当前位置:文档之家› 基于最优载荷分配的双臂机器人 协调运动在线控制算法

基于最优载荷分配的双臂机器人 协调运动在线控制算法

基于最优载荷分配的双臂机器人 协调运动在线控制算法
基于最优载荷分配的双臂机器人 协调运动在线控制算法

文章编号:1004-1729(2001)01-0032-05收稿日期:2000-04-20

基金项目:河南省科委自然科学基金项目(964072200)

作者简介:陈安军(1962-),男,河南潢川人,信阳师范学院应用物理系副教授,硕士.

基于最优载荷分配的双臂机器人

协调运动在线控制算法

陈安军1,蔡建乐2

(1.信阳师范学院应用物理系,河南信阳464000;2.湖南大学应用物理系,湖南长沙410082)

摘 要:以牛顿—欧拉算法为基础,建立适合于双臂机器人实时控制的在线控制算法,该算法

包括3个部分,一是运动在线控制算法,二是在线载荷优化算法,三是逆动力学在线控制算法.

该算法不仅给出相应运动学及动力学递推计算公式,而且以载荷的最小范数为目标函数,实现

载荷的最优分配,使在线控制算法更具应用价值.最后通过算例仿真验证算法的可行性.

关键词:双臂机器人;协调运动;载荷分配;在线控制算法

中图分类号:TP 24 文献标识码:A

双臂机器人的协调作业和两机器人的协调作业[1]类似,一般分为紧协调(工件与双臂末端夹持器间无相对运动,构成闭链系统)和松协调(双臂在某些点位上的协调,不构成闭链系统),协调(一般指紧协调)运动过程双臂与工件之间必须始终保持一定的约束关系,其动力学方程的耦合程度增加,实时在线控制难度增大.双臂的协调作业需实时在线计算关节广义驱动力(移动关节为驱动力,转动关节为驱动力矩),因此,动力学逆问题的在线计算尤为重要.目前解决开链机器人逆动力学问题常用的方法有2种,一是拉格朗日—欧拉(Lagrange —Euler )法,二

是牛顿—欧拉(Newton —Euler )法.从实时在线控制的角度,由于拉格朗日—

欧拉法计算量较大,且在已知机器人各杆件的位置、速度和加速度的条件下,并不能直接求出关节广义驱动力,因此,一般情况下该法不作为实时在线动力学控制算法;而牛顿—欧拉法的计算效率高,且计

算任关节的广义驱动力非常有效,因此对该法的研究[2~5]较多.Luh [2]等人提出递推形式的牛

顿—欧拉法,He 和G oldenberg [3]利用增广体的概念对牛顿—欧拉法进行改进,进一步地提高计算效率.由于双臂协调作业构成闭链系统,以上算法并不能直接应用,一般采用切割铰(关节)的方法,从双臂末端夹持器与工件的接触处切开,将闭链的双臂机构转化为2个单臂机器人机构和工件,由于在接触处末端夹持器对工件的作用以力的形式存在,且该力一般不易确定,需借助工件的运动规律,这种由工件的运动确定末端夹持器在与工件接触处的受力问题称为载荷分配[6,7].载荷分配一旦解决,牛顿—欧拉法可直接应用.递推形式的牛顿—欧拉法是目前解决机器人逆动力学问题速度最快的串行算法之一,笔者着重研究该法在双臂机器人协调运动中的应用,并建立基于载荷最优分配的在线控制算法.

本文讨论基于以下条件:组成机器人的杆件为刚体,杆件间以单自由度的转动关节或移动关节连接,引入μi 区分关节类型,当μi =1时,表示关节i 为转动关节,当μi =0时,表示关节i 为移动关节;机座固定不动,关节连接处无摩擦;以双臂搬运工件的协调作业为例讨论;采用 

第19卷第1期

海南大学学报自然科学版V ol.19N o.12001年3月NATURA L SCIENCE JOURNA L OF H AINAN UNIVERSIT Y M ar.2001

Denavit —Hartenberg 方法建立与杆件固连的连体基.

1 基于最优载荷分配的在线控制算法

将双臂分为主臂(L )和从臂(F ),设主臂由n 个杆件构成,记为L 1,L 2,…,L n ,从臂由m 个杆件构成,记为F 1,F 2,…,F m .一般双臂均为运动冗余机构,即n >6,m >6.工件记为C ,其质心为c .

1.1 在线运动学正向计算方法 双臂协调运动中,两臂末端夹持器与工件间无相对运动,组成闭链系统.通过工件质心的某一平面将工件切开[8],转化为2个单臂机构,工件质心在主臂机构中记为c ,在从臂机构中记为c ′.

对主臂而言,由关节轨迹规划可离线确定各关节的广义坐标q i 、广义速度 q i 、

广义加速度¨q i (i =1,2,…,n ).考虑到反映杆件相对位置关系的运动学参数计算的方便性,为提高计算效率,将速度、角速度等运动学量均投影到杆件自身连体基中,运动学在线正向递推公式

ωi =A ii -1(ωi -1+μi B q i ),

(1)v i =A ii -1v i -1+ ωi A ii -1r i -1i +(1-μi )A ii -1B q i ,

(2) ωi =A ii -1[ ωi -1+μi ( ωi -1B q i +B ¨q i )],

(3) v =A ii -1 v i -1+ ω i A ii -1r i -1i + ωi ωi A ii -1r i -1i +(1-μi )[2 q i ωi A ii -1B +A ii -1B ¨q i ],

(4)v ci =v i + ωi r ici ,

(5)a ci = v i + ω i r ici + ωi ωi r ici ,(6)

式中,ωi 、 ωi 分别为杆件L i 的角速度、

角加速度矢量在其连体中的表示(投影);v i 、 v i 分别为L i 连体基原点的速度、加速度矢量在其连体基中的表示;v ci 、a ci 分别为L i 质心的速度、加速度矢量在其连体基中的表示;r i -1i 为L i -1连体基原点到L i 连体基原点的径矢在L i -1连体基中的表示;r ici 为L i 连体基原点到质心c i 的径矢在L i 连体基中的表示;A ii -1为相邻基间的3×3转换矩阵,B =[0 0 1]T , ωi 为由ωi 组成的反对称矩阵(以下均以“~”表示),经递推运算(i =1,2,…,n ),所确定工件的角速度、角加速度以c 点的速度和加速度在质心基中的表示分别为ωc 、 ωc 、

v c 、a c .同理,由从臂的运动规划,通过(1)~(6)式的递推运算(i =1,2,…,m )确定工件相应的运

动学量在质心基中的表示分别为ωc 、 ωc 、

v c 、a c .由于c 和c ′实际上重合,过c 、c ′两质心基也是重合的.因此,由主、从臂确定的工件的运动学量必然满足

ωc =ωc ′, ωc = ωc ′

,v c =v c ′,a c =a c ′,(7)(7)式即为双臂协调运动应满足的运动学条件.此条件的直接作用是检验主、从臂运动学递推计算的正确性,而隐含的意义在于检验主、从臂的运动规划是否合理,因为规划的结果主、从臂关节广义坐标、广义速度、广义加速度直接用于上述运动学递推计算.

1.2 在线载荷优化方法 记主臂末端夹持器通过接触点a 作用在工件上的力和力矩为f n +1、n n +1,从臂末端夹持器通过接触点b 作用在工件上的力和力矩为f m +1、n m +1.从两臂末端夹持器与工件接触处切割形成2个单臂机构及工件,工件的受力图如图1示.记c 点至a 、b 两点的径矢为r ca 、r cb ,则由在线运动学递推得到的工件的运动规律与工件的受力关系在质心基中可表示为

A ca f n +1+A cb f m +1-m c a c =0,A ca n n +1+A cb n m +1+ r ca A ca f n +1+ r cb A cb f m +1-I c ? ωc - ω

c I c ωc =0,(8)33第1期 陈安军等:基于最优载荷分配的双臂机器人协调运动在线控制算法

进一步

M

 00 I c a c ωc + 0 ωc I c ωc =A ca 0A cb

0 r ca A ca A ca r cb A cb A cb

f n +1

n n+1f m +1

n m +1. 写成

R =WF ,(9)图1 工件受力图式中R =M 00 I c a c ωc

+

 0 ωc I c ωc ∈R 6×1为作用在工件上的合力,当工件运动已知时,R 可确定,M =diag (m c m c m c ),I c 为工件关于其质心的惯性矩阵;F =

F L F F ∈R 12

×1为双臂载荷列阵,F L =f n +1

n n +1,F F =f m +1n m +1分别

为主、从臂通过接触点作用在工件上的广义力

列阵,也就是双臂末端夹持器所承受的载荷;

W =A ca 0A cb 0 r ca A ca A ca r cb A cb A cb

∈R 6×12为载荷影响矩阵,A ca 、A cb 分别为质心基与过a 、b 两点基间的3×3转换矩阵,当末端夹持器与工件接触点相对工件质心的位置确定后,W 可唯一确定.

由(9)式知,即使R 已知,W 确定,载荷F 的解仍有无穷多个.若W 为行满秩,以F 的最小范数为目标函数,F 可唯一确定,从而实现最小载荷分配,即

F =W +R ,

(10)式中W +=W T (WW T )-1∈R 12×6为W 的M -P 广义逆矩阵.

1.3 在线逆动力学计算方法 由在线运动学计算可知,各杆件的运动学量在自身连体基中的投影完全确定,末端夹持器作用在工件上的力和力矩f n +1、n n +1、f m +1、n m +1由在线载荷分配确定,将杆件的质量参数、几何参数、作用在杆件上的力和力矩等均表示在相应杆件的连体基中,可以在关节空间中实现逆动力学在线实时控制计算,其逆动力学反向递推算法为

F i =m i a ci ,

(11)N i =m i ωi + ω

i I i ωi ,(12)f i =A i -1i F i +A i -1i f i +1,

(13)n i =A i -1i n i +1+ r i -1i A i -1i f i +1+ r i -

lci A i -1i F i +A i -1i N i ,(14)τi =μi n T i B +(1-μi )f T i B.(15)

对主臂i =n ,n -1,…,1,对从臂i =m ,m -1,…,1.式中m i 为杆件i 的质量,I i 为杆件i 关于其质心的惯性矩阵;F i 、N i 分别为作用在杆件i 质心的总外力和总外力矩矢量在其连体基中的表示;f i 、n i 分别为杆件i -1通过关节i 作用在杆件i 上的力和力矩矢量在杆件i -1连体基中的表示;r i -lci 为杆件i -1连体基原点到质心的径矢在杆件i -1连体基中的表示;τi 为关节i 处的广义驱动力.

1.4 在线控制算法步骤

1.4.1 预处理 进行在线计算之前,有4类参数必须预先确定:第1类是双臂各关节的广义

43海南大学学报自然科学版 2001年

坐标q i 、广义速度 q i 、广义加速度¨q i ,由主、

从臂的关节轨迹规划确定,关节类型参数μi 由设计确定,第2类是杆件自身的几何参数,包括杆件的质量和质量分布参数由设计确定;第3类是双臂末端夹持器与工件接触点相对工件质心的位置参数,由夹持位置确定,则载荷影响矩阵

W 确定;第4类是机座的运动学参数v 0、ω0、 v 0和 ω0,本文应为零.在以上的讨论中,重力的影

响未专门提及,实际上已包括在各杆件的质心加速度中,其处理方法是给机座一铅直向上的加速度g =9.80621m/s 2,相当于整个双臂机构中的每1个杆件均有1个铅直向上的加速度,于是各杆件有一铅直向下的惯性力,此力在量值上与重力等效.

1.4.2 运动学正向递推计算 第1步,由(1)~(4)式分别计算主、从臂各杆件的角速度、角加

速度以及连体基原点的速度、加速度;第2步,由(5)、(6)式分别计算主、从臂各杆件质心的速

度和加速度.对主臂i =1,2,…,n ,从臂i =1,2,…,m ,从而确定工件的运动学量;第3步,由(7)式检验结果的正确性.

1.4.3 载荷优化计算 在(7)式成立的条件下,由工件的质量分布参数以及工件的运动学参数,通过(10)式确定载荷的分配,即确定两末端夹持器通过接触点作用在工件上的力和力矩f n +1、f m +1、n n +1、n m +1.

1.4.4 逆动力学反向递推计算 第1步,由(11)、(12)式分别计算作用在主、从臂各杆件上的

力和力矩;第2步,由(13)、(14)式分别计算主、从臂各关节的力和力矩;第3步,由(15)式计算

主从、臂各关节的广义驱动力,以上计算对主臂i =n ,n -1,…,1,对从臂i =m ,m -1,…,1.2 算 例

如图2示,平面双臂机器人主、从臂分别由3个杆件组成,其长度均为1m ,质量均为1kg ,

工件质量1kg ,q 1=π4+π

4sin π2

t ,工件运动规律x =2cos q 1,y =0,

0≤x ≤2m ,末端与工件的接触为硬点接触(只传递力不传递力矩),假设载荷平均分配,则由本文算法确定的主臂各关节广义驱动力(从臂各关节广义驱动力由对称性确定)如图3示,其结果与一般力学分析结果完全一致.

图2 平面双臂机器人搬运工件示意图图3 主臂各关节广义驱动力

3 结 语

以上的讨论是结合双臂机器人协调运动的特征,采用多体系统动力学切割刚体及切割关节的方法,将双臂协调运动所形成的闭链系统转化为开链系统,基于最优载荷分配将递推形式的牛顿—欧拉算法推广到双臂协调运动中,建立适合于双臂协调运动的在线控制算法.该算法

53第1期 陈安军等:基于最优载荷分配的双臂机器人协调运动在线控制算法

63海南大学学报自然科学版 2001年

包括3个部分,一是在线运动学正向控制算法,二是在线载荷优化算法,三是在线逆动力学控制算法.为进一步提高计算效率,以上计算均转化到关节空间,为在关节空间实施在线控制提供算法依据.

双臂协调运动过程中,递推形式牛顿—欧拉算法的应用前提是解决双臂末端夹持器与工件接触处的受力问题,可以通过在接触处安装的力传感器实时测定,但这种方式是被动的且实际应用成本较高,同时也不能对载荷实施优化分配.本文解决的途径是取载荷的最小范数为目标函数,通过对载荷影响矩阵M—P广义逆的计算,实现载荷的优化分配,其优点是在满足一定的运动学关系条件下,通过改变双臂末端夹持器与工件接触的位置,应用载荷的优化分配实时计算双臂各关节处的广义驱动力,此过程利用计算机仿真可方便地实现,实际应用中可改善其动力学性能.因此,本文的在线控制算法对双臂机器人的设计和实时控制具有重要意义.

参考文献:

[1]蒋新松.机器人学导论[M].沈阳:辽宁科学技术出版社,1994.

[2]LUH J Y S,W A LKER M W,PAU L R P C.On2line com putational scheme for mechanical manipulators[J].AS ME

Journal of Dyn Syst Meas C ontr,1980,102:69-76.

[3]HE X G,G O LDE NBERGA A.An alg orithm for efficient com putation of dynamics of robotic manipulators[J].Journal of

R obotic Systems,1990,7(5):689-702.

[4]W ANGL T,RAVANI B.Recursive com putations of kinematic and dynamic equations for mechanical manipulators[J].

IEEE J,R obotics Automation,1985,RA-1(1):124-131.

[5]W A LKER M W,ORI N D E.E fficient dynamic com puter simulation of robotic mechanisms[J].AS ME Journal of Dyn

Syst Meas C ontr,1982,104:205-211.

[6]ZHE NG Y F,LUH J Y S.Optimal load distribution for tw o industrial robots handling a single object[Z].IEEE Int C on f

on R obotices and Automation,1988.344-349.

[7]T AO J M,LUH J Y S.C oordination of tw o redundant robots[Z].IEEE Int C on f on R obotics and Automation,1989.425

-430.

[8]陈安军.双臂机器人协调运动的运动学关系[J].机器人(增),1998,20(4):359-363.

On2line Control Algorithm for Coordinate Motion of

Dual2arm R obot with Minim al Load Distribution

CHE N An2jun1,C AI Jian2le2

(1.Deptment of Applied Physics,X inyang T eachers C ollege,X inyang464000,China;

2.Deptment of Applied Physics,Hunan University,Changsha4l0082,China)

Abstract:In this paper,based on the Newton2Euler recurrence alg orithm,on2line control alg orithm is de2 veloped which can be used for the real2time control of dual2arm robot.This alg orithm includes three sec2 tions,one is the on2line control alg orithm of kinematics,second is the alg orithm of load optimal,and third is the on2line control alg orithm of inverse dynamics.The recursive com putation formulas of kinematic and dynamic not only is given,but als o the minimal load distribution is developed with the least2norm of load as a objective function.By this method,the applied value of the on2line control alg orithm can be in2 creased.

K ey w ords:Dual2arm robot;coordinate m otion;load distribution;on2line control alg orithm

工业机器人培养方案

工业机器人技术专业人才培养方案(2016级、三年制) 专业名称:工业机器人技术 专业代码: 招生对象:普通高中毕业生及同等学历者 学制与学历:三年制大专

一、制订人才培养方案的依据 为了适应社会经济建设的高速发展,满足社会对工业机器人技术应用高技能人才的需求,进一步推动高等职业教育体制改革,根据《国家中长期教育改革和发展规划纲要(2010-2020年)》、《国民经济和社会发展第十三个五年规划》、《机械工业十三五规划》、《教育部关于加强高职高专教育人才培养工作的意见》(教高[2000]2号)、《教育部关于以就业为导向深化高等职业教育改革的意见》(教高[2004]1号)与《关于全面提高高等职业教育教学质量的若干建议》(教高[2006]16号)、《教育部财政部关于支持高等职业学校提升专业服务产业发展能力的通知》(教职成[2011]11号)、《中国制造2025》及教育部关于发展高等职业教育相关文件精神,结合我公司实际情况,加强工业机器人技术专业的建设,制定了本专业人才培养方案。 二、培养目标与规格 培养目标:本专业培养拥护党的基本路线,德、智、体、美等全面发展,具有良好的科学文化素养、职业道德和扎实的文化基础知识。具有获取新知识、新技能的意识和能力,能适应不断变化的工作需求。熟悉企业生产流程,具有安全生产意识,严格按照行业安全工作规程进行操作,遵守各项工艺流程,重视环境保护,并具有独立解决非常规问题的基本能力。掌握现代工业机器人安装、调试、维护方面的专业知识和操作技能,具备机械结构设计、电气控制、传感技术、智能控制等专业技能,能从事工业机器人系统的模拟、编程、调试、操作、销售及工业机器人应用系统维护维修与管理、生产管理及服务于生产第一线工作的高素质高技能型人才。 (一)专业知识 1.具有常用电子元器件、集成器件、单片机的应用知识; 2.具有传感器应用的基本知识; 3.具有应用机械传动、液压与气动系统的基础知识; 4.具有PLC、变频器、触摸屏、组态软件控制技术的应用知识; 5.具有交流调速技术的应用知识; 6.具有机械系统绘图与设计的知识; 7.具有计算机接口、工业控制网络和自动化生产线系统的基础知识; 8.具有工业机器人原理、操作、编程与调试的知识; 9.具有检修工业机器人系统、自动化生产线系统故障的相关知识; 10.具有安全用电及救护常识。 (二)职业能力 1.读懂机器人应用系统的结构安装图和电气原理图的能力; 2.测绘简单机械部件生成零件图和装配图,跟进非标零件加工,完成装配工作的能力;

全向移动机器人的运动控制

全向移动机器人的运动控制 作者:Xiang Li, Andreas Zell 关键词:移动机器人和自主系统,系统辨识,执行器饱和,路径跟踪控制。 摘要:本文主要关注全向移动机器人的运动控制问题。一种基于逆运动学的新的控制方法提出了输入输出线性化模型。对执行器饱和及驱动器动力学在机器人性能体现方面有重要影响,该控制法考虑到了以上两个方面并保证闭环控制系统的稳定性。这种控制算法常用于真实世界的中型组足球机器人全方位的性能体现。

1.介绍 最近,全方位轮式机器人已在移动机器人应用方面受到关注,因为全方位机器人“有一个满流动的平面,这意味着他们在每一个瞬间都可以移动,并且在任何方向都没有任何调整”。不同于非完整的机器人,例如轮式机器人,在执行之前具有旋转任何所需的翻译速度,全方位机器人具有较高的机动性并被广泛应用在动态环境下的应用,例如在中型的一年一度的足球比赛。 大多数移动机器人的运动控制方法是基于机器人的动态模型或机器人的运动学模型。动态模型直接描述力量施加于车轮和机器人运动之间的关系,以外加电压的每个轮作为输入、以机器人运动的线速度和角加速度作为输出。但动态变化所造成的变化的机器人惯性矩和机械组件的扰动使控制器设计变得较为复杂。假设没有打滑车轮发生时,传感器高精度和地面足够平坦,由于结构的简单,因而运动模型将被广泛应用于机器人的设计行为中。作为输入运动学模型是机器人车轮速度,输出机器人的线速度和角速度,机器人的执行器的动力都快足以忽略,这意味着所需的轮速度可以立即达到。然而,该驱动器的动态极限,甚至降低了机器人在真实的情况中的表现。 另一个重要方面是机器人控制的实践:执行器饱和。因机器人轮子的指挥电机速度是有饱和的界限的,执行器饱和能影响到机器人的性能,甚至使机器人运动变得不稳定。 本文提出了一个全方位的机器人的一种运动控制方法,这种控制方法是基于逆输入输出的线性的运动学模型。它需要不仅考虑到驱动器动力学的识别,但也需要考虑到执行器饱和控制器的设计,并保证闭环控制系统系统稳定性。 本文其余的部分:在2节介绍了运动学模型的一个全方位的中型足球机器人;在3节介绍了路径跟踪与定位跟踪问题基于逆运动学模型的输入输出线性化的解决方法,其中包括执行器饱和分析;4部分介绍了动态识别器及其在控制性能方面的影响;最后的实验结果和结论讨论部分分别在5和6。

工业机器人技术及应用(教案)-工业机器人机械结构和运动控制.doc

第二章工业机器人的机械结构和运动控制 章节目录 2.1 工业机器人的系统组成 2.1.1 操作机 2.1.2 控制器 2.1.3 示教器 2.2 工业机器人的技术指标 学习目标导入案例课堂认知扩展与提高本章小结思考练习 2.3 工业机器人的运动控制 2.3.1 机器人运动学问题 2.3.2 机器人的点位运动… 2.3.3 机器人的位置控制 课前回顾 何为工业机器人? 工业机器人具有几个显著特点,分别是什么? 工业机器人的常见分类有哪些,简述其行业应用。 学习目标 认知目标 *熟悉工业机器人的常见技术指标 *掌握工业机器人的机构组成及各部分的功能 *了解工业机器人的运动控制 能力目标 *能够正确识别工业机器人的基本组成 *能够正确判别工业机器人的点位运动和连续路径运动 导入案例 国产机器人竞争力缺失关键技术是瓶颈 众所周知,中国机器人产业由于先天因素,在单体与核心零部件仍然落后于日、美、韩等发达国家。虽然中国机器人产业经过30 年的发展,形成了较为完善的产业基础,但与发达国家相比,仍存在较大差距,产业基础依然薄弱,关键零部件严重依赖进口。整个机器人产业链主要分为上游核心零部件(主要是机器人三大核心零部件——伺服电机、减速器和控制系统,相当于机器人的“大脑”)、中游机器人本体(机器人的“身体”)和下游系统集成商(国内95% 的企业都集中在这个环节上)三个层面。 课堂认知 2.1 工业机器人的系统组成 第一代工业机器人主要由以下几部分组成:操作机、控制器和示教器。对于第二代及第三代工业机器人还包括感知系统和分析决策系统,它们分别由传感器及软件实现。

工业机器人系统组成 2.1.1 操作机 操作机(或称机器人本体)是工业机器人的机械主体,是用来完成各种作业的执行机构。它主要由机械臂、驱动装置、传动单元及内部传感器等部分组成。 关节型机器人操作机基本构造 机器人操作机最后一个轴的机械接口通常为一连接法兰,可接装不同的机械操作装置,如夹紧爪、吸盘、焊枪等。

并联机器人技术方案

并联机器人方案 一、并联机器人用途: 并联机器人作为一种新型的机器人形式得到了越来越多的应用,与串联机器人相比该型机器人具有结构简单、刚度大、承载能力强、误差小等特点,与串联机器人形成了良好的互补关系。可用于六自由度数控加工中心、航天器对接机构、汽车装配线、运动模拟器、岩土挖掘、光学调整、医疗机械等领域。 二、系统特点: 1、机构采用并联式结构,按工业标准要求设计,结构简单、速度快; 2、控制系统采用Windows系列操作系统,二次开发方便、快捷,适于教学实验; 3、提供教材、实验指导书等,内容涵盖机器人运动学、动力学、控制系统的设计、机器人轨迹规划等。 三、系统配置: 1、机器人本体、控制柜、电机控制卡、控制软件、理论教材及实验指导书。附属件配置有钻铣刀头、电主轴、绘图笔架、加工平台、手动夹具,另赠送一套加工所需原材料。 2、并联机器人加工装置(用电主轴本体、夹持器及钻铣刀)。 3、绘图装置(绘图笔架及绘图笔)。 4、并联机器人加工平台及工件夹持装置。 5、部分加工演示原材料(石蜡、尼龙等)。

1.并联机器人系统照片 2.并联机器人技术参数: 3.机器人型号:RBT-6T01P(全步进电机驱动) 机器人报价:175000.00元机器人型号:RBT-6S01P(全伺服电机驱动) 机器人报价:195000.00元

1.并联机器人系统照片 2.并联机器人技术参数: 3.机器人型号:RBT-6T02P(全步进电机驱动) 机器人报价:155000.00元机器人型号:RBT-6S02P(全伺服电机驱动) 机器人报价:175000.00元

六自由度桌面型并联机器人 1.并联机器人系统图片 2.并联机器人技术参数 3.机器人型号:RBT-6T03P(全步进电机驱动) 机器人报价:135000.00元机器人型号:RBT-6S03P(全伺服电机驱动) 机器人报价:155000.00元

工业机器人控制系统组成及典型结构

工业机器人控制系统组成及典型结构 一、工业机器人控制系统所要达到的功能机器人控制系统是机器人的重要组成部分,用于对操作机的控制,以完成特定的工作任务,其基本功能如下: 1、记忆功能:存储作业顺序、运动路径、运动方式、运动速度和与生产工艺有关的信息。 2、示教功能:离线编程,在线示教,间接示教。在线示教包括示教盒和导引示教两种。 3、与外围设备联系功能:输入和输出接口、通信接口、网络接口、同步接口。 4、坐标设置功能:有关节、绝对、工具、用户自定义四种坐标系。 5、人机接口:示教盒、操作面板、显示屏。 6、传感器接口:位置检测、视觉、触觉、力觉等。 7、位置伺服功能:机器人多轴联动、运动控制、速度和加速度控制、动态补偿等。 8、故障诊断安全保护功能:运行时系统状态监视、故障状态下的安全保护和故障自诊断。 二、工业机器人控制系统的组成 1、控制计算机:控制系统的调度指挥机构。一般为微型机、微处理器有32 位、64 位等如奔腾系列CPU 以及其他类型CPU 。 2、示教盒:示教机器人的工作轨迹和参数设定,以及所有人机交互操作,拥有自己独立的 CPU 以及存储单元,与主计算机之间以串行通信方式实现信息交互。 3、操作面板:由各种操作按键、状态指示灯构成,只完成基本功能操作。 4、硬盘和软盘存储存:储机器人工作程序的外围存储器。 5、数字和模拟量输入输出:各种状态和控制命令的输入或输出。 6、打印机接口:记录需要输出的各种信息。 7、传感器接口:用于信息的自动检测,实现机器人柔顺控制,一般为力觉、触觉和视觉传感器。 8、轴控制器:完成机器人各关节位置、速度和加速度控制。 9、辅助设备控制:用于和机器人配合的辅助设备控制,如手爪变位器等。 10 、通信接口:实现机器人和其他设备的信息交换,一般有串行接口、并行接口等。 11 、网络接口 1) Ethernet 接口:可通过以太网实现数台或单台机器人的直接PC 通信,数据传输速率高达 10Mbit/s ,可直接在PC 上用windows 库函数进行应用程序编程之后,支持TCP/IP 通信协议,通过Ethernet 接口将数据及程序装入各个机器人控制器中。

并联机器人构型方法 (1)

机器人机构设计中最重要的步骤之一是解决机构型综合的问题,机器人机构构型方法的研究具有十分重要的理论和实际意义,尤其是并联机器人的型综合方法一直以来都受到国内外许多研究学者的关注。在并联机器人机构的构型理论研究中,基于机构末端运动特征描述与机构需要完成的功能的简单有效的构型方法还缺乏系统的研究。 并联机器人机构构型方法研究 8 多自由度机构,其构型综合是一个非常具有挑战性的难题。目前国内外主要有 5 种并联机构的型综合研 究方法,即:基于机构的结构公式的构型方法、基于螺旋理论的综合方法、基于群论和微分几何的综合 方法、基于单开链的型综合方法以及基于集合的综合方法。 1-3-1 基于机构的结构公式的构型方法 基于机构的结构公式(即自由度计算公式)的构型方法是比较传统的一种并联机构的型综合方法。 Tsai [84] 在1999 年用基于计算自由度的Grübler-Kutzbach 公式的列举法综合了一类三自由度并联机构。 基于并联机构自由度计算的一般Grübler-Kutzbach 公式为 ( ) 1 1 = = ??+ ∑ g i i M d n g f (1.1) 式中M 为机构的自由度数; d 为机构的阶; n 为机构的杆件数(包括机架); g 为运动副数; i f 为第i 个运动副的自由度数。 当给定机构的自由度数M 后,根据(1.1)寻求机构的每个分支运动链的运动副数。并联机构属于空 间多环机构,其独立环路数l 可以由下式给出 l = g ?n +1 (1.2) 该式即为著名的欧拉环路公式。将上式带入(1.1)中,可得到 =1 ∑= + g i i

f M d l (1.3) 定义并联机构中第j 个分支总的自由度数为 j C ,则有下式成立 =1 =1 ∑=∑ mg j i j i C f (1.4) 将(1.4)代入(1.3)消去 i f 后得到 ∑= + m j j C M d l (1.5) 对于分支运动链结构相同,且分支数等于机构自由度数的对称并联机构,又有以下条件成立m = M且l = M ?1 (1.6) 把(1.6)代入(1.5)消去l 后得到 = ?+1 j d C d M (1.7) 由上式在已知d 和M 时,可以得到分支运动链的自由度数 j C ,从而给出分支运动链。例如,d =3, M =3时,由式(1.7)可得 j C =3,分支运动链可以是RRR、RPR、PRR 等。并联机器人机构构型方法研究 1 0 寻找可以生成{ } gi L 的分支运动链,此时可利用位移子群乘法运算的封闭性获得不同结构的分支。 Hervé和Angeles 等较早将李群理论引入并联机构型综合。1978 年,Hervé [113] 基于位移群的代数结 构对运动链进行了分类,证明了所有六种低副所生成的运动都是位移子群,还给出了另外六种位移子群 以及子群间交集的运算法则,奠定了位移子群以及子群间交集的运算法则和位移子群综合法的理论基

工业机器人的实时轨迹插补算法(精)

工业机器人的实时轨迹插补算法 李天友 ,孟正大 ,陈勍奇 (东南大学自动化学院,江苏南京 210096) 摘要:提出了一种实现工业机器人实时轨迹插补的规划算法。该算法既能满足时间上的实时性,又能够在完成机器人当前轨迹插补的同时,实现在线调整插补参数,改变机器人当前插补方程,从而改变机器人运动轨迹与状态。而对于不同插补类型,只要找准对应线长的表示,不需要对算法本身进行修改,就可以完成相应的轨迹插补。本算法应用于“昆山一号”焊接机器人中,表明其满足焊接实时性和可调速性要求。 关键词:工业机器人;实时插补;算法;轨迹规划 示教再现方式下的轨迹插补算法是工业机器人的一个传统课题[1],技术和方法比较成熟有效。文献[2-4]分别解决了直线、圆弧、样条曲线等单一类型的轨迹插补,文献[5,6]讨论了复杂曲线在编程时用分段直线或圆弧进行拟合插补的方法,文献[7]研究了关节空间和笛卡儿空间的通用插补算法,把插补段分为加速段、匀速段、减速段进行插补, 但算法复杂,运算量大,且不能进行实时控制。此外,时间上满足实时性的轨迹插补方法也得到了研究[3,4]。但是既满足实时性要求又能够进行平滑调速并且能够同时完成关节空间和笛卡儿空间各种类型插补的通用轨迹插补算法却比较少见。 本文介绍工业机器人的实时轨迹插补算法。它是为满足“昆山一号”焊接机器人的实时性而设计的,实时性包含两层涵义,一是满足时间上的实时性,即在一个采样周期内能够完成一次轨迹插补,多数算法能够满足这层要求;而实时性第二层涵义是系统能够在完成机器人当前轨迹插补的同时,实现在线调整插补参数,改变机器人当前插补方程,从而改变机器人运动轨迹与状态,本文的算法很好地完成了这层实时性的要求。并且这种算法能够完成PTP (点到点)、多点关节空间、直线、圆弧、样条曲线、FlyBy [8,9]等多种类型的轨迹插补。

机器人运动算法

1、简介 机器人的应用越来越广泛,几乎渗透到所有领域。移动机器人是机器人学中的一个重要分支。早在60年代,就已经开始了关于移动机器人的研究。关于移动机器人的研究涉及许多方面,首先,要考虑移动方式,可以是轮式的、履带式、腿式的,对于水下机器人,则是推进器。其次,必须考虑驱动器的控制,以使机器人达到期望的行为。第三,必须考虑导航或路径规划,对于后者,有更多的方面要考虑,如传感融合,特征提取,避碰及环境映射。因此,移动机器人是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合系统。 腿式机器人的腿部具有多个自由度,使运动的灵活性大大增强.它可以通过调节腿的长度保持身体水平,也可以通过调节腿的伸展程度调整重心的位置,因此不易翻倒,稳定性更高. 腿式机器人也存在一些不足之处.比如,为使腿部协调而稳定运动,从机械结构设计到控制系统算法都比较复杂;相比自然界的节肢动物,仿生腿式机器人的机动性还有很大差距. 腿的数目影响机器人的稳定性、能量效率、冗余度、关节控制的质量以及机器人可能产生的步态种类. 2、研究方法 保持稳定是机器人完成既定任务和目标的基本要求.腿式机器人稳定性的概念: 支持多边形(supportpolygon) 支持多边形的概念由Hildebrand首先提出,用它可以方便地描述一个步态循环周期中各个步态的情况.支持多边形指连接机器人腿部触地各点所形成的多边形在水平方向的投影.如果机器人的重心落在支持多边形内部,则认为机器人稳定. 算人物脚步放置位置及达到目标位置的走法是行走技术的重要环节。 2.1 控制算法 (1)姿态控制算法 这种算法的基本思想是:已知机器人的腿对身体共同作用产生的力和力矩向量,求每条腿上的力.用数学语言表达如下(假设机器人有四条腿): 其中和z已知,要求,解出这几个力,通过控制每条腿上的力向量,就可以使机器人达到预定的姿态,实现了机器人姿态的可控性,以适应不同地形. (2)运动控制算法 这个暂时不知道 (3)步态规划算法 这种算法的基本思想是:已知机器人的腿部末端在坐标系中的位置,求腿部各个关节的关节角.当关节角确定后,就可以构造机器人的步态模式.可用算法有ZMP算法、离线规划算法。 步态规划就是基于当前系统状态设计一种算法,得到期望的控制序列。步态规划在控制

机器人运动控制器

TB04-2372.jtdc-1 机器人控制标准包 机器人运动控制器 我们在机器人控制上拥有丰富的经验。除了标量机器人和2维并行机构的机器人是做为选项。其他机械机构的机器人我们提供了特殊控制技术。链接型和并行机构的机器人可以像自动机械一样运行。■优点 ◆有效运用于内部研发能够短期内使自己研发的产品稳定动作。 ◆追求独特的技术能够用于研发特殊组装和动作的机器人,并投入生产现场。◆技术知识保密自己开发技术知识的保密 ◆应用于自动机械可以应用于加工机械以及装配机械之类的生产机械的操作和运转 ■机构变换 ◆直交系列机器人◆标量机器人◆2维并行机构机器人◆垂直多关节机器人◆6维并行机构机器人 〈标准〉〈选项〉〈选项〉〈独特〉〈独特〉 ■正确的轮廓控制■按控制周期变换机构■正确的轨迹 按控制周期执行机构变换,实现插补之间的接合部的圆滑轨迹控制。可应用于精密加工。 ■运行程序(技术语言?G语言) 像去除加工毛刺及钻孔机械,使用输出CAM的G语言文件来实现DNC运行。 ■拥有丰富技能对应实际生产中的作业 通过可选项,能够用于搬运,加工,熔接,去除毛刺,装配等生产机械的操作和运行。◆可选项机能例 宏机能,多任务,扭矩指令(贴接?控制力度)DNC运行触摸屏 插补前的加减速S字加减速手动脉冲发动器,高精度制动开关(接触开关)接线?法线控制 同频同步平行轴控制■触摸屏及专用PC软件 ■触摸屏例 ■专用PC画面例 使用触摸屏或PC也可以操作。■动作机构计算的可2次开发 我们的经验可以对应您的特殊需求。 另外,你也可以自行开发动作机构变换软件。■应用于机器人控制的运动控制器◆SLM4000机器人规格 单板独立单机工作4轴脉冲列输入32 输出32RS232/USB ◆PLMC40机器人规格PLC动作 4轴脉冲列输入16输出16RS232可使用通用PLC扩展(梯形 ?IO? 模拟等) ◆PLMC-MⅡEX机器人规格MECHATROLINK-Ⅱ 标准4/9/16轴最大30轴可使用通用PLC扩展(梯形?IO?模拟等) ◆多軸运动功率放大器机器人规格多轴伺服功放一体型最大7轴输入42输出42可节省配线节省成本 A B a1 a2a3Accurate contour Uncontrolled path by simple positioning Calculation at each sampling time

并联机器人设计论文设计

并联机器人设计论文 摘要:并联机器人是一类全新的机器人,它具有刚度大、承载能力强、误差小、精度高、自重负荷比小、动力性能好、控制容易等一系列优点,在21世纪将有广阔的发展前景。文中从运动副分析入手,对一种运动解耦的三自由度并联机构进行了构型研究,该机构由三个正交分布的支链组成,且机构的运动副均为转动副,构成了机构动平台x、y、z三个方向的平动解耦;在机构构型研究的基础上,对其进行了运动学分析,推导出了该并联机构的运动学正反解,分析了机构输入/输出的速度和加速度等,验证了该机构运动解耦的特性。这对该机构的动力学分析、控制策略、机构设计和轨迹规划等方面的研究,具有一定的理论意义。 关键词:三自由度并联机构;并联机器人;设计;

1.课题国外现状及研究的主要成果 少自由度并联机器人由于其驱动元件少、造价低、结构紧凑而有较高的实用价值,更具有较好的应用前景,因此少自由度的并联机器人的设计理论的研究和应用领域的拓展成为并联机器人的研究热点之一。研究少自由度并联机构最早的学者应属澳大利亚著名机构学教授Hunt ,在1983年,他就列举了平面并联机构、空间三自由度3-rps并联机构,但对四,五自由度并联机构未作详细阐述。在Hunt之后,不断有学者提出新的少自由度并联机构机型。在少自由度并联机构机型的研究中,三维平移并联机构得到广泛的重视。clavel提出了一种可实现纯平运动三自由度Delta 并联机器人,在Delta机构的支链中采用平行四边形机构约束动平台的3个转动自由度。Tsai提出的Delta机构完全采用回转副,并通过转轴的偏移扩大了Delta机构的工作空间。在Tricept并联机床上采用的构型是由Neumann发明的一种具有3个可控位置自由度的并联机构,该机构的突出特点是带有导向装置,采用3个副驱动支链并由导向装置约束动平台。Tsai通过自由度分析提取支链的运动学特征,系统研究了并联机构的综合问题,特别研究了一类实现三自由度平动的并联机构。Rasim Alizade于2004年提出基于平台类型和联接平台的形式和类型进行分类的一种并联机构的结构综合和分类的新方法和公式,并综合出具有单平台和多平台的纯并联和串并联复联机构.我国燕山大学的黄真教授及其团队除了研制出解耦微型6维力传感器和微动机械,设计出一种新的

智能机器人运动控制和目标跟踪

XXXX大学 《智能机器人》结课论文 移动机器人对运动目标的检测跟踪方法 学院(系): 专业班级: 学生学号: 学生姓名: 成绩:

目录 摘要 (1) 0、引言 (1) 1、运动目标检测方法 (1) 1.1 运动目标图像HSI差值模型 (1) 1.2 运动目标的自适应分割与提取 (2) 2 运动目标的预测跟踪控制 (3) 2.1 运动目标的定位 (3) 2.2 运动目标的运动轨迹估计 (4) 2.3 移动机器人运动控制策略 (6) 3 结束语 (6) 参考文献 (7)

一种移动机器人对运动目标的检测跟踪方法 摘要:从序列图像中有效地自动提取运动目标区域和跟踪运动目标是自主机器人运动控制的研究热点之一。给出了连续图像帧差分和二次帧差分改进的图像HIS 差分模型,采用自适应运动目标区域检测、自适应阴影部分分割和噪声消除算法,对无背景图像条件下自动提取运动目标区域。定义了一些运动目标的特征分析和计算 ,通过特征匹配识别所需跟踪目标的区域。采用 Kalrnan 预报器对运动目标状态的一步预测估计和两步增量式跟踪算法,能快速平滑地实现移动机器人对运动目标的跟踪驱动控制。实验结果表明该方法有效。 关键词:改进的HIS 差分模型;Kahnan 滤波器;增量式跟踪控制策略。 0、引言 运动目标检测和跟踪是机器人研究应用及智能视频监控中的重要关键技术 ,一直是备受关注的研究热点之一。在运动目标检测算法中常用方法有光流场法和图像差分法。由于光流场法的计算量大,不适合于实时性的要求。对背景图像的帧问差分法对环境变化有较强的适应性和运算简单方便的特点,但帧问差分不能提出完整的运动目标,且场景中会出现大量噪声,如光线的强弱、运动目标的阴影等。 为此文中对移动机器人的运动目标检测和跟踪中的一些关键技术进行了研究,通过对传统帧间差分的改进,引入 HSI 差值模型、图像序列的连续差分运算、自适应分割算法、自适应阴影部分分割算法和图像形态学方法消除噪声斑点,在无背景图像条件下自动提取运动 目标区域。采用 Kalman 滤波器对跟踪目标的运动轨迹进行预测,建立移动机器人跟踪运动 目标的两步增量式跟踪控制策略,实现对目标的准确检测和平滑跟踪控制。实验结果表明该算法有效。 1、运动目标检测方法 接近人跟对颜色感知的色调、饱和度和亮度属性 (H ,S ,I )模型更适合于图像识别处理。因此,文中引入改进 型 HSI 帧差模型。 1.1 运动目标图像HSI 差值模型 设移动机器人在某一位置采得的连续三帧图像序列 ()y x k ,f 1-,()y x f k ,,()y x f k ,1+

并联机器人发展概述

并联机器人发展概述 随着先进制造技术的发展,并联机器人已从简单的上下料装置发展成数字化制造中的重要单元。在查阅了大量国内外相关文献的基础上,介绍了并联机器人的特点、分类、应用,从运动学、动力学、控制策略三方面总结了近年来并联机器人的主要研究成果,并指出面临的问题。 1895年,数学家Cauchy研究一种“用关节连接的八面体”,开始人类历史上并联机器的研究。1938年Pollard提出采用并联机构来给汽车喷漆。1949年Caough提出用一种并联机构的机器检测轮胎,这是真正得到运用的并联机构。而并联结构的提出和应用研究则开始于70年代。1965年,德国人Stewart发明了六自由度并联机构,并作为飞行模拟器用于训练飞行员。1978年澳大利亚人Hunttichu把六自由度的Stewart平台机构作为机器人机构,自此,并联机器人技术得到了广泛推广。 自工业机器人问世以来,采用串联机构的机器人占主导位置。串联机器人具有结构简单、操作空间大,因而获得广泛应用。由于串联机器人自身的限制,研究人员逐渐把研究方向转向并联机器人。和串联机器人相比并联结构其末端件上同时由6根杆支撑,与串联的悬臂梁相比刚度大,结构稳定。由于刚度大,并联结构较串联结构在相同的自重或体积下,有高的多的承载能力大。串联机构末端件上的误差是各个关节误差的积累和放大,因而误差大、精度低,并联式则没有那样的误差积累和放大关系,微动精度高。串联机器人的驱动电机及传动系统大都放在运动着的大小臂上,增加了系统的惯量,恶化了动力性能,而并联机器人将电机置于机座上,减小了运动负荷。在位置求解上,串联机构正解容易,但反解困难。而并联机构正解困难,反解非常容易,而机器人在线实时计算是要计算反解的。 根据并联机器人的自由度数,可以分为:2自由度并联机构。2自由度并联机构,如5-R,3-R-2-P(R表示旋转,P表示平移)。平面5杆机构是最典型的2自由度并联机构,这类机构一般具有2个平移自由度。3自由度并联机构。3自由度并联机构种类较多,形式复杂,一般有以下形式,平面3自由度并联机构,如3-RRP机构、3-RPR机构、它们具有2个旋转自由度和1个平移自由度;3维纯平移机构,如Star Like并联机构、Tsai 并联机构,该类机构的运动学正反解都很简单,是一种应用很广泛的3维平移空间机构;空间3自由度并联机构,如典型的3-RPS机构、这类机构属于欠秩机构,在工作空间不同的点,其运动形式不同是其最显著的特点,由于这种特殊的运动特性,阻碍了该类机构在实际的广泛应用;4自由度并联机构。4自由度并联机构大多不是完全的并联机构,如2-UPS-1-RRRR机构,运动平台通过3个支链与顶平台相连,有2个运动链是相同的,各具有一个虎克铰U,1个平移副P,其中P和1个R是驱动副,因此这种机构不是完全并联机构。5自由度并联机构。现有的5自由度并联机构结构复杂,如韩国的Lee的5自由度并联机构具有双层结构。6自由度并联机构。该类并联机器人是国内外学者研究的最多的并联机构,一般情况下,该类机构具有6个运动链。随着6自由度并联机构研

工业机器人控制的功能、组成和分类

1. 对机器人控制系统的一般要求 机器人控制系统是机器人的重要组成部分,用于对操作机的控制,以完成特定的工作任务,其基本功能如下: ·记忆功能:存储作业顺序、运动路径、运动方式、运动速度和与生产工艺有关的信息。 ·示教功能:离线编程,在线示教,间接示教。在线示教包括示教盒和导引示教两种。 ·与外围设备联系功能:输入和输出接口、通信接口、网络接口、同步接口。 ·坐标设置功能:有关节、绝对、工具、用户自定义四种坐标系。 ·人机接口:示教盒、操作面板、显示屏。 ·传感器接口:位置检测、视觉、触觉、力觉等。 ·位置伺服功能:机器人多轴联动、运动控制、速度和加速度控制、动态补偿等。 ·故障诊断安全保护功能:运行时系统状态监视、故障状态下的安全保护和故障自诊断。 2.机器人控制系统的组成(图1) (1)控制计算机控制系统的调度指挥机构。一般为微型机、微处理器有32位、64位等,如奔腾系列CPU以及其他类型CPU。 (2)示教盒示教机器人的工作轨迹和参数设定,以及所有人机交互操作,拥有自己独立的CPU以及存储单元,与主计算机之间以串行通信方式实现信息交互。 (3)操作面板由各种操作按键、状态指示灯构成,只完成基本功能操作。 (4)硬盘和软盘存储存储机器人工作程序的外围存储器。 (5)数字和模拟量输入输出各种状态和控制命令的输入或输出。 (6)打印机接口记录需要输出的各种信息。 (7)传感器接口用于信息的自动检测,实现机器人柔顺控制,一般为力觉、触觉和视觉传感器。 (8)轴控制器完成机器人各关节位置、速度和加速度控制。 (9)辅助设备控制用于和机器人配合的辅助设备控制,如手爪变位器等。 (10)通信接口实现机器人和其他设备的信息交换,一般有串行接口、并行接口等。 (11)网络接口 1)Ethernet接口:可通过以太网实现数台或单台机器人的直接PC通信,数据传输速率高达10Mbit/s,可直接在PC 上用windows库函数进行应用程序编程之后,支持TCP/IP通信协议,通过Ethernet接口将数据及程序装入各个机器人控制器中。 2)Fieldbus接口:支持多种流行的现场总线规格,如Device net、AB Remote I/O、Interbus-s、profibus-DP、M-NET 等。

工业机器人竞赛复习题(理论考试)

工业机器人竞赛(理论)复习题 一、判断题 1.机械手亦可称之为机器人。(Y) 2.完成某一特定作业时具有多余自由度的机器人称为冗余自由度机器人。(Y) 3.关节空间是由全部关节参数构成的。(Y) 4.任何复杂的运动都可以分解为由多个平移和绕轴转动的简单运动的合成。(Y) 5.关节i的坐标系放在i-1关节的末端。(N) 6.手臂解有解的必要条件是串联关节链中的自由度数等于或小于6。(N) 7.对于具有外力作用的非保守机械系统,其拉格朗日动力函数L可定义为系统总动能与系统总势能之和。(N) 8.由电阻应变片组成电桥可以构成测量重量的传感器。(Y) 9.激光测距仪可以进行散装物料重量的检测。(Y) 10.运动控制的电子齿轮模式是一种主动轴与从动轴保持一种灵活传动比的随动系统。(Y) 11.工业机器人工作站是由一台或两台机器人所构成的生产体系。(N)

12.示教编程用于示教-再现型机器人中。(Y) 13.机器人轨迹指工业机器人在运动过程中的运动轨迹,即运动点的位移、速度和加速度。(Y) 14.关节型机器人主要由立柱、前臂和后臂组成。(N) 15.到目前为止,机器人已发展到第四代。(N) 16.磁力吸盘能够吸住所有金属材料制成的工件。(N) 17.谐波减速机的名称来源是因为刚轮齿圈上任一点的径向位移呈近似于余弦波形的变化。(N) 18.由电阻应变片组成电桥可以构成测量重量的传感器。(Y) 19.激光测距仪可以进行散装物料重量的检测。(Y) 20.机械手亦可称之为机器人。(Y) 21.谐波减速机的名称来源是因为刚轮齿圈上任一点的径向位移呈近似于余弦波形的变化。(N) 22.轨迹插补运算是伴随着轨迹控制过程一步步完成的,而不是在得到示教点之后,一次完成,再提交给再现过程的。(Y) 23.格林(格雷)码被大量用在相对光轴编码器中。(N) 24.图像二值化处理便是将图像中感兴趣的部分置1,背景部分置2。(N) 25.图像增强是调整图像的色度、亮度、饱和度、对比度和分辨率,使得图像效果清晰和颜色分明。(Y)

并联机器人操作细则

运动控制开发平台操作细则: 一、步进电机平台 1.上电计算机电源、驱动器电源、端子板电源。 2.运行GTCmdPCI_CH。 3.在菜单栏选择出现“基础参数设置”界面。 4.在“运控卡型号选择”栏,打开下拉菜单,选择所安装的运控卡型号。 设置“行程开关触发电平” 设置“编码器方向”,默认值0 设置控制周期,运控卡缺省的控制周期是200 μs。 5.点击“打开运控卡”按钮。 6.点击“确定”按钮。 7.在GTCmdISA_CH主菜单下选择打开“基于轴的控制”界面。 8.打开轴选下拉菜单,如下图,选择当前轴(操作轴)。 9.选择“清状态”,如右图,清除当前轴不正确的状态。 10、设置控制输出,驱动使能(轴开启) 在系统初始化完成后,在轴选框选择当前轴,按照根据系统要求设定控制输出。注意应与当 前轴的驱动器和电机的设置相统一。 SV卡: 可以选择输出模拟量,即0; 亦可选择输出脉冲量,即1。 SV卡: 选择“伺服打开/伺服关闭”选项(如右图,打勾为打开,不选为关闭)。此时驱动器使能,轴应该静止状态

11.点击“位置清零”按钮,观察“轴当前位置”为0。 4.在“运动控制模式”栏设置运动参数 5.点击“参数更新”按钮, 二、直流伺服电机平台 1~6步同步进电机一样 7、在轴的控制窗口中选中第4轴。 8、在“伺服滤波器参数设置”框中设置“比例增益”为10。 9、在梯形曲线页中“目标位置”为300000,“速度”为10,“加速度”为1。 10、点击“伺服打开”(SV卡时)/“轴开启”(SG卡时)选项,使控制器的第4轴进入伺服(开启)状态。 11、点击“清状态”键,使控制器的第四轴事件状态清除。 12、点击“参数更新”键,使第四轴开始运动 补充: 1、当某个轴选定并打开伺服后,在开发面板上会亮起相应的灯,分别是ENA1、ENA 2、ENA 3、ENA4. 2、在运动启动前应保证在控制软件的右侧的轴系状态或者坐标系状态正确,如:

工业机器人控制的功能

工业机器人控制的功能、组成和分类 1. 对机器人控制系统的一般要求 机器人控制系统是机器人的重要组成部分,用于对操作机的控制,以完成特定的工作任务,其基本功能如下: ·记忆功能:存储作业顺序、运动路径、运动方式、运动速度和与生产工艺有关的信息。·示教功能:离线编程,在线示教,间接示教。在线示教包括示教盒和导引示教两种。 ·与外围设备联系功能:输入和输出接口、通信接口、网络接口、同步接口。 ·坐标设置功能:有关节、绝对、工具、用户自定义四种坐标系。 ·人机接口:示教盒、操作面板、显示屏。 ·传感器接口:位置检测、视觉、触觉、力觉等。 ·位置伺服功能:机器人多轴联动、运动控制、速度和加速度控制、动态补偿等。 ·故障诊断安全保护功能:运行时系统状态监视、故障状态下的安全保护和故障自诊断。 2.机器人控制系统的组成(图1) (1)控制计算机控制系统的调度指挥机构。一般为微型机、微处理器有32位、64位等,如奔腾系列CPU以及其他类型CPU。 (2)示教盒示教机器人的工作轨迹和参数设定,以及所有人机交互操作,拥有自己独立的CPU以及存储单元,与主计算机之间以串行通信方式实现信息交互。 (3)操作面板由各种操作按键、状态指示灯构成,只完成基本功能操作。 (4)硬盘和软盘存储存储机器人工作程序的外围存储器。 (5)数字和模拟量输入输出各种状态和控制命令的输入或输出。 (6)打印机接口记录需要输出的各种信息。 (7)传感器接口用于信息的自动检测,实现机器人柔顺控制,一般为力觉、触觉和视觉传感器。 (8)轴控制器完成机器人各关节位置、速度和加速度控制。 (9)辅助设备控制用于和机器人配合的辅助设备控制,如手爪变位器等。 (10)通信接口实现机器人和其他设备的信息交换,一般有串行接口、并行接口等。(11)网络接口 1)Ethernet接口:可通过以太网实现数台或单台机器人的直接PC通信,数据传输速率高达10Mbit/s,可直接在PC上用windows库函数进行应用程序编程之后,支持TCP/IP通信协议,通过Ethernet接口将数据及程序装入各个机器人控制器中。 2)Fieldbus接口:支持多种流行的现场总线规格,如Device net、AB Remote I/O、Interbus-s、profibus-DP、M-NET等。

机器人的运动控制

2.4 手臂的控制 2.4.1 运动控制 对于机器人手臂的运动来说,人们通常关注末端的运动,而末端运动乃是由各个关节的运动合成实现的。因而必须考虑手臂末端的位置、姿态与各个关节位移之间的关系。此外,手臂运动,不仅仅涉及末端从某个位置向另外一个位置的移动,有时也希望它能沿着特定的空间路径进行移动。为此,不仅要考虑手臂末端的位置,而且还必须顾及它的速度和加速度。若再进一步从控制的观点来看,机器人手臂是一个复杂的多变量非线性系统,各关节之间存在耦合,为了完成高精度运动,必须对相互的影响进行补偿。 1.关节伺服和作业坐标伺服 现在来研究n个自由度的手臂,设关节位移以n i个关节的位移,刚性臂的关节位移和末端位置、姿态之间的关系以下式给出: (1) m维末端向量,当它表示三维空间内的位置姿态 时,m=6。如式(1)所示,对刚性臂来说,由于各关节的位移完全决定了手臂末端的位置姿态,故如欲控制手臂运动,只要控制各关节的运动即可。 设刚性臂的运动方程式如下所示: (2) 量为粘性摩擦系数矩阵;表示重力项的向量; 机器人手臂的驱动装置是一个为了跟踪目标值对手臂当前运动状态进行反馈构成的伺服系统。无论何种伺服系统结构,控制装置的功能都是检测各关节的 1给出了控制系统的构成示意图。来自示教、数值数据或外传感器的信号等构成了作业指令,控制系统根据这些指令,在目标轨迹生成部分产生伺服系统需要的目标值。伺服系统的构成方法因目标值的选取方法的不同而异,大体上可以分为关节伺服和作业坐标伺服两种。当目标值为速度、加速度量纲时,分别称之为速度控制或加速度控制,关于这些将在本节2.和3.中加以叙述。

图1 刚性臂控制系统的构成 1) 关节伺服控制 讨论以各关节位移的形式给定手臂运动目标值的情况。 令关节的目标值为12(,,,)T n d d d dn q q q q =∈?。图2给出了关节伺服的构成。若目标值是以关节位移的形式给出的,那么如图2所示,各个关节可以独立构成伺服系统,因此问题就变得十分简单。目标值d q 可以根据末端目标值d r 由式(1)的反函数,即逆运动学(inverse kinematics )的计算得出 1()d r d q f r -= (3) 图2 关节伺服构成举例 如果是工业机器人经常采用的示教方法,那么示教者实际上都是一面看着手臂末端,一面进行示教的,所以不必进行式(3)的计算,d q 是直接给出的。如果想让手臂静止于某个点,只要对d q 取定值即可,当欲使手臂从某个点向另一个点逐渐移动,或者使之沿某一轨迹运动时,则必须按时间的变化使d q

机器人逆运动学求解的可视化算法

2006年7月 July 2006 计 算 机 工 程 Computer Engineering 第 第14期Vol 32卷 .32 № 14 ·多媒体技术及应用· 文章编号:1000—3428(2006)14—0193—03 文献标识码:A 中图分类号:TP249 机器人逆运动学求解的可视化算法 周芳芳,樊晓平,赵 颖 (中南大学信息科学与工程学院自动化工程研究中心,长沙 410075) 摘 要:机器人逆运动学求解的可视化算法包含两部分,数值求解两个(或一个)非线性方程和4(或5)自由度机器人封闭解,实现了任意结构的6自由度机器人的逆运动学方程的求解,根据D-H 参数表生成机器人三维模型实现机器人结构的可视化,有效地判断逆解的合理性,并为机器人学习提供了辅助工具。 关键词:机器人;逆运动学;可视化;数值计算 Visual Algorithm of Robot Inverse Kinematics ZHOU Fangfang, FAN Xiaoping, ZHAO Ying (Research Center for Automation Engineering, College of Information Science and Engineering, Central South University, Changsha 410075) 【Abstract 】This paper introduces the robotic inverse kinematics visual algorithm which includes two parts. Firstly two (or one) non-linear equations are numerically computed, and then the remaining four (or five) joint values are determined in closed form once two (or one) joint values are known. And the visualization of the robot models produced by D-H parameters is used to determine the solutions effectively. 【Key words 】Robot manipulator; Inverse kinematics; Visualization; Numerical computer 机器人的可视化技术的研究可以帮助学习和研究机器人,减少分析和学习的时间,深入理解机器人的基本概念和研究的难点。机器人逆运动学求解的可视化算法通过数值计算快速求解任意结构的6自由度机器人的逆解,并将求解的结果可视化,有效地判断逆解的合理性,同时为机器人运动学的学习提供了辅助工具。 Pieper 最早提出含有3个相邻关节轴互相垂直(或平行)的6自由度机器人可以求逆运动学封闭解[1],求解的过程被简化为计算四元多项式方程。为了机器人的学习和研究需要求解一般结构的6自由度机器人的逆运动学方程,目前多采用数值计算的方法通过计算逆Jacobin 矩阵求解任意结构的6自由度机器人的运动学方程[3,4]。但该方法需要数值求解6个非线性方程,不仅计算量大,而且会产生不符合实际物理约束的多余解。 本论文介绍的求解方法建立在4、5自由度机器人的运动学求解的基础之上[5],将6自由度机器人逆运动学方程求解的过程简化为计算两个非线性方程。并且利用D-H 参数表产生机器人模型,利用解的可视化来判断解的有效性,排除不合理的逆解。 1运动学的定义 机器人运动学方程定义为 123456A A A A A A P = (1) 矩阵A i 定义为 00 1i i i i i i i i i i i i i i i i i i C S C a S S C S a C A d γσσγσγ????????=?????? 其中C i =cos θi ,S i =sin θi ,σi =sin αi ,γi =cos αi 。已知方程(1)中的角度θ,求解目标点的位姿P 为正运动学求解。 末端执行器的位姿矩阵可表示为 00010 1x x x x y y y y z z z z n b t p n b t p n b t p P n b t p ????????== ?????? ???? 其中n ,b ,t ,p 是3×1向量。已知末端执行器的位姿P 求解关节变量角θ为逆运动学求解。 2 机器人逆运动学求解 本文求解的是任意结构的6自由度机器人的逆运动学方程。求解的方法有以下3个特点: (1)该方法建立在4、5自由度机器人的运动学求解的基础之上[5],可以更好地理解6自由度机器人的结构和计算; (2)把6自由度机器人逆运动学方程求解的过程简化为数值计算两个非线性方程; (3)利用末端执行器的非完整性约束可进一步简化求解过程。 求解思路:考虑6自由度机器人杆件结构,对不同的结构采用不同的求解方法。通过分析主要有3种情况,如图1。 (1)对无垂直或无平行关节轴的6自由度机器人,首先化简为4自由度机器人,然后二维迭代求解2个关节变量,最后封闭求解其余4个变量; (2)对包含一对垂直或平行的关节轴的机器人,则化简为5自由度机器人,一维迭代求解1个关节变量,封闭求解另外5个变量; (3)对于包含3个相邻或3个以上的垂直或平行的关节轴机器人,可以直接求解6个关节变量。 基金项目:国家自然科学基金资助项目(69975003) 作者简介:周芳芳(1980—),女,博士,主研方向:虚拟现实技术,计算机网络,机器人仿真;樊晓平,博士、教授、博导;赵 颖,硕士 收稿日期:2005-07-27 E-mail :zff@https://www.doczj.com/doc/5d3178436.html, —193—

相关主题
文本预览
相关文档 最新文档