当前位置:文档之家› 碳纳米管_聚丙烯腈碳纤维的制备及其结构和性能的研究(1)

碳纳米管_聚丙烯腈碳纤维的制备及其结构和性能的研究(1)

碳纳米管_聚丙烯腈碳纤维的制备及其结构和性能的研究(1)
碳纳米管_聚丙烯腈碳纤维的制备及其结构和性能的研究(1)

碳纳米管的特性及应用_孙晓刚

作者介绍:孙晓刚(1957-),男,吉林人,江西金世纪冶金(集团)股份有限公司高级工程师,长期从事碳纳米管制备工 艺的研究,并对碳纳米管的工业化生产进行了广泛深入的研究和商业策划工作。 收稿日期:2001-02-21 修回日期:2001-05-08 碳纳米管的特性及应用 孙晓刚1,曾效舒2,程国安2 (1.江西金世纪冶金(集团)股份有限公司,江西南昌 330046; 2.南昌大学,江西南昌 330029) 摘 要:介绍了巴基球及碳纳米管的发现和历史,重点介绍 了碳纳米管的基本性能和晶体结构,描述了碳纳米管电传导 和热传导的机理。文中还介绍了碳纳米管的主要生产方法 和各自的优点。根据全球碳纳米管应用研究的方向,对碳纳 米管的应用领域进行了探讨,展望了碳纳米管的应用前景及 商业开发价值。 关键词:碳纳米管;性能;制备;应用 中图分类号:T B383 文献标识码:A 文章编号:1008-5548(2001)06-0029-05 1 碳纳米管简介 仅仅在十几年前,人们一般认为碳的同素异形 体只有两种:石墨和金刚石。1985年,英国Sussex 大学的Kroto教授和美国Rice大学的Sm alley教授 进行合作研究,用激光轰击石墨靶以尝试用人工的 方法合成一些宇宙中的长碳链分子。在所得产物中 他们意外发现了碳原子的一种新颖的排列方式,60 个碳原子排列于一个截角二十面体的60个顶点,构 成一个与现代足球形状完全相同的中空球,这种直 径仅为0.7nm的球状分子即被称为碳60分子。此 即为碳晶体的第三种形式。 1991年,碳晶体家族的又一新成员出现了,这 就是碳纳米管。日本NEC公司基础研究实验室的 Iijima教授在给《Nature》杂志的信中宣布合成了一 种新的碳结构。它由一些柱形的碳管同轴套构而 成,直径大约在1~30nm之间,长度可达到1μm。 进一步的分析表明,这种管完全由碳原子构成,并可 看成是由单层石墨六角网面以其上某一方向为轴, 卷曲360°而形成的无缝中空管。相邻管子之间的 距离约为0.34nm,与石墨中碳原子层与层之间的距 离0.335nm相近,所以这种结构一般被称为碳纳米 管。这是继C60之后发现的碳的又一同素异形体, 是碳团簇领域的又一重大科研成果。 碳纳米管由层状结构的石墨片卷曲而成,因卷 曲的角度和直径不同,其结构各异:有左螺旋的、右 螺旋的和不螺旋的。由单层石墨片卷成的称为单壁 碳纳米管,多层石墨片卷成的称为多壁碳纳米管。 碳纳米管的径向尺寸较小,管的外径一般在几纳米 到几十纳米;管的内径更小,有的只有1nm左右。 而碳纳米管的长度一般在微米量级,长度和直径比 非常大,可达103~106,因此,碳纳米管被认为是一 种典型的一维纳米材料。 碳纳米管、碳纳米纤维材料一直是近年来国际 科学的前沿领域之一。仅就碳纳米管而言,自从 1991年被人类发现以来,就一直被誉为未来的材 料。 2 基本性能 碳纳米管的性质与其结构密切相关。就其导电 性而言,碳纳米管可以是金属性的,也可以是半导体 性的,甚至在同一根碳纳米管上的不同部位,由于结 构的变化,也可以呈现出不同的导电性。此外,电子 在碳纳米管的径向运动受到限制,表现出典型的量 子限域效应;而电子在轴向的运动不受任何限制。 无缺陷金属性碳纳米管被认为是弹道式导体,其导 电性能仅次于超导体。根据经典电阻理论和欧姆定第7卷第6期 2001年12月 中 国 粉 体 技 术 China Powder Science and Technology Vol.7No.6 December2001

碳纳米管纳米材料的应用要点

碳纳米管及其复合材料在储能电池中的应用 摘要碳纳米管具有良好的机械性能和导电性、高化学稳定性、大表面积以及独特的一维结构,选择合适的方法制备出碳纳米管复合材料,可以使其各种物理化学性能得到增强, 因而在很多领域有着极大的应用前景,尤其是在储能电池中的应用。本文分析了碳纳米管及其复合材料的特点,总结了碳纳米管的储锂机理,对其发展趋势作了展望。 关键词碳纳米管复合材料储能电池应用 Abstract carbon nanotubes(CNTs) are nanometer-sized carbon materials with the characteristics of unique one-dimensional geometric structure,large surface area,high electrical conductivity,elevated mechanical strength and strong chemical inertness. Selecting appropriate methods to prepare carbon nanotube composites can enhance physical and chemical properties , and these composites have a great future in many areas,especially in energy storage batteries . In this paper, based on the analysis and comparison of the advantages and disadvantages of carbon nanotube composites,the enhancement mechanisms of the CNTs catalysts are introduced. Afterward,the lithium ion storage properties are summarized according to the preparation methods of composite materials. Finally, the prospects and challenge for these composite materials are also discussed. Keywords carbon nanotube; composite; energy storage batteries; application 1 引言 碳纳米管(CNTs)在2004 年被人们发现,是一种具有特殊结构的一维量子材料, 它的径向尺寸可达到纳米级, 轴向尺寸为微米级, 管的两端一般都封口, 因此它有很大的强度, 同时巨大的长径比有望使其制作成韧性极好的碳纤维。碳纳米管由于其独特的一维纳米形貌被作为锂离子电池负极材料广泛研究,通过对碳纳米管进行剪切,官能化及掺杂等方法进行改性处理,能有效的减少碳纳米管的首次不可逆容量,增加可逆的储锂比容量。此外,碳纳米管的中空结构也成为抑制高容量金属及金属氧化物体积膨胀理想复合基体。本文中,我们研究了碳纳米管的储锂性能,考察了碳纳米管作为锡类复合材料基体,其内部限域空间对高容量金属及金属氧化物的储锂性能促进的具体原因。该研究结果为碳纳米管以及其他具有限域空间的结构在锂离子电池中的应用提供了参考。 2 碳纳米管的储锂机理和应用 相比广泛应用的石墨类材料,碳纳米管在锂离子电池负极材料中有其独特的应用优势。首先,碳纳米管的尺寸在纳米级,管内及间隙空间也都处于纳米尺寸级,因而具有纳米材料的小尺寸效应,能有效的增加锂离子在化学电源中的反应活性空间;其次,碳纳米管的比表面积较大,能增加锂离子的反应活性位,并且随着

聚丙烯腈基碳纤维增强热固性酚醛树脂复合材料的研制

聚丙烯腈基碳纤维增强热固性酚醛树脂复合材料的研制1.聚丙烯腈基碳纤维(PAN-CF) 碳纤维是一种以聚丙烯腈(PAN)、沥青、粘胶纤维等为原料,经预氧化、碳化、石墨化工艺而制得的含碳量大于90%的特种纤维。碳纤维具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。PAN基碳纤维生产工艺简单、产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的品种。 1.1聚丙烯腈基碳纤维的制备 聚丙烯基碳纤维是继粘胶基碳纤维后第二个开发成功的碳纤维。它是目前各种碳纤维中产量最高品种最多发展最快技术最成熟的一种碳纤维。 聚丙烯腈(PAN)是由(AN)聚合而成的链状高分子。 由于PAN在它的熔点317℃以前就开始热分解,因此不能采用熔融纺丝而只能通过溶剂进行湿法或干法纺丝。 聚丙烯腈碳纤维的生产过程分三步:(1)预氧化;(2)高温碳化处理;(3)高温石墨化处理。 (1)聚丙烯腈原丝的预氧化 预氧化的目的就是为了防止原丝在碳化时熔融,通过氧化反应使得纤维分子中含有羟基,羰基,这样可在分子间和分子内形成氢键,从而提高纤维的热稳定性。在聚丙烯腈纤维预氧化过程中可能发生的主要化学反应和氧化脱氢反应。 分析结果表明在大约200℃左右约有75%氰基发生了化学反应。未环化的杂化发生氧化脱氢反应,使纤维中结合一部分氧。一般认为,在制造聚丙烯腈碳纤维时,纤维仅需要部分氧化,含氧量在5%~10%较好。预氧化采用的方法有两种:空气氧化法和催化法。 原丝在200~300℃空气中预氧化时,其颜色从白→黄→棕→黑,说明聚合物发生了一系列的化学变化,并开始形成石墨微晶结构。催化环化是将聚丙烯腈原丝在225℃的SnCl4二苯醚溶液中催化成环。催化法有可能使部分氰基未被氧化,造成结构缺陷。目前工业生产上普遍采用的是空气预氧化法。 同时为了提高碳纤维的力学性能,在原丝预氧化时同时采用引力牵伸。 (2)预氧化的碳化 预氧化的碳化一般是在惰性气氛中,将预氧丝加热至1000~1800℃,从而除去纤维中的非碳原子(如H,O,N等) 。生成的碳纤维的含碳量约为95%。碳化过程中,未反应的聚丙烯腈进一步环化,分子链间脱水,脱氢交联,末端芳构化成氨。随着温度的进一步升高,分子链间的交联和石墨晶体进一步增大。碳化温度对碳纤维的力学性能有很大的影响。在碳化过程中,拉伸强度和弹性模量随温度的升高而升高。但在拉伸强度在1400℃左右达到最大值。这是由于随温度的提高,碳纤维中的石墨晶体增大,定向程度提高,因而拉伸模量升高而拉伸强度趋于下降。 (3)PAN的石墨化 石墨化过程是在高纯度惰性气体保护下于2000~3000℃温度下对碳纤维进行热处理。碳纤维经石墨化温度处理后,纤维中残留的氮,氢等元素进一步脱除,六角碳网平面环数增加,并转化为类石墨结构。 在PAN石墨纤维的制备中,牵伸贯穿生产全过程。不仅在生产PAN原丝时需要多次牵伸。牵伸使微晶沿纤维轴向择优取向,微晶之间堆积更加紧密,从而使密度和模量提高。

碳纳米管的性质与应用

碳纳米管的性质与应用 【摘要】 本文主要介绍了碳纳米管的结构特点,制备方法,特殊性质,由于碳纳米管独特性质而产生的广泛应用,并对其前景进行展望。 【关键词】 碳纳米管场发射复合材料优良性能 【前言】 自日本NEC科学家Lijima发现碳纳米管以来,碳纳米管研究一直是国际新材料领域研究的热点。由于碳纳米管具有特殊的导电性能、力学性质及物理化学性质等,故其在许多领域具有其广阔的应用前景,自问世以来即引起广泛关注。目前,国内外有许多科学家对碳纳米管进行研究,科研成果颇丰,尤其是碳纳米管在复合材料、储氢及催化等领域的应用。 【正文】 一、碳纳米管的结构 碳纳米管中碳原子以sp2杂化为主,同时六角型网格结构存在一定程度的弯曲,形成空间拓扑结构,其中可形成一定的sp3杂化键,即形成的化学键同时具有sp2和sp3混合杂化状态,而这些p 轨道彼此交叠在碳纳米管石墨烯片层外形成高度离域化的大π 键,碳纳米管外表面的大π 键是碳纳米管与一些具有共轭性能的大分子以非共价键复合的化学基础[1]。 对多壁碳纳米管的光电子能谱研究结果表明,不论单壁碳纳米管还是多壁碳纳米管,其表面都结合有一定的官能基团,而且不同制备方法获得的碳纳米管由于制备方法各异,后处理过程不同而具有不同的表面结构。一般来讲,单壁碳纳米管具有较高的化学惰性,其表面要纯净一些,而多壁碳纳米管表面要活泼得多,结合有大量的表面基团,如羧基等。以变角X 光电子能谱对碳纳米管的表面检测结果表明,单壁碳纳米管表面具有化学惰性,化学结构比较简单,而且随着碳纳米管管壁层数的增加,缺陷和化学反应性增强,表面化学结构趋向复杂化。内层碳原子的化学结构比较单一,外层碳原子的化学组成比较复杂,而且外层碳原子上往往沉积有大量的无定形碳。由于具有物理结构和化学结构的不均匀性,碳

碳纳米管的性质性能及其应用前景

碳纳米管的性质性能其应用前景 The Properties and Applications of Carbon Nano-Tubes 张雅坤北京师范大学化学学院201411151935 摘要:从1991年被正式认识并命名至今,碳纳米管凭借其特殊的结构及异常的力学、电学和化学性能获得了材料、物理、电子及化学界的广泛关注。近些年随着碳纳米管及纳米材料研究的深入,其广阔的应用前景也不断地展现出来。本文主要对碳纳米管目前的性质性能及其应用前景进行了系统详细的介绍【8】。 关键词:碳纳米管、无机化学、性质性能、应用前景 一、综述 1.发展历史与研究进程 在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛(Lijima)在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。 1993年,S. Lijima等和D. S. Bethune等同时报道了采用电弧法,在石墨电极中添加一定的催化剂,可以得到仅仅具有一层管壁的碳纳米管,即单壁碳纳米管产物。

1997年,A. C. Dillon等报道了单壁碳纳米管的中空管可储存和稳定氢分子,引起广泛的关注。相关的实验研究和理论计算也相继展开。据推测,单壁碳纳米管的储氢量可达10%(质量比)。此外,碳纳米管还可以用来储存甲烷等其他气体。但该猜测在后来被证实是错误的,碳纳米管无法用于储氢的主要问题有两个:一是假如作为容器进行储氢,则无法对其进行可控的封闭和开启;二是假如用于氢气吸附,则其吸附率不超过1%(质量分数)。 能否控制单壁碳纳米管的生长是近二十余年来一直困扰着碳纳米管研究领域科学家们的难题,能否找到控制方法也成为碳纳米管应用的瓶颈。2014年,这道世界性难题被北京大学李彦教授研究团队攻克,该团队在全球首次提出单壁碳纳米管生长规律的控制方法,研究成果已于2014年6月26日发表在国际权威学术期刊《自然》杂志上,这是碳纳米管研究方面的又一大突破。 2.碳纳米管的制备方法 常用的碳纳米管制备方法主要有:电弧放电法、激光烧蚀法、化学气相沉积法(碳氢气体热解法)、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等。 2.1电弧放电法 电弧放电法是生产碳纳米管的主要方法。1991年日本物理学家饭岛澄男就是从电弧放电法生产的碳纤维中首次发现碳纳米管的。电弧放电法的具体过程是:将石墨电极臵于充满氦气或氩气的反应容器中,在两极之间激发出电弧,此时温度可以达到4000度左右。在这种条件下,石墨会蒸发,生成的产物有富勒烯(C60)、无定型碳和单壁或多壁的碳纳米管。通过控制催化剂和容器中的氢气含量,可以

碳纳米管的结构_制备_物性和应用

第14卷 第2期邵阳高等专科学校学报Vol.14.No.2 2001年6月Journal of Shaoyang College J un.2001文章编号:1009-2439(2001)02-0081-10 碳纳米管的结构、制备、物性和应用 唐东升1 唐成名2 刘朝晖3 解思深1 (①中国科学院物理研究所与凝聚态中心,北京 100080) (② 邵阳高等专科学校,湖南邵阳 422004) (③ 南华大学现代教育技术中心,湖南衡阳 430000) 摘要:综述了碳纳米管的研究进展,简单地介绍了单层碳纳米管和多层碳纳米管的基本形貌、结构及其表征,列举了几种主要的制备方法以及特点,介绍了碳纳米管优异的物理化学性质,以及在各个领域中潜在的应用前景. 关键词:碳纳米管;结构;制备;应用;透射电子显微镜;扫描电子显微镜 中图分类号:O469 文献标识码:A 碳是自然界中性质最为独特的一种元素,它通过不同的成键方式所形成结构和性质迥异的同素异形体(石墨和金刚石),在很久以前就被人类所认识:当碳原子与四个近邻原子以共价键结合(sp3杂化)时,形成各向同性坚硬的金刚石,而当碳原子在同一平面内与三个近邻原子以共价键结合而第四个价电子成为共有化电子(sp2杂化)时,形成各向异性柔软的石墨.以sp2杂化模式成键的石墨具有六角网格的层状结构,层内是通过强共价键相互作用,而层与层之间是通过弱范德瓦耳斯键相互作用.在常压下石墨一直到很高的温度仍是碳的热力学稳定的体相(金刚石仅仅是动力学稳定的体相).然而随着人类对物质世界的认识深入到介观层次(~100nm)时,这种古老的元素呈现出全新的结构和物性,比如当石墨微晶的尺寸很小(比如纳米量级)时,情况就和体相很不一样了,因为此时每个石墨微晶中只有有限数目的碳原子,具有悬挂键的碳原子的密度会很大,这时石墨的层状结构就会弯曲封闭,以至边缘的具有悬挂键的碳原子相互结合成键使得系统的能量最低.这种由石墨原于层弯曲构成的闭合的壳层结构就是我们所要讨论的富勒烯和碳纳米管. 1984年爱克森(Exxon)石油公司一个小组在研究碳团簇时得到了如下结论[1]对于1≤n≤30奇数与偶数的C n都是存在的;(2)对于20≤n≤90只有C2n形式存在.他们认为碳原子链可以达到24个原子.遗憾的是他们并没有对较大的团簇做进一步的研究.一年之后英国Sussex大学的克罗托教授到美国Rice大学与柯尔(R.F.Curl)和斯莫利(R.E.Smalley)进行合作研究.他们认为宇宙空间存在的反常红外吸收可能与空间存在的碳团簇有关.于是他们利用一台激光蒸发团簇束的实验设备来制备长链碳分子.在对合成的所谓长链碳分子进行测量时,出人意料的结果出现了,在碳原子簇的质谱图上质量数为720的地方存在一个强峰,其强度为其它峰强度的30倍[3].在对实验结果的反复论证和分析后,他们提出了由60个碳原子组成的具有类似于足球形状的截角二十面体的完美对称性结构.在这个结构中60个碳原子位于此截面体的60个顶点上.而32个面分别由20个六面体及12个五面体组成,五面体各不相邻.在此笼状结构中碳原子没有悬键,因而能量低结构稳定.各个原子成键情况完全相同.随后的一系列实验证实了这些设想.这样,在碳的家族中,又增加了新的一员-C60[2~5],三位教授因此获得了1996年诺贝尔化学奖. 此后两项工作引起了世界范围内研究富勒烯(C60)的热潮:(1)1990年,德国马普研究所的克莱希墨(W. Kratschmer)教授和美国亚历桑那大学的霍夫曼(D.R.Huffman)教授从石墨棒电弧放电产生的烟灰中分离出毫克级的C60,并得到了C60单晶[6].这一重大进展为进一步研究C60的性质和应用打下了坚实的基础.(2)海顿(R. C.Haddon)教授等人发现碱金属掺杂后形成的M3C60具有较高的超导转变温度(T c~33K)[7].于是大家纷纷用与克莱希墨类似的方法从放电烟灰中制备C60[8~12],并进行掺杂研究,但很少有人对放电过程中阴极上形成的沉积物产生兴趣.碳的管状物虽然早有报道,但由于管径较大没有受到人们的重视[13,14].日本NEC公司的饭岛(S.Iijima)教授是一名杰出的电镜专家,在对碳材料的研究方面具有相当丰富的经验[15].他第一个对石墨棒放电所形成的阴极沉积物仔细地进行了电镜研究,他发现有一种针状物,这种针状物的直径为4~30nm,长度约为 收稿日期:2001-01-15

碳纳米管及其应用新领域

碳纳米管及其应用新领域摘要:综述了碳纳米管材料独特性能及其应用潜力,详细说明了碳纳米管材料在各种应用领域中的巨大应用前景,包括高强度复合材料、微机械、信息存储、纳米电子器件等。关键词:碳纳米管的性能,碳纳米管的应用新领域,储氮材料,复合材料,信息存储,碳纳米电子学 前言:碳纳米管具有典型的层状中空结构特征,构成碳纳米管的层片之间存在一定的夹角碳纳米管的管身是准圆管结构,并且大多数由五边形截面所组成。管身由六边形碳环微结构单元组成, 端帽部分由含五边形的碳环组成的多边形结构,或者称为多边锥形多壁结构。是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料。由于其独特的结构,碳纳米管的研究具有重大的理论意义和潜在的应用价值。 一、碳纳米管的性能 碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。近些年随着碳纳米管及纳米材料研究的深入其广阔的应用前景也不断地展现出来。力学性能 由于碳纳米管中碳原子采取SP2杂化,相比SP3杂化,SP2杂化中S轨道成分比较大,使碳纳米管具有高模量、高强度。 碳纳米管具有良好的力学性能,碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸。碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多。碳纳米管是目前可制备出的具有最高比强度的材料。若将以其他工程材料为基体与碳纳米管制成复合材料,可使复合材料表现出良好的强度、弹性、抗疲劳性及各向同性,给复合材料的性能带来极大的改善。 导电性能 碳纳米管上碳原子的P电子形成大范围的离域n键,由于共轭效应显著,碳纳米管具有一些特殊的电学性质。 碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。对于一个给定的纳米管,在某个方向上表现出金属性,是良好的导体,否则表现为半导体。对于这个的方向,碳纳米管表现出良好的导电性,电导率通常可达铜的1 万倍。传热性能 碳纳米管具有良好的传热性能,CNTs 具有非常大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料。另外,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管,该复合材料的热导率将会可能得到很大的改善。 二、碳纳米管电子学的应用 碳纳米电子管(eNTs是一种具有显著电子、机械和化学特性的独特材料。其导电能力不同于普通的导体。性能方面的区别取决于应用,也许是优点,也许是缺点,也许是机会。在一理想纳米碳管内,电传导以低温漂轨道传播的,如果电子管能无缝交接,低温漂是计算机芯片的优点。诸如电连接等的混乱极大地修改了这—行为。对十较慢的模拟信号的处理速度,四周环绕着平向球分子的碳纳米管充当传播者已被实验让实。在后门将有碳的纳米管穿过两根金导线证明了场效应分子晶体管,近来证实逻辑电路的难题 遇到了静电掺杂碳纳米管。碳纳米管的掺杂质可使用化学方法来完成。CMOS类型变极器有 n型和p型掺杂两种。这项工作用达到10A5的开关比率且具有高增益的晶体管电阻逻辑以实验证明了变极器和或非电路的性能。显然,通过适当地排列碳纳米管晶体管顺序可实现与、

聚丙烯腈基碳纤维及其增强复合材料_柴晓燕

2011年第7期广东化工 第38卷总第219期https://www.doczj.com/doc/5c2768876.html, · 293 · 聚丙烯腈基碳纤维及其增强复合材料 柴晓燕,朱才镇,刘剑洪 (深圳大学化学与化工学院,广东深圳 518060) [摘要]聚丙烯腈(PAN)基碳纤维作为一种高比强度和高比模量的增强型与功能型高性能纤维材料,在航空航天、国防军工及文体用品等方面都有广泛的应用。文章主要介绍了聚丙烯腈基碳纤维的制备、结构与性能及其在复合材料中的应用。 [关键词]碳纤维;增强;复合材料 [中图分类号]TQ [文献标识码]A [文章编号]1007-1865(2011)07-0293-03 PAN-based Carbon Fibers And Reinforce Composite Materials Chai Xiaoyan, Zhu Caizhen, Liu Jianhong (College of Chemistry and Chemical Engineering, ShenZhen University, Shenzhen 518060, China) Abstract: Polyacrylonitrile carbon fibers were widely used in many fields, such as aerospace, strategical missile, sports and leisure industries, because of which are the most crucial and imperative part of the reinforce of the composition. The paper mainly introduces the production, structure and property of PAN-based carbon fiber, and the applications in the composite materials. Keywords: carbon fibers;reinforce;composite material 碳纤维是由有机纤维经过一系列的热处理转化而成的含碳量在90 %以上的脆性材料,是一种纤维状的碳材料。作为一种新型材料,碳纤维具有低密度、高比强度、高比模量、耐高温和低温、耐腐蚀、耐疲劳、抗蠕变、导电、传热、热膨胀系数小等一系列的优异性能,结构独特,集众多优异性能于一身,它既可以作为结构材料的增强基承载负荷,又可作为功能材料[1]。由于碳纤维的强度比钢大,相对密度比铝还轻,并且具有上述电学、热学和力学性能,在现代科学技术、现代工业和现代国防的发展中起着重要作用。随着碳纤维产量的提高,碳纤维市场的扩大,价格不断降低,民用应用领域不断扩大。目前碳纤维已经渗透到高尔夫球杆、网球拍、滑雪板、钓鱼竿、游艇、赛艇、汽车构件、火车零件、石油、化工等多个领域,被誉为21世纪最有生命力的新型材料[2]。 碳纤维起源于19世纪60年代,而工业化则起步于20世纪50~60年代,是应宇航工业对耐烧蚀和轻质高强材料的迫切需求而发展起来的。l9世纪末,爱迪生首先用碳丝制作了白炽灯的灯丝,1959年,日本大阪工业试验所的近藤昭男发明了利用聚丙烯腈(PAN)纤维制造碳纤维的新方法,这一工艺很快受到重视,并实现了通用型PAN基碳纤维的工业化生产。而英国在此基础上开发了高性能的PAN基碳纤维的生产技术,处于了领先地位。20世纪70年代后,由于美国航天工业的高速发展,极大地促进了聚丙烯腈基碳纤维的发展[2]。 目前工业生产中主要采用聚丙烯腈(PAN)纤维、沥青纤维和粘胶纤维为原丝来生产碳纤维[3]。其中粘胶基和沥青基碳纤维用途较单一,产量也较为有限,而聚丙烯腈基碳纤维生产工艺简单,产品力学及高温性能优异,具有良好的结构和功能特性,因而发展较快,成为高性能碳纤维发展和应用的最主要和占绝对地位的品种,主要用于高性能结构及功能复合材料,在航天,航空、兵器、船舶等国防领域具有不可替代的作用。 1 PAN基碳纤维 1.1 PAN基碳纤维的制备工艺 PAN基碳纤维的制备包括PAN原丝的纺丝、预氧化和碳化三大工艺过程。优质的PAN原丝是制造高性能碳纤维的首要条件。原丝纺丝工艺有湿法、干法、干湿法和熔融法等[3-5],其中干湿法和熔融法是新的发展趋势,而湿法工艺则相对较为成熟。湿法成形的纤维纤度变化小、残留溶剂少,而且容易控制原丝质量,因而湿法纺丝仍是目前广泛应用的纺丝工艺。PAN基碳纤维的制备工艺流程如图1所示。 PAN原丝的预氧化,又称热稳定化,一般在180~300 ℃的空气气氛中进行。因为当温度低于180 ℃时反应速度很慢,耗时太长,生产效率过低;然而,当温度高于300 ℃时将发生剧烈的集中放热反应,导致纤维熔融断丝。在预氧化过程中要对纤维施加适当牵伸以抑制收缩、维持大分子链对纤维轴向的取向。预氧化的目的是使热塑性PAN线形大分子链转化为非塑性的耐热梯形结构,从而使纤维在碳化高温下不熔不燃,继续保持纤维形态[7-9]。预氧化方法包括恒温预氧化、连续升温预氧化和梯度升温预氧化。其中,前两种预氧化方法效率较低,目前主要用于实验室研究,而梯度升温预氧化则是当前工业化生产所普遍采用的。预氧化温度及其分布梯度、预氧化时间、张力牵伸等是影响预氧化过程的主要工艺参数。恰当的预氧化工艺可以在较短的时间内使纤维得到稳定化,为后期碳化提供均质的预氧丝;而不恰当的预氧化工艺则会造成原丝热稳定化的过度或不足,在高温碳化过程中纤维可能发生熔断或形成较多结构缺陷,严重影响最终碳纤维的性能。预氧化过程在整个碳纤维制备流程中耗时最长,预氧化时间一般为60~120 min,碳化时间为几分钟到十几分钟,而石墨化时间则以秒计算。可见,预氧化过程是决定碳纤维生产效率的主要环节。 碳化过程一般包括低温碳化和高温碳化两个阶段,低温碳化的温度一般为300~1000 ℃,高温碳化的温度为1100~1600 ℃。碳化时需要采用高纯度氮气作为保护气体。在碳化过程中,较小的梯形结构单元进一步进行缩聚,且伴随热解,向乱层石墨结构转化的同时,释放出许多小分子副产物。非碳元素O、N、H 逐步被脱除,C元素逐步富集,最终生成含碳量在90 %以上的碳纤维。 图1 PAN基碳纤维的制备工艺流程[6] Fig.1 The production of PAN-based carbon fiber 1.2 聚丙烯腈基碳纤维的结构 丙烯腈(AN)在一定的聚合条件下双键被打开,生成大分子链,同时放出反应热。氰基中的氮原子电负性大于碳原子,使氰基中的碳原子与氮原子间的电子云偏向氮原子,氮原子呈负电性,碳原子呈正电性。与氰基相连的主链上的碳原子与氰基中碳原子之间的电子云由于诱导作用的影响,偏向氰基碳原子,所以形成了很强的偶极矩。同一条聚丙烯腈大分子链上的氰基极性相同,互相排斥,呈现出僵硬的刚性,按照一定角度排列形成了对称的圆棒体,如图2所示。圆棒体的直径约为0.6 nm,长度约为10~100 nm。几根至几十根圆棒平行排列形成了有序的结晶区,而杂乱堆砌的大分子链则形成非晶区,即无定形区如图3所示。 聚丙烯腈原丝的预氧化过程从无定形区开始,逐渐发展到结晶区。纤维在预氧化初期是半融状态,丝束结构消失后呈块状的堆垛结构;预氧化中期,块状堆垛结构由束状向片状发散排列结构转变,并且在预氧化的后期趋于稳定。碳纤维是由片状石墨微晶沿纤维轴向方向堆砌而成的所谓“乱层”结构,通常也把碳纤维的结构看成由两维有序的结晶和孔洞组成,其中孔洞的含量、 [收稿日期] 2011-06-10 [作者简介] 柴晓燕(1985-),女,浙江人,硕士,助教,主要研究方向为碳纤维的结构与性能。

碳纳米管的制备

常用的碳纳米管制备方法主要有:电弧放电法、激光烧蚀法、化学气相沉积法(碳氢气体热解法)、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等。 电弧放电法 碳纳米管制备 电弧放电法是生产碳纳米管的主要方法。1991年日本物理学家饭岛澄男就是从电弧放电 法生产的碳纤维中首次发现碳纳米管的。电弧放电法的具体过程是:将石墨电极置于充满氦气或氩气的反应容器中,在两极之间激发出电弧,此时温度可以达到4000度左右。在 这种条件下,石墨会蒸发,生成的产物有富勒烯(C60)、无定型碳和单壁或多壁的碳纳 米管。通过控制催化剂和容器中的氢气含量,可以调节几种产物的相对产量。使用这一方法制备碳纳米管技术上比较简单,但是生成的碳纳米管与C60等产物混杂在一起,很难 得到纯度较高的碳纳米管,并且得到的往往都是多层碳纳米管,而实际研究中人们往往需要的是单层的碳纳米管。此外该方法反应消耗能量太大。有些研究人员发现,如果采用熔融的氯化锂作为阳极,可以有效地降低反应中消耗的能量,产物纯化也比较容易。 发展出了化学气相沉积法,或称为碳氢气体热解法,在一定程度上克服了电弧放电法的缺陷。这种方法是让气态烃通过附着有催化剂微粒的模板,在800~1200度的条件下,气态 烃可以分解生成碳纳米管。这种方法突出的优点是残余反应物为气体,可以离开反应体系,得到纯度比较高的碳纳米管,同时温度亦不需要很高,相对而言节省了能量。但是制得 的碳纳米管管径不整齐,形状不规则,并且在制备过程中必须要用到催化剂。这种方法的主要研究方向是希望通过控制模板上催化剂的排列方式来控制生成的碳纳米管的结构,已经取得了一定进展。 激光烧蚀法 激光烧蚀法的具体过程是:在一长条石英管中间放置一根金属催化剂/石墨混合的石墨靶,该管则置于一加热炉内。当炉温升至一定温度时,将惰性气体冲入管内,并将一束激光聚焦于石墨靶上。在激光照射下生成气态碳,这些气态碳和催化剂粒子被气流从高温区带向低温区时,在催化剂的作用下生长成CNTs。 固相热解法

碳纳米管综述

碳纳米管综述 摘要:本文主要介绍碳纳米管的发现及发展过程,并说明碳纳米管的制备方法及其制备技术。同时也叙述碳纳米管的各种性能与应用。 引言:在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。 正文: 碳纳米管的制备: 碳纳米管的合成技术主要有:电弧法、激光烧蚀(蒸发)法、催化裂解或催化化学气相沉积法(CCVD,以及在各种合成技术基础上产生的定向控制生长法等。电弧法 利用石墨电极放电获得碳纳米管是各种合成技术中研究得最早的一种。研究者在优化电弧放电法制取碳纳米管方面做了大量的工作。 T. W. Ebbeseo[2]在He保护介质中石墨电弧放电,首次使碳纳米管的合成达到了克量级。为减少相互缠绕的碳纳米管在阴极上的烧结,D.T.Collbert[3]将石墨阴极与水冷铜阴极座连接,大大减少了碳纳米管缺陷。C. Journet[4]等在阳极中填人石墨粉末和铱的混合物,实现了SWNTs的大量制备。研究发现,铁组金属、一些稀土金属和铂族元素或以单个金属或以二金属混合物均能催化SWNTs 合成。 近年来,人们除通过调节电流、电压,改变气压及流速,改变电极组成,改进电极进给方式等优化电弧放电工艺外,还通过改变打弧介质,简化电弧装置。 综上所述,电弧法在制备碳纳米管的过程中通过改变电弧放电条件、催化剂、电极尺寸、进料方式、极间距离以及原料种类等手段而日渐成熟。电弧法得到的碳纳米管形直,壁簿(多壁甚至单壁).但产率偏低,电弧放电过程难以控制,制备成本偏高其工业化规模生产还需探索。 催化裂解法或催化化学气相沉积法(CCVD) 催化裂解法是目前应用较为广泛的一种制备碳纳米管的方法。该方法主要采用过渡金属作催化剂,适于碳纳米管的大规模制备,产物中的碳纳米管含量较高,但碳纳米管的缺陷较多。 催化裂解法制备碳纳米管所需的设备和工艺都比较简单,关键是催化剂的制备和分散。目前用催化裂解法制备碳纳米管的研究主要集中在以下两个方面:大规模制备无序的、非定向的碳纳米管;制备离散分布、定向排列的碳纳米管列阵。一般选用Fe, Co、Ni及其合金作催化剂,粘土、二氧化硅、硅藻土、氧化铝及氧化镁等作载体,乙炔、丙烯及甲烷等作碳源,氢气、氮气、氦气、氩气或氨气作稀释气,在530℃~1130℃范围内,碳氢化合物裂解产生的自由碳离子在催化剂作用下可生成单壁或多壁碳纳米管。1993年Yacaman等人[5]采用此方法,用Fe催化裂解乙炔,在770℃下合成了多壁碳纳米管,后来分别采用乙烯、聚乙烯、丙烯和甲烷等作为碳源,也都取得了成功。为使碳离子均匀分布,科研人员还用等离子加强或微波催化裂解气相沉积法制备碳纳米管。 激光蒸发法

项目名称:聚丙烯腈基碳纤维原丝制备新技术

项目名称: 聚丙烯腈基碳纤维原丝制备新技术 来源: 第十二届“挑战杯”作品 小类: 能源化工 大类: 科技发明制作A类 简介: 碳纤维是一种高科技纤维,具有重要战略意义。本课题依托我校与吉林化纤公司联合自主研发 的三元无机水相悬浮聚合,湿法二步法制备聚丙烯腈基碳纤维原丝新技术。该技术具有工艺流 程短,成本低,质量稳定,产量高,适合大规模工业生产等特点,是国内首家独创。吉林化纤 公司采用该技术正进行万吨级原丝生产线的建设,建成后将成为国内最大PAN基碳纤维原丝生 产企业,并可实现年增销售收入12亿元,年增利润7亿元。 详细介绍: 碳纤维产品以其优异的特殊性能已成为经济发展和国防事业的重要战略物资,美、日等发达国 家极为重视并大力发展,但由于我国碳纤维原丝质量不过关一直影响碳纤维产品的质量,美、 日等国家又严格限制对我国出口碳纤维,从而极大制约了我国军事及航天事业的发展,同时也 限制了相关民用领域的开发。为打破制约我国碳纤维产业发展的关键技术、关键装备及其相关 配套技术,提高我国碳纤维产业的整体研发、生产技术水平具有重要战略意义。吉林化纤股份 有限公司是当今世界最大腈纶生产企业,具有丰富的腈纶生产经验。2008年3月,公司抽调出 具有丰富经验的专家及技术人员组成20余人的攻关小组,研发碳纤维。攻关组依托企业自身腈 纶生产工艺和技术优势,积极联系相关科研部门和院校,合作研发碳纤维生产技术。并于2009 年1月与我校合作,开展T300级PAN基碳纤维原丝工业化攻关。攻关组整合了实验室成果与 工业化腈纶生产控制技术,集成创新出生产PAN基碳纤维原丝的工业化生产技术。双方科研人 员共同设计并制造了实验室聚合釜,2009年2月研发出PAN基碳纤维原丝用聚合配方,2009 年4月,用自主研发的聚合釜和聚合配方生产出30 kg碳纤维原丝用聚合物,先后在意大利蒙 特公司的实验线和化纤公司现有设备改造的生产线上进行试纺,生产出了第一批碳纤维原丝, 其各项技术指标达到国内碳纤原丝指标水平,尽管存在一定不足,但有了突破性进展。2009年 5月,双方共同设计并制造了年产30吨聚合釜,5月末完成设备安装调试并投入使用,生产出 碳纤维原丝用聚合物,同时对化纤公司已有的纺丝生产线进行改造。经过两个月时间,30 吨/ 年聚合釜和改造后的纺丝线工艺设备都具备了试生产碳纤维原丝条件,09年8月正式生产。在 此基础上,公司又对已有的生产线进行了进一步改造,将生产能力提高到1500吨/年,并于2010 年2月21日正式投产。到目前为止,年产1500吨生产装置已稳定生产出各项指标达到或超过 日本东丽公司T300的水平的碳纤维原丝,且已全部投放市场,产品供不应求。公司生产的1K 丝,目前已应用于中国航天科技集团(43所)、北京玻璃钢研究所(251所)等单位的尖端产 品上。目前,国内碳纤维原丝生产技术均采用一步法,即通过溶液聚合直接纺丝方法生产碳纤 维原丝,但此方法由于反应后期体系粘度过大,造成体系换热困难,因此该反应反应釜不能太 大,到目前为止,采用该方法制备碳纤维原丝的生产厂家最大的反应釜只有一吨。我们生产碳 纤维原丝的方法是建立在吉林化纤原有腈纶生产方法之上,采用无机氧化还原引发、三元水相 悬浮聚合法生产PAN基碳纤维原丝聚合物,湿法、二步法生产碳纤维原丝,与一步法相比,由 于两步法聚合反应在水相中进行,换热容易,聚合釜可以做的很大,其容量可达28吨,大大超 过一步法生产用聚合釜。因此本方法具有产量高、适合大规模生产、产品质量稳定、生产成本 低等特点,是国内首家独创。吉林化纤公司生产的碳纤维原丝经碳化后性能指标可达到或超过

聚丙烯腈基碳纤维简介及其发展概况

聚丙烯腈基碳纤维简介及其发展概况 摘要:聚丙烯腈基碳纤维为人造合成纤维,是一种力学性能优异的新材料,在航空航天、建筑、体育、汽车、医疗等领域得到广泛的应用。生产碳纤维采用特殊组分且性能优异的专用PAN基纤维即PAN原丝。本文简要介绍国内外PAN基碳纤维的发展概况和现状,PAN基碳纤维的应用,重点介绍了PAN基碳纤维的结构、性能、纺丝、制备等技术,以及分析我国碳纤维与世界先进国家之间的差距及存在的问题且提出一些建设性意见。 关键词:聚丙烯腈基碳纤维纺丝国内外发展比较差距 碳纤维生产工艺简单、产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的品种。碳纤维是一种以聚丙烯腈(PAN)、沥青、粘胶纤维等为原料,经预氧化、碳化、石墨化工艺而制得的含碳量大于90%的特种纤维。碳纤维具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。PAN基生产工艺简单,产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的的品种。 一、碳纤维及其发展史 1.1碳纤维的先驱——斯旺和爱迪生 碳纤维的起源可追溯到19世纪60年代,1860年,英国人约瑟夫·斯旺用碳丝制作灯泡的灯丝早于美国人爱迪生。十九世纪后期他俩各自设计出了白炽灯泡.他是研制碳丝的第一人,同时他的利用挤压纤维素成纤技术为后来合成纤维的问世起到了启迪作用。 爱迪生解决了碳丝应用与白炽灯的灯丝问题,他发明的电灯,这也是碳丝第一次得到了实际应用。1910年库里奇发明了拉制钨丝取代了碳丝作为灯丝,从此碳丝的研制工作停止了下来。指导了20世纪50年代碳丝的研制又重新出现在现在的材料科学的舞台上,但研究的目的是为了解决战略武器的耐高温和耐烧耐腐蚀材料,今天的碳纤维已经形成了一个举足轻重的新型材料体系,已广泛应用于航空、军事和民用工业领域,而且仍在强劲发展.1.2碳纤维的三大原料路线 黏胶基碳纤维、聚丙烯腈基碳纤维、沥青基碳纤维,其中以聚丙烯腈基碳纤维应用最为广泛,也是本文将要为大家介绍的。 1.3聚丙烯腈碳纤维的发明者――近藤昭男 近藤昭男从业于大阪工业大学技术实验所,在碳研究室从事于碳素的崩散现象和碳素的崩散碳素胶状粒子的研究。他研究了应运腈纶在一系列热处理过程中物性和结构的变化,即开始研制PAN基碳纤维。虽然近藤昭男发明了用PAN原丝制造碳纤维的方法,但英国人瓦特在预氧过程中施加张力牵伸,打通了制取高性能碳纤维的工艺流程,从而牵伸贯穿了氧化和碳化的始终,成为研制碳纤维的重要工艺参数。所以近藤昭男发明了用PAN基原丝制造碳纤维的新方法,瓦特打通了制造高性能PAN基碳纤维新工艺。 1.4从日本东丽公司碳纤维发展历程看PAN基原丝的重要性。 日本东丽公司无论碳纤维的质量还是产量都居世界之首,以该公司研发碳纤维历程给人们一个启迪,即原丝是制取高性能碳纤维的前提,没有质量好的原丝就不可能产出好的碳纤维 东丽公司成立于1926年,1962年开始研制PAN基碳纤维,原丝为民用腈纶,产不出

碳纳米管的制备方法

碳纳米管的制备方法 摘要:本文简单介绍了碳纳米管的结构性能,主要介绍碳纳米管的制备方 法, 包括石墨电弧法、催化裂解法,激光蒸发法等方法,也对各种制备方法的优缺 点进行 了阐述。 关键词:碳纳米管制备方法 Preparation of carbon nanotubes Abstract: The structure and performance of carbon nanotubes are briefly introduced, and some synthesis methods, including graphite arc discharge method, catalytic cracking method, laser evaporation method and so on, are reviewed. And the advantages and disadvantages of various preparation methods are also described. Key words:carbon nanotubes methods of preparation 纳米材料被誉为是21世纪最重要材料,是构成未来智能社会的四大支柱之一 ,而碳纳米管是纳米材料中最富有代表性,并且是性能最优异的材料。碳纳米管是碳 的一种同素异形体,它包涵了大多数物质的性质,甚至是两种相对立的性质,如从高 硬度到高韧性,从全吸光到全透光、从绝热到良导热、绝缘体/半导体/高导体和高临界温度的超导体等。正是由于碳纳米材料具有这些奇异的特性,被发现的短短十几年

来,已经广泛影响了物理、化学、材料等众多科学领域并显示出巨大的潜在应用前景。 碳纳米管又名巴基管,即管状的纳米级石墨晶体。它具有典型的层状中空结构, 构成碳纳米管的层片之间存在一定夹角,管身是准圆筒结构,并且大多数由五边形截 面组成,端帽部分由含五边形的碳环组成的多边形结构。是一种具有特殊结构(径向 尺寸为纳米量级、轴向尺寸为微米两级,管子两端基本上都封口)的一维纳米材料。 碳纳米管存在多壁碳纳米管(MWNTS)和单壁碳纳米管(SWNTS)两种形式。单层碳纳米管结构模型如图1所示。理想的多层碳纳米管可看成多个直径不等的单层管同轴套构而成,层数可以从二层到几十层,层与层之间保持固定距离约为0.34nm,直径一般为2~20nm.但实际制备的碳纳米管并不完全是直的或直径均匀的,而是局部 1 区域出现凸凹弯曲现象,有时会出现各种形状如L、T、Y形管等。研究认为所有这 些形状的出现是由于碳六边形网络中引入五边形和七边形缺陷所致。五边形的引入引 起正弯曲,七边形的引入引起负弯曲。

相关主题
文本预览
相关文档 最新文档