当前位置:文档之家› 改善凝视型红外热像仪非均匀性校正效果的光路干扰板

改善凝视型红外热像仪非均匀性校正效果的光路干扰板

改善凝视型红外热像仪非均匀性校正效果的光路干扰板
改善凝视型红外热像仪非均匀性校正效果的光路干扰板

全球红外热像仪品牌排名

全球红外热像仪品牌排名 红外热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。 作为世界最先进的高科技产品,红外热像仪的知名品牌主要集中在美国。近年来,我国在红外热像仪领域也取得了巨大进步,但是在技术上相对美国还有一定差距,相信国内品牌再经过几年的发展,一定能够和美国品牌抗衡。 2012年4月,美国知名的Thermal infrared imager TIMES,发布了2011年全球红外热像仪品牌排名,排名情况如下: 一.美国RNO RNO公司于1940年成立于美国芝加哥,是全球历史最为悠久的热像仪生产企业,在二战中,RNO 热像仪曾广泛应用美国军方。经过70年的发展,RNO下设了美国RNO红外热像仪公司,美俄合资RNO夜视仪公司。RNO是全球最为专业的热像仪公司,其下属的RNO夜视仪,在3,4代高端夜视仪领域拥有极大的知名度。 70年来,RNO一直专门致力于热像技术的开发,RNO热像仪工厂分别设在美国、英国、日本和中国。RNO夜视仪则将工厂设立在俄罗斯。 页脚内容1

目前RNO 在全球拥有近5000名雇员,其授权分销商及服务分公司遍布全球100多个国家。 美国RNO一直是全球热像仪技术的领导者。引领全球热像技术的发展。 RNO以生产中高端热像仪为主,2011年,美国RNO以高达50%的市场份额位居全球红外热像仪首位,其传奇产品PC-160以高达30%的市场份额连续5年位居全球红外热像仪销售宝座。这款售价不到5000美元的产品,以高达60HZ的帧频,-20-600度两温区选择,以及移动点移动区高温自动捕捉等功能,让其成为最具性价比产品,成为红外热像仪的一代神话。 二.美国FLIR FLIR Systems Inc, (NASDAQ: FLIR) 作为创新成像系统制造领域的领军企业,其产品范围涉及红外热像仪、航空摄像机和机械检测系统等。FLIR产品已在全球60余个国家内的工商业及政府领域中发挥了重要作用。 50多年来,FLIR公司一直致力于为科研、工业、执法机关及军工领域提供红外热像仪和夜视仪设备,堪称商用红外热像仪领域中无可辩驳的领导者。FLIR 产品系列应用极为广泛,涵盖预防性维护、状态监控,无损测试、研发、医疗科学、温度测量、热测试、执法机关、监视、安保及生产过程控制等各 页脚内容2

20-红外热像仪的研究和使用实验

实验二十 红外热像仪的研究和使用 红外热像仪是一种利用红外线辐射而拍摄的摄像仪,热成像显示系统是一种处理热信息的微机处理系统。红外热像技术与X 射线,B 超,CT ,磁共振和核显像原理不同,它不主动发射任何射线,而只接受物体辐射出的“热”线——红外线,从而形成物体的“热”影象,是物体的三维“热”(温度)分布图象。热像处理技术在军事上运用很广,而且即有相当重要的地位,如,夜间跟踪目标,武器瞄准器等。但在民用上的运用是这几年的事,比如,医学上通过热拍摄来分析人体各部分的热分布,从而找出病变的部分;电学中对电路板上各元器件的热分布的合理性的研究,从而改善各元器件的分布结构等等。 【实验目的】 1. 熟悉热像仪的基本结构原理。 2. 学会使用热颜色处理热源的软件包。 3. 观察和分析电路板的热分布特性。 4. 描绘电路板的热分布图。 【实验原理】 自然界存在着一种不为人们所注意的客观现象,这就是任何物体都具有一定的温度,它们都是“热”的,所不同的只是热的程度有差异而已。在物理学中,热是用绝对温度来表示的(即用K 表示)。因此,上述现象又可表示为:自然界不存在绝对温度为零的物体。 绝对温度=摄氏温度+273 热与光,电,磁一样,具有辐射特性(热辐射),只是辐射波长有长短。将热,光,电,磁等的辐射,按其辐射波长的长短依次排列,便是人们熟知的波谱(图1)所示。 10-5 0.2 0.4 0.75 1.00 波长(μm ) 图1 红外线在波谱中的位置 热辐射又称红外辐射,这是因为其辐射波长的位置与可见的红光相临并在其外。红外辐射为英国科学家赫胥尔于1800年所发现。 物体的红外辐射波长与其自身温度有关,服从维恩定律: C T m =λ (1) 式中:λm-----物体红外辐射的峰值波长(um ) T ------物体的绝对温度(K ) C ------常数2898。 从式(1)中可看出,物体绝对温度越高,其辐射波长越短;反之亦然。 物体的绝对温度不仅决定了物体辐射的波长,而且也确定了物体的辐射出射度(单位

红外热像仪煤堆监测方案及煤堆自燃预防

关注于红外热成像监测系统的开发和应用。采用最新的非致冷红外焦平面感应器和自主研发的图像处理算法,配备新一代的热红外高透过率镜头,无需任何光源,通过检测红外热辐射(或热量),可在一切天气条件下甚至漆黑环境中获得高清晰的图像。在煤场管理中,当大量储存和装载煤炭时,煤堆中的煤与空气接触,会发生氧化反应,并放出热量。煤的温度升高后,又加速了煤的氧化反应速度。这样,就使煤堆的温度越来越高。当温度超过煤的自燃点时,就会自燃。自燃现象普遍存在,煤堆自热、自燃不仅浪费能源增加发电成本而且自燃产生的一氧化碳、二氧化硫等有害气体严重的污染环境。我们根据自燃过程中的温度变化及区域间的温度差等特性并通过大量的现场使用,不断完善煤堆监测系统的方案,现该系统已很好的预防和解决这个普遍存在的自燃监测和预警难题。 * 隐蔽目标识别* 煤堆自燃热能检测 热像仪煤堆监测方案优势: ?适应于任何光照环境 传统摄像机依靠自然或环境光照进行摄像,而红外热成像摄像机无需任何光照,依靠物体自身辐射的红外热能即可清晰的成像。红外热成像摄像机适用于任何光照环境,不受强光影响,无论白天黑夜都可清晰地探测和发现目标,识别伪装及隐蔽的目标。因此可真正实现白天/黑夜24小时监控。 ?独特的测温诊断能力 红外热成像是唯一一种可将热能量快速可视化并加以验证的诊断技术。热成像仪通过对非接触探测到的红外热能加以量化,能准确测量被摄物体表面温度,通过对被摄场景的热能分布和温度分析,实现对环境或物体的异常诊断。可追踪场景或区域高温目标,当温度高于设定值时可发出报警。

热像仪煤堆监测方案系统功能简述: 双视网络一体化热像仪结合可见光、红外光的图像处理技术,实时监测储煤仓内煤表面温度及煤堆的环境情况,并通过远程实时传输和智能识别预警系统,解决了环境、区域、距离的限制。 系统的主要功能: ?角度可选:镜头安装视场角度可选。 ?自动扫描:系统设置去台预置行程,无需看管而自动扫描。 ?远程控制:实现热温度实时分析,远程实时图像监视。 ?智能报警:24小时在线监测,自动抓拍、高温跟踪并智能判断温度异常后自动触发报警,系统发生声光告警告通知。 技术参数: ?红外热像探测器特性 探测器:FPA,未冷却 光学分辨率:382×288像素 像元间距:25 μm x 25 μm 响应波段:8~14um 热灵敏度NETD:0.08K 帧率:60Hz ?可见光摄像机特性 传感器:1/2.8”SONY Exmor CMOS Sensor 像素:200万 分辨率/帧频:1920×1080p/25 fps;1920×1080p/30fps 最低照度:ICR off:0.1Lux;ICR ON: 0.002Lux 信噪比:>50dB 日夜转换:带移动滤光片日夜切换 镜头焦距:F= 4.3mm(F1.6) - 129 mm(F4.4) 光学变倍:30X 光圈:自动 视场角:65.1°–2.34°(H)/42.8°–1.42°(V) ?网络特性

JJF 1187-2019 热像仪校准规范-10页文档资料

热像仪校准规范 Calibration Specification for JJF 1187-2019 Thermal Imagers 本规范经国家质量监督检验检疫总局2019年1月31日批准,并自2019年4月30日起施行。 归口单位:全国温度计量技术委员会 主要起草单位:中国计量科学研究院 参加起草单位:广州飒特电力红外技术有限公司 本规范由全国温度计量技术委员会负责解释 本规范主要起草人: 柏成玉(中国计量科学研究院) 邢波(中国计量科学研究院) 原遵东(中国计量科学研究院) 参加起草人: 吴一冈(广州飒特电力红外技术有限公司) 目录 1 范围 (1) 2 引用文献 (1) 3 术语和计量单位 (1) 3.1 术语 (1) 3.2 计量单位 (1) 4 概述 (1) 5 计量特性 (1) 5.1 外观 (1) 5.2 显示 (2) 5.3 示值误差 (2) 5.4 测温一致性 (2)

6 校准条件 (2) 6.1 环境条件 (2) 6.2 标准及其他设备 (2) 7 校准项目和校准方法 (3) 7.1 校准项目 (3) 7.2 校准方法 (3) 8 校准结果的表达 (5) 9 复校时间间隔 (6) 附录A 热像仪示值误差校准不确定度评定 (7) 附录B 校准结果记录格式 (9) 附录C 热像仪校准证书数据页格式 (10) 热像仪校准规范 1 范围 本规范适用于具有温度测量功能的热像仪在-20℃~2000℃范围内的校准。 2 引用文献 本规范引用下列文献: JJF 1001-2019 《通用计量术语及定义》 JJG 1007-2019 《温度计量名词术语及定义》 GB/T 19870-2019 《工业检测型红外热像仪》 JJF 1059-2019 《测量不确定度评定与表示》 使用本规范时,应注意使用上述引用文献的现行有效版本。 3 术语和计量单位 3.1 术语 3.1.1 GB/T 19870-2019《工业检测型红外热像仪》术语和定义适用于本规范。 3.1.2 示值误差 error of indication 热像仪的示值误差是热像仪的温度示值与被测黑体辐射源温度的约定真值之间的差。 3.2 计量单位 温度单位为摄氏度(℃)或开尔文(K) 4 概述 热像仪可以将物体表面热辐射转换成可见图像,并通过对发射率、反射率和透过率

使用红外热像仪应注意的问题

100 温度检测与校准技术计测技术!2010年第30卷增刊使用红外热像仪应注意的问题 乐逢宁,蔡静,马兰,张学聪 (中航工业北京长城计量测试技术研究所,北京 100095) 摘 要:热像仪作为一种红外成像仪器,以其非接触、快速、可对运动目标和微小目标测温等优势在军事和民用方面得到了广泛的应用。本文就红外热像仪的使用及在使用中需要注意的问题进行阐述。 关键词:热像仪;红外辐射;非接触;发射率 中图分类号:TH744 41 文献标识码:B 文章编号:1674-5795(2010)S0-0100-02 0 引言 红外热像仪作为一种红外成像仪器,在军事应用和民用领域发挥着重要的作用。红外热像仪既有一般红外测温仪器的优点,同时还有测温迅速、可对运动目标和微小目标测温、携带和使用方便等独特优势,除此之外还有以下特点: 1)可直观显示被测物体表面的温度场。同一般的红外测温仪只能显示个点或个别区域的温度值相比,热像仪可以同时显示被测物体表面各点温度的高低,并可以以图像形式反映。 2)可以对测温结果的图像进行多种处理。由于热像仪输出的信号中包含了被测物体的大量信息,可以采用多种处理方法以不同的方式显示:既可以对图像进行伪彩色处理,使不同颜色表示不同的温度;又可以对图像进行模数转换,以数字形式显示被测物体不同点的温度值。 3)温度分辨力高。一般的红外测温仪只能分辨0 1?的温差,对于热像仪,由于是同时显示被测物体表面两点间的温度值,温差最高可以达到0 01?。 1 红外热像仪的工作原理 红外热像仪是利用红外探测器、光学成像物镜和光机扫描系统(目前先进的焦平面技术则省去了光机扫描系统)接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,在光学系统和红外探测器之间,有一个光机扫描机构对被测物体的红外热像进行扫描,并聚焦在单元或分光探测器上,由探测器将红外辐射能转换成电信号,经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热像图。 这种热像图与物体表面的热分布场相对应,实质上是被测物体各部分红外辐射的热像分布图。实际上为了增加图像的层次感和立体感,也为了更好判断被测物体的整体温度分布,常常采用增加图像亮度、对比度等手段来提高图像的质量和实用性。 2 红外热像仪的使用及注意问题 红外热像仪的测温范围通常在-20~2000?,响应波段为8~14 m。为了尽可能减少环境因素的影响,环境温度通常在(23#5)?,湿度要求为小于85% RH。 红外热像仪在实际使用中,需要经过参数设置、对焦、设置温度水平和跨度、设置混合水平条等步骤后才能进行测温。 红外热像仪在使用过程中,需要注意以下问题: 1)焦距的调整。为了保证第一时间操作的正确性,尽量避免被测物体本身或周围背景的过热或过冷的反射影响到目标测量的准确性,应该在红外图像存储前调整焦距或测量方位。 2)发射率的设定。在测温之前务必设定发射率的值,一般发射率的值都设定在0 95以上。 3)选择正确的测温范围。在测温时,务必设置正确的测温范围,这时对热像仪的温度跨度进行微调将得到最佳的图像质量,否则将会影响温度曲线的质量和测温精度。 4)确定最大的测量距离。测量时务必知道精确测温读数的最大测量距离。因为通过热像仪光学系统的目标图像必须占到9个像素,或者更多。如果热像仪距离测温目标过远,测温结果将无法正确反映被测物体的真

人体红外测温仪

目录 摘要................................................................................................................................ I Abstract .......................................................................................................................... II 第一章红外线测温仪的研发背景 . (1) 1.1红外测温仪的实际应用 (1) 1.2红外测温技术的发展历程 (1) 第二章人体红外测温仪的原理和特点 (2) 2.1人体红外线测温仪的理论依据 (2) 2.2人体红外线测温仪的性能指标及作用 (2) 2.3影响温度测量的主要因素及修正方法 (3) 2.4人体红外线测温仪的特点 (5) 第三章人体红外测温仪的硬件设计 (6) 3.1总体设计 (6) 3.1.1 整体框图设计 (6) 3.1.2 电路设计 (7) 3.2温度传感器 (8) 3.3放大电路的设计 (8) 3.4模数转换部分电路 (9) 3.5LCD1602显示电路 (10) 第四章软件设计 (12) 5.1红外测温仪的使用注意事项 (15) 5.2改进方案 (15) 5.3推广及应用 (15) 参考文献 (16) 致谢 (17) 附录1 PCB板图 (18) 附录2 3D效果图 (19) 附录3 程序 (20)

人体红外测温仪 摘要:为了克服传统温度计测量温度的主要缺点——需要测量者与被测目标近距离接触和测量不方便。在顾及仪器测量高精度前提下,以追求最低成本为原则,研制了非接触式热释电红外测温仪,实现了对物体表面温度快速准确的测量。本文也设计了红外测温仪的整体系统构架。根据热释电原理,主要针对人体体温测量进行了具体的设计开发,开发包括整体方案,硬件电路,单片机程序和主机程序。并利用设计出来的红外测温仪在环境温度30℃下对人体温度和水温进行了测量,对人体的温度测量的误差低于±0.1℃,提高了测量精度。人体测温仪的设计主要为适应人体体温快速无接触测量的需要。主要介绍热释电红外传感器的工作原理以及最适宜人体红外线检测的热释电传感器PM611的优点和等效电路,阐述了基于热释电传意器的红外测温仪的工作原理,讨论了该系统的设计与实现方法,简单介绍了测温系统的适用条件。 关键词:温度测量,热释电,A T89C51

测量铁水流温度的红外热像仪标定方法

?测量铁水流温度的红外热像仪标定方法 ?红外设备将校准为使用斯特藩-玻尔兹曼公式计算基于从黑体发出的红外辐射温度。这里的Wbb是一个黑体单位时间内表面的总辐射能量单位,σ是一个常数,T是Kelvin 开尔文温度 W BB = σ · T 4. (3) 然而,在相同温度下,真正的人体发出的辐射比黑体少,描述这现象的术语发射率被正式定义为:在相同温度下,身体发出的辐射与黑体发出的辐射比例。 ?把3带入4 得出5 这个方程是灰体散热器的斯蒂芬-波尔兹曼公式 W = ε· σ · T 4. (5) 补偿是一个计算过程,是使用其主体发射率发出的辐射来计算主体温度的过程,基于此过程,红外设备可用(6)来测量辐射和计算温度。可以看出,最终红外设备测量精度取决于正确的调整发射率,因此,发射率校准至关重要。 ?铁水发射率 在工业环境中,由于种种原因准确的发射率校准不太容易。最重要的原因之一是正确的发射率 评估必须在同样条件下随着温度测量进行,这是非常困难的,因为发射率评估所需的参考温度通常不适用于工业安装的环境。 在实际工作条件下,一般的程序进行校准发射率是非常困难的,这就是为什么发射率通常在实验室中运用校准设备加热对象并测定其温度进行评估。虽然温度低但热电偶也可用来获得参考温度, 更常见的是使用在温度测量中使用的红外设备,粘一块已知发射率的绝缘胶带在样品上。一旦获知 被加热物体的参考温度,就使用红外设备再次测量样品,发射率的结构会不断变化直到获得参考温度,这最终的构成就是被测物的发射率。

本文提出了一种在实际工作环境中的铁水发射率校准。在实验室,可以模拟相同条件的铁水。然而,这些类型的综合测试很少是模拟真的现实生活中的数据。 T 铁水发射率的参考温度是通过一个配有热电偶的管子,lance浸在鱼雷车内的铁水中几次,采取平均测量,这种温度测量的过程非常危险必须谨慎小心,因为它需要人工直接近距离干预非常热的材料,不管怎样,实际工作中它是唯一可选的。为了减少对人们造成的伤害,因此将移动并把测量器具浸入鱼雷车的操作员位置设在鱼雷车上方的安全距离,当倾倒铁水时不能浸入测量器,以免有飞溅物质。图8显示一名操作员正在使用测量器测温。 为发射率校准使用热电偶测温 使用lance测温后,立刻把鱼雷车中的铁水倒入钢包,使用本文中提到的铁水测量方法,铁水倾倒时红外摄像机中的发射率不断变化直到温度分布的平均值匹配之前用lance测的温度。红外摄像机测量的温度对于用lance测的温度有一个延迟,于是铁水的温度在这期间可能发生变化。 然而,绝缘的鱼雷车和热惯性使这种差异可以忽略不计。 重复测试鱼雷车发射率校准待得到相近的结果时,经过计算得到的最终发射率是0.205.这个值和之前工作的长波红外设备Flir ThermoVision A325所得值是一致的。作为一个红外测温感兴趣的技术人员的参考,工厂加工的生铁含碳量较高 (4.636%),也含有小比例的其他物质,包括硅(0.396%),锰 (0.319%),磷 (0.070%),硫 (0.008%).发射率校准实验的环境为相对湿度60%,常温23 ? C,摄像机到目标距离为7米。 B.熔渣界定 为了正确计算熔渣的温度T S,(7)应该用于补偿熔渣W S的发射率εS发出的辐射.

便携式红外热像仪与在线式红外热像仪的区别_

便携式红外热像仪与在线式红外热像仪的区别_ 根据不同的使用形式,可以将红外热像仪分为在线式红外热像仪跟便携式红外热像仪。今天我们就来说说这两款热像仪以及它们之间的区别所在。 一、不同点 1、供电方式不同 便携式红外热像仪都带有电池,而在线式红外热像仪则需要外部实时供电; 2、使用方式不同 便携式红外热像仪带有手柄,使用灵活,开机即可使用,走到哪用到哪。而在线式红外热像仪需要固定安装使用,一般只能看到固定区域内的红外热图像。当然了,如果选配武汉永盛科技的云台和手动或电动调焦镜头,会观测到更大的区域。 3、应用领域不同 便携式红外热像仪一般用于不需要每天24小时连续使用的场合,如日常巡检、故障排查、品质检测、执法巡逻等等。而在线式红外热像仪一般用在需要24小时连续监测的场合,如石油炼制、化工生产、安防等等。 4、PC机数据处理软件不同 与便携式红外热像仪不同,一般在线式红外热像仪的PC软件功能更强大、

更丰富,如在线式红外热像仪不仅能实时显示红外热图,还能实时显示热图中高或低温度点变化曲线。 便携式红外热像仪是一款外形比较小巧,结构紧凑、轻巧便携的红外热像仪器,而且配有电池,可以很大程度的满足不同工作场合的使用。是建筑围护、改修和修缮、检查以及屋面应用的好工具。便携式红外热像仪这款高性能、全辐射成像仪是专门用来针对恶劣的工作环境而优化设计的,适用于电气安装、机电设备、过程设备、HVAC/R设备及其它更多应用的排障工作。能提供快速发现故障所需的清晰、锐利图像的热灵敏度可用于发现很多细微的可能预示着故障问题的温度差异。而且便携式红外热像仪的使用简单,操作直观,用一个大拇指即可轻松的实现导览,无需携带纸笔仅需讲话即可记录发现的所有细节,大大方便我们的试验操作。 在线式红外热像仪在线式热像仪不同于手持式热像仪的一点就是,在线式的要固定在被监测对象的周围,好的的在线式红外热像仪几乎可以安装在任何地方,监控关键设备或其他重要资产。它可帮助您保护生产现场,监测现场状况,使您提前发现异常情况,从而避免财产损失、停工,并保障工人的安危。在线式红外热像仪主要应用于:石油炼制及开采,石化工厂: 甲烷的处理、运输和储存、储存区域防火、监控耐火材料衬里、检查火焰、生产过程质量控制。

非制冷红外热像仪完整版

非制冷红外热像仪完整 版 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

红外成像阵列与系统 —非制冷红外热像仪简述 2013年11月8日 非制冷红外热像仪简述 摘要:非制冷红外热像仪是目前主流的夜视观察仪器之一,因其较高的可靠性在军事领域的低端应用、民用等方面有广阔的前景。它通过被测物体向外界发出的辐射能量来得到物体对应的温度。本文主要就非制冷红外热像仪的测温原理、发展状况、系统设计及其性能参数做简单的分析及介绍。比较了两种不同情况下的测温公式的优劣并且做出了相关推导,简单介绍了基于FPGA的非制冷红外热像仪的电路系统和通用型非制冷红外热像仪的性能参数及其一般测定方法。对以后的红外热成像系统的学习起到了一定帮助。 关键字:非制冷红外热像仪;测温原理;发展状况;系统设计;性能参数 The brief description of uncooled infrared thermal imager Yu Chun-kai, Wang Hui-ting, Qi Xiao-yun, Xu Jian Abstract: Currently, uncooled infrared thermal imager is one kind of mainstream devices on night vision. Because of its high reliability, uncooled infrared thermal imager has a broad prospect of application in military and civil field. It gains temperature of the detected object by the infrared radiation the object emits. This paper simply analyses and introduces temperature measuring principle, development status, system design and performance parameter on uncooled infrared thermal imager. We compared two different temperature measuring formulae in their respective situations and did the relevant derivation. We also introduced the circuit system which based on FPGA in uncooled infrared thermal imager and the performance parameter of general uncooled infrared thermal imager. This paper provides us much promotion about the future study of infrared thermal imaging system.

FLIR T330红外热像仪参考资料

FLIR T330红外热像仪采用最新的高灵敏度探测器:热灵敏度高达0.06℃。电力设备当内部受潮、损伤、缺陷或放电时,在瓷套外壳反映出的温差很小,只有热灵敏度极高的FLIR T330红外热像仪才能反映出这些温度的变化,查出其内部故障。 1. FLIR T330红外热像仪极高的热灵敏度:极高的热灵敏度结合FLIR 先进的成像和光电子技术,不仅能提供清晰、无噪声的优质红外图像,而且能反映细极小的温度变化,从而精确的进行温度测量,并能使我们更容易发现一些温差很小、隐蔽性很强的内部故障。 2. FLIR T330热像仪适合远距离检测的高空间分辨率:FLIR T330红外热像仪具有适合远距离检测的高空间分辨率。空间分辨率和热灵敏度这两参数的结合,能清晰准确测量出远距离的物体的温度,如高压线路的导线、压接套管、绝缘子、标准线夹等。在保证准确测温、清晰成像的前提下,测试距离可大于40m。 3. 稳定成熟的内部校正系统:FLIR T330红外热像仪在出厂前都会经过黑体校准系统进行温度标定(见下图),并且每台仪器内部都有一套FLIR独特的校正系统,它是由一套数学模型、内置黑体和5个高精度和高灵敏度的传感器组成,能自动的根据距离、大气温度、湿度、仪器内部温度的变化、辐射率、反射温度等,对测试数据进行校正,始终保持仪器内部恒温。所以FLIR T330红外热像仪在使用若干年之后仍然能保持精度、灵敏度不变,图像清晰,重复率好,温度漂移很小。 4. 高品质可视热像仪:FLIR T330热像仪集成有一个130 万像素数码相机。它可用于更快更便捷地进行观察和检测,并在必要时创建热图像叠加和画中画图像。 5. MPEG-4 视频:您可使用FLIR T-330热像仪创建可视及红外非辐射MPEG -4视频文件 6. 独特的图像融合功能:FLIR T330红外热像仪的热图像叠加功能,可叠加可见光和红外图像,以便更为便捷的识别和分析红外图像。此外,还可定义是否显示预定温度阈值或温度间隔上下的区域。 7. 画中画功能:FLIR T330红外热像仪在可视图像上创建一个红外叠加图像。可缩放、移动及调节图像大小。该功能用于定位并清楚显示危险区域的红外图像。 8. 坚固耐用符合人体工程学的外壳设计:FLIR T330红外热像仪的采用人体工程学和防水防尘设计;镜头内置,装长焦镜头时无需拆除原镜头。封装符合欧洲标准。是它能够在恶劣的现场环境(雨天、沙尘天气)下工作,坚固、轻便、实用, 主机重量仅为0.88公斤。 9. 触摸屏:FLIR T330热像仪: 配置3.5”LCD 可触屏外加触控笔,为用户带来全新的操作互动性及舒适体验,用户直接在屏幕上添加缩略图和图形标记。 10. 简单的操作方式适合各种场合:T-330配有高分辨率的TFT取景器、几个按键快速完成测试。通过四个快速按键,可以方便的完成仪器参数设置、改变调色板、设置发射率和测温范围、开启分析软件,如点测温、颜色报警等。无论现场情况如何复杂,都能够实现简单操作。每一个控制按钮设计合理,易于操作。

FLIRA315红外热像仪中文说明书

FLIRA315红外热像仪使用说明书 代理商:武汉筑梦科技有限公司 2014-1-6

第一章设备简介 1 FLIR红外热像仪原理 1.1红外热像仪 从原理上讲,热像仪包括两部分:光学部件和探测器。光学部件使目标的红外辐射集中到探测器上,探测器对之成像。 1.1.1光学材料 红外辐射和可见光的性质一样能折射和反射。因而,红外热像仪的光学部件设计方法和普通相机的相似。用于普通相机的玻璃对红外线的透射程度不够好,因而不能用于红外热像仪。所以必须寻找别的材料。对红外线透明的材料一般对可见光不透明。象硅和锗就通常对可见光不透明。 从图中可以看出,这两种材料可以作为SW和LW光学材料。通常,硅用于SW系统而锗用于LW热像仪。硅和锗有好的机械性能,即不易破裂,它们不吸水,可以用现代车削法加工成镜头。 1.1.2探测器 对红外辐射敏感的元件称为探测器。这些年来,热像仪采用过许多不同类型的探测器。这些探测器不分类型都有一些典型特点。探测器对入射辐射的探测结果以电信号输出。这信号取决于入射红外辐射的强度与波长。大部分探测器都存在截止波长,这也很典型。如果入射辐射的波长长于探测器的截止波长,探测器将没有信号输出。在1997 年以前,所有的探测器都是制冷型的,根据不同型号,低的至少制冷到–70oC,更有甚者需制冷到–196oC。 1997 年,AGEMA 公司在世界上首先生产出了新一代非制冷微量热型探测器热像仪:Thermovision? 570,现在叫做AGEMA 570。500 系列的另一种热像仪叫做AGEMA 550,它使用制冷型探测器。

AGEMA 550 的探测器由斯特林制冷机制冷。这种PtSi探测器需制冷到–196oC。它需要两分钟来制冷。作为“单一”探测器的换代品,在1995年FPA 探测器被运用于所有的热像仪(AGEMA)上。AGEMA 550的探测器有320 x 240 = 76,800 探测器单元。 2 FLIR红外热像仪组成及接口 2.1、红外热像仪组成 红外热像仪组成:抗反射膜、光学滤片、探测器 2.2 使用说明 2.2.1 红外测温方法 红外热像仪是通过非接触探测红外能量(热量),并将其转换为电信号,进而在显示器上生

赛默飞工业园区环境监测解决方案

工业园区环境监测解决方案
王清华 2016-04-21
The world leader in serving science

Thermo Fisher Scientific---科学服务领域的世界领导者
服务科学、世界领先
我们是服务于研究、 分析、发现和诊断的 分析仪器、设备、试 剂和耗材、软件和服 务的领先供应商。
规模
? 年销售额近170亿美金 ? 50个国家的5万名员工 ? 服务150个国家的35万家客户 ? 《财富》500强排在第150位
深度
? 创新产品 ? 应用知识和专长 ? 科学生产力合作伙伴
领先的品牌
2

Thermo Fisher Scientific 在中国的历史
? 1983年:北京,全国第一套空气质量自动分析系统,20年稳定运行。至今为 全国400余个城市提供了上千个子站长期运行
? 1985年:山东石横电厂,全国第一套在线式(In-Situ)烟气自动监测系统
? 1993年:深圳妈湾电厂,全国第一套稀释系统,至今为中国电力系统提供了 1000余套Model 200稀释型烟气自动监测系统 (CEMS),近年来更致力于 超净(低浓)排放解决方案
1983年北京,2005年退役
2005年更新子站
3

Thermo Fisher 工业客户整体解决方案
4

《环境空气质量标准》环境保护部2012年2月29日批准(GB 3095—2012 )
? 环境空气功能区质量要求
? 本标准自2016 年1 月1 日起在全国实施 ? 一类区适用一级浓度限值,二类区适用二级浓度限值。一类区为自然保护区、风景名胜区 和其他需要特殊保护的区域。二类区为居住区、商业交通居民混合区、文化区、工业区和农 村地区。
5

非制冷红外热像仪版

红外成像阵列与系统 —非制冷红外热像仪简述

2013年11月8日 非制冷红外热像仪简述 摘要:非制冷红外热像仪是目前主流的夜视观察仪器之一,因其较高的可靠性在军事领域的低端应用、民用等方面有广阔的前景。它通过被测物体向外界发出的辐射能量来得到物体对应的温度。本文主要就非制冷红外热像仪的测温原理、发展状况、系统设计及其性能参数做简单的分析及介绍。比较了两种不同情况下的测温公式的优劣并且做出了相关推导,简单介绍了基于FPGA的非制冷红外热像仪的电路系统和通用型非制冷红外热像仪的性能参数及其一般测定方法。对以后的红外热成像系统的学习起到了一定帮助。 关键字:非制冷红外热像仪;测温原理;发展状况;系统设计;性能参数

The brief description of uncooled infrared thermal imager Yu Chun-kai, Wang Hui-ting, Qi Xiao-yun, Xu Jian Abstract: Currently, uncooled infrared thermal imager is one kind of mainstream devices on night vision. Because of its high reliability, uncooled infrared thermal imager has a broad prospect of application in military and civil field. It gains temperature of the detected object by the infrared radiation the object emits. This paper simply analyses and introduces temperature measuring principle, development status, system design and performance parameter on uncooled infrared thermal imager. We compared two different temperature measuring formulae in their respective situations and did the relevant derivation. We also introduced the circuit system which based on FPGA in uncooled infrared thermal imager and the performance parameter of general uncooled infrared thermal imager. This paper provides us much promotion about the future study of infrared thermal imaging system. Key words:uncooled infrared thermal imager; temperature measuring principle; development status; system design; performance parameter

红外热像仪使用说明书

红外热像仪使用说明书 在红外热像仪的使用说明书中,以下的指标值得关注: 除了从典型应用的角度之外,还可以快速地从回答3个简单问题,来进行红外热像仪关键指标的选择: 问题一:红外热像仪到底能测多远? 红外热像仪的检测距离= 被测目标尺寸÷IFOV,所以空间分辨率(IFOV)越小,可以测得越远。例如:输电线路的线夹尺寸一般为50mm,若使用Fluke Ti25 热像仪,其IFOV为2.5mRad ,则最远检测距离为50÷2.5=20m 问题二:红外热像仪能测多小的目标? 最小检测目标尺寸= IFOV×最小聚焦距离。所以IFOV越小,最小聚焦距离越小,则可检测到越小的目标。举例: 某品牌热像仪Fluke Ti25 热像仪 空间分辨率(IFOV):2.6mRad 空间分辨率(IFOV):2.5mRad 像素:320×240 像素:160×120 最小聚焦距离:0.5m 最小聚焦距离:0.15m 最小检测尺寸:1.3 mm 最小检测尺寸:0.38 mm 从对比图看,右侧Fluke Ti25,虽像素稍低,但凭借更小的IFOV 及最小聚焦距离优势,实际可以拍摄到0.38mm微小目标,而另一品牌则只能测到1.3mm 的目标。 问题三:热像仪能看得多清晰? 因素一:热灵敏度决定热像仪区分细微温差的能力。同样状况下,右图所用热像仪的热灵敏度更低,画面清晰显示花蕊细节的温度分布,而左图同区域只能看到一片红色。

因素二:最小检测尺寸决定了热像仪捕捉细小尺寸的能力。尺寸越小,相同面积的检测目标画面由更多像素组成,画面更清晰。 由右图可见,像素(马赛克)越小越清晰 什么是空间分辨率(IFOV)? 在单位测试距离下,红外热像仪每个像素能够检测的最小目标( 面积),以mRad 为单位,是一个主要由像素和所选镜头角度所决定的综合性能参数,是热像仪处理空间细节能力的技术指标。 为什么空间分辨率(IFOV)越小越好? 单位距离相同时,IFOV 越小,单个像素所能检测的面积越小,单位测量面积上由更多的像素所组成,图像呈现的细节越多,成像越清晰。

红外测温技术在监控系统中的应用

有些有发展性的缺陷的设备,特别是设备内部缺陷,只有设备发热到一定程度后才能被发现。这样不但给设备缺陷的处理造成相应延误,而且可能会对运行设备造成不同程度的损坏。普通的红外热成像检测停留在人工操作监测,存储的热图像只能在后台PC机上进行分析诊断,是间断性的分析控制。不能对热分布场实时监控和诊断热像的故障性质等操作。对某些特殊场合如无人值守变电站运行设备的热状态监测,若是人工操作的红外设备,会造成劳动强度增加及诊断不及时等缺陷。通过远程控制的智能化的红外热像监控诊断系统,可实现对设备状态实时不间断监控。 红外成像测温技术 测温原理 每个不处于绝对温度的物体,都会以电磁波的形式向外辐射能量。不同物体甚至同一物体不同部位的红外辐射强弱均不同。利用物体与背景环境的辐射差异以及景物本身各部分辐射的差异。热图像能够呈现目标物体各部分的辐射起伏,从而能显示出目标的特征。而红外热像仪就是将不可见的红外辐射变为人眼可见的热图像的仪器工具。目标物体发出的红外线透过特殊的光学镜头,被红外探测器所吸收,探测器将强弱不等的红外信号转化成电信号,再经过放大和视频处理.形成热图像显示到屏幕上。工作原理见图1:

变电站温度检测设备选择 针对电力系统而开发出的温度监控系统,可实现对机房环境或电力设备的温度监测。根据现有测温检测设备的技术性能等级可分为:普通测温探头、红外测温探头、光纤温度传感器、焦平面移动式红外热像仪、在线式红外监控热像系统。根据各变电站实际业务需求,220kV变电站以上都应配置监控时间更长性能更高的红外热像仪。 在线测温式红外热像仪 在线测温式红外热像仪是固定安装在监控现场的高性能红外测位设备。它可根据变电站管理的实际需求.制定出一套完善的户外恶劣环境下的无人值守全自动在线监控解决方案。设备由于监控范围广,设备密集,应集成较高分辨率的红外探测器,辅助以图像处理技术.配置高清可见光以及大活动范围的云台。同时在后台进行实时诊断分析。应配合使用功能丰富的监控软件平台和分析软件,准确对电力设备的热故障进行预警,保障电网运行的安全。 红外检测与诊断的功能 红外热像仪检测输变电力设备特别是其连接部位的运行温度,是获取设备状态信息的关键手段。但长期以来,传统使用手持式红外热象仪进行测试存在流程缺陷,当检测部分线路、设备可能处在低负荷或备用状态运行。检测结果无法真

制冷式与非制冷式红外热像仪 菲力尔FLIR

科学/研发应用红外热像仪堪称功能强大的无创性工具。借助一款此类红外热像仪,你可以在设计阶段及早发现问题,以便在发展成更为严重且维修代价高昂的故障之前,将其记录在案并予以纠正。 应用于研发环境的红外热像仪 红外热像仪会接收无法被人眼所察觉热辐射,并将其转化为描绘某个目标物或场景中热量变化的图像。所有温度高于绝对零度的物体均会放射热能,热能由某些波段的电磁波谱辐射出来,而且辐射量会随着温度的上升而增加。FLIR 红外热像仪可用于实时捕获和记录热分布和热变化,有助于工程师和研究人员看清并精确测量设备、产品和工艺过程中的发热方式、热耗散、热泄漏以及其他温度因素。其中部分红外热像仪可区分细微至0.02?C 的温 度变化。它们均搭载了先进的探测技术和高级数学算法,以实现高性能,以及在-80?C 至+3000?C 之间精确测温。研发用红外热像仪系列整合了极高的成像性能和精确的测温功能,并配备强大的分析报告工具和软件,从而造就其成为范围广泛的研究、热试验和产品验证应用的理想之选。制冷式和非制冷式红外热像仪 研发/科学应用的红外热像仪系统拥有大量选择。因此,我们经常听到这样的问题:“我应该使用制冷式还是非制冷式红外热像仪系统? 哪种系统更具有成本效益?”事实上,如今市场上售有两种类型的红外热像仪系统:制冷式和非制冷式系统。这两种类型的系统的组件成本大相径庭,因而决定选择哪种系统则变得极 为重要。 多年来,科学家、研究人员和研发专家热衷于将红外热像仪运用于广泛的应用领域中,包括工业研发、学术研究、无损检测(NDT)和材料检测,以及国防与航空航天等。但是,并非所有打造的红外热像仪均具有同等的品质功能,或者可用于一些专门的应用。譬如,如要获得精确的测量值,则需要配备高速定格动画功能的先进红外热像仪。 制冷式与非制冷式红外热像仪 配备制冷式探测器的红外热像仪可在快速移动活动中产生清晰的热图像。 FLIR A6700sc 是一款配备制冷锑化铟 (InSb) 探测器的紧凑型红外热像仪,价格极为经济实惠。 FLIR T650sc 非制冷式研发用红外热像仪具有较高的分辨率。高分辨率的图像可获得精确结果和可靠的测温 精确度。 世界第六感

浅析红外热像仪的精度与不确定性概念 菲力尔FLIR

热像仪精度规格与不确定性方程式 你可能会注意到,大多数红外热像仪的数据规格手册上的精度规格会显 示为±2 ?C或读数的2%。这一规格数 据是基于广泛采用的名为“平方和根值”(RSS)不确定性分析技术结果。它的概念是一个计算温度测量公式每个变量的局部误差值,取每个误差项的平方,然后将其全部相加,最后取其平方根值。虽然这个公式听起来复杂,但其实很简单。从另一方面来讲,局部误差值的确定可能会很难。 “局部误差”来自于典型红外热像仪温度测量公式中多个变量中的一个,包括: ? 发射率 ? 反射的环境温度 ? 透过率大气温度? 热像仪的响应值 ? 校准器(黑体)的温度精度 一旦确定上述各个值的“局部误差”响应值,那么整个误差公式就是: 总误差 = √?T12+?T22+?T32 …以此类推其中,?T1、?T2、?T3...是测温公式中变量的局部误差值。 那为何公式是这样的?事实证明,随机的误差值有时是在同一个方向上相加,使你离正确值的偏差越来越远;有时,误差值又是在相反方向上相加,相互抵消。所以,采用“平方和根植”是计算总误差值最适合的方法,并一直作为FLIR红外热像仪数据规格表上的显示数据。 些数据,而红外热像仪常常会被归到这一测量仪器的类别之中。而且,在讨论红 外热像仪的测量精度时,常常会用到一些令人困惑不已、产生误解的复杂术语和 行话。最终使一些研究人员完全对这些工具绕行而走。不过也因此,他们会与其 在研发热测量应用所具有的潜在优势失之交臂。在下面的讨论中,我们会避免使 用技术术语,以直白的语言阐述红外热像仪在测温上的不确定性,让你对此有基 本的了解,从而帮助你理解红外热像仪标定流程和精度。 图1 – 位于美国佛罗里达州尼斯维尔的FLIR温度记录校 准实验室 这里需要说明的是,目前所讨论的计 算值有效的条件是只有当热像仪用于 实验室或户外短距离范围(20米以内)。 由于大气吸收因素,还有影响程度较 小的发射率因素,距离变长会增加测 量值的不确定性。当红外热像仪的研 发工程师在实验室条件下对大部分现 代的红外热像仪系统采用“平方和根 值”的分析方法时,所得结果近似为 ±2 ?C或2% — 因此成为热像仪规格参 数中使用的合理精度率。但是,实践 表明,诸如FLIR X6900sc的高性能的热 像仪比FLIR E40的经济型热像仪的精度 效果要好,因此,我们仍需要做些工 作来更好地解释这一观察结果。 技术说明

相关主题
文本预览
相关文档 最新文档