当前位置:文档之家› 高中物理知识点总结-法拉第电磁感应定律

高中物理知识点总结-法拉第电磁感应定律

高中物理知识点总结-法拉第电磁感应定律

高中物理知识点总结-法拉第电磁感应定律.法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.表达式 E=nΔΦ/Δt当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ.当B、L、v三者两两垂直时,感应电动势E=BLv.(1)两个公式的选用方法E=nΔΦ/Δt 计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势.E=BLvsinθ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势.(2)公式的变形①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt .②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt .5.自感现象(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象.(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势.自感电动势的大小取决于线圈自感系数和本身电流变化的快慢,自感电动势方向总是阻碍电流的变化.6.日光灯工作原理(1)起动器的作用:利用动触片和静触片的接通与断开起一个自动开关的作用,起动的关键就在于断开的瞬间.(2)镇流器的作用:日光灯点燃时,利用自感现象产生瞬时高压;日光灯正常发光时,利用自感现象,对灯管起到降压限流作用.

高中物理磁场经典习题含答案

寒假磁场题组练习 题组一 1.如图所示,在xOy平面内,y ≥ 0的区域有垂直于xOy平面向里的匀强磁场,磁感应强度为B,一质量为m、带电量大小为q的粒子从原点O沿与x轴正方向成60°角方向以v0射入,粒子的重力不计,求带电粒子在磁场中运动的时间和带电粒子离开磁场时的位置。 在着沿ad方向的匀强电场,场强大小为E,一粒子源不断地从a处的小孔沿 ab方向向盒内发射相同的带电粒子,粒子的初速度为v0,经电场作用后恰好 从e处的小孔射出,现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场, 磁感应强度大小为B(图中未画出),粒子仍恰好从e孔射出。(带电粒子的重 力和粒子之间的相互作用均可忽略不计) (1)所加的磁场的方向如何? (2)电场强度E与磁感应强度B的比值为多大? 题组二 4.如图所示的坐标平面内,在y轴的左侧存在垂直纸面向外、磁感应强度大小B1 = T的匀强磁场,在y 轴的右侧存在垂直纸面向里、宽度d = m的匀强磁场B2。某时刻一质量m = ×10-8 kg、电量q = +×10-4 C的带电微粒(重力可忽略不计),从x轴上坐标为( m,0)的P点以速度v = ×103 m/s沿y轴正方 向运动。试求: (1)微粒在y轴的左侧磁场中运动的轨道半径; (2)微粒第一次经过y轴时速度方向与y轴正方向的夹角; (3)要使微粒不能从右侧磁场边界飞出,B2应满足的条件。 5.图中左边有一对平行金属板,两板相距为d,电压为U;两板之间有匀强磁场,磁场应强度大小为B0,

方向平行于板面并垂直于纸面朝里。图中右边有一边长为a 的正三角形区域EFG (EF 边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里。假设一系列电荷量为q 的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF 边中点H 射入磁场区域。不计重力。 (1)已知这些离子中的离子甲到达磁场边界EG 后,从边界EF 穿出磁场,求离子甲的质量。 (2)已知这些离子中的离子乙从EG 边上的I 点(图中未画出)穿出磁场,且GI 长为3a /4,求离子乙的质量。 (3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达。 题组三 7.如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布 在以直径A 2A 4为边界的两个半圆形区域I 、II 中,A 2A 4与A 1A 3的夹角为60°。一质量为m 、带电荷量为+q 的粒子以某一速度从I 区的边缘点A 1处沿与A 1A 3成30°角的方向射入磁场,随后该粒子以垂直于A 2A 4的方向经过圆心O 进入II 区,最 后再从A 4处射出磁场。已知该粒子从射入到射出磁场所用的时间为t ,求I 区和II 区中磁感应强度的大小(忽略粒子重力)。 8.如图所示,在以O 为圆心,内外半径分别为R 1和R 2的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U 为常量,R 1=R 0,R 2=3R 0,一电荷量为+q ,质量为m 的粒子从内圆上的A 点进入该区域,不计重力。 (1)已知粒子从外圆上以速度射出,求粒子在A 点的初速度的大小; (2)若撤去电场,如图(b ),已知粒子从OA 延长线与外圆的交点C 以速度射出,方向与OA 延长线成45°角,求磁感应强度的大小及粒子在磁场中运动的时间; (3)在图(b )中,若粒子从A 点进入磁场,速度大小为,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少? A 23

高中物理电磁感应综合问题

电磁感应综合问题 电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定 理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、 直流电路知识、磁场知识等)等多个知识点,其具体应用可分为以下 两个方面: (1)受力情况、运动情况的动态分析。思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。要画好受力图,抓住a=0时,速度v达最大值的特点。 (2)功能分析,电磁感应过程往往涉及多种能量形势的转化。例 如:如图所示中的金属棒ab沿导轨由静止下滑时,重力势能减小,一 部分用来克服安培力做功转化为感应电流的电能,最终在 R上转转化为焦耳热,另一部分转化为金属棒的动能.若 导轨足够长,棒最终达到稳定状态为匀速运动时,重力势 能用来克服安培力做功转化为感应电流的电能,因此,从 功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往 是解决电磁感应问题的重要途径. 【例1】如图1所示,矩形裸导线框长边的长度为2l,短边的长度 为l,在两个短边上均接有电阻R,其余部分电阻不计,导线框一长边

及x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的感应强度满足关系)sin(l x B B 20π=。一光滑导体棒AB 及短边平行且 及长边接触良好,电阻也是R ,开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求: (1)导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律; (2)导体棒AB 从x=0到x=2l 的过程中回路产生的热量。 答案:(1))()(sin v l t R l vt v l B F 203222220≤≤=π (2)R v l B Q 32320= 【例2】 如图2所示,两条互相平行的光滑金属导 轨位于水平面内,它们之间的距离为l =0.2m ,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一及水平面垂直的均匀磁场,磁感强度B=0.5T 。一质量为m=01kg 的金属杆垂直放置在导轨上,并以v 0=2m/s 的初速度进入磁场,在安培力和一垂直于杆的水平外力F 的共同作用下作匀变速直线运动,加速度大小为a=2m/s 2,方向及初速度方向相反,设导轨和金属杆的电阻都可以忽略,且接触良好。求: (1)电流为零时金属杆所处的位置; (2)电流为最大值的一半时施加在金属杆上外力F 的大小和方向; (3)保持其他条件不变,而初速度v 0取不同值,求开始时F 的方

高考必备:高中物理电场知识点总结大全

高中物理电场知识点总结大全 1. 深刻理解库仑定律和电荷守恒定律。 (1)库仑定律:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。即: 其中k为静电力常量,k=9.0×10 9 N m2/c2 成立条件:①真空中(空气中也近似成立),②点电荷。即带电体的形状和大小对相互作用力的影响可以忽略不计。(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心间距代替r)。 (2)电荷守恒定律:系统与外界无电荷交换时,系统的电荷代数和守恒。 2. 深刻理解电场的力的性质。 电场的最基本的性质是对放入其中的电荷有力的作用。电场强度E是描述电场的力的性质的物理量。 (1)定义:放入电场中某点的电荷所受的电场力F跟它的电荷量q的比值,叫做该点 的电场强度,简称场强。这是电场强度的定义式,适用于任何电场。其中的q为试探电荷(以前称为检验电荷),是电荷量很小的点电荷(可正可负)。电场强度是矢量,规定其方向与正电荷在该点受的电场力方向相同。 (2)点电荷周围的场强公式是:,其中Q是产生该电场的电荷,叫场源电荷。 (3)匀强电场的场强公式是:,其中d是沿电场线方向上的距离。 3. 深刻理解电场的能的性质。 (1)电势φ:是描述电场能的性质的物理量。 ①电势定义为φ=,是一个没有方向意义的物理量,电势有高低之分,按规定:正电荷在电场中某点具有的电势能越大,该点电势越高。 ②电势的值与零电势的选取有关,通常取离电场无穷远处电势为零;实际应用中常取大地电势为零。

高级中学物理电磁感应定律学习知识点加例题

私塾国际学府学科教师辅导教案 组长审核:

6.磁通量的变化:ΔΦ=Φ2-Φ1,即末、初磁通量之差. (1)磁感应强度B 不变,有效面积S 变化时,则ΔΦ=Φ2-Φ1=B ·ΔS. (2)磁感应强度B 变化,磁感线穿过的有效面积S 不变时,则ΔΦ=Φ2-Φ1=ΔB ·S. (3)磁感应强度B 和有效面积S 同时变化时,则ΔΦ=Φ2-Φ1=B 2S 2-B 1S 1. 注意几个概念: (1)磁通量Φ:某时刻穿过磁场中某个面的磁感应线条数,若穿过某个面有方向相反的磁场,则不能直接用Φ=B ·S ,应考虑相反方向的磁感应或抵消以后所剩余的磁通量。 (2)磁通量变化量ΔΦ:穿过某个面的磁通量随时间的变化量。注意开始和转过180o时平面都与磁场垂直,穿过平面的磁通量是不同的,一正一负,ΔΦ=2B ·S ,而不是零。 (3)磁通量的变化率ΔΦ/Δt :表述磁场中穿过某一面的磁通量变化快慢的物理量。它既不表示磁通量的大小也不表示磁通量变化的多少,在Φ-t 图像中,可用图形的斜率表示。 剖析: ① 磁通量?的实质就是穿过某面积的磁感线的条数。 ② 磁感线除了有大小以外,还有方向,但它是个标量。磁通量的方向仅仅表示磁感线沿什么方向穿过 某面积,其运算不满足矢量合成的平行四边形定则,只满足代数运算,在求其变化量时,事先要设正方向,并将“+”、“-”号代入。 ③ 由磁通量的定义θ?sin BS =可得:θ ? sin S B = ,此式表示“磁感应强度B 大小等于穿过垂直于磁 场方向的单位面积的磁感线条数”,所以磁感应强度又被叫做“磁感密度”。 [例题1] .如图10-1-4所示,面积大小不等的两个圆形线圈A 和B 共轴套在一条形磁铁上,则穿过A 、B 磁通量的大小关系是A ?____B ?。 解析:磁铁内部向上的磁感线的总条数是相同的,但由于线圈A 的面积大于B 的,外部穿过线圈向下的磁感线的条数A 的大于B 的,所以A ?<B ?。 10-1-4

高中物理电磁场知识点

高中物理电磁场和电磁波知识点总结 1.麦克斯韦的电磁场理论 (1)变化的磁场能够在周围空间产生电场,变化的电场能够在周围空间产生磁场. (2)随时间均匀变化的磁场产生稳定电场.随时间不均匀变化的磁场产生变化的电场.随时间均匀变化的电场产生稳定磁场,随时间不均匀变化的电场产生变化的磁场. (3)变化的电场和变化的磁场总是相互关系着,形成一个不可分割的统一体,这就是电磁场. 2.电磁波 (1)周期性变化的电场和磁场总是互相转化,互相激励,交替产生,由发生区域向周围空间传播,形成电磁波. (2)电磁波是横波(3)电磁波可以在真空中传播,电磁波从一种介质进入另一介质,频率不变、波速和波长均发生变化,电磁波传播速度v等于波长λ和频率f的乘积,即v=λf,任何频率的电磁波在真空中的传播速度都等于真空中的光速c=3.00×10 8 m/s. 下面为大家介绍的是20XX年高考物理知识点总结电磁感应,希望对大家会有所帮助。 1. 电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流. (1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0.(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势.产生感应电动势的那部分导体相当于电源. (2)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流. 2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义 式:Φ=BS.如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数.任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正.反之,磁通量为负.所求磁通量为正、反两面穿入的磁感线的代数和. 3. 楞次定律 (1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化.楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便. (2)对楞次定律的理解 ①谁阻碍谁———感应电流的磁通量阻碍产生感应电流的磁通量. ②阻碍什么———阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.③如何阻碍———原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”.④阻碍的结果———阻碍并不是阻止,结果是增加的还增加,减少的还减少. (3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种: ①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感). 4.法拉第电磁感应定律 电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.表达式 E=nΔΦ/Δt 当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ.当B、L、v三者两两垂直时,感应电动势E=BLv.(1)两个公式的选用方法E=nΔΦ/Δt 计算的是在Δt时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势.E=BLvsinθ中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势.(2)公式的变形 ①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSΔB/Δt . ②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbδs/Δt . 5.自感现象

高中物理十大难点之法拉第电磁感应定律

难点之七 法拉第电磁感应定律 一、难点形成原因 1、关于表达式t n E ??=φ 此公式在应用时容易漏掉匝数n ,实际上n 匝线圈产生的感应电动势是串联在一起的,其次φ?是合磁通量的变化,尤其变化过程中磁场方向改变的情况特别容易出错,并且感应电动势E 与φ、φ?、t ??φ的关系容易混淆不清。 2、应用法拉第电磁感应定律的三种特殊情况E=Blv 、ω221Bl E = 、E=nBs ωsin θ(或E=nBs ωcos θ)解决问题时,不注意各公式应用的条件,造成公式应用混乱从而形成难点。 3、公式E=nBs ωsin θ(或E=nBs ωcos θ)的记忆和推导是难点,造成推导困难的原因主要是此情况下,线圈在三维空间运动,不少同学缺乏立体思维。 二、难点突破 1、φ、φ?、t ??φ同v 、△v 、t v ??一样都是容易混淆的物理量,如果理不清它们之间的关系,求解感应电动势就会受到影响,要真正掌握它们的区别应从以下几个方面深入理解。 磁通量φ 磁通量变化量φ? 磁通量变化率t ??φ 物理 意 义 磁通量越大,某时刻穿过磁场中某个面的磁感线条数越多 某段时间穿过某个面的末、初磁通量的差值 表述磁场中穿过某个面的磁通量变化快慢的物理量 大小 计 算 ⊥=BS φ,⊥S 为与B 垂直的面积 12φφφ-=?,S B ?=?φ或B S ?=?φ t S B t ??=??φ 或t B S t ??=??φ 注 意 若穿过某个面有方向相反的磁场,则不能直接用⊥=BS φ,应考虑相反方 向的磁通量相互抵消以 后所剩余的磁通量 开始和转过1800时平面都与磁场垂直,穿过平面的磁通量是不同的,一 正一负,△φ=2 BS , 而不是零 既不表示磁通量的大小,也不表示变化的多少,在φ—t 图象中用图线的斜率表示 2、明确感应电动势的三种特殊情况中各公式的具体用法及应用时须注意的问题 ⑴导体切割磁感线产生的感应电动势E=Blv ,应用此公式时B 、l 、v 三个量必须是两两相互垂直,若不垂直应转化成相互垂直的有效分量进行计算,生硬地套用公式会导致错误。有的注意到三者之间的关系,发现不垂直后,在不明白θ角含义的情况下用E=Blvsin θ求解,这也是不可取的。处理这类问题,最好画图找B 、l 、v 三个量的关系,如若不两两垂直则在图上画出它们两两垂直的有效分量,然后将有效分量代入公式E=Blv 求解。此公式也可

高中物理电磁感应定律知识点加例题资料

中国最负责任的教育机构 私塾国际学府学科教师辅导教案 组长审核: 学员编号:年级:年级课时数:3课时 学员姓名:辅导科目:物理学科教师:杨振 授课主题 教学目的 教学重点 授课日期及时段 教学内容 新课讲-练-总结 一、磁通量 1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量. 2.定义式:Φ=BS. 说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向的夹角. 3.磁通量Φ是标量,但有正负.Φ的正负意义是:从正、反两面哪个面穿入,若从一面穿入为正,则从另一面穿入为负. 4.单位:韦伯,符号:Wb. 5.磁通量的直观含义:表示磁场中穿过某一面积磁感线的条数. 6.磁通量的变化:ΔΦ=Φ2-Φ1,即末、初磁通量之差. (1)磁感应强度B不变,有效面积S变化时,则ΔΦ=Φ2-Φ1=B·ΔS. (2)磁感应强度B变化,磁感线穿过的有效面积S不变时,则ΔΦ=Φ2-Φ1=ΔB·S. (3)磁感应强度B和有效面积S同时变化时,则ΔΦ=Φ2-Φ1=B2S2-B1S1. 注意几个概念: (1)磁通量Φ:某时刻穿过磁场中某个面的磁感应线条数,若穿过某个面有方向相反的磁场,则不能直接用Φ=B·S,应考虑相反方向的磁感应或抵消以后所剩余的磁通量。 (2)磁通量变化量ΔΦ:穿过某个面的磁通量随时间的变化量。注意开始和转过180o时平面都与磁场垂直,穿过平面的磁通量是不同的,一正一负,ΔΦ=2B·S,而不是零。 (3)磁通量的变化率ΔΦ/Δt:表述磁场中穿过某一面的磁通量变化快慢的物理量。它既不表示磁通量的大

高中物理磁场知识点汇总

高中物理磁场知识点汇总 一、磁场 磁体是通过磁场对铁一类物质发生作用的,磁场和电场一样,是物质存在的另一种形式,是客观存在。小磁针的指南指北表明地球是一个大磁体。磁体周围空间存在磁场;电流周围空间也存在磁场。电流周围空间存在磁场,电流是大量运动电荷形成的,所以运动电荷周围空间也有磁场。静止电荷周围空间没有磁场。磁场存在于磁体、电流、运动电荷周围的空间。磁场是物质存在的一种形式。磁场对磁体、电流都有磁力作用。与用检验电荷检验电场存在一样,可以用小磁针来检验磁场的存在。如图所示为证明通电导线周围有磁场存在? ?奥斯特实验,以及磁场对电流有力的作用实验。 1.地磁场地球本身是一个磁体,附近存在的磁场叫地磁场,地磁的南极在地球北极附近,地磁的北极在地球的南极附近。 2.地磁体周围的磁场分布与条形磁铁周围的磁场分布情况相似。 3.指南针放在地球周围的指南针静止时能够指南北,就是受到了地磁场作用的结果。 4.磁偏角地球的地理两极与地磁两极并不重合,磁针并非准确地指南或指北,其间有一个交角,叫地磁偏角,简称磁偏角。说明:①地球上不同点的磁偏角的数值是不同的。 ②磁偏角随地球磁极缓慢移动而缓慢变化。③地磁轴和地球自转轴的夹角约为11°。 二、磁场的方向 在电场中,电场方向是人们规定的,同理,人们也规定了磁场的方向。规定:在磁场中的任意一点小磁针北极受力的方向就是那一点的磁场方向。确定磁场方向的方法是:将一不受外力的小磁针放入磁场中需测定的位置,当小磁针在该位置静止时,小磁针 N 极的指向即为该点的磁场方向。磁体磁场:可以利用同名磁极相斥,异名磁极相吸的方法来判定磁场方向。 电流磁场:利用安培定则(也叫右手螺旋定则)判定磁场方向。 三、磁感线

高中物理专题练习电磁感应中的能量问题

电磁感应中的能量问题(2) 例1.如图所示,光滑绝缘水平面上方有两个方向相反的水平方向匀强磁场,竖直虚线为其边界,磁场范围足够大,磁感应强度的大小分别为B1=B,B2=3B.竖直放置的正方形金属线框边长为l,电阻为R,质量为m.线框通过一绝缘细线与套在光滑竖直杆上的质量为M的物块相连,滑轮左侧细线水平.开始时,线框与物块静止在图中虚线位置且细线水平伸直.将物块由图中虚线位置由静止释放,当物块下滑h时速度大小为v0,此时细线与水平夹角θ=30°,线框刚好有一半处于右侧磁场中.(已知重力加速度g,不计一切摩擦)求: (1)此过程中通过线框截面的电荷量q (2)此时安培力的功率 (3)此过程在线框中产生的焦耳热Q. 例2.(多选)如图甲所示,在竖直平面内有一单匝正方形线圈和一垂直于竖直平面向里的有界匀强磁场,磁场的磁感应强度为B,磁场上、下边界AB和CD均水平,线圈的ab边水平且与AB间有一定的距离.现在让线圈无初速自由释放,图乙为线圈从自由释放到cd边恰好离开CD边界过程中的速度一 时间关系图象.已知线圈的电阻为r, 且线圈平面在线圈运动过程中始终处在 竖直平面内,不计空气阻力,重力加速 度为g,则根据图中的数据和题中所给 物理量可得() A.在0~t3时间内,线圈中产生的热量为 B.在t2~t3时间内,线圈中cd两点之间的电势差为零 C.在t3~t4时间内,线圈中ab边电流的方向为从b流向a D.在0~t3时间内,通过线圈回路的电荷量为 例3.利用超导体可以实现磁悬浮,如图是超导磁悬浮的示意图。在水平桌面 上有一个周长为L的超导圆环,将一块质量为m的永磁铁从圆环的正上方缓 慢下移,由于超导圆环跟磁铁之间有排斥力,结果永磁铁悬浮在超导圆环的 正上方h1高处平衡。 (1)若测得圆环a点磁场如图所示,磁感应强度为B1,方向与水平方向成 θ1角,问此时超导圆环中电流的大小和方向? (2)在接下的几周时间内,人们发现永磁铁在缓慢下移。经过较长时间T 后,永磁铁的平衡位置在离桌面h2高处。有一种观点认为超导体也有很微小 的电阻,只是现在一般仪器无法直接测得,超导圆环内电流的变化造成了永 磁铁下移,并设想超导电流随时间缓慢变化的I2-t图,你认为哪张图相对合 理,为什么? (3)若测得此时a点的磁感应强度变为B2,夹角变为θ2,利用上面你认为 相对正确的电流变化图,求出该超导圆环的电阻? 同步练习: 1.用两根足够长的粗糙金属条折成“「”型导轨,右端水平,左端竖直,与导轨 等宽的粗糙金属细杆ab,cd和导轨垂直且接触良好.已知ab,cd杆的质 量,电阻值均相等,导轨电阻不计,整个装置处于竖直向上的匀强磁场 中.当ab杆在水平拉力F作用下沿导轨向右匀速运动时,cd杆沿轨道向下 运动,以下说法正确的是() A.cd杆一定向下做匀速直线运动 B.cd杆一定向下做匀加速直线运动 C.F做的功等于回路中产生的焦耳热与ab杆克服 摩擦做功之和 D.F的功率等于ab杆上的焦耳热功率与摩擦热功率之和 2.如图所示,光滑绝缘水平面上,有一矩形线圈冲入一匀强磁场,线圈全部 进入磁场区域时,其动能恰好等于它在磁场外面时的一半,设磁场宽度大于 线圈宽度,那么()

高中物理法拉第电磁感应定律

高二物理学案9(必修班) 二、法拉第电磁感应定律 一、知识梳理 一、感应电动势 闭合电路中由于磁通量的变化产生感应电流产生,产生感应电流的那部分电路相当于电源。我们把电磁感应现象中产生的电动势叫做感应电动势。 画图举例: 二、法拉第电磁感应定律 1、磁通量、磁通量的变化、磁通量的变化率 磁通量:φ = BScos θ 磁通量的变化:Δφ=φ2—φ1 磁通量的变化率:Δφ/Δt 磁通量的变化率与磁通量、磁通量的变化无直接关系,三者间的关系类似于加速度与速度、速度变化的关系。 2、法拉第电磁感应定律 A 、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。 B 、数学表达式: t E ??=φ (单匝线圈) 对于多匝线圈有 t n E ??=φ 二、例题分析 例1、把一条形磁铁插入同一闭合线圈中,一次是迅速插入,一次是缓慢插入,两次初、末位置均相同,则在两次插入过程中 ( ) A.磁通量变化量相同 B.磁通量变化率相同 C.产生的感应电流相同 D.产生的感应电动势相同 例2、有一个1000匝的线圈,在0.4s 内穿过它的磁通量从0.02wb 增加到0.09wb ,求线圈中的感应电动势。如果线圈的电阻是10Ω,把它从一个电阻为990Ω的电热器串联组成闭合电路时,通过电热器的电流是多大?

三、课后练习 1、关于电磁感应,下列说法中正确的是( )。 A 、穿过线圈的磁通量越大,感应电动势越大; B 、穿过线圈的磁通量为零,感应电动势一定为零; C 、穿过线圈的磁通量的变化越大,感应电动势越大; D 、空过线圈的磁通量变化越快,感应电动势越大。 2、如图所示,将条形磁铁从相同的高度分别以速度v 和2v 插入线圈,电流表指针偏转角度较大的是: A .以速度v 插入 B .以速度2v 插入 C .一样大 D .不能确定 3、桌面上放一个单匝线圈,线圈中心上方一定高度上有一竖立的条形磁铁,此时线圈内的磁通量为0.04Wb ,把条形磁铁竖放在线圈内的桌面上时,线圈内磁通量为0.12Wb 。分别计算以下两个过程中线圈中感应电动势。 (1)把条形磁铁从图中位置在0.5s 内放到线圈内的桌面上。 (2)换用10匝的矩形线圈,线圈面积和原单匝线圈相同,把条形磁铁从图中位置在0.1s 内放到线圈内的桌面上。 【选做题】平行闭合线圈的匝数为n,所围面积为S ,总电阻为R ,在t ?时间内穿过每匝线圈的磁通量变化为?Φ,则通过导线某一截面的电荷量为( ) A 、 R ?Φ B 、R nS ?Φ C 、 tR ??Φn D 、R ?Φn

高中物理磁场知识点总结+例题

磁场 一、基本概念 1.磁场的产生 ⑴磁极周围有磁场。⑵电流周围有磁场(奥斯特)。 安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。 ⑶变化的电场在周围空间产生磁场(麦克斯韦)。 2.磁场的基本性质 磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流可能有力的作用,当电流和磁感线平行时不受磁场力作用)。 3.磁感应强度 IL F B (条件是L ⊥B;在匀强磁场中或ΔL 很小。) 磁感应强度是矢量。单位是特斯拉,符号为T ,1T=1N/(A?m)=1kg/(A ?s 2) 4.磁感线 ⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针N 极受磁场力的方向。磁感线的疏密表示磁场的强弱。 ⑵磁感线是封闭曲线(和静电场的电场线不同)。 ⑶要熟记常见的几种磁场的磁感线: 地磁场的特点:两极的磁感线垂直于地面;赤道上方的磁感线平行于地面;除两极外,磁感线的水平分量总是指向北方;南半球的磁感线的竖直分量向上,北半球的磁感线的竖直分量向下。 ⑷电流的磁场方向由安培定则(右手螺旋定则)确定:对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。 二、安培力 (磁场对电流的作用力) 1.安培力方向的判定 ⑴用左手定则。 ⑵用“同向电流相吸,反向电流相斥”(适用于两电流互相平行时)。 ⑶可以把条形磁铁等效为长直通电螺线管(不要把长直通电螺线管等效为条形磁铁)。 例1.条形磁铁放在粗糙水平面上,其中点的正上方有一导线,在 导线中通有图示方向的电流后,磁铁对水平面的压力将会______(增 条形磁铁蹄形磁铁 通电环行导线周围磁场 通电长直螺线管内部磁场 通电直导线周围磁场

电磁感应中的双棒运动问题高中物理专题

第9课时 电磁感应中的双棒运动问题 一、分析要点:1、分析每个棒的受力,棒运动时安培力F :R v L B BIL F 22,F 与速度有关; 2、分析清楚每个棒的运动状态→服从规律(牛顿定律、能量观点、动量观点) ; 3、找出两棒之间的受力关系、速度关系、加速度关系、能量关系等。 二、例题分析: 1、两棒一静一动: 【例1】如图所示,两根足够长的光滑金属导轨MN 、PQ 间距为l=0.5m ,其电阻不计, 两导轨及其构成的平面均与水平面成30°角。完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒的质量均为0.02kg ,电阻均为R=0.1Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度为 B=0.2T ,棒ab 在平行于导轨向上的力 F 作用下,沿导轨向上匀速运动,而棒cd 恰 好能保持静止。取g=10m/s 2,问:(1)通过cd 棒的电流I 是多少,方向如何? (2)棒ab 受到的力F 多大? (3)棒cd 每产生Q=0.1J 的热量,力F 做的功W 是多少? 2、两棒不受力都运动:满足动量守恒,分析最终状态: 【例2】如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为 L ,导轨上平行放置两根导体棒ab 和cd ,构成矩形回路。已知两根导体棒的质量均为m 、电阻均为R ,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B ,导体棒均可沿导轨无摩擦的滑行。开始时,导体棒cd 静止、ab 有水平向右的初速度v 0,两导体棒在运动中始终不接触。求:(1)开始时,导体棒ab 中电流的大小和方向?(2)cd 最大加速度?(3)棒cd 的最大速度?(4)在运动过程中产生的焦耳热?(5)棒cd 产生的热量?(6)当ab 棒速度变为43 v 0时,cd 棒加速度的大小?(7)两棒距离减小的最大值? 3、一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。 【例3】如图所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度B=0.50T 的匀 强磁场与导轨所在平面垂直,导轨电阻忽略不计,导轨间的距离 L=0.20m 。两根质量均为m=0.10kg 的金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的为电阻R=0.50Ω,在t=0时刻,两杆都处于静止状态。现有一与导轨平行,大小为 0.20N 的力F 作用于金属杆甲上,使金属杆在导轨上滑动。(1)分析说明金属杆最终的运动 状态?(2)已知当经过 t=5.0s 时,金属杆甲的加速度a=1.37m/s ,求此时两金属杆的速度各为多少?

高二物理磁场重要知识点整理有答案(精品文档)

物理重要知识点整理——磁场 一.基本概念: 1.磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质。 磁场的方向:规定磁场中任意一点小磁针N 极受力的方向(或者小磁针静止时N 极的指向)就是那一点的磁场方向。 2.磁感线:磁感线不是真实存在的,是人为画上去的。曲线的疏密能代表磁场的强弱,磁感线越密的地方磁场越强,磁感线从N 极进来,S 极进去,磁感线都是闭合曲线且磁感线不相交。 .几种典型磁场的磁感线 (1)条形磁铁 (2)通电直导线 a.安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向。 b.其磁感线是内密外疏的同心圆。 (3)环形电流磁场 a.安培定则:让右手弯曲的四指和环形电流的方向一致,伸直的大拇指的方向就是环形导线中心轴线的磁感线方向。 b.所有磁感线都通过内部,内密外疏 (4)通电螺线管 a.安培定则: 让右手弯曲的四指所指的方向跟电流的方向一致,伸直的大拇指的方向就是螺线管内部磁场的磁感线方向。 b. 通电螺线管的磁场相当于条形磁铁的磁场。 例1下列说法正确的是( ) A .通过某平面的磁感线条数为零,则此平面处的磁感应强度一定为零 B .空间各点磁感应强度的方向就是该点磁场方向 C .两平行放置的异名磁极间的磁场为匀强磁场 D .磁感应强度为零,则通过该处的某面积的磁感线条数不一定为零 【解析】 磁感应强度反映磁场的强弱和方向,它的方向就是该处磁场的方向,故B 正确.通过某平面的磁感线条数为零,可能是因为平面与磁感线平行,而磁感应强度可能不为零,故A 错误.只有近距离的两异名磁极间才是匀强磁场,故C 错误.若某处磁感应强度为零,说明该处无磁场,通过该处的某面积的磁感线条数一定为零,故D 错.【答案】 B 3.磁通量:磁感应强度B 与面积S 的乘积,叫做穿过这个面的磁通量。 物理意义:表示穿过一个面的磁感线条数。 定义:BS =Φ θcos BS =Φ(θ为B 与S 间的夹角) 例1关于磁通量,下列说法正确的是( ) A .磁通量不仅有大小而且有方向,是矢量 B .在匀强磁场中,a 线圈面积比b 线圈面积大,则穿过a 线圈的磁通量一定比穿过b 线圈的大

高中物理——磁场专题讲解+经典例题

磁场专题 7.【东北师大附中2011届高三第三次模底】如图所示,MN 是一荧光屏,当带电粒子打到荧光屏上时,荧光屏能够发光。MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里。P 为屏上的一小孔,PQ 与MN 垂直。一群质量为m 、带电荷量q 的粒子(不计重力),以相同的速率v ,从P 处沿垂直于磁场方向射入磁场区域,且分布在与PQ 夹角为θ的范围内,不计粒子间的相互作用。则以下说法正确的是( ) A .在荧光屏上将出现一个圆形亮斑,其半径为mv qB B .在荧光屏上将出现一个条形亮线,其长度为 ()21cos mv qB θ- C .在荧光屏上将出现一个半圆形亮斑,其半径为mv qB D .在荧光屏上将出现一个条形亮线,其长度为()21sin mv qB θ- 10.【东北师大附中2011届高三第三次模底】如图,电源电 动势为E ,内阻为r ,滑动变阻器电阻为R ,开关闭合。两平行极板间有匀强磁场,一带电粒子正好以速度v 匀速穿过两板。以下说法正确的是(忽略带电粒子的重力)( ) A .保持开关闭合,将滑片P 向上滑动一点,粒子将可能从下极板边缘射出 B .保持开关闭合,将滑片P 向下滑动一点,粒子将可能从下极板边缘射出 C .保持开关闭合,将a 极板向下移动一点,粒子将继续沿直线穿出 D .如果将开关断开,粒子将继续沿直线穿出 4.【辽宁省丹东市四校协作体2011届高三第二次联合考试】如图所示,一粒子源位于一边长为a 的正三角形ABC 的中点O 处,可以在三角形所在的平面内向各个方向发射出速度大小为v 、质量为m 、电荷量为q 的带电粒子,整个三角形位于垂直于△ABC 的匀强磁场中,若使任意方向射出的带电粒子均不能射出三角形区域,则磁感应强度的最小值为 ( ) A .mv qa B .2mv qa Q

高考物理备考之电磁感应现象的两类情况压轴突破训练∶培优 易错 难题篇及详细答案

高考物理备考之电磁感应现象的两类情况压轴突破训练∶培优 易错 难题篇及 详细答案 一、电磁感应现象的两类情况 1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2) (1)求导体棒下滑的最大速度; (2)求当速度达到5m/s 时导体棒的加速度; (3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示). 【答案】(1)18.75m/s (2)a=4.4m/s 2 (32 22mgs mv Rt - 【解析】 【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解; 解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R R θ==, 解得: 222 sin 18.75cos mgR v B L θ θ = =; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A R θ = =, 0.2F BIL N ==, 24.4/a m s =; (3)根据能量守恒有:22012 mgs mv I Rt = + , 解得: 2 02mgs mv I Rt -=

高中物理磁场知识点

高中物理磁场知识点 一、磁场 磁极和磁极之间的相互作用是通过磁场发生的。电流在周围空间产生磁场,小磁针在 该磁场中受到力的作用。磁极和电流之间的相互作用也是通过磁场发生的。电流和电流之 间的相互作用也是通过磁场产生的。 磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,磁极或电流在 自己的周围空间产生磁场,而磁场的基本性质就是对放入其中的磁极或电流有力的作用。 二、磁现象的电本质 1.罗兰实验 正电荷随绝缘橡胶圆盘高速旋转,发现小磁针发生偏转,说明运动的电荷产生了磁场,小磁针受到磁场力的作用而发生偏转。 2.安培分子电流假说 法国学者安培提出,在原子、分子等物质微粒内部,存在一种环形电流-分子电流, 分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。安培是最早揭示 磁现象的电本质的。 一根未被磁化的铁棒,各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外 不显磁性;当铁棒被磁化后各分子电流的取向大致相同,两端对外显示较强的磁性,形成 磁极;注意,当磁体受到高温或猛烈敲击会失去磁性。 3.磁现象的电本质 运动的电荷电流产生磁场,磁场对运动电荷电流有磁场力的作用,所有的磁现象都可 以归结为运动电荷电流通过磁场而发生相互作用。 三、磁场的方向 规定:在磁场中任意一点小磁针北极受力的方向亦即小磁针静止时北极所指的方向就 是那一点的磁场方向。 四、磁感线 1.磁感线的概念:在磁场中画出一系列有方向的曲线,在这些曲线上,每一点切线方 向都跟该点磁场方向一致。 2.磁感线的特点:

1在磁体外部磁感线由N极到S极,在磁体内部磁感线由S极到N极。 2磁感线是闭合曲线。 3磁感线不相交。 4磁感线的疏密程度反映磁场的强弱,磁感线越密的地方磁场越强。 3.几种典型磁场的磁感线: 1条形磁铁。 2通电直导线。①安培定则:用右手握住导线,让伸直的大拇指所指的方向跟电流方 向一致,弯曲的四指所指的方向就是磁感线环绕的方向;②其磁感线是内密外疏的同心圆。 3环形电流磁场:①安培定则:让右手弯曲的四指和环形电流的方向一致,伸直的大 拇指的方向就是环形导线中心轴线的磁感线方向。②所有磁感线都通过内部,内密外疏。 4通电螺线管:①安培定则:让右手弯曲的四指所指的方向跟电流的方向一致,伸直 的大拇指的方向就是螺线管内部磁场的磁感线方向;②通电螺线管的磁场相当于条形磁铁 的磁场。 五、磁感应强度 1.定义:在磁场中垂直于磁场方向的通电直导线,所受的磁场力跟电流I和导线长度 l的乘积Il的比值叫做通电导线处的磁感应强度。 2.定义式: 3.单位:特斯拉T,1T=1N/A.m 4.磁感应强度是矢量,其方向就是对应处磁场方向。 5.物理意义:磁感应强度是反映磁场本身力学性质的物理量,与检验通电直导线的电 流强度的大小、导线的长短等因素无关。 6.磁感应强度的大小可用磁感线的疏密程度来表示,规定:在垂直于磁场方向的1m2 面积上的磁感线条数跟那里的磁感应强度一致。 7.匀强磁场: 1磁感应强度的大小和方向处处相等的磁场叫匀强磁场。 2匀强磁场的磁感线是均匀且平行的一组直线。

高考物理专题电磁学知识点之电磁感应难题汇编含答案解析

高考物理专题电磁学知识点之电磁感应难题汇编含答案解析 一、选择题 1.如图所示,竖直放置的长直导线通有恒定电流,有一矩形线框与导线在同一平面内,在下列情况中线框中不能产生感应电流的是() A.导线中的电流变大B.线框以PQ为轴转动 C.线框向右平动D.线框以AB边为轴转动 2.如图所示,L1和L2为直流电阻可忽略的电感线圈。A1、A2和A3分别为三个相同的小灯泡。下列说法正确的是() A.图甲中,闭合S1瞬间和断开S1瞬间,通过A1的电流方向不同 B.图甲中,闭合S1,随着电路稳定后,A1会再次亮起 C.图乙中,断开S2瞬间,灯A3立刻熄灭 D.图乙中,断开S2瞬间,灯A2立刻熄灭 3.如图所示,用粗细均匀的同种金属导线制成的两个正方形单匝线圈a、b,垂直放置在磁感应强度为B的匀强磁场中,a的边长为L,b的边长为2L。当磁感应强度均匀增加时,不考虑线圈a、b之间的影响,下列说法正确的是() A.线圈a、b中感应电动势之比为E1∶E2=1∶2 B.线圈a、b中的感应电流之比为I1∶I2=1∶2 C.相同时间内,线圈a、b中产生的焦耳热之比Q1∶Q2=1∶4 D.相同时间内,通过线圈a、b某截面的电荷量之比q1∶q2=1∶4 4.如图所示,将直径为d,电阻为R的闭合金属环从匀强磁场B中拉出,这一过程中通过金属环某一截面的电荷量为()

A .24 B d R π B .2Bd R π C .2Bd R D .2Bd R π 5.磁卡的磁条中有用于存储信息的磁极方向不同的磁化区,刷卡器中有检测线圈.当以速度v 0刷卡时,在线圈中产生感应电动势,其E -t 关系如图所示.如果只将刷卡速度改为 2 v ,线圈中的E -t 关系图可能是( ) A . B . C . D . 6.一个简易的电磁弹射玩具如图所示,线圈、铁芯组合充当炮筒,硬币充当子弹。现将一个金属硬币放在铁芯上(金属硬币半径略大于铁芯半径),电容器刚开始时处于无电状态,先将开关拨向1,电容器充电,再将开关由1拨向2瞬间,硬币将向上飞出。则下列说法正确的是( ) A .当开关拨向1时,电容器上板带负电 B .当开关由1拨向2时,线圈内磁感线方向向上 C .当开关由1拨向2瞬间,铁芯中的磁通量减小 D .当开关由1拨向2瞬间,硬币中会产生向上的感应磁场 7.如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R .金属棒ab 与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下.现使

高中物理带电粒子在磁场中的运动知识点汇总

难点之九:带电粒子在磁场中的运动 一、难点突破策略 (一)明确带电粒子在磁场中的受力特点 1. 产生洛伦兹力的条件: ①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用. ②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小: 当电荷运动方向与磁场方向平行时,洛伦兹力f=0; 当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ; 当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ 3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功. (二)明确带电粒子在匀强磁场中的运动规律 带电粒子在只受洛伦兹力作用的条件下: 1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动. 2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动. ①向心力由洛伦兹力提供: R v m qvB 2 = ②轨道半径公式:qB mv R = ③周期:qB m 2v R 2T π=π= ,可见T 只与q m 有关,与v 、R 无关。 (三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。 1. “带电粒子在匀强磁场中的圆周运动”的基本型问题 (1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。确定半径和给定的几何量之间的关系是解题的基础, 有时需要建立运动时间t 和转过的圆心角α之间的关系(T 2t T 360t πα=α= 或)作为辅助。圆心的确定,通常有以下两种方法。 ① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。 ② 已知入射方向和出射点的位置,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图9-2,P 为入射点,M 为出射点)。 图9-1 图9-2 图9-3

相关主题
文本预览
相关文档 最新文档