哪些因素**。当系统供给的感性无功功率多于需要时,将引起系统电压升高,要求发电机少发无功甚至吸收无功,此时发电机可以由迟相运行转变为进相运行. 制约发电机进相运行的主要因素有(1)系统稳定的**(2)发电机定子端部件温度的**(3)定子电流的**(4)厂用电电压的**迟相:同步发电机既发有功功率,又发感性的无功功率,这种运行状态叫做力率的迟相,或称为滞后运行。发电机通常在迟相状态下运行。进相:同步电机在运行中发出有功功率,而从电网中吸收感性无功功率时,叫做力率的进相,又称超前运行。 大型水电厂往往远离负荷中心,当出现大容量高电压长距离输电系统带轻负荷时,线路的容性电流会使受电端电压升高,因此,水轮发电机会处于进相运行,发电机在欠励状态下向电力系统输送电容性的无功功率和部分有功功率。 水轮发电机进相运行时,具有下列特点: ①由于定子端部漏磁和由此引起的损耗要比调相运行时大,所以定子端部附近各金属件温升较高,最高温度一般发生在铁芯两端的齿部,并随所带容性无功负荷的增加而更加严重。②由于水轮发电机是凸极式结构,其轴和横轴同步电抗不相等,电磁功率中有附加分量,因而使它比汽轮发电机有较大的进相运行能力。 ③由于发电机处于欠励状态,应注意静稳定是否能满足运行要求。 进相就是电流超前与电压,发电机由系统吸收无功功率、发有功功率。原因就是在轻负

感性负载与容性负载

的区别 线圈负载叫感性,电容负载叫容性,纯电阻负载叫阻性 比如电机是感性负载,电容是容性负载,电炉电阻丝,白炽灯,碘坞灯等是阻性负载在电工或电子行业中对负载阻抗特性的定义,分为纯电阻型、电感型及电容型。 简称阻性、感性、容性。 几种负载在直流电路中的特点是: 电阻性负载:电流电压的关系符合基本欧母定律,I=U/R。 感性负载:允许电流流过,但电流滞后于电压,可储能于电感。 容性负载:阻止电流流过,也可储能于电容。 几种负载在交流电路中的特点是: 电阻性负载:电流电压的相位相同。 感性负载:电流滞后于电压。 容性负载:电流超前于电压。 电机类的设备都算是感性负载,开关电源类的,如IT设备都算是容性负载。感性负载就是工作时电压相位超前于电流相位,纯感性的话电压相位超前电流相位90度,纯容性负载就是工作时电压相位滞后于电流相位,纯容性负载的话电压相位滞后于电流相位90度。 1)感性无功功率在用电设备中,凡是用绕组和磁铁组成的,在交流电路中产生电和磁交变的功能。在能量转换过程中,有部分磁能仍回复到电能,那部分电流没有消耗有功功率,称为感性无功功率。在电感性负载的电路中,电流滞后电压一个角度Ψ,cosΨ称为功率因数。

(2)容性无功功率在电容器二块极板间产生充放电,电容电流不消耗有功功率,这个电流引起的功率称为容性无功功率。在电容性负载的电路中,电流超前电压一个角度Ψ,cosΨ也称为功率因数。因此容性无功功率可以抵消感性无功功率而提高功率因数。 (3)无功功率补偿的原理在交流电路中,纯电阻负载电流IR与电压U同相位;纯电感负载电流IL滞后电压纯电容负载电流IC则超前于电压。也就是说纯电感和纯电容中的电流相位差为,可互相抵消,所以在电源向负载供电时,感性负载向外释放的能量由并联电容器将能量储存起来;当感性负载需要能量时,再由电容将能量释放出来。这样感性负载所需要的无功功率可就地解决,减少负载与电源间能量交换的规模,减少损耗. 无功功率补偿的基本原理是把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,当容性负荷释放能量时,感性负荷吸收能量;而感性负荷释放能量时,容性负荷却在吸收能量,能量在两种负荷之间互相交换。这样,感性负荷所吸收的无功功率可由容性负荷输出的无功功率中得到补偿,这就是无功功率补偿的基本原理。 有功功率:在交流电路中,凡是消耗在电阻元件上,功率不可逆转换的那部分功率(如转变为热能,光能,或机械能),称为有功功率; 无功功率:电路中,电感元件建立磁场,电容元件建立电场消耗的功率称为无功率,这个功率是随交流电的周期,与电源不断的进行能量转换,而并不消耗能量;视在功率:交流电源所能提供的总功率,称为视在功率,在数值上即是,电压与电流的乘积,单位VA,视在功率即是交流电源的容量; 阻性负载: 即和电源相比当负载电流负载电压没有相位差时负载为阻性(如负载为白帜灯、电炉等) 通俗一点的讲,仅是通过电阻类的元件进行工作的纯阻性负载称为阻性负载。 感性负载

晶振负载电容计算

C1电容是IC生产中引入的,当芯片确定时这些数值就已经确定。△C是布局布线引入的电容。 每个晶振xtal都有要求的负载电容才能实现精确的震荡频率,由上图可知,由于IC以及布局布线,已经引入了C1和△C,其实还引入了其他寄生电容,比如Cic,但是这些寄生电容比较小,因此忽略不计。为了使内部集成电容C1和外部电容构成电容三点谐振电路,需要在外部OSCI与地之间接入一个外接电容C。一旦接入C2,则C1,C2,△C,xtal构成电容三点式谐振回路,此时C1,C2,△C需要满足xtal的负载电容要求,即C1*C2/(C1+C2)+△C要满足xtal的负载电容要求。当布局布线确定,电容△C已知,芯片确定,C1已知(在一个范围内,典型值25pf,最小15pf,最大35pf),xtal确定,需要的负载电容已知时,就可以计算出外接电容数值大小。 通常计算方法,忽略Cic,C1按典型值25pf,xtal采用32.768khz的TC38封装,需要的负载电容12.5pf左右,混入少量布线寄生电容(约3pf),这种情况下的外接电容C2一般在15pf左右。

图中CI,C2这两个电容就叫晶振的负载电容,分别接在晶振的两个脚上和对地的电容,一般在几十皮法。它会影响到晶振的谐振频率和输 出幅度,一般订购晶振时候供货方会问你负载电容是多少。 晶振的负载电容=[(Cd*Cg)/(Cd+Cg)]+Cic+△C 式中Cd,Cg为分别接在晶振的两个脚上和对地的电容,Cic(集成电路内部电容)+△C(PCB上电容)经验值为3至5pf。因此,晶振的数据表中规定12pF的有效负载电容要求在每个引脚XIN 与XOUT上具有22pF(2 * 12pF = 24pF = 22pF + 2pF 寄生电容,定值贴片电容没有24pf,只有22pf)。两边电容为Cg,Cd,负载电容为Cl, cl=cg*cd/(cg+cd)+a ,a= Cic+△C(a的经验值是3.5-13.5pf) 就是说负载电容15pf的话,两边两个接27pf(定值贴片电容只有27pf,没有30pf)的差不多了,各种逻辑芯片的晶振引脚可以等效为电容三点式振荡器。晶振引脚的内部通常是一个反相器, 或者是奇数个反相器串联。在晶振输出引脚XO 和晶振输入引脚XI 之间用一个电阻连接, 对于CMOS 芯片通常是数M到数十M 欧之间. 很多芯片的引脚内部已经包含了这个电阻, 引脚外部就不用接了。这个电阻是为了使反相器在振荡初始时处于线性状态, 反相器就如同一个有很大增益的放大器, 以便于起振. 石英晶体也连接在晶振引脚的输入和输出之间, 等效为一个并联谐振回路, 振荡频率应该是石英晶体的并联谐振频率. 晶体旁边的两个电容接地, 实际上就是电容三点式电路的分压电容, 接地点就是分压点. 以接地点即分压点为参考点, 振荡引脚的输入和输出是反相的, 但从并联谐振回路即石英晶体两端来看, 形成一个正反馈以保证电路持续振荡. 在芯片设计时, 这两个电容就已经形成了, 一般是两个的容量相等, 容量大小依工艺和版图而不同, 但终归是比较小, 不一定适合很宽的频率范围. 外接时大约是数PF 到数十PF, 依频率和石英晶体的特性而定. 需要注意的是: 这两个电容串联的值是并联在谐振回路上的, 会影响振荡频率. 当两个电容量相等时, 反馈系数是0.5, 一般是可以满足振荡条件的, 但如果不易起振或振荡不稳定可以减小输入端对地电容量, 而增加输出端的值以提高反馈量. . 一般芯片的Data sheet 上会有说明。

感性负载与容性负载

感性负载与容性负载的区别 线圈负载叫感性,电容负载叫容性,纯电阻负载叫阻性 比如电机是感性负载,电容是容性负载,电炉电阻丝,白炽灯,碘坞灯等是阻性负载 在电工或电子行业中对负载阻抗特性的定义,分为纯电阻型、电感型及电容型。 简称阻性、感性、容性。 几种负载在直流电路中的特点是: 电阻性负载:电流电压的关系符合基本欧母定律,I=U/R。 感性负载:允许电流流过,但电流滞后于电压,可储能于电感。 容性负载:阻止电流流过,也可储能于电容。 几种负载在交流电路中的特点是: 电阻性负载:电流电压的相位相同。 感性负载:电流滞后于电压。 容性负载:电流超前于电压。 电机类的设备都算是感性负载,开关电源类的,如IT设备都算是容性负载。感性负载就是工作时电压相位超前于电流相位,纯感性的话电压相位超前电流相位90度,纯容性负载就是工作时电压相位滞后于电流相位,纯容性负载的话电压相位滞后于电流相位90度。 1)感性无功功率在用电设备中,凡是用绕组和磁铁组成的,在交流电路中产生电和磁交变的功能。在能量转换过程中,有部分磁能仍回复到电能,那部分电流没有消耗有功功率,称为感性无功功率。在电感性负载的电路中,电流滞后 电压一个角度Ψ,cosΨ称为功率因数。 (2)容性无功功率在电容器二块极板间产生充放电,电容电流不消耗有功功率,这个电流引起的功率称为容性无功功率。在电容性负载的电路中,电流超前电压一个角度Ψ,cosΨ也称为功率因数。因此容性无功功率可以抵消感性无 功功率而提高功率因数。 (3)无功功率补偿的原理在交流电路中,纯电阻负载电流IR与电压U同

相位;纯电感负载电流IL滞后电压纯电容负载电流IC则超前于电压。也就是说纯电感和纯电容中的电流相位差为,可互相抵消,所以在电源向负载供电时,感性负载向外释放的能量由并联电容器将能量储存起来;当感性负载需要能量时,再由电容将能量释放出来。这样感性负载所需要的无功功率可就地解决,减少负 载与电源间能量交换的规模,减少损耗. 无功功率补偿的基本原理是把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,当容性负荷释放能量时,感性负荷吸收能量;而感性负荷释放能量时,容性负荷却在吸收能量,能量在两种负荷之间互相交换。这样,感性负荷所吸收的无功功率可由容性负荷输出的无功功率中得到补偿,这就是无功功率 补偿的基本原理。 有功功率:在交流电路中,凡是消耗在电阻元件上,功率不可逆转换的那部分功率(如转变为热能,光能,或机械能),称为有功功率; 无功功率:电路中,电感元件建立磁场,电容元件建立电场消耗的功率称为无功率,这个功率是随交流电的周期,与电源不断的进行能量转换,而并不消耗能量;视在功率:交流电源所能提供的总功率,称为视在功率,在数值上即是,电压与电流的乘积,单位VA,视在功率即是交流电源的容量; 阻性负载: 即和电源相比当负载电流负载电压没有相位差时负载为阻性(如负载为白帜灯、电炉等) 通俗一点的讲,仅是通过电阻类的元件进行工作的纯阻性负载称为阻性负载。 感性负载 通常情况下,一般把负载带电感参数的负载,即符合和电源相比负载电流滞后负载电压一个相位差的特性的负载为感性(如负载为电动机;变压器;)。通俗地说,即应用电磁感应原理制作的大功率电器产品,如电动机、压缩机、继电器、日光灯等等。 这类产品在启动时需要一个比维持正常运转所需电流大得多(大约在3-7倍)的启动电流。例如,一台在正常运转时耗电150瓦左右的电冰箱,其启动功率可高达1000瓦以上。 此外,由于感性负载在接通电源或者断开电源的一瞬间,会产生*势电压,这种电压的峰值远远大于车载交流供电器所能承受的电压值,很容易引起车用逆变器的瞬时超载,影响逆变器的使用寿命。因此,这类电器对供电波形的要求较高。

晶振和电容的匹配原理

晶振和电容的匹配 https://www.doczj.com/doc/5b4067384.html,/spec_pages/PNDescrpt/Load_Cap.htm 晶振 等效 于 电感/电容/内阻
使用 VCXO (压控晶体振荡器)作为时钟(CLK)发生器 测量时可接出一段锡丝,锡丝上紧密缠绕十多匝线,形成天线感应,再用 counter 频率计用探头(可用示波器探头)测量。
其中 两个电容 C1、C2 通过地串联又与晶振并联,并与其他杂散电容并联。 一般选择 C1、C2 值要比其他杂散电容高 8~10 倍,来减少杂散电容影响。 一般 IC 引脚约 2~3pF,杂散电容 2~3pF Co(晶振内部电容)3~5pF 所有 Cl=C1 串 C2+IC+杂散+Co 即 Load capacitance :Cl 值

fS = (Series) frequency =
I2C BUS 很常用, 也常出问题, 所以我们通常要用 DIGITAL SCOPE 来观察它在出 状况前和出状况时的波形有无异样. 什么样的波形才算正确呢? 1) rise time 2) fall time 3) ack voltage 4) start condition 5) stop condition 6) 读的时候, ACK 从哪里来, 每个 BYTE 都要有? 最后一个 BYTE? 7) 写的时候, ACK 从哪里来, 每个 BYTE 都要有? 最后一个 BYTE? 8) repeated start condition 9) 9 个 CLK 的间隔必须一样吗?
如何选用 Voltage Regulator? 似乎很简单, 提几个问题让大家考虑一下. 1)输出电流需要多大? 2)Dropout(压降)多大? 3)功耗多大? 4)采用哪一种 PAKAGE? 5)站立式的,要加 HEATSINK 吗? 多大的 HEATSINK 才够? 6)贴片式的, 要多大的铜片才够上热?

晶振电路中如何选择电容C1C2

晶振电路中如何选择电容C1C2 (1):因为每一种晶振都有各自的特性,所以最好按制造厂商所提供的数值选择外部元器件。(2):在许可范围内,C1,C2值越低越好。C值偏大虽有利于振荡器的稳定,但将会增加起振时间。 (3):应使C2值大于C1值,这样可使上电时,加快晶振起振。 在石英晶体谐振器和陶瓷谐振器的应用中,需要注意负载电容的选择。不同厂家生产的石英晶体谐振器和陶瓷谐振器的特性和品质都存在较大差异,在选用时,要了解该型号振荡器的关键指标,如等效电阻,厂家建议负载电容,频率偏差等。在实际电路中,也可以通过示波器观察振荡波形来判断振荡器是否工作在最佳状态。示波器在观察振荡波形时,观察OSCO 管脚(Oscillator output),应选择100MHz带宽以上的示波器探头,这种探头的输入阻抗高,容抗小,对振荡波形相对影响小。(由于探头上一般存在10~20pF的电容,所以观测时,适当减小在OSCO管脚的电容可以获得更接近实际的振荡波形)。工作良好的振荡波形应该是一个漂亮的正弦波,峰峰值应该大于电源电压的70%。若峰峰值小于70%,可适当减小OSCI及OSCO管脚上的外接负载电容。反之,若峰峰值接近电源电压且振荡波形发生畸变,则可适当增加负载电容。 用示波器检测OSCI(Oscillator input)管脚,容易导致振荡器停振,原因是:部分的探头阻抗小不可以直接测试,可以用串电容的方法来进行测试。如常用的4MHz石英晶体谐振器,通常厂家建议的外接负载电容为10~30pF左右。若取中心值15pF,则C1,C2各取30pF 可得到其串联等效电容值15pF。同时考虑到还另外存在的电路板分布电容,芯片管脚电容,晶体自身寄生电容等都会影响总电容值,故实际配置C1,C2时,可各取20~15pF左右。并且C1,C2使用瓷片电容为佳。

晶振负载电容外匹配电容计算

晶振负载电容外匹配电容计算及晶振振荡电路设计经验总结 对应MCU(STM32F103XX)、WiFi(AP6212、AP6XXX)或USB HUB(FE1.1S、GL850G)一般需外部提供时钟信号,需要外挂一颗晶振,常有客户问到,如何结合晶振的负载电容计算外匹配电容容值以及在晶振振荡电路设计时需注意哪些事项, (1)晶振负载电容定义 晶体元件的负载电容是指在电路中跨接晶体两端的总的外界有效电容,是晶振要正常震荡所需要的电容。如果从石英晶体插脚两端向振荡电路方向看进去的全部有效电容为该振荡电路加给石英晶体的负载电容。石英晶体的负载电容的定义如下式: 其中:

C S为晶体两个管脚之间的寄生电容(又名晶振静态电容或Shunt Capacitance),在晶体的规格书上可以找到具体值,一般0.2pF~8pF不等。如图二是某32.768KHz的电气参数,其寄生电容典型值是0.85pF(在表格中采用的是Co)。 图1、某晶体的电气参数 C G指的是晶体振荡电路输入管脚到GND的总电容,其容值为以下三个部分的和。 ●需加外晶振主芯片管脚芯到GND的寄生电容 C i

●晶体震荡电路PCB走线到到GND的寄生电容C PCB ●电路上外增加的并联到GND的外匹配电容 C L1 C D指的是晶体振荡电路输入管脚到GND的总电容。容值为以下三个部分的和。 ●需加外晶振主芯片管脚芯到GND的寄生电容, C o ●晶体震荡电路PCB走线到到gnd的寄生电容,C PCB ●电路上外增加的并联到GND的外匹配电容, C L2 图1中标示出了C G,C D,C S的的组成部分。

容性负载

容性负载 电路中类似电容的负载,可以使电流超前电压降低电路功率因数 一般把带电容参数的负载,即符合电压滞后电流特性的负载称为容性负载。充放电时,电压不能突变。其对应的功率因数为负值。对应的感性负载的功率因数为正值。 在高频领域,是指负载虚部为负值的负载. 容性负载:和电源相比,负载电流超前负载电压一个相位差,此时负载为容性负载(如补偿电容负载)。 一般电源控制类产品,所给出的负载,如未加说明则是给出的是视在功率,即总容量功率;它既包括有功功率,也包括无功功率; 而一般感性负载说明中给出的往往是有功功率的大小,例如荧光灯,标注为15~40

瓦的荧光灯,镇流器消耗功率约为8瓦,实际在考虑用定时器,感应开关在控制它时,则要加上这8瓦; 具体不同的产品感性部分,即无功功率的大小,可以通过其给出的功率因数来计算。 混联电路中,若容抗比感抗大,电路呈容性,反之为感性。 通常的用电器中并没有纯感性负载和纯容性负载。因为这两种负载不做有用功。 只有在补偿电路中才使用纯感性负载或纯容性负载。又因为绝大多数负载除阻性外,多数为感性负载,因此补偿的时候多数就用电容来补偿,所以,纯容性负载用得比纯感性负载多。如电动机,变压器等等,通常为感性负载。部分日光灯为容性负载。 举例: 纯感性负载就是一组电感。通常用来补偿电路中的容性电流。

在电路中带线圈的用电设备,其线圈部分即为纯感性负载。如电动机、变压器、电风扇、日光灯镇流器等。 纯感性负载的电流是不能突变(楞次定律)。感性负载应用广泛。在电路中带电容的用电设备,其电容部分即为纯容性负载。如补偿电容等。 纯感性负载的电流是不能突变。从理论上讲:纯电阻电路、纯电容电路、纯电感电路是不存在的。 电阻负载在作功时也会有电感、电容性负载存在。例如:导线间会存在线路间的电容,导线间和对地间存在电感,期间感性负载通常大于容性负载。电力电容在作功时也会发热,即电阻性作功。电感亦如此。元件的阻抗是频率的函数。在全频率范围内纯电阻电路、纯电容电路、纯电感电路是不存在的。 理论上只有可能在某一个频率存在.实际中应该做不到。

晶振的负载电容

晶振要求的谐振电容值的含义 请老师指教:晶振的参数里有配用的谐振电容值。比如说32.768K的是12.5pF;4.096M的是20pF. 这个值和实际电路中晶振上接的两个电容值是什么关系?像DS1302用的就是32.768K的晶振,它内部的电容是6pF的 回答:你所说的是晶振的负载电容值。指的是晶振交流电路中,参与振荡的,与晶振串联或并联的电容值。晶振电路的频率主要由晶振决定,但既然负载电容参与振荡,必然会对频率起微调作用的。负载电容越小,振荡电路频率就会越高4.096MHz的负载电容为20pF,说明晶振本身的谐振频率<4.096MHz,但如果让20pF的电容参与振荡,频率就会升高为4.096MHz。或许有人会问为什么这么麻烦,不如将晶振直接做成4.096MHz而不用负载电容?不是没有这样的晶振,但实际电路设计中有多种振荡形式,为了振荡反馈信号的相移等原因,也有为了频率偏差便于调整等原因,大都电路中均有电容参与振荡。为了准确掌握晶振电路中该用多大的电容,只要把握晶体负载电容应等于振荡回路中的电容+杂散电容就可以了。你所说的IC中6pF的电容就可看作杂散电容 晶振的负载电容 晶体元件的负载电容是指在电路中跨接晶体两端的总的外界有效电容。是指晶振要正常震荡所需要的电容。一般外接电容,是为了使晶振两端的等效电容等于或接近负载电容。要求高的场合还要考虑ic输入端的对地电容。应用时一般在给出负载电容值附近调整可以得到精确频率。此电容的大小主要影响负载谐振频率和等效负载谐振电阻。 晶振的负载电容=[(Cd*Cg)/(Cd+Cg)]+Cic+△C式中Cd,Cg为分别接在晶振的两个脚上和对地的电容,Cic(集成电路内部电容)+△C(PCB上电容).就是说负载电容15pf的话,两边个接27pf的差不多了,一般a为6.5~13.5pF 各种逻辑芯片的晶振引脚可以等效为电容三点式振荡器. 晶振引脚的内部通常是一个反相器, 或者是奇数个反相器串联. 在晶振输出引脚XO 和晶振输入引脚XI 之间用一个电阻连接, 对于CMOS 芯片通常是数M 到数十M 欧之间. 很多芯片的引脚内部已经包含了这个电阻, 引脚外部就不用接了. 这个电阻是为了使反相器在振荡初始时处与线性状态, 反相器就如同一个有很大增益的放大器, 以便于起振. 石英晶体也连接在晶振引脚的输入和输出之间, 等效为 . 晶体旁边的两个 接地点就是分压点. 以接地 , 但从并联谐振回路即石英晶体两端来看, 形成一个正反馈以保证电路持续振荡. 在芯片设计时, 这两个电容就已经形成了, 一般是两个的容量相等, 容量大小依工艺和版图而不同, 但终归是比较小, 不一定适合很宽的频率范围. 外接时大约是数PF 到数十PF, 依频率和石英晶体的特性而定. 需要注意的是: 这两个电容串联的值是并联在谐振回路上的, 会影响振荡频率. 当两个电容量相等时, 反馈系数是0.5, 一般是可以满足振荡条件的, 但如果不易起振或振荡不稳定可以减小输入端对地电容量, 而增加输出端的值以提高反馈量. 设计考虑事项: 1.使晶振、外部电容器(如果有)与IC之间的信号线尽可能保持最短。当非常

相关主题
文本预览
相关文档 最新文档