当前位置:文档之家› 独立基础加防水板基础的设计-朱炳寅

独立基础加防水板基础的设计-朱炳寅

独立基础加防水板基础的设计-朱炳寅
独立基础加防水板基础的设计-朱炳寅

独基加防水板基础的设计

中国建筑设计研究院 朱炳寅

独基加防水板基础是近年来伴随基础设计与施工发展而形成的一种新的基础形式(图1),由于其传

力简单、明确及费用较低,因此在工程中应用相当普遍。

图1 独基加防水板基础的组成

一、受力特点

1.在独基加防水板基础中,防水板一般只用来抵抗水浮力,不考虑防水板的地基承载能力。独立基

础承担全部结构荷重并考虑水浮力的影响。

2.作用在防水板上的荷载有:地下水浮力w q 、防水板自重s q 及其上建筑做法重量a q ,在建筑物使

用过程中由于地下水位变化,作用在防水板底面的地下水浮力也在不断改变,根据防水板所承担的水浮力的大小,可将独立柱基加防水板基础分为以下两种不同情况:

1)当w q ≤a s q q +时(注意:此处的w q 、s q 和a q 均为荷载效应基本组合时的设计值,即水浮力起

控制作用时的荷载设计值,而不是荷载标准值),建筑物的重量将全部由独立基础传给地基(图2a);

2)当w q >a s q q +时(注意:同上)

,防水板对独立基础底面的地基反力起一定的分担作用,使独立基础底面的部分地基反力转移至防水板,并以水浮力的形式直接作用在防水板底面,这种地基反力的转移对独立基础的底部弯矩及剪力有加大的作用,并且随水浮力的加大而增加(图2b)。

(a) (b)

图2 独基加防水板基础的受力特点

3.在独基加防水板基础中,防水板是一种随荷载情况变化而变换支承情况的复杂板类构件,当w q ≤

a s q q +时(图2a),防水板及其上部重量直接传给地基土,独立基础对其不起支承作用;当w q ≥a s q q +时(图2b),防水板在水浮力的作用下,将净水浮力(即w q -(a s q q +))传给独立基础,并加大了独立基础的弯矩数值。

二、计算原则

在独基加防水板基础中,独立基础及防水板一般可单独计算。

1.防水板计算

1)防水板的支承条件的确定

防水板可以简化成四角支承在独立基础上的双向板(支承边的长度与独立基础的尺寸有关,防水板

为以独立基础为支承的复杂受力双向板)(图3);

图3 防水板的支承条件

2)防水板的设计荷载(图2)

(1)重力荷载

防水板上的重力荷载一般包括:防水板自重、防水板上部的填土重量、建筑地面重量、地下室地面

的固定设备重量等;

(2)活荷载

防水板上的活荷载一般包括:地下室地面的活荷载、地下室地面的非固定设备重量等;

(3)水浮力

防水板的水浮力可按抗浮设计水位确定。

3)荷载分项系数的确定

(1)当地下水水位变化剧烈时,水浮力荷载分项系数按可变荷载分项系数确定,取1.4;

(2)当地下水水位变化不大时,水浮力荷载分项系数按永久荷载分项系数确定,取1.35;

(3)注意防水板计算时,应根据重力荷载效应对防水板的有利或不利情况,合理取用永久荷载的分

项系数,当防水板由水浮力效应控制时应取1.0。

4)防水板应采用相关计算程序按复杂楼板计算。也可按无梁楼盖双向板计算。

5)无梁楼盖双向板计算的经验系数法

(1)防水板柱下板带及跨中板带的划分

按图4确定防水板的柱下板带和跨中板带。

图4无梁楼盖的板带划分 图5 独立基础的有效宽度

(2)防水板柱下板带及跨中板带弯矩的确定

按经验系数法计算时,应先算出垂直荷载产生的板的总弯矩设计值(M 即M x 、M y )

,然后按表1确定柱下板带和跨中板带的弯矩设计值。

对X 方向板的总弯矩设计值,按下式计算:8/)3/2(2

ce x y x b l ql M ?= (1)

对Y 方向板的总弯矩设计值,按下式计算:8/)3/2(2ce y x y b l ql M ?= (2)

式中 q ——相应于荷载效应基本组合时,垂直荷载设计值; x l 、y l ——等代框架梁的计算跨度,即柱子中心线之间的距离;

ce b ——独立基础在计算弯矩方向的有效宽度(见图5)。

柱下板带和跨中板带弯矩分配值(表中系数乘M ) 表1 截面位置

柱下板带 跨中板带 边支座截面负弯矩

0.33 0.04 跨中正弯矩

0.26 0.22 端跨 第一内支座截面负弯矩

0.50 0.17 支座截面负弯矩 0.50 0.17 内跨

跨中正弯矩 0.18 0.15

注:

① 在总弯矩(M )不变的条件下,必要时允许将柱上板带负弯矩的10%分配给跨中板带;

② 表中数值为无悬挑板时的经验系数,有较小悬挑板时仍可采用,当悬挑较大且负弯矩大于边支座

截面负弯矩时,须考虑悬臂弯矩对边支座及内跨的影响。

2.独立基础的计算

合理考虑防水板水浮力对独立基础的影响,是独立基础计算的关键。在结构设计中可采用包络设计

的原则,按下列步骤计算:

1)w q ≤a s q q +时的独立基础计算

此时的独立基础可直接按本章第二节相关规定进行计算,此部分的计算主要用于地基承载力的控制,相应的基础内力一般不起控制作用,仅可作为结构设计的比较计算。

图6 防水板传给独立基础的等效荷载

2)w q >(a s q q +)时的独立基础计算

(1)将防水板的支承反力(取最大水浮力计算),按四角支承的实际长度(也就是防水板与独立基

础的交接线长度,当各独立基础平面尺寸相近或相差不大时,可近似取图6中的独立基础的底边总长度)转化为沿独立基础周边线性分布的等效线荷载e q 及等效线弯矩e m (见图6),并按下列公式计算: ① 沿独立基础周边均匀分布的线荷载:

)(2)

(y x y x y x j w e a a a a l l q q +?≈ (3)

② 沿独立基础边缘均匀分布的线弯矩:

y x wj e l l q k m ≈ (4)

式中 j w q ——相应于荷载效应基本组合时,防水板的水浮力扣除防水板自重及其上地面重量后的数值

(2

/m kN ); y x l l 、——x 向、y 向柱距(m);

y x a a 、——独立基础在x 向、y 向的底面边长(m);

k ——防水板的平均固端弯矩系数,可按表2取值;其中y x a a a =。

防水板的平均固端弯矩系数 表2

l a / 0.20 0.25 0.30 0.35 0.400.450.500.550.600.65 0.70 0.750.80k 0.110 0.075 0.059 0.048 0.0390.0310.0250.0190.0150.011 0.008 0.0050.003注:本表按有限元分析(由王奇工程师完成)统计得出。

(2)根据矢量叠加原理,进行在普通均布荷载及周边线荷载共同作用下的独立基础计算,即在独立

基础内力计算公式的基础上增加由防水板荷载(e e m q 、)引起的内力,计算简图见图7,计算过程如下:

图7 独立基础计算简图

① 独立基础基底反力引起的内力计算,按本章第二节相关规定,进行普通均布荷载作用下独立基

础的内力计算,注意此处均布荷载中应扣除防水板分担的水浮力,以图7柱边缘剖面A-A 为例,计算弯矩为1A M (按地基规范公式(8.2.7-4)计算)、剪力为1A V ;

② 防水板对独立基础的基底边缘反力引起的附加内力计算,根据结构力学原理,结合本章第二节

独立基础底面反力的分块原则,进行周边线荷载作用下独立基础的内力计算;以图7柱边缘剖面A-A 为例,计算弯矩为2A M =l m d b q e e )2/)((+?、剪力为l q V e A =2;

③ 将两部分内力叠加,进行独立基础的各项设计计算,以图7柱边缘剖面A-A 为例,计算总弯矩

为21A A A M M M +=、总剪力为21A A A V V V +=。

3)取上述1)和2)的大值进行独立基础的包络设计。

三、构造要求

1.为实现结构设计构想,防水板下应采取设置软垫层(见图1)的相应的结构构造措施,确保防水

板不承担或承担最少量的地基反力,软垫层应具有以下两方面的特点:

1)软垫层应具有一定的承载能力,至少应能承担防水板混凝土浇注时的重量及其施工荷载,并确保

在混凝土达到设计强度前不致产生过大的压缩变形。

2)软垫层应具有一定的变形能力,避免防水板承担过大的地基反力,以保证防水板的受力状况和设

计相符。

2.工程设计中软垫层的做法大致如下:

1)防水板下设置焦渣垫层

在防水板下设置焦渣垫层,利用焦渣垫层所具有的承载力承担防水板及其施工荷载重量,并确保在

防水板施工期间不致发生过大的压缩变形,同时,在底板混凝土达到设计强度后,具有恰当的可压缩性。受焦渣材料供应及其价格因素的影响,焦渣垫层的应用正在逐步减少。

2)防水板下设置聚苯板

近年来随着独立柱基加防水板基础应用的普及,聚苯板的应用也相当广泛,由于其来源稳定,施工

方便快捷且价格低廉,在工程应用中获得比较满意的技术经济效果。聚苯板应具有一定的强度和弹性模量,以能承担基础底板的自重及施工荷载。

四、结构设计的相关问题

1.软垫层设计中对聚苯板性能的控制问题是关系独立基础加防水板受力合理与否的关键问题。

2.需要说明的是,结构设计中常有忽略防水板的水浮力对独立基础的影响,而只按独立基础基底反

力引起的弯矩计算,当地下水位较高时,其基底弯矩设计值偏小,不安全。

3.采用软垫层后对地基承载力的深度修正影响问题。

五、设计建议

1.建议在软垫层设计中,采取控制软垫层强度和变形的结构措施,如根据设计需要提出聚苯板的抗

压强度和压缩模量指标(抗压强度一般取压缩量为试件总厚度的10%时的强度值)。

2.软垫层的厚度h 可根据地基沉降数值s 确定,且应h ≥s。

3.在独基加防水板基础中,防水板承担地下水浮力,当地下水位较高(w q >a s q q +)时,应考虑

防水板承担的水浮力对独立基础弯矩的增大作用,并可采用矢量叠加原理进行简单计算。

4.在独基加防水板基础设计中,应特别注意对独立基础计算埋深的修正。

5.应注意独基加防水板基础与变厚度筏板基础的区别。

6.在独基加防水板基础的设计中,当地下水位不高时,应尽量采用较小厚度的防水板,控制防水板

的配筋略大于防水板的构造配筋为宜。

六、特别说明

1.独基加防水板基础暂未列入相关结构设计规范中,上述结构设计的原则和做法均为编者对实际工

程的总结和体会,供读者在结构设计中参考。

2.在可不考虑地下水对建筑物影响时,对防潮要求比较高的建筑,常可采用独立基础加防潮板,防

潮板的位置(标高)可根据工程具体情况而定:

1)当防潮板的位置在独立基础高度范围内(有利于建筑设置外防潮层,并容易达到满意的防潮效果)

时,上述独立基础加防水板设计方法同样适用;

2)当防潮板的位置在地下室地面标高处时,防潮板变成为非结构构件,一般可不考虑其对独立基础

的影响,但注意框架柱在防潮层标高处应留有与防潮层相连接的“胡子筋”。

3.结构构件设计应采用抗浮设计水位而不是防水设计水位。

4.关于结构的抗浮设计

1)当抗浮设计水位较高时,结构的抗浮设计往往存在较大的困难,尤其是纯地下车库或地下室层数

较多而地上层数很少时,问题更为严重。

2)抗浮设计常用的方法有:

(1)自重平衡法,即:采用回填土、石或混凝土(或重度≥30kN/m 3的钢渣混凝土)等手段,来平

衡地下水浮力;

(2)抗力平衡法,即:设置抗拔锚杆或抗拔桩,来消除或部分消除地下水浮力对结构的影响;

(3)浮力消除法,即:采取疏、排水措施,使地下水位保持在预定的标高之下,减小或消除地下水对建筑(构筑)物的浮力,从而达到建筑(构筑)物抗浮的目的;

(4)综合设计方法,即:根据工程需要采用上述两种或多种抗浮设计方法,采取综合处理措施,实现建筑(构筑)物的抗浮。

上述设计方法(1)和(2),从工程角度属于“抗”的范畴,能解决大部分工程的抗浮问题,但对地下水浮力很大的工程,投资大,费用高。而设计方法(3)则属于“消”的范畴,处理得当,可以获得比较满意的经济、技术效果。

一般情况下,当地下水位较高,建筑物长期处在地下水浮力作用下时,宜采用自重或抗力平衡法;当地下水位较低,建筑物长期没有地下水浮力作用或水浮力作用的时间很短、概率很小(虽然其有可能在某个时间出现较高的水位)时,宜采用浮力消除法。采用“抗”和“消”相结合的设计方法,对于防水要求不是很高的大面积地下车库等建筑尤为适合。

3)采用浮力消除法的相关问题

(1)地下室底板宜位于弱透水层;

(2)地下室四周及底板下应设置截水盲沟,并在适当位置设置集水井及排水设备;

(3)设置排水盲沟,应具有成熟的地方经验,必要时应进行相关的水工试验。应采取确保盲沟不淤塞的技术措施(如设置砂砾反滤层,铺设土工布等),并加以定期监测和维护,保证排水系统的有效运转。

七、算例分析——某工程柱下独基加防水板基础设计

1.工程实例

1)工程概况

某办公楼,地下1层,地上5层,采用钢筋混凝土框架结构,轴网8m×8m。

2)独立基础加防水板设计

(1)防水板及独立基础的混凝土强度等级均为C30;

(2)防水板下设聚苯板垫层,厚度50mm,强度不低于25kPa;

(3)柱下独立基础如图8,柱下独立基础,混凝土强度等级为C30,受力钢筋采用HRB400级,相应于荷载效应基本组合时,作用在基础顶面的柱底轴向压力值N=6480kN,基础及其以上填土的平均重度γ=203

kN,地下水位高出地下室地面1.8m,基础做法如图8。

/m

图8 独基加防水板基础

2.实例分析

1)独基加防水板基础适合于柱荷载相对不是很大的单层及多层建筑,本工程为5层建筑,适合采用。

2)独基加防水板基础适合于地下水位比较高的带地下室多层及高层建筑。

3)独基加防水板基础的主要计算过程如下:

(1)防水板荷载的计算

防水板及其以上土重标准值2

1/242.120m kN q s =×=

防水板的水浮力标准值2/30)8.12.1(10m kN q sw =+×=

在地下水浮力控制的内力组合时,防水板的荷载设计值为: 2/18240.1304.1m kN q j w =×?×=

(2)防水板传给独立基础的等效荷载计算

① 沿独立基础周边均匀分布的等效线荷载设计值按公式(3)计算:

)

(2)(y x y x y x j w e a a a a l l q q +?≈=m kN /54)44(2)4488(18=+×?×× ② 沿独立基础边缘均匀分布的线弯矩设计值按公式(4)计算:

m a 4=,5.08/4/==l a ,查表2,得025.0=k ,则

y x wj e l l q k m ≈=0.025×18×8×8=28.8m m kN /.

(3)独立基础的其他荷载

① 上部结构传给基础的相应于荷载效应基本组合时,作用在基础顶面的柱底轴向压力值

N=6480kN ,则作用在基础底面的平均净反力值j p =2/4054

46480m kN =× ② 水浮力较小(w q ≤a s q q +或无水浮力作用)时,相应于荷载效应基本组合时,独立基础底面的

平均净反力值: j p =2

/405m kN

③ 水浮力较大(w q >a s q q +)时,用于基础设计的独立基础底面的平均压力设计值:

2/3514

44454405m kN p j =×××?= (4)独立基础沿柱边缘截面的基础底面弯矩设计值计算

水浮力较大(w q >a s q q +)时,独立基础的基础底面弯矩分为两部分,一是由防水板抵抗水浮力

引起的弯矩11M ,二是由j p 引起的弯矩12M ,即12111M M M +=。

① 11M 按矢量叠加原理计算,11M =4×54×(2-0.35)+4×28.8=471.6m kN .

② 12M 按地基规范公式(8.2.7-4)计算,

12M =???????+?++l p p A G p p a l a )()2()2(121max max '21=[]

j '21)2(61q a l a + =[]m kN .9.1329351)35.042(6

)35.02(2

=×+×? 12111M M M +==471.6+1329.9=1801.5m kN .

(5)独立基础变阶处截面的基础底面弯矩设计值计算

同(3),则22212M M M +=。

21M =4×54×(2-1.2)+4×28.8=288m kN .

22M =???????+?++l p p A G p p a l a )(2()2(121max max '21=[]

j '21)2(61q a l a + =[]m kN .4.389351)4.242(6

)2.12(2

=×+×? 22212M M M +==288+389.4=677.4m kN .

(6)水浮力较小(w q ≤a s q q +或无水浮力作用)时,独立基础柱根截面的基础底面弯矩设计值计

此时,用于基础设计的独立基础底面的平均压力设计值:2

/405m kN p j =

按地基规范公式(8.2.7-4)计算, 1M =???????+?++l p p A G p p a l a )()2()2(121max max '21=[]

j '21)2(61p a l a + =[]m kN .5.1534405)35.042(6

)35.02(2

=×+×?<1801.5m kN .

(7)无地下水浮力作用时,独立基础变阶处截面的基础底面弯矩设计值按地基规范公式(8.2.7-4)

计算:

2M =???????+?++l p p A G p p a l a )(2()2(121max max '21=[]

j '21)2(61p a l a + =[]m kN .3.449405)4.242(6

)2.12(2

=×+×?<677.4m kN . (8)独立基础的配筋设计

计算柱边缘截面基础底面的配筋(此处采用近似计算公式):

① 柱边缘截面:

26016541)3608509.0/(105.1801)9.0/(mm f h M A y s =×××=≈

② 基础变阶处截面:

26025227)3604009.0/(104.677)9.0/(mm f h M A y s =×××=≈

基础底板的最小配筋率为0.15%,即2

min 135********%15.0mm A s =××=

在基础全宽度4m 范围内,配HRB400级钢筋20@180(配筋面积为6982mm 2>6541 mm 2>min s A (可

以)

(9)防水板按无梁楼盖设计

已知m b ce 4=,m l l y x 8==,2/18m kN q q j w ==,按公式(1)计算, m kN b l ql M M ce x y y x .5128/)3/428(8188/)3/2(22=×?×=?==

按表1的分配系数确定各截面的弯矩,计算防水板的配筋,计算结果见表3。

防水板各截面的弯矩及配筋 表3 柱下板带

跨中板带 截面位置

弯矩(kN.m )配筋 (mm 2/m ) 弯矩 (kN.m ) 配筋(mm 2/m ) 边支座截面负弯矩

169.0 522 20.5 63 跨中正弯矩

133.1 411 112.6 348 端跨 第一内支座截面负弯矩

256.0 790 87.0 269 支座截面负弯矩

256.0 790 87.0 269 内跨 跨中正弯矩 92.2 285 76.8

237 防水板单位宽度的构造配筋面积2min 4503001000%15.0mm A s =××=,柱下板带底面配HRB400

级钢筋直径12@140(2808mm A s =>7902

mm ,可),其余均按构造配筋要求配HRB400级钢筋直径12@200(2565mm A s =>min s A 可)。

4)独立基础和防水板的配筋可根据基础设计的实际情况,统一考虑,当基础底面和防水板的底面位

于同一标高时,可考虑将防水板钢筋通长布置,独立基础下配筋不足部分用短钢筋(附加钢筋)配足,见图9。

图9 独立基础和防水板底面标高相同时的常用配筋做法

5)通过本例分析可以发现,在独基加防水板基础中,独立基础和防水板不一定同时由相同的荷载效应组合起控制作用,如:防水板常按水浮力控制的效应组合设计(当地下水变动幅度较大时,水浮力的荷载分项系数按可变荷载考虑;当地下水变动幅度较小时,水浮力的荷载分项系数按永久荷载考虑),独立基础则按由永久荷载效应控制的组合设计,两者采用不同的荷载效应设计值,而在独立柱基的设计中又离不开防水板传来的荷载,因此,在独基加防水板基础设计中,要严格分清荷载的不同效应组合是有困难的,同时从工程设计角度看也无必要。从工程设计实际出发,采用适当的包络设计方法,其结果相差不大,故可按各自最不利情况计算并简化设计,可按下列要求,实现不同组合内力之间的互换(近似计算): (1)考虑荷载效应基本组合的内力设计值,可近似取考虑荷载效应标准组合内力设计值的1.3倍;

(2)考虑荷载效应标准组合的内力设计值,可近似取考虑荷载效应基本组合内力设计值的0.8倍;

(3)进行地基承载力验算,若取用上部结构考虑地震作用效应的柱底内力设计值时,应将其除以1.25的系数后,再进行地基反力特征值的验算;

(4)进行地基承载力验算时,若取用上部结构计算的柱底内力设计值时,应将其除以1.30的系数后,再进行地基反力特征值的验算;

(5)基础设计时,可将地震作用的内力乘以0.8后,采用非地震作用的设计计算公式。

6)通过本例计算可以发现,在本例的特定条件下,考虑与不考虑防水板对独立基础内力的影响,其计算弯矩的比值为1801.5/1534.5=1.17(在独基变截面处为677.4/449.3=1.51),即计算结果相差17%(及51%),因此,当地下水位较高时,不考虑防水板对独立基础的影响是不合适的,也是不安全的。

7)本例地基承载力验算过程略。

独立基础加防水板、地下室外墙的设计

独立基础加防水板 地下室外墙得设计 审定:李绪华 审核:苑清山 编制:覃嘉仕 北京京诚华宇建筑设计研究院有限公司 结构所 二○○九年八月 第一部分:独立基础加防水板 独立基础加防水板得基础形式,近年来在民用建筑得单层与多层地下室结构以及荷载不大得小高层结构中应用十分广泛,本文仅就施工图中常用得设计方法,结合我院工程得具体应用情况,对其中得技术细节进行交流,为其她设计提供参考。 一.独立基础加防水板得由来及概念 在大面积地下车库中,柱距通常在6m~9m之间,我院得工程常用柱网为8.4m×8.4m。因跨度较大,采用整体筏板不经济,对上部结构得荷载传递也缺乏针对性,通常采用独立基础加防水板这种基础方案。 独立基础加防水板,即在柱下采用独立基础,为实现防水得目得,在独立基础之间设较薄得板,此板仅起地下室地坪板与防水得作用,不承担地基反力。如此除可降低造价外,还可加大独立基础得沉降,以取得与主楼地基变形得协调。 有地下室且有防水要求时,如地基承载力较高,可采用独立基础加防

水板得形式。 独立基础加防水板基本形式如下图 若地基承载力较低,则可考虑采用筏形基础,筏形基础可选用有梁式 或无梁式。若筏形基础仍无法满足地基承载力要求,或就是存在较大得净浮力,设计应根据地基承载力情况与抗浮要求来综合考虑就是否采用桩基。则基础形式变为独立承台加防水板,如烟台世茂地下室、南京河西新城区莲花村中低价房地下室等。因抗浮问题比较复杂,涉及到荷载取值、配重经济性、基坑降水、施 工顺序、抗浮桩设计、不均匀沉降控制等诸多因素,本文主要就天然地基得独立基础加防水板加以论述。二.地基承载力 根据建筑资料确定基础板顶标高,预估基础厚度,查阅岩土工程勘察 报告,确定基础底板所在地基持力层就是否满足基底压力得要求。地基承载力得修正计算公式见《建筑地基基础设计规范》5.2.4条, (3)(0.5)a ak b d m f f b d ηγηγ=+-+- (5、2、4)《北京地区建筑地基基础勘察设计规范》中地基承载力修正公式为

地基基础设计规范

《地基基础设计规范》G B50007-2011【28条】3.0.2 根据建筑物地基基础设计等级及长期荷载作用下地基变形对上部结构的影响程度,地基基础设计应符合下列规定: 1 所有建筑物的地基计算均应满足承载力计算的有关规定; 2 设计等级为甲级、乙级的建筑物,均应按地基变形设计; 3 设计等级为丙级的建筑物有下列情况之一时应作变形验算: 1) 地基承载力特征值小于130kPa ,且体型复杂的建筑; 2) 在基础上及其附近有地面堆载或相邻基础荷载差异较大,可能引起地基产生过大的不均匀沉降时; 3) 软弱地基上的建筑物存在偏心荷载时; 4) 相邻建筑距离近,可能发生倾斜时; 地基内有厚度较大或厚薄不均的填土,其自重固结未完成时。 4 对经常受水平荷载作用的高层建筑、高耸结构和挡土墙等,以及建造在斜坡上或边坡附近的建筑物和构筑物,尚应验算其稳定性;

5 基坑工程应进行稳定性验算; 6 建筑地下室或地下构筑物存在上浮问题时,尚应进行抗浮验算。 3.0.5 地基基础设计时,所采用的作用效应与相应的抗力限值应符合下列规定: 1 按地基承载力确定基础底面积及埋深或按单桩承载力确定桩数时,传至基础或承台底面上的作用效应应按正常使用极限状态下作用的标准组合;相应的抗力应采用地基承载力特征值或单桩承载力特征值; 2 计算地基变形时,传至基础底面上的作用效应应按正常使用极限状态下作用的准永久组合,不应计入风荷载和地震作用。相应的限值应为地基变形允许值; 3 计算挡土墙、地基或滑坡稳定以及基础抗浮稳定时,作用效应应按承载能力极限状态下作用的基本组合,但其分项系数均为1.0。 4 在确定基础或桩基承台高度、支挡结构截面、计算基础或支挡结构内力、确定配筋和验算材料强度时,上部结构传来的作用效应和相应的基底反力、挡土墙土压力以及滑坡推力,应按承载能力极限状态下作用的基本组合,采用相应的分项系数。当需要验算基础裂缝宽度时,应按正常使用极限状态作用的标准组合; 5 基础设计安全等级、结构设计使用年限、结构重要性系数应按有关规范的规定采用,但结构重要性系数(γo) 不应小于1.0 。

地基基础课程设计

地基基础课程设计 学生:何昕桐 学号: 指导教师:少东 专业班级:14土木升本 所在学院:工程学院 中国· 2015年11月

目录 1、设计资料 (1) 2、设计要求 (3) 3、确定持力层基础埋深 (3) 4、确定基础尺寸 (5) 5、下卧层强度验算 (6) 6、柱基础沉降计算 (7) 7、调整基底尺寸 (8) 8、基础高度验算 (8) 9、配筋计算 (10) 10、绘制施工图 (12)

地基基础课程设计任务书 1.设计资料 某多层现浇的钢筋混凝土框架结构,其柱网布置如图1所示,柱截面尺寸为500×600mm,室外地坪标高同天然地面,室外地面高差为0.45m。建筑场地地质条件见表A,作用于基础顶面的荷载见表B。 图1 柱网布置图 表A(地下水位在天然地面下2.2m) 编 号 土层名称 土层厚度 (m) γ (kN/m3) ω(%) еI L Es (MPa ) C(kPa) Φ(°) F ak (kPa) Ⅰ多年素填土 1.6 17.8 94 Ⅱ粉土 5.2 18.9 26.0 0.82 0.65 7.5 28 15 167 Ⅲ 淤泥质粉质 黏土 2.2 17.0 51 1.44 1.0 2.5 24 12 78 Ⅳ粉、细砂10.1 19.0 10 30 160

表B B-1 柱底荷载标准组合 表B B-2 柱底荷载准永久组合 2.选择持力层、确定基础埋深 根据工程地质资料和设计要求:本持力层选用Ⅱ土层,故初定基础埋置深度取d=1.6m 地基承载力特征值确定,根据工程地质资料和基础埋置深度的选择,可知地基承载力特征值 167ak f Kpa = 3.确定基础尺寸 3.1 地基承载力特征值的确定 《建筑地基规》规定:当基础宽度大于3m 或埋置深度大于0.5m 时从荷载试验或其他原则测试,经验值等方法确定的地基承载力特征值尚应按下式修正: (3)(0.5)a ak b d m f f b d ηγηγ=+-+- 由于基础高度尚未确定,假定b <3m ,首先进行深度修正。 根据粉土10%ρ≤, 查表7.10得b η=0.5 ,d η=2.0,持力层承载力特征值a f (先不考虑对基础宽度进行修正): 3117.8/m kN m γ= 1(0.5)167 2.017.8(1.60.5)206.2a ak d m f f d kPa ηγ=+-=+??-= 初步选择基底尺寸计算基础和回填土k G 时的基础埋深 d= 1.6 2.05 1.8252 m +=

筏形基础与独立基础加防水板的异同分析

筏形基础与独立基础加防水板的异同分析 朱炳寅、李静 (中国建筑设计研究院 北京100044) 筏板基础尤其是平板式筏基与独立基础加防水板有相似之处,根据各自特点及适用条件选用合理的基础形式,对结构设计意义重大。 独立基础加防水板具有传力明确,构造简单,方便施工,经济实用等优点,因此,在工程设计中是首选的基础形式。 筏形基础刚度大,对地基反力及地基沉降的调节能力强,既适合于上部荷载较大的高层建筑,也适合于地基承载力较低时以减小地基沉降为主要目的超补偿基础(即建筑物的重量小于挖去的土重),但筏形基础受力和构造均较独立基础复杂,且施工复杂、费用高。 一、梁板式筏基 梁板式筏基由地基梁和基础筏板组成,地基梁的布置与上部结构的柱网设置有关,地基梁一般仅沿柱网布置,底板为连续双向板,也可在柱网间增设次梁,把底板划分为较小的矩形板块(图1)。 图1 梁板式筏基的肋梁布置 (a)双向主肋 (b)纵向主肋、横向次肋 (c)横向主肋、纵向次肋 (a)双向主次肋 梁板式筏基具有:结构刚度大,混凝土用量少,当建筑的使用要求对地下室的防水要求很高时,可充分利用地基梁之间的“格子”空间采取必要的排水措施等优点(图2a)。但同时存在筏基高度大、受地基梁板布置的影响,基础刚度变化不均匀,受力呈现明显的“跳跃”式(图2b),在中筒或荷载较大的柱底易形成受力及配筋的突变,梁板钢筋布置复杂、降水及基坑支护费用高、施工难度大等不足。 图2 梁板式筏基的特点 (a)梁格的利用 (b)地基反力的突变 由于梁板式筏基在技术经济上的明显不足,因此,近年来该基础的使用正逐步减少,一般仅用于柱网布置规则、荷载均匀的某些特定结构中。

地基基础设计规范

地基基础设计规范(GB50007-2011) 1 总则 1.0.1 为了在地基基础设计中贯彻执行国家的技术经济政策,做到安全适用、技术先进、经济合理、确保质量、保护环境,制定本规范。 1.0.2 本规范适用于工业与民用建筑(包括构筑物)的地基基础设计。对于湿陷性黄土、多年冻土、膨胀土以及在地震和机械振动荷载作用下的地基基础设计,尚应符合国家现行相应专业标准的规定。 1.0.3 地基基础设计,应坚持因地制宜、就地取材、保护环境和节约资源的原则;根据岩土工程勘察资料,综合考虑结构类型、材料情况与施工条件等因素,精心设计。 1.0.4 建筑地基基础的设计除应符合本规范的规定外,尚应符合国家现行有关标准的规定。 2 术语和符号 2.1 术语 2.1.1 地基 Subgrade, Foundation soils 支承基础的土体或岩体。 2.1.2 基础 Foundation 将结构所承受的各种作用传递到地基上的结构组成部分。 2.1.3 地基承载力特征值 Characteristic value of subgrade bearing capacity 由载荷试验测定的地基土压力变形曲线线性变形段内规定的变形所对应的压力 值,其最大值为比例界限值。 2.1.4 重力密度(重度) Gravity density, Unit weight 单位体积岩土体所承受的重力,为岩土体的密度与重力加速度的乘积。 2.1.5 岩体结构面 Rock discontinuity structural plane 岩体内开裂的和易开裂的面,如层面、节理、断层、片理等,又称不连续构造面。 2.1.6 标准冻结深度 Standard frost penetration 在地面平坦、裸露、城市之外的空旷场地中不少于10年的实测最大冻结深度的平均值。2.1.7 地基变形允许值 Allowable subsoil deformation 为保证建筑物正常使用而确定的变形控制值。 2.1.8 土岩组合地基 Soil-rock composite subgrade 在建筑地基的主要受力层范围内,有下卧基岩表面坡度较大的地基;或石芽密布并有出露的地基;或大块孤石或个别石芽出露的地基。 2.1.9 地基处理 Ground treatment, Ground improvement 为提高地基强度,或改善其变形性质或渗透性质而采取的工程措施。 2.1.10 复合地基 Composite subgrade,Composite foundation 部分土体被增强或被置换,而形成的由地基土和增强体共同承担荷载的人工地基。2.1.11 扩展基础 Spread foundation 为扩散上部结构传来的荷载,使作用在基底的压应力满足地基承载力的设计要 求,且基础内部的应力满足材料强度的设计要求,通过向侧边扩展一定底面积的基础。 2.1.12 无筋扩展基础 Non-reinforced spread foundation 由砖、毛石、混凝土或毛石混凝土、灰土和三合土等材料组成的,且不需配置钢 筋的墙下条形基础或柱下独立基础。 2.1.13 桩基础 Pile foundation由设置于岩土中的桩和连接于桩顶端的承台组成的基础。 2.1.14 支挡结构 Retaining structure 使岩土边坡保持稳定、控制位移、主要承受侧向荷载而建造的结构物。 2.1.15 基坑

筏形基础与独立基础加防水板的异同分析

筏形基础与独立基础加防水板的异同分析筏板基础尤其是平板式筏基与独立基础加防水板有相似之处,但其各有特点及适用条件。独立基础加防水板具有传力明确、构造简单、方便施工、经济实用等优点,因此,在工程设计中是首选的基础形式。筏形基础刚度大,对地基反力及沉降的调节能力强,既适合于上部荷载较大的高层建筑,也适合于地基承载力较低时以减小地基沉降为主要目的超补偿基础(即建筑物的重量小于挖去的土重),但筏形基础受力和构造均较独立基础复杂,且施工复杂、费用高。 1 筏形基础 1.1 梁板式筏基 梁板式筏基由地基梁和基础筏板组成,地基梁的布置与上部结构的柱网设置有关,地基梁一般仅沿柱网布置,底板为连续双向板,也可在柱网间增设次梁,把底板划分为较小的矩形板块(图1)。 (a)双向主肋(b)纵向主肋、横向次肋 (c)横向主肋、纵向次肋(d)双向主次肋

图1 梁板式筏基的肋梁布置 梁板式筏基具有结构刚度大,混凝土用量少,当对地下室的防水要求很高时,可充分利用地基梁之间的“格子”空间采取必要的排水措施等优点(图2a)。但同时存在筏基高度大、受地基梁板布置的影响,基础刚度变化不均匀,受力呈现明显的“跳跃”式(图2b),在中筒或荷载较大的柱底易形成受力及配筋的突变,梁板钢筋布置复杂,降水及基坑支护费用高,施工难度大等不足。由于梁板式筏基在技术经济上的明显不足,因此,近年来该基础的使用正逐步减少,一般仅用于柱网布置规则、荷载均匀的某些特定结构中。 1.2 平板式筏基 平板式筏基由大厚板基础组成,常用的基础形式有:等厚筏板基础和变厚度的筏板基础(图3)。适合于复杂柱网结构,具有基础刚度大、受力均匀等特点,在中筒或荷载较大的柱底易通过改变筏板的截面高度和调整配筋来满足设计要求,同时具有板钢筋布置简单、降水及支护费用相对较低、施工难度小(超厚度板施工的温度控制除外)等优点。 (a)梁格的利用(b)地基反力的突变 图2 梁板式筏基的特点

独立基础加防水板地下室外墙的设计

独立基础加防水板 地下室外墙的设计 审定:李绪华 审核:苑清山 编制:覃嘉仕 北京京诚华宇建筑设计研究院有限公司 结构所 二○○九年八月 第一部分:独立基础加防水板 独立基础加防水板的基础形式,近年来在民用建筑的单层与多层地下室结构以及荷载不大的小高层结构中应用十分广泛,本文仅就施工图中常用的设计方法,结合我院工程的具体应用情况,对其中的技术细节进行交流,为其她设计提供参考。 一.独立基础加防水板的由来及概念 在大面积地下车库中,柱距通常在6m~9m之间,我院的工程常用柱网为8、4m×8、4m。因跨度较大,采用整体筏板不经济,对上部结构的荷载传递也缺乏针对性,通常采用独立基础加防水板这种基础方案。 独立基础加防水板,即在柱下采用独立基础,为实现防水的目的,在独立基础之间设较薄的板,此板仅起地下室地坪板与防水的作用,不承担地基反力。如此除可降低造价外,还可加大独立基础的沉降,以取得与主楼地基变形的协调。 有地下室且有防水要求时,如地基承载力较高,可采用独立基础加防水

板的形式。 独立基础加防水板基本形式如下图 若地基承载力较低,则可考虑采用筏形基础,筏形基础可选用有梁式或 无梁式。若筏形基础仍无法满足地基承载力要求,或就是存在较大的净浮力,设计应根据地基承载力情况与抗浮要求来综合考虑就是否采用桩基。则基础形式变为独立承台加防水板,如烟台世茂地下室、南京河西新城区莲花村中低价房地下室等。 因抗浮问题比较复杂,涉及到荷载取值、配重经济性、基坑降水、施 工顺序、抗浮桩设计、不均匀沉降控制等诸多因素,本文主要就天然地基的独立基础加防水板加以论述。 二.地基承载力 根据建筑资料确定基础板顶标高,预估基础厚度,查阅岩土工程勘察报 告,确定基础底板所在地基持力层就是否满足基底压力的要求。 地基承载力的修正计算公式见《建筑地基基础设计规范》5、2、4条, (3)(0.5)a ak b d m f f b d ηγηγ=+-+- (5、2、4) 《北京地区建筑地基基础勘察设计规范》中地基承载力修正公式为

地基基础课程设计

地基基础课程设计 学生姓名: xxx 学号:20142023025 指导教师:刘xx 所在学院:工程学院 专业:土木xx 中国·大庆

地基基础课程设计任务书 (柱下独立基础)--土木14-3和土木16升本 一、工程概况 某多层现浇的钢筋混凝土框架结构,其柱网布置如图1所示,柱截面尺寸为500×600mm,室外地坪标高同天然地面,室内外地面高差为0.45m。建筑场地地质条件见表A-1至表A-5,作用于基础顶面的荷载见表B-1至B-2。 图1 柱网布置图 A-1(地下水位在天然地面下2.0m) 编号土层名称土层厚度 (m) γ(kN/m3) ω(%)еI L Es(MPa) C(kPa) φ(°) f ak(kPa) Ⅰ人工填土 1.5 18.0 90 Ⅱ亚黏土 6.0 19.3 32.3 0.90 0.65 5.2 28 15 146 Ⅲ淤泥质亚黏土 4.6 18.5 36.0 1.02 1.0 1.4 24 12 80 Ⅳ粉、细砂7.0 19.0 10 30 160

A-2(地下水位在天然地面下2.2m) 编号土层名称土层厚度 (m) γ(kN/m3) ω(%)еI L Es(MPa) C(kPa) φ(°) f ak(kPa) Ⅰ多年素填土 1.6 17.8 94 Ⅱ粉土 5.2 18.9 26.0 0.82 0.65 7.5 28 15 167 Ⅲ淤泥质粉质 黏土 2.2 17.0 51 1.44 1.0 2.5 24 12 78 Ⅳ粉、细砂10.1 19.0 10 30 160 A-3(地下水位在天然地面下1.8m) 编号土层名称土层厚度 (m) γ(kN/m3) ω(%)еI L Es(MPa) C(kPa) φ(°) f ak(kPa) Ⅰ杂填土 1.0 18.0 94 Ⅱ粉质黏土 4.0 18.3 15 0.71 0.94 6.2 15 20 130 Ⅲ黏土 6.0 20.0 27 0.75 1.0 5.0 24 12 160 Ⅳ粉、细砂8 19.0 10 30 160 A-4(地下水位在天然地面下2.4m) 编号土层名称土层厚度 (m) γ(kN/m3) ω(%)еI L Es(MPa) C(kPa) φ(°) f ak(kPa) Ⅰ粉质黏土 1.0 20.2 17 0.58 163 Ⅱ粉土 3.0 18.5 17 0.70 0.23 5.2 15 18 154 Ⅲ黏土 4.2 21.0 24 0.62 0.86 4.3 24 14 175 Ⅳ粉、细砂12.6 19.0 12 28 160 A-5(地下水位在天然地面下2.8m) 编号土层名称土层厚度 (m) γ(kN/m3) ω(%)еI L Es(MPa) C(kPa) φ(°) f ak(kPa) Ⅰ人工填土 2.0 16.9 20 93 Ⅱ亚黏土 4.5 18.2 16 0.74 0.21 6.0 21 12 148 Ⅲ粉土 4.0 18.6 26 0.85 0.84 5.2 15 15 156 Ⅳ粉、细砂11.6 19.5 13 22 173 注:1、表中粉土的黏粒含量均小于10%;

防水板计算

防水板荷载计算 1.防水板荷载计算: 防水板厚450: 抗浮设计水位:147.5 车库底板底:150.55-3.6-3.5-0.45=143 Q水=10x(147.5-143)=45 Q自重=0.45x25=11.25 45-11.25=33.75 (取34) 2.抗浮计算: 地下车库恒载: ±0.00层:25.15 -3.6层:8.02 -7.1层:0.45x25=11.25 ∑=44.42 0.9x44.42=40< Q水=45 3.防水板计算: 1).按总弯矩系数法进行估算,确定合理板厚。 防水板厚450: q=34,lx=7.8,ly=6.1 Mx=0.5qly (lx-2b/3)ˇ2/8=0.5x34x6.1x (7.8-2x2.6/3)ˇ2/8=477 My=0.5qlx (ly-2b/3)ˇ2/8=0.5x34x7.8x (6.1-2x2.6/3)ˇ2/8=316 内跨,负支座处: X向板带宽:6.1/2=3.05,Mkx=477/3.05=156, As= 16@160(强度1130), 16+ 16@100(裂缝); Y向板带宽:7.8/2=3.9,Mky=316/3.9=81, As= 14@150(强度1026), 14@150(裂缝); 2).按有限元SLABCAD进行计算,计算步骤如下: (1)PMCAD建模(PMCAD建模时须输入暗梁,才能进行网格划分)(2)satwe计算 (3)SLAB楼板数据生成 (4)楼板分析与配筋设计 (5)板带交互设计及验算,取板带计算弯矩(其结果为标准值)。3)。用MORGAIN软件进行裂缝验算,进行合理配筋。 4.防水板考虑裂缝配筋计算结果: 砼:C35,保护层厚度as’=40, 1000x450 板底裂缝宽度w=0.2mm ,板顶裂缝宽度w=0.3mm

地基基础课程设计72175

土木工程专业课程设计岩土工程综合课程设计 专业名称:岩土工程 年级班级:1202班 学生:祝陆彬 指导教师:马 理工大学土木工程学院

二○一五年六月

目录 第1章柱下独立基础设计 (1) 1.1 设计题目 (1) 1.2设计资料 (1) 1.2.1 地形 (1) 1.2.2工程地质条件 (1) 1.2.3基础设计技术参数 (1) 1.2.4水文地质条件 (1) 1.2.5 上部结构资料 (2) 1.3 柱下独立基础设计 (3) 1.3.1 选择基础材料 (3) 1.3.2 选择基础埋置深度 (3) 1.3.3 求地基承载力特征值 (3) 1.3.4 初步选择基底尺寸 (4) 1.3.5 验算持力层地基承载力 (4) 1.3.6 计算基底净反力 (5) 1.3.7基础高度(采用阶梯形基础) (5) 1.3.8 变阶处抗冲切验算 (6) 1.3.9 配筋计算 (7) 1.3.10 基础配筋大样图 (9) 1.3.11 确定○A○C两轴柱子基础底面尺寸 (9) 1.3.12 ○A○C两轴持力层地基承载力验算 (10) 1.4设计图纸 (10) 第2章桩基础设计 (11) 2.1设计题目 (11) 2.2设计资料 (11) 2.2.1 地形 (11) 2.2.2工程地质条件 (11) 2.2.3 岩土设计技术参数 (11) 2.2.4水文地质条件 (12) 2.2.5上部结构资料 (12) 2.2.6 上部结构作用 (12) 2.3 灌注桩基设计 (13) 2.3.1单桩承载力计算 (13) 2.3.2基桩竖向荷载承载力设计值计算 (14) 2.3.3桩基验算 (14) 2.3.4承台设计 (15) 2.2.4.1 承台力计算 (15) 2.3.4.2承台厚度及受冲切承载力验算 (16) 2.3.4.3承台受剪承载力计算 (17) 2.3.4.4承台受弯承载力计算 (18) 2.3.5桩身结构设计 (19) 2.3.5.1桩身轴向承载力验算 (19) 2.3.5.2桩身水平承载力验算 (19)

独立基础加防水板基础的设计-朱炳寅

独基加防水板基础的设计 中国建筑设计研究院 朱炳寅 独基加防水板基础是近年来伴随基础设计与施工发展而形成的一种新的基础形式(图1),由于其传 力简单、明确及费用较低,因此在工程中应用相当普遍。 图1 独基加防水板基础的组成 一、受力特点 1.在独基加防水板基础中,防水板一般只用来抵抗水浮力,不考虑防水板的地基承载能力。独立基 础承担全部结构荷重并考虑水浮力的影响。 2.作用在防水板上的荷载有:地下水浮力w q 、防水板自重s q 及其上建筑做法重量a q ,在建筑物使 用过程中由于地下水位变化,作用在防水板底面的地下水浮力也在不断改变,根据防水板所承担的水浮力的大小,可将独立柱基加防水板基础分为以下两种不同情况: 1)当w q ≤a s q q +时(注意:此处的w q 、s q 和a q 均为荷载效应基本组合时的设计值,即水浮力起 控制作用时的荷载设计值,而不是荷载标准值),建筑物的重量将全部由独立基础传给地基(图2a); 2)当w q >a s q q +时(注意:同上) ,防水板对独立基础底面的地基反力起一定的分担作用,使独立基础底面的部分地基反力转移至防水板,并以水浮力的形式直接作用在防水板底面,这种地基反力的转移对独立基础的底部弯矩及剪力有加大的作用,并且随水浮力的加大而增加(图2b)。 (a) (b) 图2 独基加防水板基础的受力特点

3.在独基加防水板基础中,防水板是一种随荷载情况变化而变换支承情况的复杂板类构件,当w q ≤ a s q q +时(图2a),防水板及其上部重量直接传给地基土,独立基础对其不起支承作用;当w q ≥a s q q +时(图2b),防水板在水浮力的作用下,将净水浮力(即w q -(a s q q +))传给独立基础,并加大了独立基础的弯矩数值。 二、计算原则 在独基加防水板基础中,独立基础及防水板一般可单独计算。 1.防水板计算 1)防水板的支承条件的确定 防水板可以简化成四角支承在独立基础上的双向板(支承边的长度与独立基础的尺寸有关,防水板 为以独立基础为支承的复杂受力双向板)(图3); 图3 防水板的支承条件 2)防水板的设计荷载(图2) (1)重力荷载 防水板上的重力荷载一般包括:防水板自重、防水板上部的填土重量、建筑地面重量、地下室地面 的固定设备重量等; (2)活荷载 防水板上的活荷载一般包括:地下室地面的活荷载、地下室地面的非固定设备重量等; (3)水浮力 防水板的水浮力可按抗浮设计水位确定。 3)荷载分项系数的确定 (1)当地下水水位变化剧烈时,水浮力荷载分项系数按可变荷载分项系数确定,取1.4; (2)当地下水水位变化不大时,水浮力荷载分项系数按永久荷载分项系数确定,取1.35;

地基基础课程设计

土木工程专业课程设计 岩土工程综合课程设计 专业名称:岩土工程 年级班级:1202班 学生姓名:祝陆彬 指导教师:马东方 河南理工大学土木工程学院 二○一五年六月

目录 第1章柱下独立基础设计 0 1.1 设计题目 0 1.2设计资料 0 1.2.1 地形 0 1.2.2工程地质条件 0 1.2.3基础设计技术参数 0 1.2.4水文地质条件 0 1.2.5 上部结构资料 (1) 1.3 柱下独立基础设计 (2) 1.3.1 选择基础材料 (2) 1.3.2 选择基础埋置深度 (2) 1.3.3 求地基承载力特征值 (2) 1.3.4 初步选择基底尺寸 (3) 1.3.5 验算持力层地基承载力 (3) 1.3.6 计算基底净反力 (4) 1.3.7基础高度(采用阶梯形基础) (4) 1.3.8 变阶处抗冲切验算 (5) 1.3.9 配筋计算 (5) 1.3.10 基础配筋大样图 (8) 1.3.11 确定○A○C两轴柱子基础底面尺寸 (8) 1.3.12○A○C两轴持力层地基承载力验算 (9) 1.4设计图纸 (9) 第2章桩基础设计 (10) 2.1设计题目 (10) 2.2设计资料 (10) 2.2.1 地形 (10) 2.2.2工程地质条件 (10) 2.2.3 岩土设计技术参数 (10) 2.2.4水文地质条件 (11) 2.2.5上部结构资料 (11) 2.2.6 上部结构作用 (11) 2.3 灌注桩基设计 (12) 2.3.1单桩承载力计算 (12) 2.3.2基桩竖向荷载承载力设计值计算 (13) 2.3.3桩基验算 (13) 2.3.4承台设计 (14) 2.2.4.1 承台内力计算 (14) 2.3.4.2承台厚度及受冲切承载力验算 (15) 2.3.4.3承台受剪承载力计算 (16) 2.3.4.4承台受弯承载力计算 (17) 2.3.5桩身结构设计 (18) 2.3.5.1桩身轴向承载力验算 (18) 2.3.5.2桩身水平承载力验算 (18)

地基基础课程设计41196教学教材

地基基础课程设计 41196

仅供学习与交流,如有侵权请联系网站删除 谢谢0 土木工程专业课程设计 岩土工程综合课程设计 专业名称: 岩土工程 年级班级: 1202班 学生姓名: 祝陆彬 指导教师: 马东方 河南理工大学土木工程学院

二○一五年六月仅供学习与交流,如有侵权请联系网站删除谢谢1

仅供学习与交流,如有侵权请联系网站删除 谢谢 目录 第1章 柱下独立基础设计 0 1.1 设计题目 ........................................................................................................................ 0 1.2设计资料 . 0 1.2.1 地形 ................................................................................................................... 0 1.2.2工程地质条件 .................................................................................................... 0 1.2.3基础设计技术参数 ............................................................................................ 0 1.2.4水文地质条件 .................................................................................................... 0 1.2.5 上部结构资料 ................................................................................................... 1 1.3 柱下独立基础设计 .. (2) 1.3.1 选择基础材料 ................................................................................................... 2 1.3.2 选择基础埋置深度 ........................................................................................... 2 1.3.3 求地基承载力特征值a f ................................................................................. 3 1.3.4 初步选择基底尺寸 ........................................................................................... 3 1.3.5 验算持力层地基承载力 ................................................................................... 4 1.3.6 计算基底净反力 ............................................................................................... 4 1.3.7基础高度(采用阶梯形基础) ........................................................................ 4 1.3.8 变阶处抗冲切验算 ........................................................................................... 6 1.3.9 配筋计算 ........................................................................................................... 6 1.3.10 基础配筋大样图 ............................................................................................. 9 1.3.11 确定两轴柱子基础底面尺寸 ......................................................................... 9 1.3.12 两轴持力层地基承载力验算 ....................................................................... 10 1.4设计图纸 ....................................................................................................................... 10 第2章 桩基础设计 (11) 2.1设计题目 ....................................................................................................................... 11 2.2设计资料 .. (11) 2.2.1 地形 ................................................................................................................. 11 2.2.2工程地质条件 .................................................................................................. 11 2.2.3 岩土设计技术参数 ......................................................................................... 11 2.2.4水文地质条件 .................................................................................................. 12 2.2.5上部结构资料 .................................................................................................. 12 2.2.6 上部结构作用 ................................................................................................. 12 2.3 灌注桩基设计 . (13) 2.3.1单桩承载力计算 .............................................................................................. 13 2.3.2基桩竖向荷载承载力设计值计算 .................................................................. 14 2.3.3桩基验算 .......................................................................................................... 14 2.3.4承台设计 . (15) 2.2.4.1 承台内力计算 .................................................................................... 15 2.3.4.2承台厚度及受冲切承载力验算 ......................................................... 16 2.3.4.3承台受剪承载力计算 ......................................................................... 17 2.3.4.4承台受弯承载力计算 ......................................................................... 18 2.3.5桩身结构设计 .................................................................................................. 19 2.3.5.1桩身轴向承载力验算 . (19) 2.3.5.2桩身水平承载力验算 (19)

风电机组地基基础设计规定

1 范围 1.0.1 本标准规定了风电场风电机组塔架地基基础设计的基本原则和方法,涉及地基基础的工程地质条件、环境条件、荷载、结构设计、地基处理、检验与监测等内容。 1.0.2 本标准适用于新建的陆上风电场风电机组塔架的地基基础设计。工程竣工验收和已建工程的改(扩建)、安全定检,应参照本标准执行。 1.0.3 风电场风电机组塔架的地基基础设计除应符合本标准外,对于湿陷性土、多年冻土、膨胀土和处于侵蚀环境、受温度影响的地基等,尚应符合国家现行有关标准的要求。

2 规范性引用文件 下列标准中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用标准,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些标准的最新版本。凡是不注日期的引用标准,其最新版本适用于本标准。 GB 18306 中国地震动参数区划图 GB 18451.1 风力发电机组安全要求 GB 50007 建筑地基基础设计规范 GB 50009 建筑结构荷载设计规范 GB 50010 混凝土结构设计规范 GB 50011 建筑抗震设计规范 GB 50021 岩土工程勘察规范 GB 50046 工业建筑防腐蚀设计规范 GB 50153 工程结构可靠度设计统一标准 GB 60223 建筑工程抗震设防分类标准 GB 50287 水力发电工程地质勘察规范 GBJ 146 粉煤灰混凝土应用技术规范 FD 002—2007 风电场工程等级划分及设计安全标准 DL/T 5082 水工建筑物抗冰冻设计规范 JB/T10300 风力发电机组设计要求 JGJ 24 民用建筑热工设计规程 JGJ 94 建筑桩基技术规范 JGJ 106 建筑基桩检测技术规范 JTJ 275 海港工程混凝土防腐蚀技术规范

柱下独立基础课程设计--指导

基础工程课程设计任务书 题目:柱下独立基础课程设计 指导教师:黄晋 浙江理工大学科艺学院建筑系 2011年10月9日

柱下独立基础课程设计任务书 一、设计题目 柱下独立基础设计 二、设计资料 1.地形:拟建建筑场地平整 2.工程地质资料:自上而下依次为: ①杂填土:厚约0.5m,含部分建筑垃圾; ②粉质粘土:厚1.2m,软塑,潮湿,承载力特征值fak=130KN/m2; ③粘土:厚1.5m,可塑,稍湿,承载力特征值fak=180KN/m2; ④全风化砂质泥岩:厚2.7m,承载力特征值fak=240KN/m2; ⑤强风化砂质泥岩:厚3.0m,承载力特征值fak=300KN/m2; ⑥中风化砂质泥岩:厚4.0m,承载力特征值fak=620KN/m2; 表1 地基岩土物理力学参数表 3.水文资料为: 地下水对混凝土无侵蚀性。 地下水位深度:位于地表下1.5m。 4.上部结构资料: 上部结构为多层全现浇框架结构,框架柱截面尺寸为500×500 mm,室外地坪标高同自然地面,室内外高差450mm。柱网布置见图1。

图1 柱网平面图 5.上部结构作用在柱底的荷载效应标准组合值见表2; 上部结构作用在柱底的荷载效应基本组合值见表3; 表2 柱底荷载效应标准组合值 题号F k(KN) M k (KN?m) V k (KN) A轴B轴C轴A轴B轴C轴A轴B轴C轴 1 975 1548 1187 140 100 198 46 48 44 2 1032 1615 1252 164 125 221 55 60 52 3 1090 1730 1312 190 150 242 62 66 57 4 1150 181 5 1370 210 175 271 71 73 67 5 1218 1873 1433 235 193 297 80 83 74 6 1282 1883 1496 25 7 21 8 325 86 90 83 7 1339 1970 1560 284 242 355 96 95 89 8 1402 2057 1618 231 266 377 102 104 98 9 1534 2140 1677 335 288 402 109 113 106 10 1598 2205 1727 365 309 428 120 117 114 表3 柱底荷载效应基本组合值 题号 F (KN) M (KN?m) V (KN) A轴B轴C轴A轴B轴C轴A轴B轴C轴 1 1268 201 2 1544 18 3 130 258 60 62 58 2 1342 2100 1627 214 16 3 288 72 78 67 3 1418 2250 1706 248 195 315 81 86 74 4 1496 2360 1782 274 228 353 93 9 5 88 5 1584 2435 1863 30 6 251 386 104 108 96 6 166 7 244 8 1945 334 284 423 112 117 108 7 1741 2562 2028 369 315 462 125 124 116 8 1823 2674 2104 391 346 491 133 136 128 9 1995 2783 2181 425 375 523 142 147 138 10 2078 2866 2245 455 402 557 156 153 149

地基与基础课程设计任务书 指导书

《土力学与地基基础》课程设计 第一部分墙下条形基础课程设计 一、墙下条形基础课程设计任务书 (一)设计题目 某教学楼采用毛石条形基础,教学楼建筑平面如图4-1 所示,试设计该基础。 (二)设计资料 ⑴工程地质条件如图4-2所示。 杂填土3 KN/m 16=γ粉质粘土 3 KN/m 18=γ3.0=b ηa MP 10=s E 6 .1=d η2 KN/m 196=k f 淤泥质土a 2MP =s E 2 KN/m 88=k f ⑵室外设计地面-0.6m ,室外设计地面标高同天然地面标高。 图4-1平面图 图4-2工程地质剖面图

⑶由上部结构传至基础顶面的竖向力值分别为外纵墙∑F1K=558.57kN,山墙∑F2K=168.61kN,内横墙∑F3K=162.68kN,内纵墙∑F4K=1533.15kN。 ⑷基础采用M5水泥砂浆砌毛石,标准冻深为1.2m。 (三)设计内容 ⑴荷载计算(包括选计算单元、确定其宽度)。 ⑵确定基础埋置深度。 ⑶确定地基承载力特征值。 ⑷确定基础的宽度和剖面尺寸。 ⑸软弱下卧层强度验算。 ⑹绘制施工图(平面图、详图)。 (四)设计要求 ⑴计算书要求书写工整、数字准确、图文并茂。 ⑵制图要求所有图线、图例尺寸和标注方法均应符合新的制图标准,图 纸上所有汉字和数字均应书写端正、排列整齐、笔画清晰,中文书写为仿宋字。 ⑶设计时间一周。

二、墙下条形基础课程设计指导书 (一)荷载计算 1.选定计算单元对有门窗洞口的墙体,取洞口间墙体为计算单元;对无门窗洞口的墙体,则可取1m 为计算单元(在计算书上应表示出来)。 2.荷载计算计算每个计算单元上的竖向力值(已知竖向力值除以计算单元宽度)。(二)确定基础埋置深度d GB50007-2002规定d min =Z d -h max 或经验确定d min =Z 0+(100~200)mm 。式中Z d ——设计冻深,Z d =Z 0·ψzs ·ψzw ·ψze ; Z 0——标准冻深; ψzs ——土的类别对冻深的影响系数,按规范中表5.1.7-1;ψzw ——土的冻胀性对冻深的影响系数,按规范中表5.1.7-2;ψze ——环境对冻深的影响系数,按规范中表5.1.7-3;(三)确定地基承载力特征值f a )5.0()3(m d b ak a -+-+=d b f f γηγη式中 f a ——修正后的地基承载力特征值(kPa );f ak ——地基承载力特征值(已知)(kPa); ηb 、ηb ——基础宽度和埋深的地基承载力修正系数(已知); γ——基础底面以下土的重度,地下水位以下取浮重度(kN/m 3); γm ——基础底面以上土的加权平均重度,地下水位以下取浮重度(kN/m 3);b ——基础底面宽度(m ),当小于3m 按3m 取值,大于6m 按6m 取值;d ——基础埋置深度(m )。(四)确定基础的宽度、高度 b ≥ h f F ?-γa k H 0≥[] 022 0b b b = -α式中F k ——相应于荷载效应标准组合时,上部结构传至基础顶面的竖向力值(kN )。当为柱下独立基础时,轴向力算至基础顶面,当为墙下条形基础时,取1m 长度内的轴向力(kN/m )算至室内地面标高处; γ——基础及基础上的土重的平均重度,取γ=20kN/m 3;当有地下水时,取γ' =20-9.8=10.2kN/m 3; h ——计算基础自重及基础上的土自重G K 时的平均高度(m )。b 2——基础台阶宽度(m);H 0——基础高度(m)。(五)软弱下卧层强度验算 如果在地基土持力层以下的压缩层范围内存在软弱下卧层,则需按下式验算下卧层顶面的地基强度,即 cz z p p +≤az f 式中 p z ——相应于荷载效应标准组合时,软弱下卧层顶面处的附加应力值(kP a ); p cz ——软弱下卧层顶面处土的自重压力标准值(kP a );

相关主题
文本预览
相关文档 最新文档