当前位置:文档之家› 目标检测与跟踪

目标检测与跟踪

第九章图像目标探测与跟踪技术

主讲人:赵丹培

宇航学院图像处理中心

zhaodanpei@https://www.doczj.com/doc/5f3933867.html,

电话:82339972

目录

9.1 概论

9.2 目标检测与跟踪技术的发展现状9.3 目标检测与跟踪技术的典型应用9.4 图像的特征与描述

9.5 目标检测方法的基本概念与原理9.6 目标跟踪方法涉及的基本问题

9.1 概论

1、课程的学习目的

学习和掌握目标探测、跟踪与识别的基本概念和术语,了解一个完整信息处理系统的工作流程,了解目标探测、跟踪与识别在武器系统、航空航天、军事领域的典型应用。了解目标检测、跟踪与识别涉及的关键技术的发展现状,为今后从事相关的研究工作奠定基础。

2、主要参考书:

《目标探测与识别》,周立伟等编著,北京理工大学出版社;

《成像自动目标识别》,张天序著,湖北科学技术出版社;

《动态图像分析》,李智勇沈振康等著,国防工业出版社;

引言:学习目标检测与跟踪技术的意义

?现代军事理论认为,掌握高科技将成为现代战争取胜的重要因素。以侦察监视技术、通信技术、成像跟踪技术、精确制导技术等为代表的军用高科技技术是夺取胜利的重要武器。

?成像跟踪技术是为了在战争中更精确、及时地识别敌方目标,有效地跟踪目标,是高科技武器系统中的至关重要的核心技术。

?例如:一个完整的军事战斗任务大致包括侦察、搜索、监视以及攻击目标和毁伤目标。那么快速的信息获取和处理能力就是战争胜利的关键,因此,目标的实时探测、跟踪与识别也成为必要的前提条件。

?随着现代高新技术的不断发展及其在军事应用领域中的日益推广,传统的作战形态正在发生着深刻的变化。

1973年的第四次中东战争,1982年的英阿马岛之战,1991年的海湾战争及1999年的科索沃战争,伊拉克战争等都说明了这一点。西方各军事强国都在积极探索对抗武器,特别是美国更是投入了巨大的物力、人力和财力积极研制弹道导弹防御系统。而图像检测、跟踪和识别算法作为现代战场信息环境作战成败的关键,具备抗遮挡、抗丢失和抗机动鲁棒性的智能跟踪器,将是现代战场作战必备品,具有广泛的应用前景。

9.1.1 目标检测跟踪的含义

什么是目标检测跟踪?

目标检测跟踪是近年来计算机视觉领域中备受关注的前沿

方向,它从包含运动目标的图像序列中检测、识别并跟踪目标,并对其行为进行理解和描述。

目标分析的研究涉及到模式识别、图像处理、计算机视觉、人工智能等学科的内容。

随着现代信息处理技术的发展,目标检测跟踪在军用、民

用及医学等方面具有重要意义,具有广泛的应用前景和潜在的经济价值已成为一项极为重要和基本的技术。然而,由于景物的多样性和复杂性,在工程应用中仍有许多问题有待解决。

什么是目标检测跟踪系统?

目标检测跟踪系统是对指定目标区域进行实时自动

跟踪,实时解算出目标在图像场景中的精确位置,并输出目标偏离系统视轴的方位和俯仰误差信号,通过伺服控制回路,驱动稳定平台跟踪目标。

同时,图像跟踪系统接收来自外部控制系统的控制命令

和数据,并按总体通讯协议要求向外部控制系统回送跟踪系统的状态、图像数据和关键参数。实现目标跟踪的关键在于完整地分割目标、合理地提取特征和准确地识别目标,同时要考虑算法实现的时间,保证实时性。

9.1.2 什么是信息获取技术

信息获取技术:

地球上的所有物质都对外界辐射自己独特的信息-某一部分的电磁波谱,包括自发辐射和反射日光辐射。

通过传感器接收这些信息,再通过各种信息分离、提取、增强、融合、识别等手段最终达到应用的目的。

信息获取技术的手段:

电视传真、遥感技术、光纤通信、光学与光电子成像和雷达技术

信息获取技术的分类:

信息获取技术分为被动信息获取技术和主动信息获取技术。

被动信息获取技术:红外热成像、微光以及可见光;

主动信息获取技术:发射电磁波、用人造光源照射被探测目标(或红外线辐射源)。

?从广义上的视觉按照整个电磁波谱分:

长、短波无线电波、微波、毫米波、红外、可见光、紫外直到X射线。

相应的军事目标的载体特征:

以无线电波为载体的雷达、以微波为载体的微波雷达和合成孔径雷达、以毫米波为载体的的毫米波雷达、以红外辐射为载体的热像仪、以光波为载体的微光、可见光相机和以紫外辐射为载体的紫外相机;

以听觉为代表的是声纳技术

军事目标信息的时效特征:

?一种是通常意义上的军事目标的监视和侦察,如发现机场、港口、车站、兵营、阵地、水面舰队以及侦察装备情况。

这种信息的时效期相对比较长,一般以天甚至以月计。

它对应的信息处理就是事后处理或半实时处理。

?另一种是实战时的军事信息,时效特征比前者要严峻得多。

一个军事信息早一分钟还是晚一分钟到达指挥官手中,可能决定战役的成败,过时的信息价值等于零。

它对应的信息处理就是实时信息处理或准实时处理。

微光、热成像和雷达技术的特点和优势:

微光夜视技术

微光夜视技术是研究在夜间低照度条件下,用开拓观察者视力的方法以实现夜间隐蔽观察的一种技术,它采用光电子成像的方法来缓和或克服人眼在低照度以及有限光谱响应下的限制,以开拓人眼的视觉。它利用夜视和热成像技术。

一、利用夜天自然微光的反射辐射,即研究被动微光技术,使微弱照度下的目标成为可见;

二、利用场景中物体本身的热辐射,研究被动红外技术,使热目标成为可见。

热成像技术

红外图像是通过红外传感器接收由物体表面发出或者反射的红外光谱段图像,可以提供可见光图像所不能提供的很多重要信息。热成像技术的成像原理是基于目标本身的热辐射,通常采用3~5um和8~14um两个波段。红外探测不仅在夜间,也可以在白天、在恶劣气候条件下甚至全暗情况下进行观察。其特点是可进行全天候观察、作用距离远,具有穿透烟、雾、霾、雪等限制,主动红外可以在战场强光干扰下工作,甚至可以透过树叶、伪装网和迷彩等观察目标,具有较高的识别伪装能力和较高的隐蔽性。与可见光图像相比,红外图像噪声大,场景中目标的特征量不丰富且不易于提取,常用的视觉分析方法难以有效应用,这些客观缺陷的存在给红外目标检测和跟踪算法的研究带来了很大障碍。

雷达技术

雷达就是无线电探测与测距,它可以测量空中、地面及水上目标的位置,又叫无线电定位。雷达利用定向天线向空中发出无线电波,电波遇到目标后,反射回来被雷达所接受,通过测量电波在空中传播所经历的时间以获得目标的距离数据根据天线波束指向以确定目标的角度数据。

雷达的突出优点是覆盖范围大,作用距离远,穿透烟雾能力强,缺点是主动探测,容易暴露自己,被敌方发现并干扰,分辨力低,易受反辐射导弹攻击。

雷达的革命-SAR

合成孔径雷达(SAR)可以逼真地显示目标的形状、尺寸、运动状态及姿态,突破了原有雷达只能获取目标的距离方位、俯仰和速度的四维信息的局限。

雷达的应用

地对空导弹系统采用雷达测量目标与导弹在空中的相对位置,通过计算得出导弹的最佳飞行路线,据此发出无线电指令,控制导弹接近目标。

飞机装有雷达能看到地面上的江河、湖泊、城镇、工厂、机场、铁道等地物,可用作飞机飞行和着陆的导航及轰炸瞄准。

舰艇装有雷达能在雾中看到周围海面的情况,可防止敌舰袭击和避免船舶相撞、触礁,使舰艇安全航行和进港。

炮兵利用雷达控制高炮跟踪瞄准敌机,提高炮火的命中率,还能计算出敌方的炮兵阵地位置。

以X射线、紫外、可见、红外直到亚毫米波等辐射的探测和处理,统称为光电子成像技术。

9.1.3 基本概念与术语

目标获取的含义:使目标所在位置的探测和目标辨别到所希望的等级,即从探测到分类、识别和确认。

目标的探测与识别是一个复杂的、涉及人眼-大脑的图像翻译过程的问题。辨别的最低等级是分辨有无,最高等级是对特定目标的精确确认与描述。

例如:一架飞机在晴朗的天空中飞行是很容易探测到的,但一辆车辆在复杂背景的丛林中穿行,探测起来就非常困难,而且识别一辆车辆的前提条件是我们已经探测到它了,因此,只有在被探测到的情况下才能谈识别问题。

目标的上下文信息和附加信息也是检测和识别的重要依据。

如果探测到的目标是一个运动的斑点目标,无法通过纹理和轮廓信息来识别出它的类型,那么可以借助它的背景环境来判断。

例如:如果它出现中一条公路上,它的合理概率就是一辆车;如果它在湖泊中就可能是一艘船;如果在天空中,就可能是飞机或是飞鸟…….

用于描述目标的术语:

目标截获(Target Acquisition):

将位置不明确的目标图像定位,并按所期望的水平辨别它的整个过程。

目标获取包括搜寻过程和辨别过程。搜寻过程的结果是确定目标的位置,辨别过程的结果是目标被捕获。

搜寻(Search):

利用器件显示或肉眼视觉搜索含有潜在的目标的景物,以定位捕获目标的过程。

位置确定(Localize):

通过搜寻过程确定出目标的位置。

辨别(Discrimination):

物体(目标)在被观察者所察觉的细节量的基础上确定看得清的程度。辨别的等级分为探测、识别、确认

探测(Detection):

分为纯探测和辨别探测。纯探测是在局部均匀的背景下察觉一个物体;而在完成辨别探测时,需要认出某些外形或形状,以便将军事目标从背景中的杂乱物体里区别出来。

识别(Recognition):

能辨别出目标属于哪一类型(坦克、车辆、人、飞机等)。

确认(Identification):

能认出目标,并能够清晰地确定其类型(如T52坦克、吉普车、歼10飞机)。

目标:指一个待探测、定位、识别和确认的物体。

背景:指反衬目标的任意的辐射分布。

目标特征:

是把目标从背景中区别出来的空间、光谱和强度的形貌

注意:

一个目标在各种运作和环境条件下可以有许多不同的特征,不可能简单地按照世界某一光谱特征来描述所有复杂的目标特性。

只能利用目标总体的共同特征。如目标的尺寸和目标对背景的平均温度或对比度。

复杂恶劣环境的定义:

影响图像质量的因素主要有以下几种:

自然环境(雨、雪、大风、水面、天气变化等)摄像机自身的倾斜或震动

摄像机平台的晃动(船只、车辆等的颠簸或震动)以上的组合

在以上条件下拍摄的录像,一般具有以下特点:

图像质量差

图像对比度低

图像晃动

自然环境干扰(遮挡、噪声、阴影、水面等)

【CN109919979A】一种视频实时目标跟踪的方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910174796.5 (22)申请日 2019.03.08 (71)申请人 广州二元科技有限公司 地址 510000 广东省广州市南沙区银锋一 街1号银锋广场1栋1608房 (72)发明人 容李庆 关毅 袁亚荣  (74)专利代理机构 广州凯东知识产权代理有限 公司 44259 代理人 罗丹 (51)Int.Cl. G06T 7/246(2017.01) G06K 9/00(2006.01) G06K 9/32(2006.01) (54)发明名称 一种视频实时目标跟踪的方法 (57)摘要 本发明涉及一种视频实时目标跟踪的方法, 采用目标检测与目标跟踪相结合的技术,极大地 降低视频实时目标检测的计算量,由于无需对每 一帧视频图像进行遍历检测,因此极大地提高了 视频实时目标检测的计算效率,可以达到实时视 频的帧率。本发明提供的视频实时目标跟踪的方 法使用神经网络对目标检测器检测出来的目标 框在下一帧图像中的位置进行跟踪回归,极大地 降低了视频实时目标检测的计算量,无需对每一 帧图像都采用检测器检测目标,采用检测与跟踪 相结合的技术应用于视频实时目标检测中,无需 对输入图像进行复杂的降噪等处理,对目标检测 器也无特殊需求,可以大大提升检测的速率,本 发明适用性广,可以在低端的嵌入式设备中保证 足够的计算效率。权利要求书1页 说明书2页 附图1页CN 109919979 A 2019.06.21 C N 109919979 A

权 利 要 求 书1/1页CN 109919979 A 1.一种视频实时目标跟踪的方法,其特征在于包括以下步骤: 1)、通过硬件设备摄像头采集实时的视频作为输入,或者直接输入包含多帧的视频文件; 2)、分解视频,以单帧为单位对视频进行分解; 3)、将不同的数字图像矩阵格式转化为目标检测器支持的数字图像矩阵格式; 4)、输入1帧数字图像矩阵到目标检测器中,检测器通过计算后返回的检测结果以数组的方式进行保存,数组的长度是检测到的目标数量大小; 5)、根据当前输入帧获得的目标检测框作为下一帧图像的目标基础框,采用神经网络对当前帧目标框在下一帧图像的位置进行回归计算,得到下一帧图像的目标检测框信息,如果下一帧检测框信息不为空,则在接下来的帧图像中循环执行当前步骤;若下一帧目标框信息为空,则跳转到步骤4对接下来的帧图像重新调用目标检测器进行目标检测直到视频帧处理结束。 2.根据权利要求1所述的一种视频实时目标跟踪的方法,其特征在于: 所述步骤3)在步骤1)输入视频的时候进行统一的转换。 2

多目标跟踪

多目标跟踪的基本理论 所谓多目标跟踪,就是为了维持对多个目标当前状态的估计而对所接收到的量测信息进行处理的过程。 目标模型不确定性 是指目标在未知的时间段内可能作己知的或未知的机动。一般情况下,目标的 非机动方式及目标发生机动时的不同的机动形式都可以通过不同的数学模型来加 以描述。在进行目标跟踪过程中,采用不正确的目标运动模型会导致跟踪系统跟踪 性能的严重下降。因而在目标跟踪过程中,运动模型采用的正确与否对目标的跟踪 性能是至关重要的。 观测不确定性 是指由传感器系统提供的量测数据可能是外部的干扰数据,它有可能是由杂波、虚警和相邻的目标所引起的,也可能是由被跟踪目标的对抗系统所主动发出来的虚假信息。这种不确定性在本质上显然是离散的,给目标跟踪问题提出了极大的挑战,相应地也就产生了数据关联的问题。 数据关联 数据关联的作用主要有:航迹保持、航迹建立和航迹终结。 数据关联算法主要有:“最近邻”方法,“全邻”最优滤波器方法、概率数据关联滤波器方法、多模型方法、相互作用多模型一概率数据关联滤波器方法、联合概率数据关联滤波器方法、多假设方法、航迹分裂方法。 1.“最近邻”方法的思想是:在落入跟踪波门中的所有量测中,离目标跟踪预测位置最近的量测认为是有效量测。“最近邻”方法的好处是算法最简单,但是精度差,抗杂波干扰的能力差。“最近邻”方法因为简单,算法易实现,因此也是目前广泛采用的一种数据关联算法. 2 .“全邻”最优滤波器 Singer,Sea和Housewright发展了一类“全邻”滤波器,这种滤波器不仅考虑了所有候选回波(空间累积信息),而且考虑了跟踪历史,即多扫描相关(时间累积信息)假定多余回波互不相关并且均匀分布于跟踪门内,则任何跟踪门的体积V内多余回波的数目Cx服从均值为βV的泊松分布。假定在K-1时刻,轨迹a′正确的概率为Pa(k-1)。关键问题是计算k时刻轨迹的正确概率Pa(k)。

动态视频目标检测和跟踪技术(入门)

动态视频目标检测和跟踪技术 传统电视监控技术只能达到“千里眼”的作用,把远程的目标图像(原始数据)传送到监控中心,由监控人员根据目视到的视频图像对现场情况做出判断。智能化视频监控的目的是将视频原始数据转化为足够量的可供监控人员决策的“有用信息”,让监控人员及时全面地了解所发生的事件:“什么地方”,“什么时间”,“什么人”,“在做什么”。将“原始数据”转化为“有用信息”的技术中,目标检测与跟踪技术的目的是要解决“什么地方”和“什么时间”的问题。目标识别主要解决“什么人”或“什么东西”的问题。行为模式分析主要解决“在做什么”的问题。动态视频目标检测技术是智能化视频分析的基础。 本文将目前几种常用的动态视频目标检测方法简介如下: 背景减除背景减除(Background Subtraction)方法是目前运动检测中最常用的一种方法,它是利用当前图像与背景图像的差分来检测出运动目标的一种技术。它一般能够提供相对来说比较全面的运动目标的特征数据,但对于动态场景的变化,如光线照射情况和外来无关事件的干扰等也特别敏感。实际上,背景的建模是背景减除方法的技术关键。最简单的背景模型是时间平均图像,即利用同一场景在一个时段的平均图像作为该场景的背景模型。由于该模型是固定的,一旦建立之后,对于该场景图像所发生的任何变化都比较敏感,比如阳光照射方向,影子,树叶随风摇动等。大部分的研究人员目前都致力于开发更加实用的背景模型,以期减少动态场景变化对于运动目标检测效果的影响。 时间差分时间差分(Temporal Difference 又称相邻帧差)方法充分利用了视频图像的特征,从连续得到的视频流中提取所需要的动态目标信息。在一般情况下采集的视频图像,若仔细对比相邻两帧,可以发现其中大部分的背景像素均保持不变。只有在有前景移动目标的部分相邻帧的像素差异比较大。时间差分方法就是利用相邻帧图像的相减来提取出前景移动目标的信息的。让我们来考虑安装固定摄像头所获取的视频。我们介绍利用连续的图像序列中两个或三个相邻帧之间的时间差分,并且用阈值来提取出视频图像中的运动目标的方法。我们采用三帧差分的方法,即当某一个像素在连续三帧视频图像上均有相

多摄像头目标检测与跟踪方法研究

华中科技大学 硕士学位论文 多摄像头目标检测与跟踪方法研究 姓名:颜杰 申请学位级别:硕士 专业:通信与信息系统 指导教师:邱锦波 2011-01-18

华中科技大学硕士学位论文 摘要 视频跟踪是计算机视觉领域的一个基础的研究课题,也一个非常具有挑战性的研究方向。在当前的现实生活中,视频跟踪技术已经在各种领域内得到了广泛的应用,其中包括视频监控、军事工程、交通管理、智能机器人和人机交互等,具有很高的学术研究和应用价值。 单摄像头的视频跟踪系统存在很多无法解决的问题,其中包括目标遮挡、摄像头视野有限、不能进行全方位的跟踪等问题,而多摄像头的跟踪系统能够很好的克服这些问题。因此,多摄像头目标检测与跟踪正在成为研究的热点。本文在前人研究的基础上,重点研究了如何提高多摄像头之间目标确认的精度,以及如何在保证对目标准确跟踪的条件下,降低整个系统的数据传输量和计算量。 本文首先分析多摄像头跟踪领域中,摄像头之间目标确认问题,提出了一种在基于平面单应性的确认技术中,引入目标距离特征的新方法。由于目标距离不受平面单应性约束条件的影响,加入目标距离特征能有效的提高摄像头之间目标的确认精度。实验结果表明,在基于平面单应性的确认算法中,增加目标距离特征后,确认精度得到了一定的提高。 为了有效地减少多摄像头跟踪系统的数据传输量和计算量,本文还提出了一种基于最优摄像头选择的跟踪算法,并从理论分析和实验上,对该算法的性能进行了评估。实验结果显示,该算法在不降低对目标跟踪准确度的情况下,有效地降低整个系统的数据传输量和计算量。 关键词:多摄像头,目标检测,目标跟踪,目标确认,最优摄像头选择

目标检测与跟踪

第九章图像目标探测与跟踪技术 主讲人:赵丹培 宇航学院图像处理中心 zhaodanpei@https://www.doczj.com/doc/5f3933867.html, 电话:82339972

目录 9.1 概论 9.2 目标检测与跟踪技术的发展现状9.3 目标检测与跟踪技术的典型应用9.4 图像的特征与描述 9.5 目标检测方法的基本概念与原理9.6 目标跟踪方法涉及的基本问题

9.1 概论 1、课程的学习目的 学习和掌握目标探测、跟踪与识别的基本概念和术语,了解一个完整信息处理系统的工作流程,了解目标探测、跟踪与识别在武器系统、航空航天、军事领域的典型应用。了解目标检测、跟踪与识别涉及的关键技术的发展现状,为今后从事相关的研究工作奠定基础。 2、主要参考书: 《目标探测与识别》,周立伟等编著,北京理工大学出版社; 《成像自动目标识别》,张天序著,湖北科学技术出版社; 《动态图像分析》,李智勇沈振康等著,国防工业出版社;

引言:学习目标检测与跟踪技术的意义 ?现代军事理论认为,掌握高科技将成为现代战争取胜的重要因素。以侦察监视技术、通信技术、成像跟踪技术、精确制导技术等为代表的军用高科技技术是夺取胜利的重要武器。 ?成像跟踪技术是为了在战争中更精确、及时地识别敌方目标,有效地跟踪目标,是高科技武器系统中的至关重要的核心技术。 ?例如:一个完整的军事战斗任务大致包括侦察、搜索、监视以及攻击目标和毁伤目标。那么快速的信息获取和处理能力就是战争胜利的关键,因此,目标的实时探测、跟踪与识别也成为必要的前提条件。

?随着现代高新技术的不断发展及其在军事应用领域中的日益推广,传统的作战形态正在发生着深刻的变化。 1973年的第四次中东战争,1982年的英阿马岛之战,1991年的海湾战争及1999年的科索沃战争,伊拉克战争等都说明了这一点。西方各军事强国都在积极探索对抗武器,特别是美国更是投入了巨大的物力、人力和财力积极研制弹道导弹防御系统。而图像检测、跟踪和识别算法作为现代战场信息环境作战成败的关键,具备抗遮挡、抗丢失和抗机动鲁棒性的智能跟踪器,将是现代战场作战必备品,具有广泛的应用前景。

目标检测、跟踪与识别技术与现代战争

目标检测、跟踪与识别技术与现代战争 【摘要】本文讨论目标检测、跟踪与识别技术在现代战争各个领域中的应用,总结目标识别技术的发展方向,提出目标识别技术工程化实现方法,同时本文介绍了国外目标识别的现状及发展趋势,提出了现代战争应采用综合识别系统解决目标识别问题的建议。 关键词目标检测;目标跟踪;目标识别;雷达;人工神经网络;精确制导 1.引言 随着现代科学技术的飞速发展及其在军事领域内日益广泛的应用,传统的作战思想、作战方式已发生根本性的变化。从第一次海湾战争到科索沃战争,特别是刚刚结束的海湾战争,空中精确打击和空地一体化作战已经成为最重要的作战形式。集指挥、控制、通信、计算机、情报、监视侦察于一体的C ISR 已成为取得战场主动权,赢得最后胜利的关键因素。目标识别技术是雷达智能化、信息化的重要技术支撑手段。在现代化战争中,目标识别技术在预警探测、精确制导、战场指挥和侦察、敌我识别等军事领域都有广泛的应用前景,已受到了世界各国的关注。 现代战争中取得战场制信息权的关键之一是目标属性识别。现代战争的作战环境十分复杂,作战双方都在采用相应的伪装、隐蔽、欺骗和干扰等手段和技术,进行识别和反识别斗争。因此仅仅依靠一种或少数几种识别手段很难准确地进行目标识别,必须利用多个和多类传感器所收集到的多种目标属性信息,综合出准确的目标属性,进行目标检测,跟踪后进行识别。 2.目标检测、跟踪与识别技术在现代战争中的应用 2.1 目标检测、跟踪与识别技术在预警探测上的应用 目标检测、跟踪与识别技术对于弹道导弹的预警工作有重要的作用。弹道导弹一般携带多个弹头,其中可能包含核弹头或大规模杀伤的弹头以及常规弹头,预警雷达必须具备对目标进行分类和识别真假弹头的能力,将核弹头或大规模杀伤的弹头分离出来,为弹道导弹防御(BMD)系统进行目标攻击和火力分配提供依据。早期的BMD系统假设只有一个核弹头,多弹头分导技术的出现,使问题转化为雷达的多目标识别问题,加上电子对抗技术的广泛使用,给目标识别技术带来很大困难。另外,预警雷达还要对空中目标或低空目标进行探测,对来袭目标群进行分类识别。利用星载雷达以及远程光学望远镜等观测设备,可以对外空目标进行探测,对外空来袭目标进行分类和识别,达到早期预警的工作。

人体目标检测与跟踪算法研究

人体目标检测与跟踪算法研究 摘要:近些年以来,基于视频中人体目标的检测与跟踪技术研究越来越被重视。然而,由于受到目标自身特征多样性和目标所处环境的复杂性和不确定性的影响,现存算法的性能受到很大的限制。本文对目前所存在的问题进行了分析,并提出了三帧差分法和改进阈值分割法相结合的运动目标检测算法和多特征融合的改进运动目标跟踪算法。这两种算法不仅可以准确有效的检测出运动目标而且能够满足实时性的要求,有效的解决了因光照变化和目标遮挡等情况造成的运动目标跟踪准确度下降或跟踪目标丢失等问题。 关键词:三帧差分,Camshift,阈值分割 Research Based on Human Target Detectionand Tracking Algorithm Abstract: In recent years, human object detection and tracking become more and more important. However the complexity, uncertainty environment and the target’s own diversity limit the performance of existing algorithms. The main works of this paper is to study and analysis the main algorithm of the human object detection and tracking, and proposes a new moving target detection method based on three-frame difference method and threshold segmentation and improved Camshift tracking algorithm based on multi-feature fusion. These algorithm can satisfy the real-time, while accurately and efficiently detect moving targets, and also effectively solves the problem of tracking object lost or misplaced under illumination change or target occlusion. Keywords: three-frame difference, Camshift, threshold segmentation 一、绪论 (一)选题的背景和意义 人类和动物主要通过眼睛来感受和认知外部世界。人类通过视觉所获取的信息占了60%[1],因此,在开发和完善人工智能的过程中,赋予机器视觉的功能这一操作极不可缺少。完善上述功能需要以许多技术为基础,特别是运动目标的检测与跟踪技术。近些年以来,此技术受到了越来越多的关注[2]。目前,此技术也在各领域得到了充分的应用,涵盖的领域有智能交通、导航、智能视频监控、精确制导、人机交互和多媒体视频编码压缩技术等。

多目标跟踪算法

多目标跟踪算法 先来回顾下卡尔曼滤波器: 假定k k x |表示当前k 时刻目标的状态,k 1k x |+表示下一个时刻目标的状态,k z 则表示k 时刻的实际观测。一般地模型都假定为线性的: 这里的1k x +为k+1时刻目标的状态,k x 为k 时刻的状态,为状态转移矩阵,而是服从均值为0方差为的正态分布,表示由噪声等引起的干扰。卡尔曼滤波采取初步估 计: 这里的估计只是初步的估计,状态估计与实际状态的误差矩阵等于状态1k x +的的方差,即: 更新(修正): 这里已知了实际观察,同样是假定观测与状态的似然关系是线性的,即满足: 服从一个均值为0方差为 的正态分布。 卡尔曼滤波器给出了经过更新后得到的比较合理的k+1时刻的估计为: 相应地得到了更新后方差的估计: 这里: 其实这些都是通过最小二乘法推出来的,即使得误差: 最小,而初步估计也是通过最小二乘法获得,即使得: 最小。有了上述估计方程后,便可以获得一个估计流程:

下面再介绍下贝叶斯公式 先看一个定义 马氏链: 设{} ,,,k j i E =为有限集或可列集,称()0n n X ≥为定义在概率空间()P F,,Ω上,取值于空间E 的马氏链,如果满足下面的马氏性:对一切n 10i i i ,,, 有 [][]1n 1n n n 1n 1n 00n n i X i X P i X i X i X P ----======|,,| 若左边的条件概率有定义,则称[]i X j X P 1n n ==-|为在n-1时刻状态为i,在n 时刻在j 的转移概率函数,若它与n 无关,则记为ij p ,并称为时齐的或齐次的。显然这里的马氏性接近于独立性,在一定程度上可以称为无记忆性或无后效性。 下面我们来推导贝叶斯公式: 容易由条件概率公式定义知 而 ()()()()()()( ) ()() ()( ) ()() ( )() ()()() 1 k 1 k 1k k k 1 k k 1k k k 1k k 1k k k 1k k k k k 1k 1k 1k k k 1k k k k k 1k 1k 1k k k 1k 1k 1k k k 1k 1k 1k 1k 1k z x f dx x f x z f x f x z f z f dx x f x z f x z f z f x f x z f x z f dx z x f x z f z x f x z f x f +++++++++++++++++++++++== ? == ?? ?||||||||||||||||||||||||| 就得到了更新后的公式如下: 这里记 于是就可以得到贝叶斯滤波器跟踪流程如下: 实际上可以证明,卡尔曼滤波器是贝叶斯滤波器的一种特殊形式,由于假定噪声服从正态分布,同样地观测与状态估计的误差也是服从正态分布,那么不难得:

目标检测与跟踪实验报告3 王进

《图像探测、跟踪与识别技术》 实验报告 专业:探测制导与控制技术 学号:11151201 姓名:王进 2014 年11月

实验三复杂场景下目标的检测与跟踪 一、实验目的 1. 学习不同目标跟踪算法,对比不同算法对于复杂场景的效果; 2. 学习OpenCV与VS2010的联合编程,提高编程能力。 二、实验要求 1. 要求学生至少使用一种目标跟踪算法对视频中出现的目标进行跟踪; 2. 检验所选算法在复杂场景下的效果; 3. 使用VS2010/2012和OpenCV进行编程; 4. 本实验不要求目标检测,所以目标可以手动标出。 三、实验步骤 1. 想办法找到目标(可手动框出)。 2. 编写目标跟踪函数代码; 四、实验报告 1、CAMSHIFT算法原理 CAMSHIFT算法是利用目标的颜色直方图模型将图像转换为颜色概率分布图,初始化一个搜索窗的大小和位置,并根据上一帧得到的结果自适应调整搜索窗口的位置和大小,从而定位出当前图像中目标的中心位置。 这个算法可以分为三个部分: 1、色彩投影图(反向投影): (1).RGB颜色空间对光照亮度变化较为敏感,为了减少此变化对跟踪效果的影响,首先将图像从RGB空间转换到HSV空间。(2).然后对其中的H分量作直方图,在直方图中代表了不同H分量值出现的概率或者像素个数,就是说可以查找出H分量大小为h的概率或者像素个数,即得到了颜色概率查找表。(3).将图像中每个像素的值用其颜色出现的概率对替换,就得到了颜色概率分布图。这个过程就叫反向投影,颜色概率分布图是一个灰度图像。 2、MEANSHIFT MEANSHIFT算法是一种密度函数梯度估计的非参数方法,通过迭代寻优找到概率分布的极值来定位目标。 算法过程为: (1).在颜色概率分布图中选取搜索窗W (2).计算零阶距: 计算一阶距:

目标检测、跟踪与识别技术与现代战争

《图像检测、跟踪与识别技术》论文 论文题目: 图像检测、跟踪与识别技术与现代战争 专业:探测制导与控制技术 学号:35152129 姓名:刘孝孝

目标检测、跟踪与识别技术与现代战争 【摘要】本文讨论目标检测、跟踪与识别技术在现代战争各个领域中的应用,总结目标识别技术的发展方向,提出目标识别技术工程化实现方法,同时本文介绍了国外目标识别的现状及发展趋势,提出了现代战争应采用综合识别系统解决目标识别问题的建议。 关键词目标检测;目标跟踪;目标识别;雷达;人工神经网络;精确制导 1.引言 随着现代科学技术的飞速发展及其在军事领域内日益广泛的应用,传统的作战思想、作战方式已发生根本性的变化。从第一次海湾战争到科索沃战争,特别是刚刚结束的海湾战争,空中精确打击和空地一体化作战已经成为最重要的作战形式。集指挥、控制、通信、计算机、情报、监视侦察于一体的C ISR 已成为取得战场主动权,赢得最后胜利的关键因素。目标识别技术是雷达智能化、信息化的重要技术支撑手段。在现代化战争中,目标识别技术在预警探测、精确制导、战场指挥和侦察、敌我识别等军事领域都有广泛的应用前景,已受到了世界各国的关注。 现代战争中取得战场制信息权的关键之一是目标属性识别。现代战争的作战环境十分复杂,作战双方都在采用相应的伪装、隐蔽、欺骗和干扰等手段和技术,进行识别和反识别斗争。因此仅仅依靠一种或少数几种识别手段很难准确地进行目标识别,必须利用多个和多类传感器所收集到的多种目标属性信息,综合出准确的目标属性,进行目标检测,跟踪后进行识别。 2.目标检测、跟踪与识别技术在现代战争中的应用 2.1 目标检测、跟踪与识别技术在预警探测上的应用 目标检测、跟踪与识别技术对于弹道导弹的预警工作有重要的作用。弹道导弹一般携带多个弹头,其中可能包含核弹头或大规模杀伤的弹头以及常规弹头,预警雷达必须具备对目标进行分类和识别真假弹头的能力,将核弹头或大规模杀伤的弹头分离出来,为弹道导弹防御(BMD)系统进行目标攻击和火力分配提供依据。早期的BMD系统假设只有一个核弹头,多弹头分导技术的出现,使问题转化为雷达的多目标识别问题,加上电子对抗技术的广泛使用,给目标识别技术带来很大困难。另外,预警雷达还要对空中目标或低空目标进行探测,对来袭目标群进行分类识别。利用星载雷达以及远程光学望远镜等观测设备,可以对外空目标进行探测,对外空来袭目标进行分类和识别,达到早期预警的工作。 2.2 目标检测、跟踪与识别技术在精确制导上的应用 精确制导方式很多,包括主动式、半主动式和被动式寻的制导方式,通过设在精确制导武器

(完整版)视频目标检测与跟踪算法综述

视频目标检测与跟踪算法综述 1、引言 运动目标的检测与跟踪是机器视觉领域的核心课题之一,目前被广泛应用在视频编码、智能交通、监控、图像检测等众多领域中。本文针对视频监控图像的运动目标检测与跟踪方法,分析了近些年来国内外的研究工作及最新进展。 2、视频监控图像的运动目标检测方法 运动目标检测的目的是把运动目标从背景图像中分割出来。运动目标的有效分割对于目标分类、跟踪和行为理解等后期处理非常重要。目前运动目标检测算法的难点主要体现在背景的复杂性和目标的复杂性两方面。背景的复杂性主要体现在背景中一些噪声对目标的干扰,目标的复杂性主要体现在目标的运动性、突变性以及所提取目标的非单一性等等。所有这些特点使得运动目标的检测成为一项相当困难的事情。目前常用的运动目标检测算法主要有光流法、帧差法、背景相减法,其中背景减除法是目前最常用的方法。 2.1帧差法 帧差法主要是利用视频序列中连续两帧间的变化来检测静态场景下的运动目标,假设f k(x, y)和f(k i)(x, y)分别为图像序列中的第k帧和第k+1帧中象素点(x,y)的象素值,则这两帧图像的差值图像就如公式2-1所示: Diff ki f k(x, y) f(k 1)(x, y)(2-1)2-1式中差值不为0的图像区域代表了由运动目标的运动所经过的区域(背景象素值不变),又因为相邻视频帧间时间间隔很小,目标位置变化也很小,所以运动目标的运动所经过的区域也就代表了当前帧中运动目标所在的区域。利用此原理便可以提取出目标。下图给出了帧差法的基本流程:1、首先利用2-1式得到第k帧和第k+1帧的差值图像Diff k 1;2、对所得到的差值图像Diff k 1二值化(如 式子2-2示)得到Qk+1 ;3、为消除微小噪声的干扰,使得到的运动目标更准 确,对Q k 1进行必要的滤波和去噪处理,后处理结果为M k 1。 1

人形目标检测与跟踪

——人形目标检测与跟踪

一、 本组研究方案,算法系统框图 二、 检测算法、原理、程序实现方法、调试过程 【视频处理】 老师提供的两端视频两段视频并不能直接用来输入OpenCV 所编程序处理,需要将其转化为无压缩的avi 格式。利用软件WinAVI Video Converter ,转换为ZJMedia uncompressed RGB24格式。 【背景建模】 我们小组利用N 帧图像的平均来求取背景,并实时对背景进行更新。由于考虑到ExhibitionHall.avi 视频中运动物体所占场景比例少,运动轨迹为直线,为了处理的简单,所以在这不刻意区分物体和背景像素点。即(1)(1)()()A A A B k B k I k αα+=-+ ,这里的α 很小(0.003) 。 【前景提取】 灰度图像的处理比彩色图像的处理过程简单。我们小组将读入的彩色图像变成灰度图像,并二值化;同样,背景也进行二值化。两者做差值,得到一些离散的黑白点块。也就

是要识别的目标。但是,这样得到的块是分散开的,程序 并不能完整的把它们识别成一个人形,而是一个本来很完 整的人形被分块识别成多个目标。为此,我们做了一些简 单的后处理。先腐蚀元素,去除不必要的杂点,然后进行 膨胀块处理,自定义块的大小,使其膨胀成能被识别成一 个人形的目标。另外,我们还做个简单的高斯低通滤波, 是得到的结果光滑些。其流程图如右。 【目标检测】 根据前景处理的结果,得到一些连续的块目标。利用帧间差,可以提取出目标的轮廓。根据轮廓的位置分布,计算出检测目标的形心和大小。并予以标记。 【目标跟踪】 根据目标帧间的位移差值,可以计算出运动目标在x ,y 方向上的运动速度。可以利用这个关系判断下一帧目标的位置。设置一个合适的阈值,就可以实现目标的跟踪。在此,我们还引入了重叠判断机制。如果目标重叠,即通过遍历,发现块重叠大于一定阈值后,根据前面得到的位置预测判断当前物块位置;如果不重叠,则遍历这幅图像中的所有物块,寻找临近最优物块,以保持编号连续性。在目标跟踪过程中,还进行了Kalman 滤波,对目标轨迹进行滤波处理。 目标跟踪 …… 目标 (Id,Pos,Size) 目标 (Id,Pos,Size) 目标 1 目标 (Pos,Size) 目标 (Pos,Size) 目标N 目标 (Pos,Size) 目标 (Pos,Size)

多目标跟踪方法研究综述

经过近40多年的深入研究和发展,多目标跟踪技术在许多方面都有着广泛应用和发展前景,如军事视觉制导、机器人视觉导航、交通管 制、 医疗诊断等[1-2]。目前,虽然基于视频的多运动目标跟踪技术已取得了很大的成就,但由于视频中图像的变化和物体运动的复杂性,使得对多运动目标的检测与跟踪变得异常困难,如多目标在运动过程中互遮挡、监控场景的复杂性等问题,解决上述难题一直是该领域所面临的一个巨大挑战,因此,对视频中多目标跟踪技术研究仍然是近年来一个热门的研究课题[3-5]。 1、多目标跟踪的一般步骤 基于视频的多目标跟踪技术融合了图像处理、模式识别、人工智能、 自动控制以及计算机视觉等众多领域中的先进技术和核心思想。不同的多目标跟踪方法其实现步骤有一定的差异,但多目标跟踪的主要 流程是相同的,如图1所示,其主要包括图像预处理、 运动目标检测、多目标标记与分离、多目标跟踪四个步骤。 图1多目标跟踪基本流程图 2、多目标跟踪方法 多目标跟踪方法可以根据处理图像或视频获取视点的多少分为两大类,一类是单视点的多目标跟踪,另一类就是多视点的多目标跟踪。 2.1单视点的方法 单视点方法是针对单一相机获取的图像进行多目标的检测和跟踪。该方法好处在于简单且易于开发,但由于有限的视觉信息的获取,很难处理几个目标被遮挡的情况。 块跟踪(Blob-tracking)是一种流行的低成本的跟踪方法[6-7]。这种方法需要首先在每一帧中提取块,然后逐帧寻找相关联的块,从而实现跟 踪。 例如BraMBLe系统[8]就是一个基于已知的背景模型和被跟踪的人的外表模型计算出块的似然性的多块跟踪器。这种方法最大的不足之处在于:当由于相似性或者遮挡,多个目标合并在一起时,跟踪将导致失败。因此,可以取而代之的方法是通过位置、外观和形状保留清晰目标的状态。文献[9]利用组合椭圆模拟人的形状,用颜色直方图模拟不同人的外观,用一个增强高斯分布模拟背景以便分割目标,一旦场景中发现对应于运动头部的像素,一个MCMC方法就被用于获取多个人的轮廓的最大后验概率,在单相机的多人跟踪应用中取得了非常有意义的结果。Okuma等人提出了一种将Adaboost算法和粒子滤波相结合的方法[10]。该方法由于充分利用了两种方法的优点,相比于单独使用这两种方法本身,大大降低了跟踪失败的情形,同时也解决了在同一框架下检测和一致跟踪的问题。Brostow等人提出了一个用于在人群中检测单个行人的特征点轨迹聚类的概率框架[11]。这个框架有一个基本假设是一起运动的点对可能是同一个个体的一部分,并且把它用于检测和最终的跟踪。对于完全和部分遮挡目标以及外观变化,这些方法和另外一些相似的方法都有很大的局限性。 为了解决遮挡问题,一系列单视点跟踪技术应运而生。典型的方法 是利用块合并来检测遮挡的发生[12]。当被跟踪的点消失, 跟踪特征点的方法就简单的将其作为一个被遮挡特征点。近年来,基于目标轮廓和外观的跟踪技术利用隐含的目标到相机的深度变化来表示和估计目标间的遮挡关系。但大多数方法都只能解决部分遮挡,不能解决完全被遮挡 的情况。 另外,小的一致运动被假设为是可以从遮挡视点中可以预测运动模式的,这些给没有预测运动的较长时间的遮挡的处理带来问题。尽管这些单视点的方法有较长的研究历史,但这些方法由于不能明锐的 观察目标的隐藏部分,因此不能很好地解决有2或3个目标的遮挡问题。 2.2多视点的方法 随着复杂环境中对检测和跟踪多个被遮挡的人和计算他们的精确 位置的需要,多视点的方法成为研究的热点。 多视点跟踪技术的目的就是利用不同视点的冗余信息,减少被遮挡的区域,并提供目标和场景的3D信息。尽管通过相机不能很好地解决目标跟踪问题,但却提出了一些很好的想法,如选择最佳视点,但这些方法都以实际环境模型和相机校正为特征。 90年代后半期,在很多文献中给出了多视点相关的多目标跟踪方法。 比如利用一个或多个相机与观察区域相连的状态变化映射,同时给出一系列的行为规则去整合不同相机间的信息。利用颜色在多个视点中进行多目标的跟踪的方法,该方法模拟了从基于颜色直方图技术的 背景提取中获得的连接块并应用其去匹配和跟踪目标。 除此之外,也有在原来的单视点跟踪系统进行扩展的多视点跟踪方法。该方法主要是通过一个预测,当预测当前的相机不在有一个好的视点时,跟踪就从原来凯斯的那个单相机视点的跟踪转换到另外一个相机,从而实现多视点的跟踪。基于点与它对应的极线的欧氏距离的空间匹配方法、贝叶斯网络和立体相对合并的方法都是多目标多视点跟踪的常见方法。尽管这些方法都试图去解决遮挡问题,但由于遮挡的存在,基于特征的方法都不能根本解决,其次,这些方法中的遮挡关系的推理一般都是根据运动模型,卡尔曼滤波或者更普遍的马尔科夫模型的时间一致性来进行的。因此,当这个过程开始发散,这些方法也不能恢复遮挡关系。 最近一种基于几何结构融合多个视点信息的Homegraphicoccupancyconsrraint(HOC)[12]方法,可以通过在多场景平台对人的定位来解决遮挡问题。仅采用随时间变化的外表信息用于从背景中检测前景,这使得在拥挤人流的场景中的外表遮挡的解决更健壮。利用多视点中的前景信息,主要是试图找到被人遮挡的场景点的图像位置,然后这些被遮挡的信息用于解决场景中多个人的的遮挡和跟踪问题。在这种思想指导下,Mittal,Leibe,Franco等的研究工作和机器人导航中基于遮挡网格的距离传感器的并行工作是相似的,这些方法在融合3D空间信息的时候需要进行校正相机。但HOC方法是完全基于图像的,仅需要2D结构信息进行图像平面的融合。当然也有另外一些不需要进行相机校正的算法被提出,但需要学习一个与相机最小相关的信息。在目标跟踪过程中,由于这些方法依赖于单个相机的场景,对于拥挤场景中目标分布密度增加九无能为力了。在HOC的多视点的目标跟踪中,对于任何单一相机的场景,或者相机对的场景,都不需要进行定位和跟踪目标,而是从所有相机的场景中收集证据,形成一个统一的框架,由于该方法能够从多个时间帧的场景中进行场景被遮挡概率的全局轨迹优化,因此可以同时进行检测和跟踪。 3、总结 动态目标检测与跟踪是智能监控系统的重要组成部分,它融合了图像处理、模式识别、自动控制及计算机应用等相关领域的先进技术和研究成果,是计算机视觉和图像编码研究领域的一个重要课题,在军事武器、工业监控、交通管理等领域都有广泛的应用。尤其是对于多目标检测与跟踪中的遮挡与被遮挡的处理,对提高智能监控中目标的行为分析有着重要的意义。随着监控设备的发展和设施的铺设,多视点的场景图像是很容易得到的,因此借助信息融合的思想,充分利用不同角度对目标的描述信息,可以很大地改进目前基于单视点的多目标检测和跟踪的精度,能够很好地解决单视点方法中不能很好解决的遮挡问题。参考文献 [1]胡斌,何克忠.计算机视觉在室外移动机器人中的应用.自动化学报,2006,32(5):774-784. [2]A.Ottlik,H.-H.Nagel.InitializationofModel-BasedVehicleTrackinginVideoSequencesofInner-CityIntersections.InternationalJournalofComputerVision,2008,80(2):211-225.多目标跟踪方法研究综述 苏州联讯图创软件有限责任公司 陈宁强 [摘要]文章对目前现有的多目标跟踪方法从信息获取的不同角度进行了综述。主要分析比较了目前单视点和多视点目标跟踪方 法对于目标遮挡问题的处理性能,并指出多视点的基于多源信息融合的思想,可以较好地解决场景中目标的遮挡问题。[关键词]单视点多视点目标跟踪信息融合基金项目:本文系江苏省自然科学基金(BK2009593)。 作者简介:陈宁强(1973-),男,江苏苏州人,工程师,主要研究方向:GIS、模式识别和图像处理与分析。 目标跟踪多目标标记与分离 匹配 目标模型 运动检测当前帧图像 背景提取 去噪 ROI 预处理 视频序列 (下转第26页)

(目标管理)目标检测、跟踪与识别技术与战争

(目标管理)目标检测、跟踪与识别技术与战争

《图像检测、跟踪和识别技术》论文 论文题目: 图像检测、跟踪和识别技术和现代战争 专业:探测制导和控制技术 学号:35152129 姓名:刘孝孝 目标检测、跟踪和识别技术和现代战争 【摘要】本文讨论目标检测、跟踪和识别技术于现代战争各个领域中的应用,总结目标识别技术的发展方向,提出目标识别技术工程化实现方法,同时本文介绍了国外目标识别的现状及发展趋势,提出了现代战争应采用综合识别系统解决目标识别问题的建议。 关键词目标检测;目标跟踪;目标识别;雷达;人工神经网络;精确制导 1.引言 随着现代科学技术的飞速发展及其于军事领域内日益广泛的应用,传统的作战思想、作战方式已发生根本性的变化。从第壹次海湾战争到科索沃战争,特别是刚刚结束的海湾战争,空中精确打击和空地壹体化作战已经成为最重要的作战形式。集指挥、控制、通信、计算机、情报、监视侦察于壹体的CISR已成为取得战场主动权,赢得最后胜利的关键因素。目标识别技术是雷达智能化、信息化的重要技术支撑手段。于现代化战争中,目标识别技术于预警探测、精确制导、战场指挥和侦察、敌我识别等军事领域均有广泛的应用前景,已受到了世界各国的关注。 现代战争中取得战场制信息权的关键之壹是目标属性识别。现代战争的作战环境十分复杂,作战双方均于采用相应的伪装、隐蔽、欺骗和干扰等手段和技术,进行识别和反识别斗争。因此仅仅依靠壹种或少数几种识别手段很难准确地进行目标识别,必须利用多个和多类

传感器所收集到的多种目标属性信息,综合出准确的目标属性,进行目标检测,跟踪后进行识别。 2.目标检测、跟踪和识别技术于现代战争中的应用 2.1目标检测、跟踪和识别技术于预警探测上的应用 目标检测、跟踪和识别技术对于弹道导弹的预警工作有重要的作用。弹道导弹壹般携带多个弹头,其中可能包含核弹头或大规模杀伤的弹头以及常规弹头,预警雷达必须具备对目标进行分类和识别真假弹头的能力,将核弹头或大规模杀伤的弹头分离出来,为弹道导弹防御(BMD)系统进行目标攻击和火力分配提供依据。早期的BMD系统假设只有壹个核弹头,多弹头分导技术的出现,使问题转化为雷达的多目标识别问题,加上电子对抗技术的广泛使用,给目标识别技术带来很大困难。另外,预警雷达仍要对空中目标或低空目标进行探测,对来袭目标群进行分类识别。利用星载雷达以及远程光学望远镜等观测设备,能够对外空目标进行探测,对外空来袭目标进行分类和识别,达到早期预警的工作。 2.2目标检测、跟踪和识别技术于精确制导上的应用 精确制导方式很多,包括主动式、半主动式和被动式寻的制导方式,通过设于精确制导武器外部的制导站的遥控制导方式,利用地形(高度)匹配和景像(灰度)匹配制导方式,只依靠弹上惯性部件提供制导数据,而不依赖外部信息的惯性制导方式,利用卫星定位(GPS)系统的GPS制导方式。任何壹种制导方式均有其优缺点,壹般来讲,远程精确制导武器均采用俩种之上的制导方式构成复合制导系统,这样不仅能提高制导精度而且也能增强抗干扰能力。于导弹飞行中对目标进行识别,然后进行攻击的技术已经成为这个领域的壹个研究热点,目标成像识别技术将是当前的发展方向。大量的研究试验表明,采用高分辨率雷达获得目标的壹维或二维图像,可使目标识别变得简易而清晰。如美军研制的反导系统陆基相控阵雷达,采用宽带逆合成孔径(ISAR)技术,即利用“距离壹多普勒”的原理,实现对活动目标的雷达

视频目标跟踪算法综述_蔡荣太

1引言 目标跟踪可分为主动跟踪和被动跟踪。视频目标跟踪属于被动跟踪。与无线电跟踪测量相比,视频目标跟踪测量具有精度高、隐蔽性好和直观性强的优点。这些优点使得视频目标跟踪测量在靶场光电测量、天文观测设备、武器控制系统、激光通信系统、交通监控、场景分析、人群分析、行人计数、步态识别、动作识别等领域得到了广泛的应用[1-2]。 根据被跟踪目标信息使用情况的不同,可将视觉跟踪算法分为基于对比度分析的目标跟踪、基于匹配的目标跟踪和基于运动检测的目标跟踪。基于对比度分析的跟踪算法主要利用目标和背景的对比度差异,实现目标的检测和跟踪。基于匹配的跟踪主要通过前后帧之间的特征匹配实现目标的定位。基于运动检测的跟踪主要根据目标运动和背景运动之间的差异实现目标的检测和跟踪。前两类方法都是对单帧图像进行处理,基于匹配的跟踪方法需要在帧与帧之间传递目标信息,对比度跟踪不需要在帧与帧之间传递目标信息。基于运动检测的跟踪需要对多帧图像进行处理。除此之外,还有一些算法不易归类到以上3类,如工程中的弹转机跟踪算法、多目标跟踪算法或其他一些综合算法。2基于对比度分析的目标跟踪算法基于对比度分析的目标跟踪算法利用目标与背景在对比度上的差异来提取、识别和跟踪目标。这类算法按照跟踪参考点的不同可以分为边缘跟踪、形心跟踪和质心跟踪等。这类算法不适合复杂背景中的目标跟踪,但在空中背景下的目标跟踪中非常有效。边缘跟踪的优点是脱靶量计算简单、响应快,在某些场合(如要求跟踪目标的左上角或右下角等)有其独到之处。缺点是跟踪点易受干扰,跟踪随机误差大。重心跟踪算法计算简便,精度较高,但容易受到目标的剧烈运动或目标被遮挡的影响。重心的计算不需要清楚的轮廓,在均匀背景下可以对整个跟踪窗口进行计算,不影响测量精度。重心跟踪特别适合背景均匀、对比度小的弱小目标跟踪等一些特殊场合。图像二值化之后,按重心公式计算出的是目标图像的形心。一般来说形心与重心略有差别[1-2]。 3基于匹配的目标跟踪算法 3.1特征匹配 特征是目标可区别与其他事物的属性,具有可区分性、可靠性、独立性和稀疏性。基于匹配的目标跟踪算法需要提取目标的特征,并在每一帧中寻找该特征。寻找的 文章编号:1002-8692(2010)12-0135-04 视频目标跟踪算法综述* 蔡荣太1,吴元昊2,王明佳2,吴庆祥1 (1.福建师范大学物理与光电信息科技学院,福建福州350108; 2.中国科学院长春光学精密机械与物理研究所,吉林长春130033) 【摘要】介绍了视频目标跟踪算法及其研究进展,包括基于对比度分析的目标跟踪算法、基于匹配的目标跟踪算法和基于运动检测的目标跟踪算法。重点分析了目标跟踪中特征匹配、贝叶斯滤波、概率图模型和核方法的主要内容及最新进展。此外,还介绍了多特征跟踪、利用上下文信息的目标跟踪和多目标跟踪算法及其进展。 【关键词】目标跟踪;特征匹配;贝叶斯滤波;概率图模型;均值漂移;粒子滤波 【中图分类号】TP391.41;TN911.73【文献标识码】A Survey of Visual Object Tracking Algorithms CAI Rong-tai1,WU Yuan-hao2,WANG Ming-jia2,WU Qing-xiang1 (1.School of Physics,Optics,Electronic Science and Technology,Fujian Normal University,Fuzhou350108,China; 2.Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Science,Changchun130033,China)【Abstract】The field of visual object tracking algorithms are introduced,including visual tracking based on contrast analysis,visual tracking based on feature matching and visual tracking based on moving detection.Feature matching,Bayesian filtering,probabilistic graphical models,kernel tracking and their recent developments are analyzed.The development of multiple cues based tracking,contexts based tracking and multi-target tracking are also discussed. 【Key words】visual tracking;feature matching;Bayesian filtering;probabilistic graphical models;mean shift;particle filter ·论文·*国家“863”计划项目(2006AA703405F);福建省自然科学基金项目(2009J05141);福建省教育厅科技计划项目(JA09040)

相关主题
文本预览
相关文档 最新文档