当前位置:文档之家› 开题报告模糊控制在液位控制中的仿真应用设计目6.20

开题报告模糊控制在液位控制中的仿真应用设计目6.20

开题报告模糊控制在液位控制中的仿真应用设计目6.20
开题报告模糊控制在液位控制中的仿真应用设计目6.20

吉林化工学院信息与控制工程学院

毕业设计开题报告

模糊控制在液位控制中的仿真应用设计Simulation Design Based on Fuzzy Controller in Liquid Level Control

学生学号:09510441

学生姓名:霍可栋

专业班级:自动0904

指导教师:吕春兰

职称:副教授

起止日期:2013.03.11~2013.03.24

吉林化工学院

Jilin Institute of Chemical Technology

1. 本报告前6项内容由承担毕业论文(设计)课题任务的学生独立撰写;

2. 本报告必须在第八学期开学三周内交指导教师审阅并提出修改意见;

3. 学生须在小组内进行报告,并讨论;

4. 本报告作为指导教师、专业系或毕业论文(设计)指导小组审查学生能否承担该毕业设计(论文) 课题和是否按时完成进度的检查依据,并接受学校和教学院的抽查。

基于simulink的模糊控制仿真

已知系统的传递函数为:1/(10s+1)*e(-0.5s)。假设系统给定为阶跃值r=30,系统初始值r0=0.试分别设计 (1)常规的PID控制器; (2)常规的模糊控制器; (3)比较两种控制器的效果; (4)当通过改变模糊控制器的比例因子时,系统响应有什么变化? 一.基于simulink的PID控制器的仿真及其调试: 调节后的Kp,Ki,Kd分别为:10 ,1,0.05。 示波器观察到的波形为: 二.基于simulink的模糊控制器的仿真及其调试: (1)启动matlab后,在主窗口中键入fuzzy回车,屏幕上就会显现出如下图所示的“FIS Editor”界面,即模糊推理系统编辑器。

(2)双击输入量或输出量模框中的任何一个,都会弹出隶属函数编辑器,简称MF编辑器。

(3)在FIS Editor界面顺序单击菜单Editor—Rules出现模糊规则编辑器。 本次设计采用双输入(偏差E和偏差变化量EC)单输出(U)模糊控制器,E的论域是[-6,6],EC的论域是[-6,6],U的论域是[-6,6]。它们的状态分别是负大(NB)、负中(NM)、负小(NS)、零(ZO)、正小(PS)、正中(PM)、正大(PB)。语言值的隶属函数选择三角形的隶属度函数。推理规则选用Mamdani 控制规则。 该控制器的控制规则表如图所示:

Simulink仿真图如下: 在调试过程中发现加入积分调节器有助于消除静差,通过试凑法得出量化因子,比例因子以及积分常数。Ke,Kec,Ku,Ki分别是: 3 ,2.5 ,3.5 ,0.27

三.实验心得: 通过比较PID控制器和模糊控制器,我们可知两个系统观察到的波形并没有太大的区别。相对而言,对于给出精确数学模型的控制对象,PID控制器显得更具有优势,其一是操作简单,其二是调节三个参数可以达到满意的效果;对于给出给出精确数学模型的控制对象,模糊控制器并没有展现出太大的优势,其一是操作繁琐,其二是模糊控制器调节参数的难度并不亚于PID控制器。 在实验中增大模糊控制器的比例因子Ku会加快系统的响应速度,但Ku过大将会导致系统输出上升速率过快,从而使系统产生较大的超调量乃至发生振荡;Ku过小,系统输出上升速率变小,将导致系统稳态精度变差。

《模糊控制》实验指导书

《模糊控制》实验指导书李士勇沈毅周荻邱华洲袁丽英 实验名称: 实验地点: 指导教师: 联系电话: Harbin Institute of Technology 2005.3

模糊控制实验指导书 一、 实验目的 利用Matlab 软件实现模糊控制系统仿真实验,了解模糊控制的查询表方法和在线推理方法的基本原理及实现过程,并比较模糊控制和传统PID 控制的性能的差异。 二、 实验要求 设计一个二维模糊控制器分别控制一个一阶被控对象1 1 )(11+=s T s G 和二阶被控对象) 1)(1(1 )(212++= s T s T s G 。先用模糊控制器进行控制,然后改变控制对 象参数的大小,观察模糊控制的鲁棒性。为了进行对比,再设计PID 控制器,同样改变控制对象参数的大小,观察PID 控制的鲁棒性。也可以用其他语言编制模糊控制仿真程序。 三、 实验内容 (一)查询表式模糊控制器实验设计 查询表法是模糊控制中的最基本的方法,用这种方法实现模糊控制决策过程最终转化为一个根据模糊控制系统的误差和误差变化(模糊量)来查询控制量(模糊量)的方法。本实验利用了Matlab 仿真模块——直接查询表(Direct look-up table )模块(在Simulink 下的Functions and Tables 模块下去查找),将模糊控制表中的数据输入给 Direct look-up table ,如图1所示。设定采样时间(例如选用0.01s ),在仿真中,通过逐步调整误差量化因子Ke ,误差变化的量化因子Kec 以及控制量比例因子Ku 的大小,来提高和改善模糊控制器的性能。

模糊控制课程

11/12 学年第一学期 模糊控制技术课程设计任务书 指导教师:班级:地点:一教 课程设计题目(范围):蚕茧站烘烤炉温度模糊控制系统及MATLAB仿真 一、课程设计目的 课程设计的目的是培养学生综合运用模糊控制技术所学的基本理论、基本知识,分析与解决实际问题的能力。通过课程设计,使学生基本具备检索中外文献的能力;独立思考,对方案进行论证、分析与比较的能力;初步掌握模糊控制系统的设计原则、设计方法、设计的主要内容及相关程序的编写的能力;使用计算机的能力、计算与绘图的能力;撰写设计说明书,表述研究结果及答辩的能力。 二、课程设计内容(包括技术指标) 1、控制系统的总体方案设计,画出整个系统的原理框图。 2、系统硬件电路的设计:包括传感器的选择,控制电路的设计,键盘与显示电路的设计,报警电路的设计,A/D转换电路的设计,存储器、定时器等接口电路的设计等。 序号起止日期设计阶段内容名称 1 第1天查阅资料 2 第2天模糊控制系统总体结构的确定 3 第3天硬件电路的设计 4 第4天软件部分的设计及 Matlab仿真 5 第5天答辩 3、模糊控制推理过程阐述。 4、利用GUI建立FIS,得到输出曲面。 三、时间安排 四、基本要求 1、针对设计题目,综合所学知识进行调研、文献查询等,独立完成设计工作; 2、撰写设计论文一份,要求A4幅面,正文采用5号宋体,字数不少于五千。设计说明书要条理清晰、内容充实,内容包括以下几部分:①摘要;②目录;③各章节内容;④结论;⑤ 参考文献。 3、图纸采用计算机绘图,要求图形、符号、线条等符合国家标准; 教研室审核 主任签字:年月日教学院(系)审批 院长签字:年月日 五、领导审批

实验一--模糊控制器的MATLAB仿真

实验一 模糊控制器的MATLAB 仿真 一、实验目的 本实验要求利用MATLAB/SIMULINK 与FUZZYTOOLBOX 对给定的二阶动态系统,确定模糊控制器的结构,输入和输出语言变量、语言值及隶属函数,模糊控制规则;比较其与常规控制器的控制效果;研究改变模糊控制器参数时,系统响应的变化情况;掌握用 MATLAB 实现模糊控制系统仿真的方法。 实验时数:3学时。 二、实验设备:计算机系统、Matlab 仿真软件 三、实验原理 模糊控制器它包含有模糊化接口、规则库、模糊推理、清晰化接口等部分,输人变量是过程实测变量与系统设定值之差值。输出变量是系统的实时控制修正变量。模糊控制的核心部分是包含语言规则的规则库和模糊推理。模糊推理就是一种模糊变换,它将输入变量模糊集变换为输出变量的模糊集,实现论域的转换。工程上为了便于微机实现,通常采用“或”运算处理这种较为简单的推理方法。Mamdani 推理方法是一种广泛采用的方法。它包含三个过程:隶属度聚集、规则激活和输出总合。模糊控制器的体系结构如图1所示。 图1 模糊控制器的体系结构 四、实验步骤 (1)对循环流化床锅炉床温,对象模型为 ()()1140130120 ++s s 采用simulink 图库,实现常规PID 和模糊自整定PID 。 (2)确定模糊语言变量及其论域:模糊自整定PID 为2输入3输出的模糊控制器。该模糊控制器是以|e|和|ec|为输入语言变量,Kp 、Ki 、Kd 为输出语言变量,其各语言变量的论域如下:

误差绝对值:e={0,3,6,10}; 误差变化率绝对值:ec={0,2,4,6}; 输出Kp:Up={0,0.5,1.0,1.5}; 输出Ki:Ui={0,0.002,0.004,0.006}; 输出Kd:Ud={0,3,6,9}。 (3)语言变量值域的选取:输入语言变量|e|和|ec|的值域取值“大”(B)、“中”(M)、“小”(s)和“零”(Z) 4种;输出语言变量Kp、Ki、Kd的值域取值为“很大”(VB)、“大”(B)、“中”(M)、“小”(s) 4种。 (4)规则的制定:根据PID参数整定原则及运行经验,可列出输出变量Kp、Ki、Kd 的控制规则表。 (5)推理方法的确定 隐含采用“mamdani”方法:max-min; 推理方法,即“min”方法; 去模糊方法:面积中心法; 选择隶属函数的形式:三角型。

在线推理法模糊控制器实验报告

在线推理式模糊逻辑控制器设计实验报告 学院:电力学院 专业:自动化 学号: 姓名: 时间:2013年11月16日

一、实验目的 利用Matlab软件实现模糊控制系统仿真实验,了解模糊控制的在线推理方法的基本原理及实现过程。 二、实验要求 以matlab模糊工具箱中提供的一个水位模糊控制系统仿真的实例,定义语言变量的语言值,设置隶属度函数,根据提供的规则建立模糊逻辑控制器。最后启动仿真,观察水位变化曲线。 三、实验步骤 叙述在线推理模糊控制的仿真的主要步骤。 1)在matlab命令窗口输入:sltank,打开水位控制系统的simulink仿真模型图,如图; 2)在matlab的命令窗口中,输入指令:fuzzy,便打开了模糊推理系统编辑器(FIS Editor),如图;

3)利用FIS Editor编辑器的Edit/Add variable/input菜单,添加一条输入语言变量,并将两个输入语言和一个输出语言变量的名称分别定义为:level;rate;valve。其中,level代表水位(三个语言值:低,高,正好),rate代表变化率(三个语言值:正,不变,负),valve代表阀门(五个语言变量:不变,迅速打开,迅速关闭,缓慢打开,缓慢关闭); 4)①利用FIS Editor编辑器的Edit/membership function菜单,打开隶属度函数编辑器,如下图,将输入语言变量level的取值范围(range)和显示范围(display range)设置为[-1,1],隶属度函数类型(type)设置为高斯型函数(gaussmf),而所包含的三条曲线的名称(name)和参数(parameters)([宽度中心点])分别设置为:high,[0.3 -1];okay [0.3 0];low [0.3 1]。其中high 、okay、low分别代表水位高、正好、低; ②将输入语言变量rate的取值范围(range)和显示范围(display range) 设置为[-0.1,0.1],隶属度函数类型(type)设置为高斯型函数(gaussmf),而 所包含的三条曲线的名称(name)和参数(parameters)([宽度中心点])分

双闭环模糊控制系统的设计与仿真

《运动控制系统》课程设计 学院:物联网工程学院 班级: 姓名: 学号: 日期: 成绩:

文章编号: 双闭环模糊控制系统的设计与仿真 (江南大学物联网工程学院,江苏省无锡邮编214122) 摘要:直流电机具有良好的起动、制动性能,因此其在电力拖动自动控制系统中应用广泛。众所周知,直流电机的闭环系统静特性要比开环系统的机械特写硬的多,而转速、电流双闭环控制直流调速系统是性能好、应用最广泛的直流调速系统,但该系统依赖精确的数学模型,在增加解决环节的同时,系统模型趋于复杂,还可能会影响系统的可靠性。因此我们在总结了以前经验的同时,提出了双闭环模糊控制系统的的设计与仿真。 关键词:直流电机;双闭环系统;模糊控制 中图分类号:文献标识码:A Double Closed Loop Fuzzy Control System Design and Simulation Author name (Jiangnan University, Wuxi 214122, China) Abstract:DC motor has good starting, braking performance, therefore in the electric drive automatic control system is widely applied in the field of. As everyone knows, the closed-loop DC motor system static characteristics than the open loop system of mechanical feature of more than hardware, and speed, electric current double closed loop DC motor control system is of good performance, the most widely used DC speed regulating system, but the system depend on the accurate mathematical model, increase solve link at the same time, the system model tends to be complex, also may influence the reliability of the system. Therefore we are summing up the previous experience at the same time, put forward a double closed loop fuzzy control system design and simulation. Key words:DC Motor; Double Closed Loop System; Fuzzy Control 1 引言 2 双闭环直流调速系统的设计 直流电动机具有启动转矩大、调速范围宽等优势,在轧钢机、电力机车等方面仍广泛采用。直流调速系统在理论上和实践上都比较成热,从控制技术的角度来看,它又是交流调速系统的基础;电力电子技术、计算机控制技术、智能控制理论的发展,,更为直流调速系统继续发展和应用提供了契机。进入21世纪后国外一些公司仍在不断推出高性能直 流调速系统。因此,对直流调速系统的研究仍具有重要意义。 直流调速系统中最典型的控制方式就是速度、电流双闭环调速。由于受参数时变和不确定性等因素的影响,传统的控制方法常受到很大的局限。另外,PID 控制方法往往在系统快速性与稳定性之间不能两者兼顾。模糊控制不依赖于被控对象的精确数学模型,既能克服非线性因素的影响,又具有较强的鲁棒性。因此,给直流电动机双闭环调速系统引入模糊控制器,可以改善系统性能。 2.1 双闭环可逆直流调速系统的原理结构 为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。二者之间实行串级联接。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变 换器UPE。从闭环结构上看,电流环在里面,称作内环;转速环在外面,称作外环。这样就形成了转速、电流双闭环调速系统。如图1所示。 图1直流双闭环调速系统结构 双闭环直流调速系统目前应用广泛、技术成熟,常采用PID控制方式,它具有结构简单、可靠等优点,取得了较好的控制效果。但是,在实际生产现场,由于条件限制,使得PID控制器参数的整定往往难以达到最优状态,另外,PID 控制方法必须在系统快

简易模糊控制器设计及MATLAB仿真

简易模糊控制器的设计及仿真 摘要:模糊控制(Fuzzy Control )是以模糊集理论、模糊语言和模糊逻辑推理为基础的一种控制方法,它从行为上模仿人的模糊推理和决策过程。本文利用MATLAB/SIMULINK 与FUZZY TOOLBOX 对给定的二阶动态系统,确定模糊控制器的结构,输入和输出语言变量、语言值及隶属函数,模糊控制规则,比较其与常规控制器的控制效果,用MATLAB 实现模糊控制的仿真。 关键词:模糊控制 参数整定 MATLAB 仿真 二阶动态系统模型: ()()1140130120 ++s s 采用simulink 图库,实现常规PID 和模糊自整定PID 。 一.确定模糊控制器结构 模糊自整定PID 为2输入3输出的模糊控制器。在MATLAB 的命令窗口中键入fuzzy 即可打开FIS 编辑器,其界面如下图所示。此时编辑器里面还没有FIS 系统,其文件名为Untitled ,且被默认为Mandani 型系统。默认的有一个输入,一个输出,还有中间的规则处理器。在FIS 编辑器界面上需要做一下几步工作。 首先,模糊自整定PID 为2输入3输出的模糊控制器,因此需要增加一个输入两个输出,进行的操作为:选择Edit 菜单下的Add Variable/Input 菜单项。

如下图。 其次,给输入输出变量命名。单击各个输入和输出框,在Current Variable 选项区域的Name文本框中修改变量名。如下图 最后,保存系统。单击File菜单,选择Export下的To Disk项。这里将创建的系统命名为PID_auot.fi。 二.定义输入、输出模糊集及隶属函数

温度模糊控制实验

温度模糊控制实验(选学) 一、实验目的 1.认识Labview 虚拟仪器在测控电路的应用; 2.通过实验,改变P 的参数,观察对整个温度测控系统的影响; 3.进一步认识固态继电器和温度变送器,了解其工作原理; 4.了解什么是模糊控制理论。 二、预习要点 1.了解模糊控制理论的由来及应用; 2.Labview 虚拟仪器图形软件(本实验指导书附录中对使用环境详细介绍)。 三、实验原理 温度还是通过固态继电器的导通关断来实现加热过程的,控制周期即是一个 加热和冷却周期,PID 调节的实现也是通过这个周期实现的,在远离温度预设值 的时固态继电器在温度控制周期中持续加热(假设导通时间是T),在接近温度 预设值时通过PID 得到的值来控制这一周期内固态继电器的开关时间(假设导通 时间是1/2T)维持温度(假设导通时间是1/4T)。 本实验暂时用的是模糊控制原理中的的比例控制钟摆无限接近的控制理论, 所以温度预设值不能超过(最大温度+实验开始前温度)/2,例如实验开始前温度为25 度,最大为100 度,那么预设最大为62.5 度,当然这样可能几天温度才能被控制好,所以建议温度不超过实验开始温度5 度,同时我们在将来的升级中 会用更好的模糊理论代替现有的较差的控制理论,这里还要指出好的模糊控制理 论在一定程度上比好的PID 控制还要稳定,做的好的模糊控制是经验与理论的最 完美结合。 四、实验项目 用模糊PID 控制水箱温度。 五、实验仪器 ZCK-II 型智能化测控系统。

六、实验步骤及操作说明 1.打开仪器面板上的总电源开关,绿色指示灯亮起表示系统正常; 2.打开仪器面板上的液位电源开关,绿色指示灯亮起表示系统正常; 3,确保贮水箱内有足够的水,参照图2(图见第三章)中阀门位置设置阀门开关,将阀门1、3、5、6 打开,阀门2、4 关闭; 4.参看变频器操作说明书将其设置在手动操作挡; 5.单击控制器RUN 按钮,向加热水箱注水,直到水位接近加热水箱顶部,完全 淹没加热器后单击STOP 按钮结束注水; 6.关闭仪器面板上的液位电源开关,红色指示灯亮起表示系统关闭; 7.打开仪器面板上的加热电源开关,绿色指示灯亮起表示系统正常; 8.打开计算机,启动ZCK-II 型智能化测控系统主程序; 12 9.用鼠标单击温度控制动画图形进入温度控制系统主界面,小组实验无须在个人信息输入框填写身份,直接确定即可; 10.在温度系统控制主界面中,单击采集卡测试图标,进入数据采集卡测试程序。 一切设置确认无误后即可单击启动程序图标,观察温度和电压的变化,也可以单 击冷却中左边的开关按钮进入加热程序,观察温度上升曲线及电流表和电压表变 化,确认传感器正常工作后点击程序结束,等待返回主界面图标出现即可返回温 度控制主界面进入下一步实验。 11.在温度系统控制主界面中,单击传感器标定图标,进入传感器标定程序。本 程序界面基本和数据采集卡测试程序界面基本相同,操作请参照步骤10 进行,一切设置确认无误后即可单击启动程序图标,观察温度和电压的变化,同时用温 度计测量加热箱内水温,并用传感器标定控制图标完成精确标定。标定完成后加 热水箱到30 摄氏左右时程序结束,等待返回主界面图标出现即可返回温度控制主界面进入下一步实验; 12.在温度系统控制主界面中,单击模糊PID 系统图标,进入模糊PID 温度控制系统程序。点击控制参数图标,进入控制参数设定界面,按照参数表4 中的小 组1 给定的预设参数填写。确定返回后点击采集参数图标按照参数表4 中的小组

模糊控制的优缺点

模糊控制的优缺点

————————————————————————————————作者:————————————————————————————————日期:

1.模糊控制中模糊的含义 模糊控制中的模糊其实就是不确定性。从属于该概念和不属于该概念之间没有明显的分界线。模糊的概念导致了模糊现象。 2.模糊控制的定义 模糊控制就是利用模糊数学知识模仿人脑的思维对模糊的现象进行识别和判断,给出精确的控制量,利用计算机予以实现的自动控制。 3.模糊控制的基本思想 模糊控制的基本思想:根据操作人员的操作经验,总结出一套完整的控制规则,根据系统当前的运行状态,经过模糊推理,模糊判断等运算求出控制量,实现对被控制对象的控制。 4.模糊的控制的特点 不完全依赖于纯粹的数学模型,依赖的是模糊规则。模糊规则是操作者经过大量的操作实践总结出来的一套完整的控制规则。 模糊控制的对象称为黑匣(由于不知道被控对象的内部结构、机理,无法用语言去描述其运动规律,无法去建立精确的数学模型)。但是模糊规则又是模糊数学模型。 5 模糊控制的优缺点及需要解决的问题分析 5.1模糊控制的优点 (1)使用语言方便,可不需要过程的精确数学模型;(不需要精确的数学模型) (2)鲁棒性强,适于解决过程控制中的非线性、强耦合时变、

滞后等问题;鲁棒性即系统的健壮性。 (3)有较强的容错能力。具有适应受控对象动力学特征变化、环境特征变化和动行条件变化的能力; (4)操作人员易于通过人的自然语言进行人机界面联系,这些模糊条件语句容易加到过程的控制环节上。 5.2模糊控制的缺点 (1)信息简单的模糊处理将导致系统的控制精度降低和动态品质变差; (2)模糊控制的设计尚缺乏系统性,无法定义控制目标。 6.模糊数学 模糊数学就是利用数学知识研究和解决模糊现象。在数学和模糊现象之间架起了一座桥梁。 6.1模糊集合的概念 每一个概念都有内涵和外延。 内涵就是指概念的本质属性的集合。外延就是符合某种本质属性的全体对象的集合。 模糊数学的基础就是模糊理论集。 在模糊集合设计到的论域U 上,给定了一个映射A,A :U →[0,1] ,)(x x A μ ,则称A 为论域U 上的模糊集合或者模糊子集; )(x A μ表示U 中各个元素x 属于集合A 的程度,称为元素x 属于模糊集合A 的隶属函数。当x 是一个确定的0x 时,称)(0x A μ为元素0x 对于模糊集合A 的隶属 度。 F 集合引出的几个概念

模糊控制器的设计知识讲解

模糊控制器的设计 一、 PID 控制器的设计 我们选定的被控对象的开环传递函数为3 27 ()(1)(3)G s s s = ++,采用经典 的PID 控制方法设计控制器时,由于被控对象为零型系统,因此我们必须加入积分环节保证其稳态误差为0。 首先,我们搭建simulink 模型,如图1。 图1simulink 仿真模型 由于不知道Kp ,Kd ,Ki ,的值的大致范围,我们采用signal constraints 模块进行自整定,输入要求的指标,找到一组Kp ,Kd ,Ki 的参数值,然后在其基础上根据经验进行调整。当选定Kp=2,Kd=0.95,Ki=0.8时,可以得到比较好的响应曲线。调节时间较短,同时超调量很小。响应曲线如图2所示。 图2 PID 控制响应曲线

将数据输出到工作空间,调节时间ts =2.04s ,超调量%0σ=。可以看出,PID 控制器的调节作用已经相当好。 二、 模糊控制器的设计 1、模糊控制器的结构为: 图3 模糊控制器的结构 2、控制参数模糊化 控制系统的输入为偏差e 和偏差的变化率ec ,输出为控制信号u 。首先对他们进行模糊化处理。 量化因子的计算max min ** max min x x k x x -= - 比例因子的计算**max min max min u u k u u -=- 其中,*max x ,* min x 为输入信号实际变化范围的最大最小值;max x ,min x 为输入信号论域的最大最小值。*max u ,* min u 为控制输出信号实际变化范围的最大最小 值,max u ,min u 输出信号论域的最大最小值。 相应的语言值为NB ,NM ,NS ,ZO ,PS ,PM ,PB 。分别表示负大、负中、负小、零、正小、正中、正大。 3、确定各模糊变量的隶属函数类型 语言值的隶属度函数就是语言值的语义规则,可分为连续式隶属度函数和离散化的隶属度函数。本系统论域进行了离散化处理,所以选用离散量化的隶属度函数。

基于matlab的倒立摆模糊控制_课程设计报告

智能控制理论及应用课程设计报告 题目:基于matlab的倒立摆模糊控制 院系:西北民族大学电气工程学院

基于MATLAB的倒立摆模糊控制 摘要:倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。本文主要针对较为简单的单级倒立摆控制系统而进行的设计分析。通过建立微分方程模型,求出相关参数,设计出对应的模糊控制器,并运用MATLAB软件进行系统模型的软件仿真,从而达到预定控制效果。目前,一级倒立摆的研究成果应用于火箭发射推进器和控制卫星的飞行状态等航空航天领域。关键词:单级倒立摆;微分方程;模糊控制;MATLAB仿真 1背景分析 倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。对倒立摆系统的

研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。 正是由于倒立摆系统的特殊性,许多不同领域的专家学者在检验新提出理论的正确性和实际可行性时,都将倒立摆系统作为实验测试平台。再将经过测试后的控制理论和控制方法应用到更为广泛的领域中去。现代控制理论已经在工业生产过程、军事科学、航空航天等许多方面都取得了成功的应用。例如极小值原理可以用来解决某些最优控制问题;利用卡尔曼滤波器可以对具有有色噪声的系统进行状态估计;预测控制理论可以对大滞后过程进行有效的控制。但是它们都有一个基本的要求:需要建立被控对象的精确数学模型。 随着科学技术的迅猛发展,各个领域对自动控制控制精度、响应速度、系统稳定性与适应能力的要求越来越高,所研究的系统也日益复杂多变。然而由于一系列的原因,诸如被控对象或过程的非线性、时变性、多参数间的强烈耦合、较大的随机干扰、过程机理错综复杂、各种不确定性以及现场测量手段不完善等,难以建立被控对象的精确模型。虽然常规自适应控制技术可以解决一些问题,但范围是有限的。对于像二级倒立摆这样的非线性、多参数、强耦合的被控对象,使用

基于matlab的模糊控制器的设计与仿真

基于MATLAB的模糊控制器的设计与仿真 摘要:本文对模糊控制器进行了主要介绍。提出了一种模糊控制器的设计与仿真的实现方法,该方法利用MA TLB模糊控制工具箱中模糊控制器的控制规则和隶属度函数,建立模型,并进行模糊控制器设计与仿真。 关键词:模糊控制,隶属度函数,仿真,MA TLAB 1 引言 模糊控制是一种特别适用于模拟专家对数学模型未知的较复杂系统的控制,是一种对模型要求不高但又有良好控制效果的控制新策略。与经典控制和现代控制相比,模糊控制器的主要优点是它不需要建立精确的数学模型。因此,对一些无法建立数学模型或难以建立精确数学模型的被控对象,采用模糊控制方法,往往能获得较满意的控制效果。 模糊控制器的设计比一般的经典控制器如PID控制器要复杂,但如果借助MATLAB则系统动态特性良好并有较高的稳态控制精度,可提高模糊控制器的设计效率。本文在MATLAB环境下针对某个控制环节对模糊控制系统进行了设计与仿真。 2 模糊控制器简介 模糊控制器是一种以模糊集合论,模糊语言变量以及模糊推理为数学基础的新型计算机控制方法。显然,模糊控制的基础是模糊数学,模糊控制的实现手段是计算机。本章着重介绍模糊控制的基本思想,模糊控制的基本原理,模糊控制器的基本设计原理和模糊控制系统的性能分析。 随着科学技术的飞速发展,在那些复杂的,多因素影响的严重非线性、不确定性、多变性的大系统中,传统的控制理论和控制方法越来越显示出局限性。长期以来,人们期望以人类思维的控制方案为基础,创造出一种能反映人类经验的控制过程知识,并可以达到控制目的,能够利用某种形式表现出来。而且这种形式既能够取代那种精密、反复、有错误倾向的模型建造过程,又能避免精密的估计模型方程中各种方程的过程。同时还很容易被实现的,简单而灵活的控制方式。于是模糊控制理论极其技术应运而生。 3 模糊控制的特点 模糊控制是以模仿人类人工控制特点而提出的,虽然带有一定的模糊性和主观性,但往往是简单易行,而且是行之有效的。模糊控制的任务正是要用计算机来模拟这种人的思维和决策方式,对这些复杂的生产过程进行控制和操作。所以,模糊控制有以下特点: 1)模糊控制的计算方法虽然是运用模糊集理论进行的模糊算法,但最后得到的控制规律是确定

LabVIEW的模糊控制系统设计(DOC 8页)

LabVIEW的模糊控制系统设计(DOC 8页)

基于LabVIEW的模糊控制系统设计 摘要 本文以LabVIEW为开发环境进行设计模糊控制器,将设计出的模糊控制器应用到温度控制系统中,实现了在有干扰作用的情况下对烤箱温度的控制,取得较好的控制效果。 关键词:虚拟仪器模糊控制热电偶Abstract This paper is design issue is the use of LabVIEW fuzzy control, through the design of fuzzy control procedures to control the plant (oven) temperature. Finally, it comes ture control the temperature of oven even if there has disturb. Keywords: 1引言 虚拟仪器(LabVIEW),就是在以通用计算机为核心的硬件平台上,由用户设计定义虚拟面板,测控功能由软件实现的一种计算机仪器系统。虚拟仪器的实质是利用计算机显示器的显示功能来模拟传统的控制面板,以多种形式表达输出结果,利用计算机强大的软件功能实现数据的运算、分析、处理和保存,利用I/O接口设备完成信号采集、测量与控制。 模糊控制的基本思想是利用计算机来实现人的控制经验,而这些经验多是用语言表达的具有相当模糊性的控制规则。因为引入了人类的逻辑思维方式,使得模糊控制器具有一定的自适应控制能力,有很强的鲁棒性和稳定性,因而特别适用于没有精确数学模型的实际系统。 本文将模糊控制的基本思想应用到基于虚拟仪器的温度控制系统中。通过热电偶测量烤箱实际温度,与给定值比较。当测量温度与设定温度之间存在较大的偏差(e≥6℃)时,定时器产生占空比较大的脉冲序列,全力加热。当系统温度与设定温度之间偏差小于6摄氏度,采用模糊控制算法。模糊控制器根据误差和误差变化率,经过模糊推理输出脉冲序列的占空比的大小,经过固态继电器控制烤箱电源得通断,从而实现对烤箱温度的控制。 2系统组成

自动控制原理课程设计实验

上海电力学院 自动控制原理实践报告 课名:自动控制原理应用实践 题目:水翼船渡轮的纵倾角控制 船舶航向的自动操舵控制 班级: 姓名: 学号:

水翼船渡轮的纵倾角控制 一.系统背景简介 水翼船(Hydrofoil)是一种高速船。船身底部有支架,装上水翼。当船的速度逐渐增加,水翼提供的浮力会把船身抬离水面(称为水翼飞航或水翼航行,Foilborne),从而大为减少水的阻力和增加航行速度。 水翼船的高速航行能力主要依靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求系统使浮力稳定不变,相当于使纵倾角最小。 航向自动操舵仪工作时存在包括舵机(舵角)、船舶本身(航向角)在内的两个反馈回路:舵角反馈和航向反馈。 当尾舵的角坐标偏转错误!未找到引用源。,会引起船只在参考方向上发生某一固定的偏转错误!未找到引用源。。传递函数中带有一个负号,这是因为尾舵的顺时针的转动会引起船只的逆时针转动。有此动力方程可以看出,船只的转动速率会逐渐趋向一个常数,因此如果船只以直线运动,而尾舵偏转一恒定值,那么船只就会以螺旋形的进入一圆形运动轨迹。 二.实际控制过程 某水翼船渡轮,自重670t,航速45节(海里/小时),可载900名乘客,可混装轿车、大客车和货卡,载重可达自重量。该渡轮可在浪高达8英尺的海中以航速40节航行的能力,全靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求该系统使浮力稳定不变,相当于使纵倾角最小。

上图:水翼船渡轮的纵倾角控制系统 已知,水翼船渡轮的纵倾角控制过程模型,执行器模型为F(s)=1/s。 三.控制设计要求 试设计一个控制器Gc(s),使水翼船渡轮的纵倾角控制系统在海浪扰动D (s)存在下也能达到优良的性能指标。假设海浪扰动D(s)的主频率为w=6rad/s。 本题要求了“优良的性能指标”,没有具体的量化指标,通过网络资料的查阅:响应超调量小于10%,调整时间小于4s。 四.分析系统时域 1.原系统稳定性分析 num=[50]; den=[1 80 2500 50]; g1=tf(num,den); [z,p,k]=zpkdata(g1,'v'); p1=pole(g1); pzmap(g1) 分析:上图闭环极点分布图,有一极点位于原点,另两极点位于虚轴左边,故处于临界稳定状态。但还是一种不稳定的情况,所以系统无稳态误差。 2.Simulink搭建未加控制器的原系统(不考虑扰动)。

模糊控制仿真

智能控制实验报告模糊控制器的仿真

一.实验目的 1.了解模糊控制的原理 2.学习Matlab模糊逻辑工具箱的使用 3.使用工具箱进行模糊控制器的仿真 二.实验设备 1.计算机 2.Matlab软件 3.window 7操作系统 三.实验原理 模糊逻辑控制又称模糊控制,是以模糊集合论,模糊语言变量和模糊逻辑推理为基础的一类计算机控制策略,模糊控制是一种非线性控制。图1-1是模糊控制系统基本结构,由图可知模糊控制器由模糊化,知识库,模糊推理和清晰化(或去模糊化)四个功能模块组成。 针对模糊控制器每个输入,输出,各自定义一个语言变量。因为对控制输出的判断,往往不仅根据误差的变化,而且还根据误差的变化率来进行综合评判。所以在模糊控制器的设计中,通常取系统的误差值e和误差变化率ec为模糊控制器的两个输入,则在e的论域上定义语言变量“误差E”,在ec的论域上定义语言变量“误差变化EC”;在控制量u的论域上定义语言变量“控制量U”。 通过检测获取被控制量的精确值,然后将此量与给定值比较得到误差信号e,对误差取微分得到误差变化率ec,再经过模糊化处理把分明集输入量转换为模糊集输入量,模糊输入变量根据预先设定的模糊规则,通过模糊逻辑推理获得模糊控制输出量,该模糊输出变量再经过去模糊化处理转换为分明集控制输出量。 四.实验步骤 1、在MATLAB主窗口中单击工具栏中的Simulink快捷图标,弹出“Simulink Library Browser”窗口,单击Create a new model快捷图标,弹出模拟编辑窗口,用Matlab中的Simulink 工具箱,组成一个模糊控制系统,如图所示: 2、在MATLAB命令窗口输入fuzzy,并按回车键,弹出如下的FIS Editer界面,即模糊推理系统编辑器。

模糊控制器设计的基本方法

第5章 模糊控制器设计的基本方法 5.1 模糊控制器的结构设计 结构设计:确定输入、输出变量的个数(几入几出)。 5.2 模糊控制规则设计 1. 语言变量词集 {}PB PM PS O NS NM NB ,,,,,, 2. 确立模糊集隶属函数(赋值表) 3. 建立模糊控制规则,几种基本语句形式: 若A 则B c R A B A E =?+? 若A 则B 否则C c R A B A C =?+? 若A 或B 且C 或D 则E ()()R A B E C D E =+?+????????? 4. 建立控制规则表 5.3 模糊化方法及解模糊化方法 模糊化方法 1. 将[]b a ,内精确量离散化为[]n n +-,内的模糊量 2. 将其区间精确量x 模糊化为一个单点集,即0)(,1)(==x x μμ 模糊推理及非模糊化方法 1. MIN-MAX ——重心法 11112222n 00R and R and R and and '? n n n A B C A B C A B C x y c →→→→= 三步曲: 取最小 1111'()()()()c A o B o C z x y z μμμμ=∧∧ 取最大 12''''()()()()n c c c c z z z z μμμμ=∨∨∨ 2. 最大隶属度法 例: 10.3 0.80.5 0.511234 5 C =+----- +++,选3-=*u

20.30.80.40.21101234 5 C =+ +++ + ,选 5.12 21=+=*u 5.4 论域、量化因子及比例因子选择 论域:模糊变量的取值范围 基本论域:精确量的取值范围 误差量化因子:e e x n k /= 比例因子:e y k u u /= 误差变化量化因子:c c x m k /= 5.5 模糊控制算法的流程 m j n i C u B EC A E ij j i ,,2,1;,,2,1 then then if ===== 其中 i A 、 j B 、ij C 是定义在误差、误差变化和控制量论域X 、Y 、Z 上的模糊集合,则该语句所表示的模糊关系为 j i ij j i C B A R ,??= m j n i j i C B A R z y x z y x ij j i ===== ,1 ,1)()()(),,(μμμ μ 根据模糊推理合成规则可得:R B A U )(?= Y y X x B A R U y x z y x z ∈∈=)()(),,()(μμμμ 设论域{}{}{}l m n z z z Z y y y x x x X ,,,,,,,Y ,,,,212121 ===,则X ,Y ,Z 上的模糊集合分别为一个n ,m 和l 元的模糊向量,而描述控制规则的模糊关系R 为一个m n ?行l 列矩阵。 由i x 及i y 可算出ij u ,对所有X ,Y 中元素所有组合全部计算出相应的控制量变化值,可写成矩阵()ij n m u ?,制成的表即为查询表或称为模糊控制表。 * 模糊控制器设计举例(二维模糊控制器) 1. 结构设计:二维模糊控制器,即二输入一输出。 2. 模糊控制规则:共21条语句,其中第一条规则为 t h e n o r and or if :1 PB u NM NB EC NM NB E R === 3. 对模糊变量E ,EC ,u 赋值(见教材中的表)

模糊实验报告洪帅

控制理论与控制工程 《智能控制基础》 课程实验报告 专业:控制理论和控制工程 班级:双控研2016 姓名:洪帅 任课教师:马兆敏 2016年12 月4 日

第一部分:模糊控制 实验一模糊控制的理论基础实验 实验目的: 1 练习matlab中隶属函数程序的编写,同时学习matlab数据的表达、格式、文件格式、存盘 2 学习matlab中提供的典型隶属函数及参数改变对隶属度曲线的影响 3 模糊矩阵合成仿真程序的学习 4 模糊推理仿真程序 实验内容 (1)要求自己编程求非常老,很老,比较老,有点老的隶属度函数。 1隶属函数编程 试验结果如图1-1 图1-1隶属度函数曲线 (2)完成思考题P80 2-2 写出W及V两个模糊集的隶属函数,并绘出四个仿真后的曲线。 仿真曲线见图1-2,

图1-2隶属度函数曲线 2 典型隶属函数仿真程序 学习下列仿真程序,改变各函数中的参数,观察曲线的变化,并总结各种隶属函数中其参数变化是如何影响曲线形状变换的。 M=1 M=3 M=3 M=4

M=5 M=6 图1-3 M在1、2、3、4、5、6时的图形 2 模糊矩阵合成仿真程序:学习P31例2-10,仿真程序如下, (1)完成思考题P81 2-5,并对比手算结果。完成思考题P81 2-4,并对比手算结果。 (2)2-5: (1)Matlab结果如下 ① ② ③ P81 2-5手算结果:

P=? ? ? ? ? ? 7.0 2.0 9.0 6.0 Q=? ? ? ? ? ? 4.0 1.0 7.0 5.0 R=? ? ? ? ? ? 7.0 7.0 3.0 2.0 S=? ? ? ? ? ? 5.0 6.0 2.0 1.0 (P Q) R=? ? ? ? ? ? 4.0 4.0 6.0 6.0 (PUQ) S=? ? ? ? ? ? 5.0 6.0 5.0 6.0 (P S)U(Q S)=? ? ? ? ? ? 5.0 6.0 5.0 6.0 总结:手算结果和MATLAB运行结果一致。 (2) (2)思考题P81 2-4 Matlab运行结果如下: P81 2-4题手算结果如下: () 30 20 10 4.0 1 10 4.0 20 30 + + + + - + - + - = e ZE μ () 30 20 3.0 10 1 3.0 10 20 30 + + + + - + - + - = e PS μ ()() 30 20 10 4.0 3.0 10 20 30 + + + + - + - + - = ?e e PS ZE μ μ ()() 30 20 3.0 10 1 1 10 4.0 20 30 + + + + - + - + - = ?e e PS ZE μ μ 总结:手算结果和MATLAB运行结果一致。 4 模糊推理仿真程序:学习P47 例2-16,仿真程序如下。(1)完成思考题2-9,并对比手算结果。 Matlab结果如下

基于MATLAB的模糊控制系统设计

实验一基于MATLAB的模糊控制系统设计 1.1实验内容 (1)基于MATLAB图形模糊推理系统设计,小费模糊推理系统; (2)飞机下降速度模糊推理系统设计; (3)水箱液位模糊控制系统设计及仿真运行。 1.2实验步骤 1小费模糊推理系统设计 (1)在MATLAB的命令窗口输入fuzzy命令,打开模糊逻辑工具箱的图形用户界面窗口,新建一个Madmdani模糊推理系统。 (2)增加一个输入变量,将输入变量命名为service、food,输出变量为tip,这样建立了一个两输入单输出模糊推理系统框架。 (3)设计模糊化模块:双击变量图标打开Membership Fgunction Editor 窗口,分别将两个输入变量的论域均设为[0,10],输出论域为[0,30]。 通过增加隶属度函数来进行模糊空间划分。 输入变量service划分为三个模糊集:poor、good和excellent,隶属度函数均为高斯函数,参数分别为[1.5 0]、[1,5 5]和[1.5 10]; 输入变量food划分为两个模糊集:rancid和delicious,隶属度函数均为梯形函数,参数分别为[0 0 1 3]和[7 9 10 10]; 输出变量tip划分为三个模糊集:cheap、average和generous,隶属度函数均为三角形函数,参数分别为[0 5 10]、[10 15 20]和[20 25 30]。

(4)设置模糊规则:打开Rule Editor窗口,通过选择添加三条模糊规则: ①if (service is poor) or (food is rancid) then (tip is cheap) ②if (service is good) then (tip is average) ③if (service is excellent) or (food is delicious) then (tip is generous) 三条规则的权重均为 1.

相关主题
文本预览
相关文档 最新文档