当前位置:文档之家› 数学毕业论文_概率论的发展简介及其生活中的应用

数学毕业论文_概率论的发展简介及其生活中的应用

数学毕业论文_概率论的发展简介及其生活中的应用
数学毕业论文_概率论的发展简介及其生活中的应用

XX师范学院数学与计算机科学学院本科毕业论文

论文(设计)题目:概率论的发展简介及其

在生活中的若干应用

专业:数学与应用数学

班级:06数(1)

学号:

学生姓名:

指导教师姓名:

XX师范学院数学与计算机科学学院

2012 年 3 月

概率论的发展简介及其在生活中的若干应用

摘要

概率论是一门研究随机现象的数量规律的科学,已有300 余年的历史。了解概率论的起源及其在实践中的发展很有必要,随着社会的发展,概率论的理论方法已成为研究工农生产、国民经济、现代科学技术的不可缺少的工具。概率论进入其他科学领域的趋势在不断发展为此更有必要进一步分析概率论在生活中的应用,重点探讨日常生活中如抽签,经济效益,相遇,如何追究责任及其正常运作的问题。充分体现了把概率论作为日常生活中问题解决的必备工具。

关键词

概率论;概率论的理论基础;概率论的应用;抽签;经济效益;相遇问题

About the development of probability theory and its application in a number of life

Abstract

Probability theory is the study of the number of laws of random phenomena of science, has more than 300 years of history. Understanding the origins of probability theory and its development in practice are necessary, along with social development, methods of probability theory have become an indispensable tool as researching industry and agriculture production, the national economy, modern science and technology. Probability of the trend into other fields of science is even more necessary in the continuous development of this further analysis of the probability of application in life, focus on daily life, such as drawing of lots, cost-effective, meeting, how accountability and its normal functioning. Fully reflects the probability of a daily life problem-solving too.

Key words

Probability theory;On the basis of probability theory;Application of probability theory; ballot; economic benefits; encounter problems.

目录

引言 (3)

1. 概率论的发展简介 (3)

1.1 概率论的起源 (3)

1.2 现代概率论在实践的曲折发展 (3)

1.3 概率论的理论基础 (4)

1.4 概率论的进一步发展 (5)

2. 概率论在生活中的应用 (5)

2.1 抽签先后是否公平 (6)

2.2 经济效益 (7)

2.3 相遇问题 (7)

2.4 如何追究责任 (8)

2.5 正常运作的问题 (9)

2.6 校对错误 (9)

结论 (10)

参考文献 (10)

引言

17、18世纪,数学获得了巨大的进步。数学家们冲破了古希腊的演绎框架,向自然界和社会生活的多方面汲取灵感,数学领域出现了众多崭新的生长点,而后都发展成完整的数学分支。除了分析学这一大系统之外,概率论就是这一时期"使欧几里得几何相形见绌"的若干重大成就之一。20世纪以来,由于物理学、生物学、工程技术、农业技术和军事技术发展的推动,概率论飞速发展,理论课题不断扩大与深入,应用范围大大拓宽。在最近几十年中,概率论的方法被引入各个工程技术学科和社会学科。为此,应用概率论来探讨生活中的应用有必然的重要性。

1. 概率论发展简介

1.1 概率论论的起源

概率是一门研究随机现象的数量规律的科学,它起源于博弈问题。15-16世纪,意大利数学家帕乔利(L.Pacioli,1445-1517)、塔塔利亚(N.Tartaglia,1499-1557)和卡尔丹(G.cardano,1501-1576)的著作中都曾讨论过俩人赌博的赌金分配等概率问题。17世纪中叶,荷兰数学家惠更斯(C.Huygens,1629-1695)发表了《论赌博中的计算》,这是最早的概率论著作。这些数学家的著述中所出现的第一批概率论概念与定理,标志着概率论的诞生。

17、18世纪之交,有不少数学家从事概率的研究。雅格布?伯努利(Jacob Bernoulli,1654-1705)的巨著《猜度术》是一项重大的成就,“伯努利定理”著称的极限定理是是“大数定律”的最早形式。伯努利之后,德莫瓦佛的《机会的学说》(Doct rine of Chances, 1718, 伦敦出版) 包含“德莫佛—拉普拉斯定理”。开辟了概率论的新时期。泊松则推广了大数定律, 提出了著名的“泊松分布”。

19世纪后期,极限理论的发展称为概率论研究的中心课题,俄国数学家切比雪夫对此做出了重大贡献。他建立了关于独立随机变量序列的大数定律,推广了德莫弗—拉普拉斯的极限定理。19世纪末,一方面概率论在统计物理等领域的应用提出了对概率论基本概念与原理进行解释的需要,另一方面,科学家们在这一时期发现的一些概率论悖论也揭示出古典概率论中基本概念存在的矛盾与含糊之处。

1.2 现代概率论在实践中曲折发展

在概率问题早期的研究中,逐步建立了事件、概率和随机变量等重要概念以及它们的基本性质。后来由于许多社会问题和工程技术问题,如:人口统计、保险理论、天文观测、误差理论、产品检验和质量控制等。这些问题的提法,均促进了概率论的发展。但是,随着概率论中各个领域获得大量成果,以及概率论在其他基础学科和工

程技术上的应用,由拉普拉斯给出的概率定义的局限性很快便暴露了出来,甚至无法适用于一般的随机现象。

由于19 世纪的分析没有严格化, 以其为研究工具的概率论的严格化就成了空

中楼阁。虽后来分析的基础严密化了, 但测度论尚未发明。因此, 20 世纪前的概率论明显缺乏数学的严格化和严密性, 甚至连庞加莱(J. H. Po incare, 1854- 1912) 也不能把概率论演绎成逻辑上严密完美的学科。

诸如“贝特朗悖论”以及概率论在物理、生物等领域的应用都需要对概率论的概念、原理做出解释。正是这些问题促使人们思考概率论的基础问题及概率论所依赖的数学技术问题。1900 年, 希尔伯特(D. H ilbert, 1862- 1943) 在巴黎国际数学家大会上所作报告中的第六个问题, 就是呼吁把概率论公理化。[10 ]很快该问题就成为当时数学乃至整个自然科学界亟待解决的问题之一。最早对概率论严格化进行尝试的是俄罗斯数学家伯恩斯坦(C. H. Bern stein, 1880- 1968) 和奥地利数学家米泽斯(R. vonM ises, 1883- 1953)。

因此可以说,到20世纪初,概率论的一些基本概念,诸如概率等尚没有确切的定义,概率论作为一个数学分支,缺乏严格的理论基础。

1917 年伯恩斯坦发表了题为“论概率论的公理化基础”的论文, 随后的几年里他仍致力于研究概率论公理化。1927 年其《概率论》第一版问世, 最后一个版本即第四版出现于1946 年。伯恩斯坦在书中给出了一个详细的概率论公理体系。

1.3 概率论的理论基础

概率论的第一本专著是1713年问世的雅各·贝努利的《推测术》。经过二十多年的艰难研究,贝努利在该树种,表述并证明了著名的"大数定律"。所谓"大数定律",简单地说就是,当实验次数很大时,事件出现的频率与概率有较大偏差的可能性很小。这一定理第一次在单一的概率值与众多现象的统计度量之间建立了演绎关系,构成了从概率论通向更广泛应用领域的桥梁。因此,伯努利被称为概率论的奠基人。

定义随机事件、概率等概念后, 伯恩斯坦引进了三个公理。基于这三个公理构造出整个概率论大厦,但其理论体系并不令人满意。正如柯尔莫哥洛夫所言, 第一个系统的概率论公理化体系是伯恩斯坦所给, 其建立的基础是依据随机事件的概率对事

件做定性比较的思想。在定性比较思想中概率的数值似乎是推导而来, 而不是基本概念。米泽斯的主要工作是概率论的频率定义和统计定义的公理化。在《概率, 统计和真理》(1928) 一书中, 他建立了频率的极限理论, 强调概率概念只有在大量现象存在时才有意义。虽然频率定义在直观上易于理解, 易为实际工作者和物理学家所接受, 便于在实际工作中应用, 但像某个事件在一独立重复试验序列中出现无穷多次这一

事件的概率, 米泽斯理论是无法定义的。

为概率论确定严密的理论基础的是数学家柯尔莫哥洛夫。1933年,他发表了著名的《概率论基础》,这是概率论的一部经典性著作。其中,科尔莫戈罗夫给出了公理化概率论的一系列基本概念,提出了六条公理,整个概率论大厦可以从这六条公理出发建筑起来。科尔莫戈罗夫的公理体系逐渐得到数学家们的普遍认可。由于公理化,概率论成为一门严格的演绎科学,并通过集合论与其它数学分支密切地联系者。用公理化结构,这个结构明确定义了概率论发展史上的一个里程碑,为他以后的概率论的迅速发展奠定了基础。

1.4 概率论的进一步的发展

在公理化基础上,现代概率论取得了一系列理论突破。公理化概率论首先使随机过程的研究获得了新的起点。1931年,科尔莫戈罗夫用分析的方法奠定了一类普通的随机过程。所谓随机过程:如果固定某一观测时刻t,事物在时刻t 出现的状态是随机的,即每次所得到的结果是不相同的一个过程。随机过程论是起源于马尔柯夫关于“成连续锁的试验”的研究。这一类普通的随机过程是马尔柯夫的理论基础。

科尔莫戈罗夫之后,对随机过程的研究做出重大贡献而影响着整个现代概率论的重要代表人物有莱维(P.Levy,1886-1971)、辛钦、杜布(J.L.Dob)和伊藤清等。1934年,辛钦提出平稳过程的相关理论。1948年莱维出版的著作《随机过程与布朗运动》提出了独立增量过程的一般理论,并以此为基础极大地推进了作为一类特殊马尔可夫过程的布朗运动的研究。1939年,维尔(J.Ville)引进“鞅”的概念,1950年起,杜布对鞅概念进行了系统的研究而使鞅论成为一门独立的分支。从1942年开始,日本数学家伊藤清引进了随机积分与随机微分方程,不仅开辟了随机过程研究的新道路,而且为随机分析这门数学新分支的创立和发展奠定了基础。概率论的发展史说明了理论与实际之间的密切关系。许多研究方向的提出,归根到底是有其实际背景的。反过来,当这些方向被深入研究后,又可指导实践,进一步扩大和深化应用范围。

2. 概率论在生活中的应用

概率论进入其他科学领域的趋势在不断发展。下面简略介绍一下概率论本身在现代的应用情况。

物理方面,放射性衰变,粒子计数器,原子核照相乳胶中的径迹理论和原子核反应堆中的问题等的研究,都要用到泊松过程和更新理论。

化学反应动力学中,研究化学反应的时变率及影响这些时变率的因素问题,自动催化反应,单分子反应,双分子反应及一些连锁反应的动力学模型等,都要以生灭过程(马尔柯夫)来描述。

概率论在保险中的应

目录 摘要 (2) 关键字 (2) 一、简介 (2) 1.概率论的研究对象 (3) 2.概率论与保险的关系 (3) 二、随机变量及其分布与保险 (3) 三、数字特征与保险 (4) 四、大数法则与保险 (4) 1切比雪夫大数法则 (4) 2.贝努里大数法则 (5) 3.大数定律对风险转移的作用 (5) 4.大数定律在保险中的适用性 (5) 五、应用概率进行保险计算 (6) 六、总结 (7)

摘要:概率论与数理统计是研究随机现象统计规律的一门数学科学是对随机现象的统计规律进行的演绎和归纳的科学.随着社会的不断发展,概率论与数理统计的知识越来越重要.运用抽样数据进行推断已成为现代社会一种普遍适用并且强有力的思考方式.本文就概率论与数理统计的方法和思想,并就其在保险中的应用进行分析和讨论,从中可以看出在经济领域和日常生活中以概率方法和数理统计的思想解决问题的高效性,简捷性和实用性 关键词:概率论, 切比雪夫大数法则定理, 贝努里大数法则,大数定律 一、简介 1.概率论的研究对象 概率论是研究随机现象数量规律的数学分支.随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象.例如在标准大气压下,纯水加热到100度时水必然会沸腾等.随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象.每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性.例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等.随机现象的实现和对它的观察称为随机试验.随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件.事件的概率则是衡量该事件发生的可能性的量度.虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律.例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2.又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性.大数定律及中心极限定理就是描述和论证这些规律的.在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程.例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程.随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题.概率论与实际生活有着密切的联系,它在自然科学、技术科学、社会科学、军事和工农业生产中都有广泛的应用.

概率论的起源与发展

概率论的起源与发展 三四百年前在欧洲许多国家,贵族之间盛行赌博之风。掷骰子是他们常用的一种赌博方式。 因骰子的形状为小正方体,当它被掷到桌面上时,每个面向上的可能性是相等的,即出现1点至6点中任何一个点数的可能性是相等的。有的参赌者就想:如果同时掷两颗骰子,则点数之和为9与点数之和为10,哪种情况出现的可能性较大? 17世纪中叶,法国有一位热衷于掷骰子游戏的贵族德·梅耳,发现了这样的事实:将一枚骰子连掷四次至少出现一个六点的机会比较多,而同时将两枚骰子掷24次,至少出现一次双六的机会却很少。 这是什么原因呢?后人称此为著名的德·梅耳问题。又有人提出了“分赌注问题”:两个人决定赌若干局,事先约定谁先赢得6局便算赢家。如果在一个人赢3局,另一人赢4局时因故终止赌博,应如何分赌本? 诸如此类的需要计算可能性大小的赌博问题提出了不少,但他们自己无法给出答案。 参赌者将他们遇到的上述问题请教当时法国数学家帕斯卡,帕斯卡接受了这些问题,他没有立即回答,而把它交给另一位法国数学家费尔马。他们频频通信,互相交流,围绕着赌博中的数学问题开始了深入细致的研究。这些问题后来被来到巴黎的荷兰科学家惠更斯获悉,回荷兰后,他独立地进行研究。 帕斯卡和费尔马一边亲自做赌博实验,一边仔细分析计算赌博中出现的各种问题,终于完整地解决了“分赌注问题”,并将此题的解法向更一般的情况推广,从而建立了概率论的一个基本概念——数学期望,这是描述随机变量取值的平均水平的一个量。而惠更斯经过多年的潜心研究,解决了掷骰子中的一些数学问题。1657年,他将自己的研究成果写成了专著《论掷骰子游戏中的计算》。这本书迄今为止被认为是概率论中最早的论著。因此可以说早期概率论的真正创立者是帕斯卡、费尔马和惠更斯。这一时期被称为组合概率时期,计算各种古典概率。 在他们之后,对概率论这一学科做出贡献的是瑞士数学家族——贝努利家族的几位成员。雅可布·贝努利在前人研究的基础上,继续分析赌博中的其他问题,给出了“赌徒输光问题”的详尽解法,并证明了被称为“大数定律”的一个定理,这是研究等可能性事件的古典概率论中的极其重要的结果。大数定律证明的发现过程是极其困难的,他做了大量的实验计算,首先猜想到这一事实,然后为了完善这一猜想的证明,雅可布花了20年的时光。雅可布将他的全部心血倾注到这一数学研究之中,从中他发展了不少新方法,取得了许多新成

数学与应用数学专业毕业论文

数学与应用数学专业毕 业论文 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

贵阳学院成人高等教育学生毕业论文 站点名称:安顺函授站 学生姓名:明全美 班级:2010级数学与应用数学 学号: 指导教师: 时间: 2012 年 3 月贵阳学院继续教育学院毕业生论文/设计评审表

注:1、评审教师应结合学院评审办法作出客观的评审意见;2、本表附在学生毕业论文或设计后面,关键词及以上部分由学生填写,要求字迹清楚整洁;3、该表将装入学生毕业档案中。4、该表一式两份。 目录 内容摘要 (1) 关键词 (1) 一、树立所有学生都能教好的观念 (1) 二、实施“低、多、勤、快”的教学模 式 (3) 三、辩证施教,掌握学习方法 (4)

四、高度重视数学实践操作,切实培养学生主体探索能力 (6) 五、重视数学教学“思”的过程,抓实探索数学知识的脉络 (7) 大纲参考文献 (8) 浅谈农村小学数学困难生的辩证施教 内容摘要:目前小学生数学学业不良学生的比例很大,如何转化数学学业不良学生便成为教师普遍关注的紧迫课题。结合教学实践,提出了要转化数学学业不良现象必须做好的几个方面。 关键词:困难生;改革模式;辩证施教;学法指导 农村的孩子,由于地理条件及诸多因素的影响,基本上都没有进入学前教育,就直接进入小学学习,他们基础差,特别是数学这门学科基础更差。如何转化数学学业的不良学生便成为了我们教师普遍关注的紧迫课题。这些农村学生由于缺乏良好学习习惯,不能认真地、持续地听课,有意注意的时间相当短;缺乏正确的数学学习方法,仅仅是简单的模仿、识记;上课时,学习思维跟不上教师的思路,造成不再思维,不再学习的倾向;平时学习中对基础知识掌握欠佳,从而导致在解题时,缺乏条理和依据,造成解题思路的“乱”和“怪”;心理压力较大,不敢请教,怕被老师认为是“笨小孩”。

概率论毕业论文外文翻译

Statistical hypothesis testing Adriana Albu,Loredana Ungureanu Politehnica University Timisoara,adrianaa@aut.utt.ro Politehnica University Timisoara,loredanau@aut.utt.ro Abstract In this article,we present a Bayesian statistical hypothesis testing inspection, testing theory and the process Mentioned hypothesis testing in the real world and the importance of, and successful test of the Notes. Key words Bayesian hypothesis testing; Bayesian inference;Test of significance Introduction A statistical hypothesis test is a method of making decisions using data, whether from a controlled experiment or an observational study (not controlled). In statistics, a result is called statistically significant if it is unlikely to have occurred by chance alone, according to a pre-determined threshold probability, the significance level. The phrase "test of significance" was coined by Ronald Fisher: "Critical tests of this kind may be called tests of significance, and when such tests are available we may discover whether a second sample is or is not significantly different from the first."[1] Hypothesis testing is sometimes called confirmatory data analysis, in contrast to exploratory data analysis. In frequency probability,these decisions are almost always made using null-hypothesis tests. These are tests that answer the question Assuming that the null hypothesis is true, what is the probability of observing a value for the test statistic that is at [] least as extreme as the value that was actually observed?) 2 More formally, they represent answers to the question, posed before undertaking an experiment,of what outcomes of the experiment would lead to rejection of the null hypothesis for a pre-specified probability of an incorrect rejection. One use of hypothesis testing is deciding whether experimental results contain enough information to cast doubt on conventional wisdom. Statistical hypothesis testing is a key technique of frequentist statistical inference. The Bayesian approach to hypothesis testing is to base rejection of the hypothesis on the posterior probability.[3][4]Other approaches to reaching a decision based on data are available via decision theory and optimal decisions. The critical region of a hypothesis test is the set of all outcomes which cause the null hypothesis to be rejected in favor of the alternative hypothesis. The critical region is usually denoted by the letter C. One-sample tests are appropriate when a sample is being compared to the population from a hypothesis. The population characteristics are known from theory or are calculated from the population.

概率论发展史

概率论的大厦是建筑在微积分的地基之上的,例如在函数关系的对应下,随机事件先是被简化为集合,继之被简化为实数,随着样本空间被简化为数集, 概率相 应地由集函数约化为实函数.以函数的观点衡量分布函数)(x f,)(x f的性质是十分良好的: 单调有界、可积、几乎处处连续、几乎处处可导. 因之, 微积分中有关函数的种种思想方法可以通畅无阻地进入概率论领域. 随机变量的数字特征、概率密度与分布函数的关系、连续型随机变量的计算等, 显然借鉴或搬运了微积分的现有成果. 又如概率论中运用微积分的基础----极限论的地方也非常多, 诸如分布函数的性质、大数定律、中心极限定理等.总之,微积分的思想方法渗透到了概率论的各个方面, 换言之, 没有微积分的推动, 就没有概率论的公理化与系统化, 概率论就难以形成一门独立的学科. 微积分与概率论的亲缘关系, 决定了概率论的确定论的特征. 但是作为微积分的一门后继课程, 概率论并非按微积分中的思维方法发展下去,而是另辟蹊径, 其发展路径与微积分大相径庭, 最终成为了随机数学的典型代表, 具备了与微积分相当的地位. 更因其非线性、反因果的非理性特征, 显得比经典的微积分更具有时代精神. 而作为确定性数学典型代表的微积分对概率论的发展具有很大作用, 因此讨论微积分在概率论中的地位, 探究概率论与微积分的联系及方法的相互应用 0 引言 概率论与数学分析是数学的两个不同分支,数学分析是确定性数学的典型代表,概率论则是随机数学的典型代表。由于两者所研究的方向不同,故它们的发展道路大相径庭,但是在各自的发展过程中二者却又紧密地结合在一起,数学分析的发展为概率论奠定了基础,而概率论中随机性、反因果论也逐渐滲透到数学分析当中,推动着数学分析的发展。研究概率论与数学分析两者之间的相互关系,并寻绎概率论在解决数学分析中某些比较困难的问题的方法、思想,是很有意义的。 1 数学分析对概率论的渗透与推动 1933 年,苏俄数学家柯尔莫哥洛夫以集合论、测度论为依据,导入了概率论的公理化体系,概率论得以迅猛发展,在其迅猛发展的道路上,数学分析的思想与方法随处可见。 1.1 集合论与概率论的公理化体系 由于数学的研究对象一般都是具有某种性质或结构的集合,所以集合论是整个数学体系的基础。集合论是在19 世纪数学分析的严密化过程当中培育出来的,两者之间是源和流的关系; 又由于勒贝格积分建立了集合论与测度论的联系,进而形成了概率论的公理化体系; 因而集合论对概率论的滲透,可视为微积分对概率论的一次较有力的推动 数学分析中主要有黎曼积分和勒贝格积分两种。黎曼积分处理性质良好的函数时得心应手,但对于级数、多元函数、积分与极限交换次序等较为棘手的问题时,常常比较困难。勒贝格积分的出现,使黎曼积分遇到的难题迎刃而解,微积分随之进化到了实变函数论的新阶段。有了勒贝格积分理论以后,集合测度与事件概率之间的相似性便显示出来了。不仅如此,测度论中的几乎处处收敛与依测度收敛,实质上就是弱大数定律与强大数定律中的收敛。1933 年,苏俄数学家柯尔莫哥洛夫,建立了在测度论基础上的概率论的公理化体系[2],统一了原先概率的古典定义、几何定义及频率定义纷争不一的局面。他建立的公理化体系,具备

概率论发展简史

一、概率论发展简史 1(20世纪以前得概率论 概率论起源于博弈问题。15—16世纪,意大利数学家帕乔利(L、Pacioli,1445-1517)、塔塔利亚(N、Tartaglia,1499-1557)与卡尔丹(G、cardano,1501-1576)得著作中都曾讨论过俩人赌博得赌金分配等概率问题.1657年,荷兰数学家惠更斯(C、Huygens,1629-1695)发表了《论赌博中得计算》,这就是最早得概率论著作.这些数学家得著述中所出现得第一批概率论概念与定理,标志着概率论得诞生.而概率论最为一门独立得数学分支,真正得奠基人就是雅格布?伯努利(Jacob Bernoulli,1654-1705)。她在遗著《猜度术》中首次提出了后来以“伯努利定理”著称得极限定理,在概率论发展史上占有重要地位。 伯努利之后,法国数学家棣莫弗(A、de Moivre,1667-1754)把概率论又作了巨大推进,她提出了概率乘法法则,正态分布与正态分布率得概念,并给出了概率论得一些重要结果。之后法国数学家蒲丰(C、de Buffon,1707—1788)提出了著名得“普丰问题”,引进了几何概率.另外,拉普拉斯、高斯与泊松(S、D、Poisson,1781-1840)等对概率论做出了进一步奠基性工作。特别就是拉普拉斯,她就是严密得、系统得科学概率论得最卓越得创建者,在1812年出版得《概率得分析理论》中,拉普拉斯以强有力得分析工具处理了概率论得基本内容,实现了从组合技巧向分析方法得过渡,使以往零散得结果系统化,开辟了概率论发展得新时期。泊松则推广了大数定理,提出了著名得泊松分布。

19世纪后期,极限理论得发展称为概率论研究得中心课题,俄国数学家切比雪夫对此做出了重要贡献。她建立了关于独立随机变量序列得大数定律,推广了棣莫弗—拉普拉斯得极限定理。切比雪夫得成果后被其学生马尔可夫发扬光大,影响了20世纪概率论发展得进程. 19世纪末,一方面概率论在统计物理等领域得应用提出了对概率论基本概念与原理进行解释得需要,另一方面,科学家们在这一时期发现得一些概率论悖论也揭示出古典概率论中基本概念存在得矛盾与含糊之处。这些问题却强烈要求对概率论得逻辑基础做出更加严格得考察。 2(概率论得公理化 俄国数学家伯恩斯坦与奥地利数学家冯?米西斯(R、von Mises,1883—1953)对概率论得严格化做了最早得尝试。但它们提出得公理理论并不完善。事实上,真正严格得公理化概率论只有在测度论与实变函数理论得基础才可能建立。测度论得奠基人,法国数学家博雷尔(E、Borel,1781-1956)首先将测度论方法引入概率论重要问题得研究,并且她得工作激起了数学家们沿这一崭新方向得一系列搜索。特别就是原苏联数学家科尔莫戈罗夫得工作最为卓著.她在1926年推倒了弱大数定律成立得充分必要条件。后又对博雷尔提出得强大数定律问题给出了最一般得结果,从而解决了概率论得中心课题之一——大数定律,成为以测度论为基础得概率论公理化得前奏。 1933年,科尔莫戈罗夫出版了她得著作《概率论基础》,这就是概率论得一部经典性著作。其中,科尔莫戈罗夫给出了公理化概率论得一系列基本概念,提出了六条公理,整个概率论大厦可以从这六条公

高等概率论简介

高等概率论简介 课程名称:高等概率论 周学时 3 先修课程:概率论,测度论 (实变函数) 基本目的: 1.在测度论的基础之上,准确掌握概率、事件、随机变量、独立性、特征函数等 基本概念。 2.较准确理解大数定律与中心极限定理的内容,清楚各种收敛之间的关系。 内容提要: 第一章测度论:(10学时) 1) 概率空间(2学时) 2) 随机变量及其分布(2学时) 3) 积分及性质(2学时) 4) 数学期望:各种不等式,积分收敛定理,随机变量函数的数学期望(2学时) 5) 乘积测度,Fubini定理(2学时) 第二章大数定律(12学时) 1)随机变量的独立性:独立性的概念独立性成立的充分条件独立随机变量的性质(4学 时) 2) 弱大数定理:均方收敛与依概率收敛的概念与关系,三角列的弱收敛定理举例(2学 时) 3) Borel-Cantelli 引理, Kolmogorov’s 0-1律(2学时) 4)随机列的收敛:强大数定律证明(一阶矩存在情况)( 2学时) 5) 强大数定律及应用; 收敛速度介绍与大偏差介绍(2学时) 第三章中心极限定理(18学时) 1) 弱收敛:De Moivre-Laplace收敛定理介绍,弱收敛的定义,各种相关定理(4学时) 2) 特征函数:特征函数定义,反演公式,特征函数收敛与弱收敛关系( 4学时) 3)中心极限定理:i.i.d列的中心极限定理Linderberg-Feller定理各种应用( 3学时) 4) Poisson 极限:收敛到Poisson分布的随机变量列(基本定理及一般定理),Poisson过 程与等待时间,复合Poisson过程(3.6节)( 4学时) 5)*平稳分布与无穷可分分布介绍(3.7-3.8节)( 1学时) 6) 随机向量列的极限定理:弱收敛的等价形式,胎紧性,弱收敛与特征函数收敛关系(3.9 节)( 2学时) 教材与参考书: 1.Durrett R., Probability Theory and Examples (4.1版), 2013 下载地址: (pdf.file) 2.Chung K. L., A course in probability theory (第二版), 1974 程士宏《高等概率论》,1996 3.Kallenberg O., Foundations of Modern Probability, 1997 4.汪嘉冈现代概率论基础,1988 5.Patrick Billingsley, Probability and Measure, Second Edition, 1986 6.Patrick Billingsley, Convergence of Probability Measure, 1968 1 / 1

概率论在生活中的应用 毕业论文

学号:1001114119概率论在生活中的应用 学院名称:数学与信息科学学院 专业名称:数学与应用数学 年级班别: 10级二班 姓名: 指导教师: 2014年3月

概率论在生活中的应用 摘要 概率论作为数学的一个重要部分,在现实生活中的应用越来越广泛,同样也发挥着越来越重要的作用。加强数学的应用性,让学生学用数学的知识和思维方法去看待,分析,解决实际生活的问题,在数学活动中获得生活经验。这是当前数学课程改革的大势所趋。加强应用概率的意识,不仅是学习的需要,更是工作生活必不可少的。人类认识到随机现象的存在是很早的,但书上讲得都是理论知识,我们不仅仅要学习好理论知识,应用理论来实践才是重中之重。学好概率论,并应用概率知识解决现实问题已是我们必要的一种生活素养。(宋体,小四,1.5倍行距) 关键词随机现象;条件概率;极限定理;古典概率 The applyment of the theory of probability in daily life Abstract Probability theory as an important part of mathematics,in the life of the sue more and more widely, also play an increasingly important role. Strengthen mathematics applied, lets the student with mathematical knowledge andmathematical thinking method to treat, analysis, solve practical life in mathematics activity, gain life experience. This is the current trend of curriculum reform. Strengthen the consciousness of the application of probability, not only learning, but working life is indispensable. People realize the existence of random phenomenon is early, but telling the theory knowledge, we should not only study the theory knowledge well, the application of theory to practice is more important. Learn probability theory, and using probability knowledge to solve realiticl problems is already a life we necessary accomplishment. Keywords Random phenomenon; Conditional probability; Limit theorem. The classical probability

概率论的发展史

概率论的发展史 摘要:概率论是一门研究随机现象的数学规律的学科。它起源于十七世纪中叶,当时刺激数学家们首先思考概率论的问题,却是来自赌博者的问题。费马、帕斯卡、惠更斯对这个问题进行了首先的研究与讨论,科尔莫戈罗夫等数学家对它进行了公理化。后来,由于社会和工程技术问题的需要,促使概率论不断发展,隶莫弗、拉普拉斯、高斯等著名数学家对这方面内容进行了研究。发展到今天,概率论和以它作为基础的数理统计学科一起,在自然科学,社会科学,工程技术,军事科学及生产生活实际等诸多领域中起着不可替代的作用。 关键词:概率论公理化随机现象赌博问题 17世纪资本主义经济的发展和文艺复兴运动的兴起,给欧洲数学注入了新的活力,欧洲数学家们开始以前所未有的热情投入到数学科学的研究中去。在这一个世纪里,他们不仅建立起了以解析几何和微积分为代表的变量数学,进一步研究现实世界中的必然现象及其规律,而且还开始了对偶然现象的研究,这就是所谓的概率论。记得大数学家庞加莱说过:“若想预见数学的将来,正确的方法是研究它的历史和现状。” 一、概率论的起源 概率论是一门研究随机现象的数学规律的学科。十分有趣的是,这样一门重要的数学分支,竟然起源于对赌博问题的研究。 1653年的夏天,法国著名的数学家、物理学家帕斯卡(Blaise Pascal,1623——1662)前往浦埃托镇度假,旅途中,他遇到了“赌坛老手”梅累。为了消除旅途的寂寞,梅累向帕斯卡提出了一个十分有趣的“分赌注”的问题。问题是这样的——一次,梅累与其赌友赌掷骰子,每人押了32个金币,并事先约定:如果梅累先掷出三个6点,或其赌友先掷出三个4点,便算赢家。遗憾的是,这场赌注不算小的赌博并未能顺利结束。当梅累掷出两次6点,其赌友掷出一次4点时,梅累接到通知,要他马上陪同国王接见外宾。君命难违,但就此收回各自的赌注又不甘心,他们只好按照已有的成绩分取这64个金币。这下可把他难住了。所以,当他碰到大名鼎鼎的帕斯卡,就迫不及待地向他请教了。然而,梅累的貌似简单的问题,却真正难住他了。虽然经过了长时间的探索,但他还是无法解决这个问题。 1654年左右,帕斯卡与费马在一系列通信中讨论了类似的“合理分配赌金”的问题。该问题可以简化为: 甲、乙两人同掷一枚硬币,规定:正面朝上,甲得一点;若反面朝上,乙得一点,先积满3点者赢取全部赌注。假定在甲得2点、乙得1点时,赌局由于某种原因中止了,问应该怎样分配赌注才算公平合理。 帕斯卡:若在掷一次,甲胜,甲获全部赌注,两种情况可能性相同,所以这两种情况平均一下,乙胜,甲、乙平分赌注。甲应得赌金的3/4,乙得赌金的1/4。 费马:结束赌局至多还要2局,结果为四种等可能情况: 情1234

概率论发展简史 (2)

一、概率论发展简史 1(20世纪以前的概率论 概率论起源于博弈问题。15-16世纪,意大利数学家帕乔利 (L.Pacioli,1445-1517)、塔塔利亚(N.Tartaglia,1499-1557)和卡尔丹 (G.cardano,1501-1576)的着作中都曾讨论过俩人赌博的赌金分配等概率问题。1657年,荷兰数学家惠更斯(C.Huygens,1629-1695)发表了《论赌博中的计算》,这是最早的概率论着作。这些数学家的着述中所出现的第一批概 率论概念与定理,标志着概率论的诞生。而概率论最为一门独立的数学分支,真正的奠基人是雅格布?伯努利(Jacob Bernoulli,1654-1705)。他在遗着《猜度术》中首次提出了后来以“伯努利定理”着称的极限定理,在概率论发展史 上占有重要地位。 伯努利之后,法国数学家棣莫弗(A.de Moivre,1667-1754)把概率论又作 了巨大推进,他提出了概率乘法法则,正态分布和正态分布率的概念,并给 出了概率论的一些重要结果。之后法国数学家蒲丰(C.de Buffon,1707-1788) 提出了着名的“普丰问题”,引进了几何概率。另外,拉普拉斯、高斯和泊松 等对概率论做出了进一步奠基性工作。特别是拉普拉斯,他是严密的、系统 的科学概率论的最卓越的创建者,在1812年出版的《概率的分析理论》中,拉普拉斯以强有力的分析工具处理了概率论的基本内容,实现了从组合技巧 向分析方法的过渡,使以往零散的结果系统化,开辟了概率论发展的新时期。泊松则推广了大数定理,提出了着名的泊松分布。 19世纪后期,极限理论的发展称为概率论研究的中心课题,俄国数学家切比雪夫对此做出了重要贡献。他建立了关于独立随机变量序列的大数定律,

概率论与数理统计在日常生活中的应用毕业论文

概率论与数理统计 在日常经济生活中的应用 摘要:数学作为一门工具性学科在我们的日常生活以及科学研究中扮演着极其重要的角色。概率论与数理统计作为数学的一个重要组成部分,在生活中的应用也越来越广泛,近些年来,概率论与数理统计知识也越来越多的渗透到经济学,心理学,遗传学等学科中,另外在我们的日常生活之中,赌博,彩票,天气,体育赛事等都跟概率学有着十分密切的关系。本文着眼于概率论与数理统计在我们生活中的应用,通过前半部分对概率论与数理统计的一些基本知识的介绍,包括概率的基本性质,随机变量的数字特征及其分布,贝叶斯公式,中心极限定理等,结合后半部分的事例分析讨论了概率论与数理统计在我们生活中的指导作用,可以说,概率论与数理统计是如今数学中最活跃,应用最广泛的学科之一。 关键词:概率论数理统计经济生活随机变量贝叶斯公式

§2.1 在中奖问题中的应用 集市上有一个人在设摊“摸彩”,只见他手拿一个黑色的袋子,内装大小.形状.质量完全相同的白球20只,且每一个球上都写有号码(1-20号)和1只红球,规定:每次只摸一只球。摸前交1元钱且在1--20内写一个号码,摸到红球奖5元,摸到号码数与你写的号码相同奖10元。 (1) 你认为该游戏对“摸彩”者有利吗?说明你的理由。 (2) 若一个“摸彩”者多次摸奖后,他平均每次将获利或损失多少元? 分析:(1)分别求出“摸彩”者获奖5元和获奖10元的概率,即可说明; (2)求出理论上的收益与损失,再比较即可解答. 20 (5+10)-1=-0.25<0,故每次平均损失0.25元. §2.2 在经济管理决策中的应用 某人有一笔资金,可投入三个项目:房产x 、地产 y 和商业z ,其收益和市场状态有关,若把未来市 场划分为好、中、差三个等级,其发生的概率分别为10.2p =,20.7p =, 30.1p = ,根据市场调研的情况可知不同等级状态下各种投资的年收益(万元) ,见下表: 请问:该投资者如何投资好? 解 我们先考察数学期望,可知 ()()110.230.730.1 4.0E x =?+?+-?=; ()()60.240.710.1 3.9E y =?+?+-?=; ()()100.220.720.1 3.2E z =?+?+-?=; 根据数学期望可知,投资房产的平均收益最大,可能选择房产,但投资也要考虑风 险,我们再来考虑它们的方差: ()()()()222 1140.2340.7340.115.4D x =-?+-?+--?=;

概率论的起源和发展

概率论的起源和发展 概率论是一门既古老又年轻的学科。说它古老,是因为产生概率的重要因素---赌博游戏已经存在了几千年,概率思想早在文明早期就己经开始萌芽了。而说它年轻,则是因为它在十八世纪以前的发展极为缓慢,现代数学家和哲学家们往往忽略了那段历史,他们更愿意把1654年帕斯卡(Pasac)l和费马(Fomrat)之间的七封通信看作是概率论的开端。这样,概率论的“年龄”就比数学大家族中的其它多数成员小很多。一般认为,概率论的历史只有短短的三百多年时间。虽然在早期概率论的发展非常缓慢,但是十八世纪以后,由于社会学,天文学等其它学科的研究需要,使得概率本身的理论得到了迅速发展,它的思想和方法也逐渐受到了其它学科的重视和借鉴。在当代,随着概率论本身的发展和学科之间的交叉融合,囊括了概率理论和统计理论两大部分的广义概率论已经成为一门应用非常广泛的学科,概率方法与统计方法逐渐渗透到了其它学科的研究工作当中。无论是在自然科学领域还是社会科学领域,各门学科中都能看到概率论的身影。概率论已经成为一种重要的工具,在社会发展中发挥着巨大的作用。 1、机会的早期计算 古希腊人从航海实践中发现了许多概率经验规律, 古犹太人在纪元之初就有概率加法定律和乘法定律的应用记录。但是由于结果不确定的特点, 人们一直认为随机现象好似运气都由天神决定, 其规则是世俗不可想象的。能够刺激人们思考概率的事情很多, 但最终孕育概率论的却是庸俗的骰子赌博。公元 960 年左右, 怀特尔德大主教计算出掷三个骰子时不计次序所能出现的不同组合有 56 种。十三世纪左右拉丁诗歌《维图拉》指出这 56 种组合出现的机会不是相同的: 3 枚骰子点数一样, 每个点数只有一种方式; 2 枚骰子点数一样而另一枚不一样, 则有 3 种方式; 如果 3 枚都不一样就有 6 种方式。但是这些经验并没有引起更多的思考, 机会的计算仍处于直觉的、散乱的经验水平上。 卡尔扎诺是一位医学博士, 曾在米兰讲授数学, 写过多部医学、数学等方面的著作。他认为赌博是一种社会病, 也有理由作为可以医治的疾病来研究。约在1564 年, 他集中了自己的智慧和赌博经验, 用拉丁文写出著名的《论机会游戏》, 揭示了赌博中的不确定性原理, 成为概率论前史的重要人物。书中, 卡尔扎诺强调赌博的基本原则是同等条件,“如果它们有利于对手, 那么你是傻瓜, 如果有利于自己, 那么你就不公平”。骰子应该是“诚实的”, 几个诚实的骰子联合起来仍然是诚实的, 下注应该根据这种诚实性。等可能思想的提出是卡尔扎诺的贡献之一, 为理解和解决复杂的赌博问题提供了依据。他定义了胜率(有利结果数与不利结果数之比) 表示机会的大小, 计算出了多种赌博的全部可能结果数和有利结果数, 由于当时组合数学还很贫乏, 他的计算在方法上与《维图拉》基本相同。卡尔扎诺还思考了独立事件的乘法法则, 在一番错误推理后他发现了正确方法, 例如一次的胜率是 3:1, 连续两次的胜率是 9:7。卡尔扎诺是第一个深入讨论概率问题的人, 他提出了考虑随机问题的基本原则, 建立了胜率概念和一些运算法则, 对概率理论的形成具有开创性贡献。但是他也犯了不少错误, 例如他认为在掷两个骰子时, 36 次投掷有 1 次机会出现双 6, 平均起来 18次投掷中, 出现双 6 的机会是 50%。这种推理意味着36 次投掷中必定出现一次双 6, 他没有意识到自己的错误。由于该书只有很少部分讨论机会计算, 其等可能思想

概率论与数理统计概率历史介绍

概率论与数理统计概率历史介绍

一、概率定义的发展与分析 1.古典定义的历史脉络 古典定义中的“古典”表明了这种定义起源的古老,它源于赌博.博弈的形式多种多样,但是它们的前提是“公平”,即“机会均等”,而这正是古典定义适用的重要条件:同等可能.16世纪意大利数学家和赌博家卡尔丹(1501—1576)所说的“诚实的骰子”,即道明了这一点.在卡尔丹以后约三百年的时间里,帕斯卡、费马、伯努利等数学家都在古典概率的计算、公式推导和扩大应用等方面做了重要的工作.直到1812年,法国数学家拉普拉斯(1749—1827)在《概率的分析理论》中给出概率的古典定义:事件A的概率等于一次试验中有利于事件A的可能结果数与该事件中所有可能结果数之比. 2.古典定义的简单分析 古典定义通过简单明了的方式定义了事件的概率,并给出了简单可行的算法.它适用的条件有二:(1)可能结果总数有限;(2)每个结果的出现有同等可能.其中第(2)条尤其重要,它是古典概率思想产生的前提. 如何在更多和更复杂的情况下,体现出“同等可能”?伯努利家族成员做了这项工作,他们将排列组合的理论运用到了古典概率中.用排列(组合)体现同等可能的要求,就是将总数为P(n,r)的各种排列(或总数为C(n,r)的各种组合)看成是等可能的,通常用“随意取”来表达这个意思.即使如此,古典定义的方法能应用的范围仍然很窄,而且还有数学上的问题. “应用性的狭窄性”促使雅各布?伯努利(1654—1705)“寻找另一条途径找到所期待的结果”,这就是他在研究古典概率时的另一重要成果:伯努利大数定律.这条定律告诉我们“频率具有稳定性”,所以可以“用频率估计概率”,而这也为以后概率的统计定义奠定了思想基础.“古典定义数学上的问题”在贝特朗(1822—1900)悖论中表现得淋漓尽致,它揭示出定义存在的矛盾与含糊之处,这导致了拉普拉斯的古典定义受到猛烈批评. 3.统计定义的历史脉络 概率的古典定义虽然简单直观,但是适用范围有限.正如雅各布?伯努利所说:“……这种方法仅适用于极罕见的现象.”因此,他通过观察来确定结果数目的比例,并且认为“即使是没受过教育和训练的人,凭天生的直觉,也会清楚地知道,可利用的有关观测的次数越多,发生错误的风险就越小”.虽然原理简单,但是其科学证明并不简单,在古典概型下,伯努利证实了这一点,即“当试验次数愈来愈大时,频率接近概率”. 事实上,这不仅对于古典概型适用,人们确信“从现实中观察的频率稳定性”的事实是一个普遍规律.1919年,德国数学家冯?米塞斯(1883—1953)在《概率论基础研究》一书中提出了概率的统计定义:在做大量重复试验时,随着试验次数的增加,某个事件出现的频率总是在一个固定数值的附近摆动,显示出一定的稳定性,把这个固定的数值定义为这一事件的概率.

概率论论文10篇全面版

《概率论论文》 概率论论文(一): 《概率论与数理统计》论文 摘要 概率论的发展具有很长的历史,多位数学家对概率论的构成做出了巨大贡献。纵观其发展史,在实际生活中具有很强的应用好处。正是有了前人的努力,才有了现代的概率论体系。本文将从概率论的研究好处、定义,以及发展历程进行叙述。 概率论的发展与起源 1.1概率论的定义 概率论是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象 而言的,随机现象是指在基本条件不变的状况下,一系列或观察会得到不同结果的现象。每一次实验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,抛一枚硬币,可能会出现正面或者反面;在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或者一组基本事件统称为随机事件,或者简称为事件。事件的概率则是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下超多重复的随机实验却往往呈现出明显的数量规律。例如,连续多次抛一枚硬币,出现正面的频率随着抛次数的增加逐渐趋近于1/2;犹如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且测量值大多落在此常数的附近,其分布状况呈现中间多,两头少及某种程度的对称性。大数定律和中心极限定律就是描述和论证这些规律的。在实际生活中,人们往往还需要研究某一特定随机现象的演变状况。例如,微小粒子在液体中受周围分子的随机碰撞而构成不规则的运动,即布朗运动,这就是随机过程。随机过程的统计特征、计算与随机过程有关的某些事件的概率,个性是研究 与随机过程样本轨道(及过程的一次实现)有关的问题,是现代概率论的主要课题。 在当代,随着概率论本身的发展和学科之间的交叉融合,囊括了概率理论和 统计理论两大部分的广义概率论已经成为一门应用十分广泛的学科,概率方法与统计方法逐渐渗透到了其它学科的研究工作当中。无论是在自然科学领域还是社会科学领域,各门学科中都能看到概率论的身影。概率论已经成为一种重要的工具,在社会发展中发挥着巨大的作用。 1.2课题背景及研究的目的和好处 现代社会步调快,信息更新快,信息量大,如何从中选取分析最有效的信息 成为发展的先决条件,故概率统计学有着不可比拟的重要地位与作用。无论是在日常生活中,还是商业经济、科学研究,小到日常下雨,大到卫星发射,各种事物发展中都有概率统计的影子。在这个科技革新的时代,概率统计学必将发挥前所未有的重大影响,所以研究概率学具有十分重要的好处。

概率论发展简史及应用

理化生教学与研究386 2013赵?璇?钟?莹 概率论发展简史及应用 概率论发展简史及应用 赵 璇 钟 莹 (沈阳师范大学) 一、概率论的起源 三四百年前在欧洲许多国家,贵族之间盛行赌博之风。掷色子(又名骰子)是他们常用的一种赌博方式。利用色子赌博的方式可谓五花八门。很自然,赌徒们最关心的就是:如何在赌博中不输! 17世纪中叶,法国有一位热衷于掷骰子游戏的贵族公子哥儿——德·梅尔,发现了这样的事实:将一枚骰子连掷四次至少出现一个六点的机会比较多,而同时将两枚骰子掷24次,至少出现一次双六的机会却很少。 这是什么原因呢?后人称此为著名的德·梅尔问题。随后法国数学家帕斯卡、费马及荷兰数学家惠更斯基于排列组合方法,研究利用古典概型解决一些如“分赌注问题”、“赌徒输光问题”等。 到了18、19世纪,随着科学文明的发展,人类面临和要解决的问题也越来越多。后来,人们注意到之前为解决赌博问题而提出的那些方法不仅仅可以用在解决赌博问题上,还可以应用于人口统计、误差理论、产品检验和质量控制等。到后来原先的古典概型已不足以解决这诸多领域中了,人们迫切需要新的理论去解决更多的问题。也就在这时期,作为使概率论成为数学的一分支的的奠基人,瑞士数学家伯努利,建立了概率论中第一个极限定理(即伯努利大数定律),阐明了事件发生的频率稳定于它的概率。 概率论在20世纪再度迅速地发展起来,则是由于科学技术发展的迫切需要而产生的。1906年,俄国数学家马尔科夫(Markov)提出了所谓“马尔科夫链”的数学模型。1934年,前苏联数学家辛钦(Khinchine)又提出一种在时间中均匀进行着的平稳过程理论。 20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。在这种背景下柯尔莫哥洛夫(Kolmogorov)1933年在他的《概率论基础》一书中首次给出了概率的测度论式定义和一套严密的公理体系。他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支。 二、概率论的发展 现在,概率论与以它作为基础的数理统计学科一起,在自然科学、社会科学、工程技术、军事科学及工农业生产等诸多领域中都起着不可或缺的作用。 数学家们通过大量的同类型随机现象的研究,从中揭示出概率论某种确定的规律,而这种规律性又是许多客观事物所具有的,所以概率论应用也随之扩宽了。众所周知,接种牛痘是增强机体抵抗力、预防天花等疾病的有效方法,然而,当牛痘开始在欧洲大规模接种之际,它的副作用引起了人们的争议。为了探求事情的真相,伯努利家族的另一位数学家丹尼尔·伯努利根据大量的统计数据,应用概率论的方法,得出了接种牛痘能延长人的平均寿命三年的结论,从而消除了人们的恐惧与怀疑。直观地说,卫星上天、宇宙飞船遨游太空等都有概率论的一份功劳;及时准确的天气预报、考古研究等更离不开概率论与数量统计;电子技术的发展、人口普查及教育等同概率论与数理统计也是密不可分的。 根据概率论中用投针试验估计π值思想产生的蒙特卡罗方法,借助电子计算机这一工具,使这种方法在核物理、表明物理等学科的研究中起着重要的作用。概率论理论严谨,应用广泛,这一数学分支正日益受到人们的重视,以后将会随着科学技术的发展而得到发展。 三、概率论在现代社会发展中的应用 概率论进入其他科学领域的趋势在不断发展。发展到今天,概率论和以它作为基础的数理统计学科一起,在自然科学、社会科学、工程技术、军事科学及生产生活实际等诸多领域中都起着不可替代的作用。下面简略介绍一下概率论本身在现代的应用情况。 物理方面,放射性衰变、粒子计数器等问题的研究,都要用到泊松过程和更新理论。化学反应动力学中,研究化学反应的时变率及影响这些时变率的因素问题、自动催化反应等一些连锁反应的动力学模型,都要以生灭过程(马尔柯夫)来描述。许多服务系统,如电话通信、购货排队等等,都可用一类概率模型来描述。在社会科学领域,特别是经济学中研究最优决策和经济的稳定增长等问题,也大量采用概率论方法。同时它对各种应用数学如统计学、运筹学、生物学、经济学和心理学的数学化起着中心作用。 概率论已获得当今社会的广泛应用,正如拉普拉斯所说:“生活中最重要的问题,其中绝大多数在实质上只是概率的问题。”概率已成为日常生活的普通常识的今天,对现实生活中的概率问题进行研究就更显得十分重要。“在过去半个世纪中, 概率论从一个较小的、孤立的课程发展成为一个与数学许多其它分支相互影响, 内容宽广而深入的学科。” 因此,我们必须把概率论作为必备工具, 是科学研究与应用的需求。 现在,概率论已发展成为一门与实际紧密相连的理论严谨的数学科学。它内容丰富,结论深刻,有别开生面的研究课题,由自己独特的概念和方法,已经成为了近代数学一个有特色的分支。 四、结论 本文就概率论的发展简介,具体从他的起源、发展、理论基础及其进一步发展作出了详细的论述。从而得知;概率论是一门研究随机现象中的数量规律的科学。随机现象在自然界和人类生活中无处不在,随着人类社会的进步,科学技术的发展,经济全球华的日益快速进程,概率论在众多领域内扮演着重要的角色。在实际生活中尤为广泛的应用。 摘?要:概率论是一门研究随机现象的数学规律的学科,已有300余年的历史。它起源于十七世纪中叶,当时数学家们首先思考概率论的问题,却是来自赌博的问题。德梅雷、帕斯卡、费尔马等人首先对这个问题进行了研究与讨论,后来伯努利提出了大数定律,高斯和泊松进一步的推理论证。由于社会的发展和工程技术问题的需要,促使概率论不断发展,许多科学家进行了研究。发展到今天,概率论和以它作为基础的数理统计学科一起,在自然科学、社会科学、工程技术、军事科学及生产生活实际等诸多领域中起着不可替代的作用。 关键词:概率论;发展;应用 参考文献: [1] 刘秀芳.概率论基础[M].北京.科学出版社. 1982 [2] 杨振明.概率论[M].北京.科学出版社. 1999 [3] 张景中.趣味随机问题[M].北京.科学出版社 [4] 孙荣恒.应用概率论[M].北京.科学出版社 [5] 茆诗松 程依明 濮晓弄.北京.概率论与数理统计[M].高等教育出版社.2004

相关主题
文本预览
相关文档 最新文档