当前位置:文档之家› 沥青胶结料路用性能分级评价分析

沥青胶结料路用性能分级评价分析

沥青胶结料路用性能分级评价分析
沥青胶结料路用性能分级评价分析

沥青混合料及其力学性能分析

沥青混合料及其力学性能分析 摘要:目前我国高等级公路主要采用沥青路面结构形式,沥青混合料性能的好 坏直接影响到公路的服务功能和使用年限。现代重载交通要求沥青混合料具有优 良的高温稳定性和其它性能;为提高沥青混合料的性能、实现混合料性能的优化,近年来先后出现了大量的新材料和新理论。本文首先对沥青混合料的级配构成原 理进行了分析,其次对其力学性能做出了分析。 关键词:沥青混合料力学性能级配构成 1引言 随着生产力的发展,现代道路工程的特点反映出愈来愈鲜明的功能化。为了 满足日趋复杂、高效的现代化生产过程和日益上涨的生活水平所提出的各种功能 要求,道路工程的使命愈来愈艰难。从这个意义上看,现代道路工程面临着一场 革命作为道路工程中广泛使用的一种复合材料,沥青混合料是由沥青、矿粉、集料、等多种具有不同力学特性、不同几何形状尺寸的材料所构成的具有多相结构 的非各向同性材料。本文主要对沥青混合料及其力学性能进行了研究,希望能够 为沥青混合料的技术发展提供帮助。 2新型沥青混合料的级配构成原理分析 2.1沥青玛蹄脂碎石混合料(SMA) 沥青玛蹄脂碎石(简称SMA)是一种由沥青、矿粉及纤维稳定剂组成的沥青 玛蹄脂混合料填充于间断级配的矿料骨架中所形成的沥青混合料。其4.75mm以 上的集料含量在70%-80%左右,同时小于0.075mm的填料含量通常达到10%,而0.6-4.75mm的颗粒通常仅有10%左右,而AC-I型混合料的0.6-4.75mm的颗粒通 常达30%。因此SMA混合料是典型的由填料填充在粗集料形成的骨架空隙中形成的骨架密实结构。 2.2多碎石沥青混凝土(SAC) 多碎石沥青混凝土(SAC;)是由我国沙庆林院士于1988年提出的一种沥青 混凝土结构形式。其定义为;4.75mm以上的碎石含量占主要部分的密实级配沥 青混凝土。 SAC是在总结我国传统的工型和II型沥青混凝土的有缺点的基础上提出的。 我国传统的工型沥青混凝土空隙率为设计3-6%,因此耐久性好、透水性小,但表面构造深度较小;同时由于细集料试用较多,粗集料悬浮于沥青和细集料所组成 的密实体系中,因此混合料的稳定性随温度的增加下降明显,从而易出现车辙等 病害。 2.3大粒径沥青混凝土(LSAM) 根据以有的研究成果,LSAM的的典型特点是颗粒尺寸大、粗集料含量高、粗集料接触程度高和主骨架稳定性高。LSAM中粗集料的排列特征和级配对混合料 的体积特征有着较大的影响,甚至起着决定性的作用,也即粗集料间必须充分形 成石一石接触的骨架特征。对于LSAM的骨架特征有两个重要指标;骨架稳定度 和骨架接触度。 2.4SuperPAVE沥青混合料 SuperPAVE推荐的级配采用了0.45次方级配图,此级配图是以Fuller最大密 实度理论(n=0.45)为基础,即此图的对角线即为最大密实度线,级配曲线越靠 近对角线,混合料的密实度越大。为便于级配的选择和创新,SuperPAVE摒弃了 传统的对各个筛孔的通过率都严格控制的方法,而改为仅对关键筛孔(如公称最

彩色沥青

彩色沥青,又叫彩色胶结料,是筑路材料的一种,目前有两种: 1、以无色胶结料加色粉,无色胶结料可以是由沥青脱色而得,也可以由石油树脂等浅色聚合物调配而得; 2、通过沥青直接改性而得,这种胶结料具备沥青的抗老化能力强的特点,颜色为棕红色。 红色彩色沥青采用无色胶结料和铁红色色粉及相应比例的石子和矿粉拌合而成,胶结料掺量为5.5%、色粉添加量为3%。如施工面积按350㎡计算,则胶结料及色粉使用量为: 1、混合料:(350㎡*0.03m)2.4t/m3 =25.2t 2、胶结料:25.2t*5.5%=1.386t 3、色粉: 25.2*3%=0.756t 我司胶结料为200kg一个大桶包装,色粉为25kg一袋包装;则实际使用量为7桶胶结料、30袋色粉 彩色沥青路面主要是指添加颜料的沥青混凝土路面, 使用彩色石料的沥青路面, 使用石油树脂(脱色沥青) 添加颜料的沥青路面以及在使用改性沥青的透水性路面表面喷涂彩色树脂涂料等. 它在促进道路交通安全和美化街路空间环境领域发挥着重要作用. 在城市交通与环境协调发展的21 世纪,作为一种城市道路面层景观铺装材料具有很好的发展前景. 关键词彩色沥青路面作用前景随着可持续发展和人本主义理论在城市建设中的应用, 景观艺术已经成为城市建

设与发展的重要因素, 传统的城市街路设计与铺装技术已经不能满足现代城市建设的要求. 许多专家对目前状况提出了尖锐的批评,指责目前城市的"地面"普遍缺乏"人性"和"个性" . 人们对路面建设产生了深刻的反思: 路面要不要是美的?显然, 让人们永远活动在色彩千篇一律, 表面质感别无二致的黑色沥青路面和灰白色水泥混凝土路面上, 单调乏味甚至沉闷压抑的心理感受和视觉感受决不能给人们提供一个良好的景观环境, 人们也绝无可能获得一个高质量的生活空间. 于是, 人们开始运用种类繁多的铺装材料和各种各样的施工工艺让路面美起来,彩色沥青路面就是其中的一种. 1 彩色沥青路面的种类 通常所说的彩色沥青路面主要是指添加颜料的沥青混凝土路面,使用彩色石料的沥青路面和使用石油树脂(脱色沥青) 添加颜料的沥青路面等. 近年来, 随着改性沥青的广泛应用, 在使用改性沥青的透水性路面表面喷涂彩色树脂涂料的工艺发展很快, 形成了一种新的彩色路面结构. 1.1 沥青结合料着色将无机金属盐类颜料代替同样体积的矿粉填入沥青或沥青混合料中, 可以得到少量几种着色沥青路面材料.例如将占集料总重5%~7%的氧化铁(俗称红土子)加入沥青混合料中可以得到红色的沥青路面材料;加入5%~10%的氧化铬可以得到墨绿色沥青路面材料.采用这样

沥青胶结料

24-1-4-4 沥青胶结料(玛碲脂)粘贴油毡施工 铺贴油毡时,找平层和冷底子油必须干燥。沿屋面板端头接缝处,应空铺一层宽约200~300cm(寒冷地区宜适当加宽)油毡,与找平层部粘结(或一边粘结),以适应屋面板的变形。铺贴油毡的操作要点如下: 1、浇涂玛碲脂浇油法用带嘴油壶将玛碲脂左右来回在油毡前浇油,其宽度比油毡每边少约10~20mm,速度不宜太快。浇洒量以油毡铺贴后,中间满着玛碲脂,并使两边少有挤出,其厚度控制在1~1.5mm为宜,最厚不得超过2mm。油少了油毡不能很好粘牢,油多了油毡容易产生流淌; 涂刷法一般用长柄棕刷(或粗帆布刷等)将玛碲脂均匀涂刷,宽度比油毡稍厚,不宜在同一地方反复多次刷涂,以免玛碲脂很快冷却而影响粘结质量。 如操作熟练,浇油法比涂刷法好。 2、铺贴油毡铺贴时两手按住油毡,均匀地用力将油毡向前推滚,使油毡与下层紧密粘结。避免铺斜、扭曲和出现未粘结玛碲脂之处(如铺贴油毡经验较少,为避免铺斜等情况,可以在基层或下层油毡上预先弹出统长灰线,按灰线边推铺油毡)。 3、收边滚压在推铺油毡时,操作的其他人员应将毡边挤出的玛碲脂及时刮去,并将毡边压紧粘住,刮平、赶出气泡。如出现粘结不良的地方,可用小刀将油毡划破,再用玛碲脂贴紧、封死、赶平,最后在上面加贴一块油毡将缝盖住。 24-1-4-5 油毡湿铺法施工

当水泥砂浆找平层干燥确有困难而又需立即在潮湿基层上铺贴油毡,这种施工方法称为油毡湿铺法施工。其操作要点是:冷底子油宜在水泥砂浆找平层抹平压光后2~6h左右立即进行(表面有强度,能站人而无印痕),最好用喷涂法进行。喷涂的冷底子油要稍稠一些,待冷底子油干燥后即可进行铺贴油毡。油铺法也常常结合排气屋面进行。

彩色沥青混凝土路面

彩色沥青混凝土路面 一、定义 所谓彩色沥青混凝土路面是指脱色沥青与各种颜色石料、色料和添加剂等材料在特定的温度下混合拌和,即可配制成各种色彩的沥青混合料,再经过摊铺、碾压而形成具有一定强度和路用性能的彩色沥青混凝土路面。 一、彩色路面工程 1、改性彩色沥青路面:采用改性彩色沥青胶结料、矿物燃料、相同色系的石料、特色添加剂等,经专业设备热拌、摊铺、压实。色彩鲜艳不退,路面经久耐用。 2、高弹性彩色沥青广(操)场:采用特别改性的高弹性彩色沥青胶结料、矿物颜料、特种添加剂、特殊的矿料级配,经专业设备热拌、摊铺、压实。其高弹性来自工程的整体结构而非塑胶工程的表面,是塑胶广(操)场的换代产品。 3、反光彩色沥青路面:在彩色沥青路面施工中,采用专用设备向表层加入反光材料。铺筑的路面在灯光照射下呈现鲜艳的彩色,不仅为夜行提供方便,更是一道独特的夜间风光。 二、彩色沥青材料: 1、改性彩色沥青胶结料。各种不同标号的胶结料供用户选用,也可按用户要求的标号生产胶结料。由专用设备运输,直接与用户的拌和站对接供料。 2、矿物颜料,按用户采购的石料情况,经试验确定颜料用量,可按用户要求提供颜料。 3、热拌彩色沥青混合料:较近距离范围内可由生产基地直接提供热拌料。 三、沥青设备制造 1、各种储量、产量的导热油快热节能沥青库、灌。 2、各种储量、产量的直热式快热节能沥青库、灌。 3、彩色沥青设备;沥青改性、沥青乳化设备;冷、热沥青撒布罐 二、彩色沥青混凝土路面主要性能特点

(1)具有良好的路用性能,在不同的温度和外部环境作用下,其高温稳定性、抗水损坏性及耐久性均非常好,且不出现变形、沥青膜剥落等现象,与基层粘结性良好。 (2)具有色泽鲜艳持久、不褪色、能耐77℃ 的高温和-23℃的低温,维护方便。 (3)具有较强的吸音功能,汽车轮胎在马路上高速滚动时,不会因空气压缩产生强大的噪音,同时还能吸收来自外界的其他噪音。 (4)具有良好弹性和柔性,“脚感”好,最适合老年人散步,且冬天还能防滑,再加上色彩主要来自石料自身颜色,也不会对周围环境造成大的危害。 三、彩色沥青与黑色沥青的区别 彩色沥青路面主要是指添加颜料的沥青混凝土路面,使用石油树脂(浅色沥青)以及在混合料中添加颜料的沥青路面,彩色沥青所使用的为浅色(或无色)胶结料,是目前使用较多的品种,它是采用现代石油化工产品,如芳香油、聚合物、树脂等调配出与普通沥青性能相当的结合料,再加入某种颜料,使之呈现出某种色彩。根据需要,可以添加不同类型的色彩,达到要求的美感以及使用功能。而黑色沥青主要使用道路石油沥青,是原油加工过程的一种产品,在常温下是黑色或黑褐色的粘稠的液体、半固体或固体,由于沥青中的所含的沥青质是黑色无定型物质,其含量为2%-15%,所以显现出来的为黑色。

沥青胶结料疲劳损伤机理研究

沥青胶结料疲劳损伤机理研究 发表时间:2019-09-11T15:08:20.703Z 来源:《建筑学研究前沿》2019年10期作者:常志慧 [导读] 本文系统阐述了疲劳损伤机理以及疲劳过程中的自愈与触变现象,对自愈合机理、自愈合评价方法以及自愈合影响因素进行了总结,疲劳的评价指标:初始模量的50%-50%G*、疲劳因子G*sinδ、耗散能变化率DR、累积耗散能比DER。 山东建筑大学山东省济南市 250100 摘要:疲劳破坏是沥青路面结构基础理论与设计的本源性问题,因此沥青及沥青混合料的疲劳损伤特性多年来一直倍受研究者们的关注和重视。本文系统阐述了疲劳损伤机理以及疲劳过程中的自愈与触变现象,对自愈合机理、自愈合评价方法以及自愈合影响因素进行了总结,疲劳的评价指标:初始模量的50%-50%G*、疲劳因子G*sinδ、耗散能变化率DR、累积耗散能比DER。 关键词:沥青胶结料;损伤机理;触变性;自愈性 0 引言 近年来,随着交通运输事业的快速发展,交通量迅速增加,车辆轴载不断增大,重载交通日益严重,沥青路面的设计、养护和维修面临越来越严峻的考验。路面在使用过程中,不仅受到车辆荷载的重复作用,还受到环境温度变化所产生的温度应力影响。在应力应变反复作用下,路面材料的强度逐渐衰减。本文基于触变性和自愈性对沥青胶结料的损伤机理进行研究。 1 疲劳损伤机理 损伤力学的发展为研究材料在重复荷载作用下的力学行为提供了新的手段。疲劳损伤与疲劳断裂不同,通常很难像材料内部裂纹扩展那样通过精确计算加以描述,而是更加关注研究材料内部缺陷的累积和发展,及其所表现出的宏观物理力学性能的衰变。疲劳损伤演化的程度用损伤因子D表示,损伤因子D是荷载历程的函数,称为损伤演化函数。 损伤演化本构模型是指损伤影响下的应力、应变关系。通过损伤演化函数和无损伤影响下的本构关系,建立损伤过程中材料的本构关系。损伤演化本构模型的优点是可以预测材料的实测性能,减少试验时间和试件数量。郑健龙等将Burgers模型的本构关系与连续损伤演化模型二者耦合建立了沥青的粘弹性损伤本构模型[1]。Zhu等将粘弹塑本构关系与损伤函数叠加,得出沥青混合料粘弹-粘塑性损伤本构模型,该模型可以较好描述沥青混合料三轴蠕变、三轴等应变速率压缩等加载模式下的力学行为[2]。曾国伟在叶永等提出的粘弹塑性模型的基础上,采用有效应变指数形式的损伤演化函数,建立起了形式简单、能描述不同条件下蠕变全过程的沥青混合料蠕变损伤本构模型[3]。Darabi 等人将粘弹、粘塑、损伤和愈合四部分的本构关系组合,建立了 VE-VP-VD-H 模型(粘弹-粘塑-损伤-愈合模型),粘弹部分基于广义 Maxwell 模型,粘塑部分依据 Perzyna提出的粘塑流动规律,损伤函数基于应变等效。 2 触变性自愈性 2.1 触变性 随着人们对沥青性能研究的不断深入,沥青的自愈性和触变性受到了越来越多的关注和重视,研究者们已经开始注意到沥青的疲劳不仅与损伤有关,而且与沥青的触变性直接相关[6,7]。 触变性可分为三种:正触变性、负触变性、复合触变性[8]。正触变性是指在剪切外力作用下体系的粘度随时间增加而下降,静止后又恢复,即具有时间依赖性的剪切变稀现象;负触变性,又称振凝性,正好与正触变性相反,是一种具有时间依赖性的剪切变稠现象,即在外切力作用下,体系的粘度上升,静置以后又恢复的现象;复合触变性现象是发现最晚的一种触变现象,对其进行的研究也相对较少。所谓复合触变性是指一个特定体系可先后呈现出正触变性和负触变性[9]。 单丽岩[10]将触变性引入到沥青疲劳特性的研究中,量化了触变性对疲劳过程的影响,实现了触变性从沥青疲劳全过程中的分离。Liyan Shan[11]采用触变环法、阶跃试验法和动态模量法研究了四种沥青使用温度下的触变性;根据单一剪变率剪切试验建立了指数触变模型;根据动态模量试验建立了扩展指数模型;结合稳态剪切试验结果建立了沥青的结构动力触变模型。Virginie Mouillet等人[12]采用哈克流变仪的锥-平板触变试验设备对沥青开展了时间扫描和应力扫描,采取正弦加载模式,以复合模量为触变性的评价指标,考察了试验温度(10~30℃)、加载频率(0.07、0.1、0.7 Hz)、加载持续时间(10~90 min)等对触变性的影响。 2.2 自愈性 包括裂纹表面能机理、裂缝表面润湿与分子扩散理论、毛细流动理论、相变理论。模型建立了自愈合速率与表面能的关系,通过压缩蠕变试验和表面能的测量,可以预估沥青混合料的自愈合速率,揭示了裂纹自愈合的动力来自裂缝表面能的降低,但是也存在不足之处,如假设裂缝的扩展是连续的并且裂缝的扩展速率是由基于线弹性的 Paris 法则决定的。 从材料学角度来看,沥青也属于聚合物类材料,所以关于沥青裂缝自愈合机理的研究主要是借鉴聚合物材料的相关研究成果。Kim认为高分子聚合物的自愈合过程包括:(1)表面重组;(2)表面接近;(3)润湿;(4)扩散;(5)随机重组。在荷载间歇期,沥青的自愈合机理有两个方面:一方面是由于沥青的粘弹性性质引起的应力松弛;另一方面则是裂缝两表面的化学性愈合,沥青的化学组成及其性质会影响裂缝界面分子的扩散与重排。 3 结论 本文系统阐述了沥青胶结料及沥青混合料的疲劳特性,其主要包括沥青胶结料的疲劳损伤机理以及疲劳过程中的自愈与触变现象,对自愈合机理、自愈合评价方法以及自愈合影响因素进行了总结。 参考文献 [1]郑健龙,吕松涛,田小革.基于蠕变试验的沥青粘弹性损伤特性[J].工程力学,2008,25(2):193-196 [2]Haoran Zhu,Lu Sun.A Viscoelastic-viscoplastic Damage Constitutive Model for Asphalt Mixtures Based on Thermodynamic[J].International Journal of Plasticity,2013,40:81-100. [3]曾国伟,杨新华,白凡,尹安毅.沥青砂粘弹塑蠕变损伤本构模型实验研究[J].工程力学,2013,30(4):249-253.

钻井液常规性能测试

中国石油大学(华东)油田化学基础实验报告 班级:石工1412 学号:姓名:教师:范鹏 同组者: 实验日期: 2016.9.28 实验一、钻井液常规性能测试 一、实验目的 1、掌握六速旋转粘度计的使用方法以及钻井液表观粘度、塑性粘度和动切力的测定和计算方法; 2、掌握静滤失仪的使用方法以及钻井液滤失量、pH值和泥饼厚度的测定方法; 3、掌握钻井液膨润土含量的实验原理和测定方法; 4、掌握钻井液密度的测定方法; 5、掌握钻井液漏斗粘度的测定方法; 二、实验装置 钻井液:400ml 高速搅拌机六速旋转粘度计打气筒失水仪滤纸量筒秒表钢板尺 PH试纸亚甲基兰溶液酸式滴定管玻璃棒 三、实验步骤 1、用高速搅拌器高速搅拌钻井液10min。 2、使用六速旋转粘度计测定并计算钻井液表观粘度、塑性粘度和动切力; 3、使用打气筒滤失仪测定钻井液滤失量、泥饼厚度和pH值; 4、测定并计算钻井液膨润土含量; 5、学习并掌握测定钻井液密度的方法; 6、学习并掌握测定钻井液漏斗粘度的方法。

四、实验数据记录与处理 1.数据记录 实验二无机电解质对钻井液的污染及调整 污染实验数据班级汇总表

2.数据处理 本组实验所得数据处理结果: 表面粘度AV=0.5 x Ф600=0.5x12=6 mPa.s 塑性粘度 PV=Ф600-Ф300=12-7=5 mPa.s 动切力YP=0.511 x (2 x Ф300-Ф600)=1.022 Pa 钻井液膨润土含量= 泥甲V 01.0V ?×70100 ×1000=14.3×泥 甲V V =14.3× 2 6 5?=40.04 g/l (1)基浆: 表面粘度AV=0.5 x Ф600=0.5x11=5.5 mPa.s 塑性粘度 PV=Ф600-Ф300=11-7=4 mPa.s 动切力YP=0.511 x (2 x Ф300-Ф600)=1.533 Pa (2)加量0.25g/100ml CaCl 2 泥浆: 表面粘度AV=0.5 x Ф600=0.5x16=8 mPa.s 塑性粘度 PV=Ф600-Ф300=16-12=4 mPa.s 动切力YP=0.511 x (2 x Ф300-Ф600)=4.088 Pa (3)加量0.50g/100ml CaCl 2 泥浆: 表面粘度 AV=0.5 x Ф600=0.5x18=9 mPa.s 塑性粘度 PV=Ф600-Ф300=18-15=3 mPa.s 动切力YP=0.511 x (2 x Ф300-Ф600)=6.132 Pa (4)加量0.75g/100ml CaCl 2 泥浆: 表面粘度 AV=0.5 x Ф600=0.5x19=9.5 mPa.s

SMA与Sup沥青混合料性能指标对比

SMA与Sup沥青混合料性能指标对比

性好,综合性能有明显改善的沥青面层混合料。同时,由于沥青马蹄脂的粘结作用,使低温变形能力和水稳定性有较大改善。SMA的空隙率很小(3%~4%)几乎不透水,混合料受水的影响很小。由于粗集料比例占70%以上,路面压实后表面形成较大孔隙,构造深度大,使抗滑性能提高。Superpave沥青混合料较传统的密实悬浮类混合料的抗车辙性能有了明显的改善,这一设计方法的最大亮点即为引用了混合料的体积性质作为设计的关键标准,同时旋转压实的成型工艺也较传统的马歇尔击实成型的方法更能模拟实际路面车轮的搓揉作用。 组成成分(1)粗集料:SMA混合料依靠 粗集料的石石接触和紧密嵌挤 而形成骨架结构(SMA-13和 SMA-16为大于的集料,SMA-10 为大于的集料)。粗集料是SMA 质量控制的关键,必须使用石 质坚硬、表面粗糙、形状接近 立方体的优质破碎石料。粗集 料针片状颗粒含量是个重要指 标,要求不大于15%,石料压碎 值要求不大于25%。 (2)细集料:SMA中小于的细 集料比例较少,通常仅为10%~ 15%。细集料应采用机制砂或轧 制的石屑,质量要求坚硬、洁 净、无风化、无杂质。 (1)粗集料:粗集料应采用 石质坚硬、清洁、不含风化颗 粒、近似立方体颗粒的碎石, 粒径应满足规范要求,应采用 反击式破碎机轧制的碎石,具 有 2 个破碎面颗粒的含量不 少于75%。 (2)细集料:采用坚硬、洁 净、干燥、无风化、无杂质并 有适当颗粒级配的人工轧制 的玄武岩、辉绿岩或石灰岩细 集料。其级配规格应符合规范 要求,天然砂的含量不宜大于 集料总量的15%。 (3)矿粉:沥青混合料的矿 粉必须采用石灰岩或岩浆岩 中的强基性岩石等憎水性石 料经磨细得到的矿粉,原石料 中的泥土杂质应除净。矿粉应 干燥、洁净,能自由地从矿粉 仓流出。不得将拌和机回收的 粉尘作为矿粉使用。 (4)沥青:采用SBS 改性沥 青,应符合PG70-22 标准。建 议采用优质进口沥青,60℃动 力粘度≥180。

彩色沥青及混合料的性能评价

198 A SPHALT TECHNOLOGY 沥青技术 目 前,彩色路面在国外的公路、自行车道、便道、公交汽车专线、 步行区、广场以及专用车道上得到了广泛的应用。随着社会的发展及整体道路环境的效果,德州市三八路建设慢车道采用彩色沥青路面。彩色沥青是一种合成的可染色沥青,俗称彩色沥青,它的力学性能与流变性能与一般的道路用重交沥青相同,彩色沥青路面的主要原理就是采用彩色沥青胶结料,通过各种加入颜料使其具有各种所需要的颜色,同时通过采用彩色石料或者浅色石料,使其有更长久的彩色效果。在彩色沥青中最关键的是彩色沥青胶结料的生产技术,好的彩色沥青胶结料应当满足三方面的要求,一是彩色沥青胶结料的性能好,应尽量达到重交沥青甚至改性沥青的要求;二是抗车辙性能好;三是抗水损害性能好。 彩色沥青采用上海群康沥青科技有限公司通过多年研究,结合欧洲、日本及美国的彩色沥青技术,成功开发出了性能优良的彩色沥青,本文结合在山东德州第一次铺筑的彩色沥青路面工程为依托,对路菲特彩色沥青胶结料及相应的彩色沥青 混合料进行了性能评价。彩色沥青及混合料性能评价标准的确定 目前,对于彩色沥青国内还没有国家规范或交通部规范标准,这给彩色沥青的开发与评价均带来了困难与不确定性,因此首先要研究彩色沥青的规范与评价标准。目前很多彩色沥青生产公司均有其公司的标准,如壳牌公司等,这些公司标准的特点是以普通沥青的标准为基础进行修正,修正后的指标要求普遍低于重交沥青的要求,因此其标准要求过于宽松,采用这种宽松的标准很难使客户放心,因此最好的评价标准应该是采用重交沥青的评价标准。这种标准虽然对彩色沥青来说要求过高,但客户使用起来比较放心,因此本研究在评价彩色沥青及混合料的性能时,首先以《公路沥青路面施工技术规范》JTJ F40-2004中对重交沥青的要求作为评价标准。 在采用《公路沥青路面施工技术规范》JTJ F40-2004中对重交沥青进行评价时,还必须首先根据规范确定气候 分区,然后才能确定其应满足的标准,从《公路沥青路面施工技术规范》的气 候分区来看,考虑到重点考虑彩色沥青的高温性能,因此要求相应的彩色沥青及混合料均应满足I-4或I-4-1要求,此外规范还对沥青按优劣分A 、B 、C 三类要求,由于A 类沥青要求最高,因此本文采用I-4-A 类的规范要求。 此外,上海市政工程管理局2006年还就上海公交专用道用彩色沥青及混凝土制定了《彩色沥青路面技术指南》,这一指南对上海地区虽然是一个地方标准,但制定的较科学合理,因此本文也以此指南的技术要求作为评价标准。 为了准确反映出彩色沥青及混合料的性能,本文还以一种进口重交70沥青(SK 沥青)进行了对比性能评价,以更好的反映出彩色沥青及混合料的性能。 彩色沥青胶结料的性能评价 依据中国交通部规程《沥青及沥青混凝土试验规程》JTJ052-2000,对彩色沥青胶结料进行了性能测试,同时也根据上海市政工程管理局《彩色沥青路面技术指南》(以下简称指南)的要求 彩色沥青及混合料的性能评价 文/吴天祥 表1 彩色沥青胶结料性能标准及评价结果注: “/”表明规范未对此指标有技术要求或未测。

沥青混合料力学性能指标2

10.2 沥青路面材料的力学特性与温度稳定性——这三个你仔细看一下吧 10.2.1 沥青混合料的强度特性 表征沥青混合料力学强度的参数是:抗压强度、抗剪强度和抗拉(包括抗弯拉)强度。一般沥青混合料均具有较高的抗压强度,而抗剪和抗拉强度则较低。因此,沥青路面的损坏,往往是由拉裂或滑移开始而逐渐扩展。 1、抗剪强度(shearing strength) 沥青混合料的剪切破坏可按摩尔一库仑原理进行分析。材料在外力作用下如不产生剪切破坏,则应具备下列条件: τmax< σ tg φ+c (2-4) 式中:τmax — 在外荷载作用下,某一点所产生最大的剪应力; σ — 在外荷载作用下,在同一剪切面上的正应力; c — 材料的粘结力; φ — 材料的内摩阻角; 在沥青路面的最不利位置取一单元体,设其三个方向的主应力为σ1、σ2和σ3,且σ1>σ2>σ3。由于单元体中最不利的剪切条件取决于σ1和σ3,故仅根据σ1和σ3分析单元体的应力状况。图2-17为单元体应力状况的摩尔圆。 图2-17 应力状况摩尔圆图 图2-18 三轴剪切实验装置 1-压力环;2-活塞;3-出水口;4-保温罩;5-进水口;6-接压力盒;7-试件;8-接水银压力计 从图2-17可得: ()φσστcos 2131-= (2-5) ()φφφσσσ2231sin cos 21tg c -+= (2-6)

将式(2-5)、(2-6)代人式(2-4)得: ()()[]c ≤+--φσσσσφsin cos 213131 (2-7a ) ()c tg ≤--φτσφτmax max cos (2-7b) 式(2-7a)或(2-7b)为沥青路面材料强度的判别式。 式左端称为活动剪应力,当活动剪应力等于粘结力c 时,材料处于极限平衡,若大于粘结力c ,材料出现塑性变形。 根据式(2-7a)或(2-7b)可求得沥青路面材料应具有的c 和Φ值。 c 和Φ值可通过三轴剪切试验取得。三轴剪切试验的装置如图2-18所示。 三轴剪切试验所用试件的直径应大于矿料最大粒径的4倍,试件的高与直径之比应大于 2。矿料最大粒径小于25cm 时,试件直径为10cm ,高为20m 。试验时,将一组试件分别在不同侧压力下以一定加荷速度施加垂直压力,直至试件破坏。此时测得的最大垂直压力,即为沥青混合料的最大主应力σ1 ,侧压力即为最小主应力σ3(σ1=σ3)。根据各试件的侧压力和最大垂直压力给出相应的摩尔圆,这些圆的公切线称为摩尔包线,切线与τ轴相交的截距即为粘结力,切线的斜率即为内摩阻角Φ(见图2-19)。 由于温度对沥青混合料的抗剪强度有很大的影响,故试件应在高温条件(65℃或50℃)下进行测试。 粘结力c 和内摩阻角Φ值,也可根据无侧限抗压和轴向拉伸试验取得的抗压强度和抗拉强度来计算: 抗压强度 ??? ??+=242φπctg R (2-8) 抗拉强度 ??? ??+= 242φπtg c r (2-9) 从式(2-8)或(2-9)可得: ??? ??+-=r R r R -1sin φ (2-10) Rr c 5.0= (2-11)

浅析沥青混合料的技术性能和标准

2011年第8期(总第210期) 黑龙江交通科技 HEILONGJIANG JIAOTONG KEJI No.8,2011(Sum No.210) 浅析沥青混合料的技术性能和标准 攸立准 (衡水公路工程总公司) 摘 要:在工程实践中,会出现各项性能要求之间的矛盾情况,有时会顾此失彼,因此在设计和施工过程中要因地制宜,抓住主要矛盾,深入细致地对各项性能指标的影响因素按照工艺施工阶段进行质量控制。下面简要对沥青混合料的技术性质和标准进行阐述。关键词:沥青混合料;技术性质;标准;要求中图分类号:U416.217 文献标识码:C 文章编号:1008-3383(2011)08-0069-01 收稿日期:2011-04-28 1高温稳定性 1.1车辙的形成机理及影响因素 (1)失稳型车辙 这类车辙是由于沥青路面结构层在车轮荷载作用下,内部材料流动,产生横向位移而发生,通称集中在轮迹处。 (2)结构型车辙 这类车辙是由于路面结构在交通荷载作用下产生整体 永久变形而形成, 主要是由于路基变形传递到面层而产生。(3)磨耗型车辙 由于沥青路面结构顶层的材料在车轮磨耗和自然环境匀 速下持续不断的损失而形成。分析以上原因, 影响沥青路面车辙的因素主要有集料、结合料、混合料类型、荷载、环境等。此 外,压实方法会直接影响混合料的内部结构,从而产生车辙。1.2混合料稳定性的评价方法 影响沥青混合料高温稳定性的主要因素有沥青的用量、沥青的粘度、矿料的级配、矿料的尺寸、形状等。提高路面的高温稳定性,可采用提高沥青混合料的粘结力和内摩擦阻力的方法,增加粗骨料含量可以提高沥青混合料的内摩阻力。适当提高沥青材料的粘度,控制沥青与矿料比值,严格控制 沥青用量,均能改善沥青混合料的粘结力。这样可以增强沥 青混合料的高温稳定性。 1.3沥青路面车辙的防治措施 对于失稳型车辙,可以通过以下方法减缓:确保沥青混合料中含有较高的经过破碎的集料;集料中要含有足够的矿粉;大尺寸集料要具有较好的表面纹理和粗糙度;集料级配中要含有足够的粗颗粒;沥青结合料要有足够的粘度;集料颗粒表面的沥青膜要具有足够厚度,确保沥青与集料间的粘聚力。 对于结构型车辙通过以下方法可以减缓:确保基层设计满足工程实践要求;基层材料满足规范要求,含有较多经破碎的颗粒;混合料内含有足够的矿粉;基底应充分的压实,工后不产生附加压密;路基压实后应满足规范要求;磨耗型车辙可通过交通管制、改善混合料级配来防治。2低温抗裂性 沥青混合料随着温度的降低,变形能力下降。路面由于低温而收缩以及行车荷载的作用,在薄弱部位产生裂缝,从而影响道路的正常使用。因此,要求沥青混合料具有一定的低温抗裂性。 沥青混合料的低温裂缝是由混合料的低温脆化、低温缩裂和温度疲劳引起的。混合料的低温脆化是指其在低温条 件下, 变形能力降低;低温缩裂通常是由于材料本身的抗拉强度不足而造成的;对于温度疲劳,因温度循环而引起疲劳破坏。 沥青路面低温开裂受多种因素制约,就沥青材料选择和 沥青混合料设计而言,应注意以下几点:注意沥青的油源,在 严寒地区采用针入度较大, 粘度较低的沥青,但同时也应满足夏季的要求;选用温度敏感性小的沥青有利于减少沥青路面的温度裂缝;采用吸水率低的集料,粗集料的吸水率应小于2%;采用100%轧制碎石集料拌制沥青混合料;控制沥青用量在马歇尔最佳用量0.5%范围内对裂缝影响小,但同时也应保证高温稳定性;采用应力松弛性能好的聚合物改性沥 青;掺加纤维, 使用改性沥青。3耐久性 3.1沥青路面的水稳定性 经常会看到,路面在水损害后会出现松散、剥离、坑洞等病害,严重影响路面的使用。沥青路面的耐久性主要依靠沥青与集料之间的粘附程度,水和矿料的作用破坏了沥青与集料之间的粘附性,是影响沥青路面耐久性的主要因素之一。而影响沥青与集料间粘结力的因素包括沥青与集料表面的界面张力、沥青与集料的化学组成、沥青粘性、集料的表面构造、集料的空隙率、集料的清洁度及集料的含水量、集料与沥青拌和的温度。 3.2沥青路面的耐老化性 另一个影响沥青混合料耐久性的是热老化。沥青材料在拌和、摊铺、碾压过程中以及沥青路面的使用过程中都存在老化问题。老化过程可分为施工中的短期老化和道路使用中的长期老化。 (1)沥青短期老化 沥青短期老化可分为三个阶段。 ①运输和储存过程的老化。沥青从炼油厂到拌和厂的热态运输一般在170?左右,进入储油罐,温度有所降低。 调查资料表明,这一过程中沥青老化非常小 。②拌和过程的热老化。加热拌和过程中,沥青是在薄膜 状态下受到加热,比运输过程中的老化条件严酷的多。沥青混合料拌和后,沥青针入度降低到拌和前沥青针入度的 80% 85%。因此,拌和过程引起的沥青老化是严重的,是沥青短期老化的最主要阶段。 ③施工期的老化。沥青混合料运到施工现场摊铺、碾压完毕,降温至自然温度,这一过程中裹覆石料的沥青薄膜仍处于高温状态。沥青混合料在摊铺、碾压和降温期间,沥青热老化进一步发展。 (2)长期老化 混合料中的沥青长期老化是一个漫长而复杂的过程,具有如下特点。 ①沥青路面在使用早期针入度急剧变小,随后变化缓慢,大体发生在 1 4年之间。②沥青老化主要发生在路表与大气接触部分,在深度0.5cm 左右的沥青针入度降低幅度相当大。 ③沥青混合料的空隙率是影响沥青老化的主要原因。④当路面中的针入度减小到35 50之间时,路面容易产生开裂,针入度小于25时路面容易产生龟裂。4抗滑性 用于高等级公路沥青路面的沥青混合料,其表面应具有一定的抗滑性,才能保证汽车高速行驶的安全性。 沥青混合料路面的抗滑性与矿质集料为表面性质、混合料的级配组成以及沥青用量等因素有关。为提高路面抗滑性,配料时应特别注意矿料的耐磨光性,应选择硬质有棱角 的矿料。沥青用量对抗滑性影响也非常敏感, 沥青用量超过最佳用量的0.5%, 即可使抗滑系数明显降低。另外,含蜡量对沥青混合料行滑性有明显影响,我国 《公路工程沥青及沥青混合料试验规程》(JTJ052-93)的《重交通量道路路用石油沥青技术要求》提出,含蜡量应不大于3%,在沥青来源有困难时对下面层路面可放宽至4% 5%。 · 96·

《钻井液工艺原理》综合复习资料

《钻井液工艺原理》综合复习资料 一、概念题 二、填空题 1、钻井液的主要功能有()、()、()、()等。 2、一般来说,钻井液处于()状态时,对携岩效果较好;动塑比τ0/ηp越()或流性指数n越(),越有利于提高携岩效率。 3、粘土矿物基本构造单元有()和()。 4、井壁不稳定的三种基本类型是指()、()、()。 5、在钻井液中,改性褐煤用做()剂,磺化沥青用做()剂。 6、油气层敏感性评价包括()、()、()、()和()等。 7、一般来说,要求钻井液滤失量要()、泥饼要()。 8、现场钻井液常用四级固相控制设备指()、()、()、()。 9、影响钻井液滤失量的主要因素有()、()、()、()。 10、按API标准钻井液常规性能测试包括()、()、()、()、()、()。 11、聚合物钻井液主要类型有()、()、()。 12、钻井液常用流变模式有()、()。 13、常见粘土矿物有()、()、()等。 14、钻井过程可能遇到的复杂情况有()、()、()等。 15、钻井液的基本组成()、()、()。 16、钻井液的流变参数包括()、()、()、()和()等。 17、在钻井液中,钠羧甲基纤维素用做()剂,铁铬盐(FCLS)用做()剂,氢氧化钠用作()剂。 18、现场常用钻井液降滤失剂按原料来源分类有()、()、()、()。 三、简答题 四、计算题 1、使用范氏六速粘度计,测得某钻井液600rpm和300rpm时的读数分别为:Ф600=29,Ф300=19,且已知该钻井液为宾汉流体。 ⑴计算该钻井液的流变参数及表观粘度; ⑵计算流速梯度为3000S-1时钻井液的表观粘度。 2、用重晶石(ρB=4.2g/cm3)把400 m3钻井液由密度ρ1=1.20g/cm3加重到ρ2=1.60g/cm3,并且每100kg重晶石需同时加入9L水以防止钻井液过度增稠,试求: ⑴若最终体积无限制,需加入重晶石多少吨? ⑵若最终体积为400 m3,需加入重晶石多少吨,放掉钻井液多少方? 3、用重晶石(ρB=4.2g/cm3)把200 m3钻井液由密度ρ1=1.10g/cm3加重到ρ2=1.50g/cm3,并且每100kg重晶石需同时加入9L水以防止钻井液过度增稠,试求: ⑴若最终体积无限制,需加入重晶石多少吨? ⑵若最终体积为200 m3,需加入重晶石多少吨,放掉钻井液多少方? 五、论述题

沥青及沥青混合料疲劳性能影响因素

沥青及沥青混合料疲劳性能影响因素 作者:林敏 来源:《装备维修技术》2020年第07期 摘要:近年来,随着我国经济和科技的不断进步,人们对日常生活水平的质量要求越来越高。建筑作为人们日常生活和工作必不可少的一部分,人们对其质量要求也存在着定的关注。为了更好地保证沥青混合材料在使用中的抗疲劳性能,逼着对相关的沥青混合料进行了分析。分析研究发现,不同类型的沥青混合料疲劳寿命是与其应力之间有一定的联系。应力比增加,那么滤镜混合材料疲劳寿命就会随之减少。除此之外,还有一系列的研究发现,都有了一定的结果。 关键词:沥青混合料;疲劳性能;影響因素 在一些桥梁路面的基础施工过程中,沥青材料的使用是必不可少的。但是近年随着行车荷载力等方面的因素,很多沥青路面的强度与以前相比发生了明显的变化。不仅容易出现疲劳破坏,还导致路面的使用寿命及使用性能都得到了破坏。因此,对于我国相关企业和管理部门而言,研究影响沥青混合料疲劳性能的因素,并解决其疲劳寿命带来的影响是一项迫在眉睫的任务。笔者通过研究资料和实际情况,对多种沥青混合料的疲劳性能进行了相应的研究,通过研究认为ARAC—13在自愈合作用后疲劳寿命是最长的。此外,笔者还针对不同的行车荷载和温度作用下沥青路面的疲劳性能,并也对此进行了分析和整理。本次分析和整理主要的目的是为了提高今后沥青混合料在使用中的疲劳性和使用寿命,研究结果仅供参考。 一、原材料和混合料配合比 1、原材料技术性质 (1)沥青 根据实际情况,选取了一项路面工程进行研究。在研究中,选取70号沥青和SBS改性沥青进行加护性质的相关测定。研究结束后我们发现,70号沥青技术性质,无论是在针入度、延度、软化点还是闪点方面均符合相关的规定和标准值。而SBS改性沥青技术在这些方面也与70号沥青技术并无太大的区别。这也叫从一定程度上证明70号沥青在工程建筑使用阶段是符合相关规定和标准的。 (2)粗集料 所谓的粗集料指的是采用玄武岩的材料,这种材料的公称粒径分为两种,分别是5~10和10~15。经过研究分析粗集料的技术性质发现,5~10的针片状测试值与10~15的针片状测

彩色沥青路面设计和施工指南

彩色沥青路面设计及施工指南 海川工程科技有限公司

1 彩色沥青路面的作用 (1)彩色铺面有美化环境的作用 随着经济的发展,世界上许多国家开始注意到道路只有两种颜色,即白色的水泥路面和黑色大的沥青路面,在繁华的大千世界中显得太单调而乏味。 人们开始运用彩色路面,在城市街道上铺筑不同色彩的彩色路面,可以与道路周围的建筑艺术更好的协调,从而贴现一个国家或称是的特色和风格。由其是在风景区、疗养院和公园,铺设各种彩色路面的广场,与道路周围的花草树木相应成趣,给人以良好的心理感受,使人心情舒畅、精神振奋。 (2)便于交通的组织作用 铺筑不同的彩色路面在某种程度上比垂直的交通标志更好,它可以给驾驶员以信号。如在交通事故多发地段,可以铺筑红色路面,直观地提醒驾驶员注意,谨行车。在中小学校区的路上铺筑铁红色路面,使车辆减速慢行,避免危险发生。 2 海川彩色沥青材料性能指标 2.1彩色沥青胶结料 海川路威系列彩色沥青胶结料是利用国外的先进技术,配以国外的先进助剂,以化学的方法合成浅色沥青胶结料。浅色沥青基料的各项性能均以常用沥青指标为标准设计,可达到AH-50重交通沥青要求,由于加入了高分子的改性剂,在塑性方面也有了很大的提高,主要表现在延伸度上,明显好于普通沥青。特别是环保方面,有效的降低了黑色沥青中普遍存在的3-4苯丙衍生物等致癌物质,对环境具有保护作用,特别适用于高级住宅小区内的道路使用。 表1 路威彩色沥青胶结料性能指标 2.2彩色颜料性能指标 海川路威彩色沥青颜料是海川工程科技有限公司依托海川色彩科技有限公司的技术力量开发的系列产品,彩色颜料具有色彩鲜明、化学性质稳定等特性。目前,具有红、黄、绿、灰、蓝等几大色系,并可根据客户的要求进行色彩设计。

T313-04 用弯曲梁流变仪测量沥青胶结料的弯曲蠕变劲度的标准试验方法

T313-04用弯曲梁流变仪测量沥青胶结料的弯曲蠕变劲度的标 准试验方法 1适用范围 1.1本试验方法用弯曲梁流变仪测量沥青胶结料的挠曲蠕变劲度或柔量。本方法适用于挠曲劲度范围为20MPa~1G(蠕变柔量值的范围为50nPa–1~1nPa–1)的材料,被测材料是未老化的沥青或T240(RTFOT)和/或R28(PAV)得到的老化沥青。试验设备的操作温度范围为(-36~22)℃。 1.2当根据本试验方法进行试验时,若试验样品的挠曲大于4mm或小于0.08mm时试验结果无效。 1.3本标准可能包含危险材料、操作和设备。本标准并不能强调关于使用时的所有安全问题。在使用本标准之前,使用者有责任采用合适的安全和健康实践,并确定其使用的规则限制。 2参考文件 2.1AASHTO标准 M320沥青胶结料性能分级 R28用压力老化容器加速沥青胶结料老化 T40沥青材料取样 T240加热和空气对沥青旋转薄膜的影响(旋转薄膜烘箱试验) 2.2ASTM标准 C802进行试验室间试验项目以确定建筑材料试验方法精密度的方法 E77温度计的检查和校验 E220用比对技术标定热电偶的方法 2.3DIN标准 43760铂电阻温度计 3名词术语 3.1定义 3.1.1沥青胶结料(asphalt binder)——以石油渣油生产的沥青为基础,添加或未添加非颗粒有机改性剂的胶结材料。 3.1.2物理硬化(physical hardening)——沥青胶结料物理硬化是由当沥青在低温贮藏条件下时,发生的随时间增加的劲度,由这个增加的劲度而导致的物理硬化可随温度L高而发生可逆。

3.2本标准的特殊术语的定义 3.2.1弯曲蠕变(flexural creep)——在一个沥青胶结料棱柱形简支梁上,在梁中点作用一恒定荷载,测量梁中点随加载时间而发生的变形。 3.2.2测量的挠曲蠕变劲度(measured flexural creep stiffness),S m(t)——测量的最大弯曲应力除以测量的最大弯曲应变所得到的比率。 3.2.3估计的挠曲蠕变劲度(estimated flexural creep stiffness),S(t)——由在8.0s,15.0s,30.0s,60.0s,120.0s和240.0s处测量的劲度的对数与时间的对数之间的多项式得出的蠕变劲度。 3.2.4挠曲蠕变柔量(flexural creep compliance),D(t)——用最大弯曲应变除以最大弯曲应力得到的比率。挠曲蠕变柔量D(t)是挠曲蠕变劲度S(t)的倒数。D(t)通常用于黏弹性研究,而S(t)过去曾经在沥青技术中使用。 3.2.5m值(m-value)——劲度的对数与时间对数曲线的斜率的绝对值。 3.2.6接触荷载(contact load)——在试验中试件和荷载轴之间要维持正确接触所需的荷载;(35±10)mN 3.2.7就位荷载(seatting load)——要求1s时间使梁就位的荷载;(980±50)mN 3.2.8试验荷载(test load)——在测试材料劲度中所要求240s内的荷载;(980±50)mN 3.2.9试验调零时间(testing zero time),秒——信号从零荷载调节阀(接触荷载)到试验荷载调节阀(试验荷载)传送到电磁阀的时间。 4方法概要 4.1弯曲梁流变仪是用来测定简支梁沥青胶结料试件,受固定荷载中点的挠曲变形。设备仅在荷载模式下操作,变形恢复不予测量。 4.2试件放在控温液体浴中施加240s的恒定荷载。用计算机数据采集系统监控试验荷载(980±50)mN、试件中点的变形及对应时间。 4.3通过试件的尺寸、跨度和应用荷载时间为8.0s,1 5.0s,30.0s,60.0s,120.0s和240.0s的荷载计算得到试件中点的最大应力。试件的最大弯曲应变用相同的试件尺寸和荷载时间的形变计算得到。上述规定荷载时间下的劲度由最大弯曲应力除以最大弯曲应变得到。 4.4报告0.0s和0.5s时的荷载和变形,以验证试验时全部试验荷载(980±5)mN在第一个0.5s时间内作用的情况。它不用于计算劲度和m值,也不代表材料性质。不适当的压力调节阀的操作、不适当的空气轴承压力、空气轴承失效(黏住)和其他因素可能影响荷载上L时间(作用到全部荷载的时间)。通过报告0.0s和0.5s的信号,试验结果的用户可判断加载的情况。 注1——黏结可以通过在荷载轴在浮动位置时加3g或稍少的荷载观察加荷载时荷载轴是否移动来判断。

相关主题
文本预览
相关文档 最新文档