当前位置:文档之家› 基因算法的应用及改进

基因算法的应用及改进

基因算法的应用及改进
基因算法的应用及改进

(完整word版)用MATLAB编写PSO算法及实例

用MATLAB 编写PSO 算法及实例 1.1 粒子群算法 PSO 从这种模型中得到启示并用于解决优化问题。PSO 中,每个优化问题的潜在解都是搜索空间中的一只鸟,称之为粒子。所有的粒子都有一个由被优化的函数决定的适值( fitness value) ,每个粒子还有一个速度决定它们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。 PSO 初始化为一群随机粒子(随机解),然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个极值来更新自己;第一个就是粒子本身所找到的最优解,这个解称为个体极值;另一个极值是整个种群目前找到的最优解,这个极值是全局极值。另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。 假设在一个维的目标搜索空间中,有个粒子组成一个群落,其中第个粒子表示为一个维的向量 ,。 第个粒子的“飞行 ”速度也是一个维的向量,记为 ,。 第个粒子迄今为止搜索到的最优位置称为个体极值,记为 ,。 整个粒子群迄今为止搜索到的最优位置为全局极值,记为 在找到这两个最优值时,粒子根据如下的公式(1.1)和( 1.2)来更新自己的速度和位置: (1.1) (1. 2) 其中:和为学习因子,也称加速常数(acceleration constant),和为[0,1]范围内的均匀随机数。式(1.1)右边由三部分组成,第一部分为“惯性(inertia)”或“动量(momentum)”部分,反映了粒子的运动“习惯(habit)”,代表粒子有维持自己D N i D ),,,(21iD i i i x x x X N i ,,2,1 i D ),,21i iD i i v v v V ,( 3,2,1 i i ),,,(21iD i i best p p p p N i ,,2,1 ),,,(21gD g g best p p p g ) (2211id gd id id id id x p r c x p r c v w v id id id v x x 1c 2c 1r 2r

微生物基因组DNA提取方法的比较与改进

收稿日期:2006-09-041 作者简介:刘晓侠(1978- ),女,江苏丰县人,嘉兴学院生物与化学工程学院教师,博士,研究方向为基因工程、发酵工程。 微生物基因组DNA 提取方法的比较与改进 刘晓侠1 ,林建平2 ,岑沛霖 2 (11嘉兴学院生物与化学工程学院,浙江嘉兴314001;21浙江大学生物工程研究所,浙江杭州310027) 摘 要:高质量的微生物基因组DNA 是基因工程的前提。目前国内外关于微生物基因组DNA 提取的方法很多,根据研究对象和目的不同而方法各异。该文就现有方法中应用最为广泛的三种提取微生物基因组 DNA 的方法进行了比较,并对它们进行一些改进,获得了针对不同细胞壁成分的微生物相应的简便、快速 且高质量基因组DNA 提取方法,并对提取的DNA 进行PCR 特异性扩增检测,获得较清晰的谱带[1],为基因克隆表达研究奠定了基础。 关键词:微生物;DNA 提取;PCR 中图分类号:Q933 Co m par ison and I m prove m en t of Extracti on M ethods for Geno m i c D NA L I U Xiao -xia 1 ,L I N J ian -p ing 2 ,CE N Pei -lin 2 (11School of B i ol ogy and Che m ical Engineering,J iaxing university,J iaxing,Zhejiang 3140001; 21I nstitute of B i oengineering,Zhejiang University,Hangzhou,Zhejiang 310027) Abstract:H igh quality genom ic DNA fr om m icr oorganis m is the p reconditi on of genetic mani pulati on .Now many methods f or the extracti on of genom ic DNA are devel oped according t o different research object and intenti on .Three kinds of methods widely app lied are compared and ref or med in is olati on of genom ic DNA fr om m icr oorganis m.And ef 2fective methods for extracting high pure genom ic DNA are established considering different cell wall components .Ge 2nom ic DNA gained by three different methods above is s pecifically a mp lified and clear band is observed by agar ose gel electr ophoresis,which is convenient t o genetic mani pulati on later . Key words:m icr oorganis m;DNA extracti on;PCR (Poly merase Chain Reacti on ) 文献标识码:A 1 文章编号:1008-6781(2007)03-0048-03 1 材料与方法111 试验材料 黄色短杆菌(B revibacteriu m helvolum AT CC11822,G -)从北京微生物所购买;放射形土壤杆菌 (Agr obacteriu m radi obacter ACCC10056,G -)从中国菌种保藏中心购买;金黄色葡萄球菌(G +),枯 草芽孢杆菌(G + )为本实验室保藏。 112 试剂及仪器 [2] 主要试剂为10mg/m l 溶菌酶,20mg/m l 蛋白酶K,2×CT AB (十六氨基三乙基溴化铵)。引物序列为:5π-ggaattcggatccatggacttcgaggcattt (B am H I,EcoR I ),3π-ttaagcttcctcacgccaccgcacgcgc (H in d III ),由上海博亚生物技术有限公司合成。 仪器有Lengguang Tech 1Spectrum lab54型分光光度计,L I TT LE GE N I U S (Japan )基因扩增仪。113 聚合酶链式反应(PCR ) PCR 扩增的反应体系为:反应总体积20μl,含10pmole 引物,50ng 基因组DNA,2μl 10×PfuTaq ? 84? 嘉兴学院学报 Jou rna l of J iaxing U n iversity 第19卷第3期2007年5月 Vol .19No .32007.5

BP算法的改进

BP算法的改进 附加动量法 附加动量法使网络在修正其权值时,不仅考虑误差在梯度上的作用,而且考虑在误差曲面上变化趋势的影响。在没有附加动量的作用下,网络可能陷入浅的局部极小值,利用附加动量的作用有可能滑过这些极小值。 该方法是在反向传播法的基础上在每一个权值(或阈值)的变化上加上一项正比于前次权值(或阈值)变化量的值,并根据反向传播法来产生新的权值(或阈值)变化。 带有附加动量因子的权值和阈值调节公式为: 其中k为训练次数,mc为动量因子,一般取0.95左右。 附加动量法的实质是将最后一次权值(或阈值)变化的影响,通过一个动量因子来传递。当动量因子取值为零时,权值(或阈值)的变化仅是根据梯度下降法产生;当动量因子取值为1时,新的权值(或阈值)变化则是设置为最后一次权值(或阈值)的变化,而依梯度法产生的变化部分则被忽略掉了。以此方式,当增加了动量项后,促使权值的调节向着误差曲面 i将变得很小,于是,从而防止了的出现,有助于使网络从误差曲面的局部极小值中跳出。 根据附加动量法的设计原则,当修正的权值在误差中导致太大的增长结果时,新的权值应被取消而不被采用,并使动量作用停止下来,以使网络不进入较大误差曲面;当新的误差变化率对其旧值超过一个事先设定的最大误差变化率时,也得取消所计算的权值变化。其最大误差变化率可以是任何大于或等于1的值。典型的取值取1.04。所以,在进行附加动量法的训练程序设计时,必须加进条件判断以正确使用其权值修正公式。 训练程序设计中采用动量法的判断条件为: E(k)为第k步误差平方和。 V = net.iw{1,1}%输入层到中间层权值 theta1 = net.b{1}%中间层各神经元阈值 W = net.lw{2,1}%中间层到输出层权值 theta2 = net.b{2}%输出层各神经元阈值

基因组学的研究内容

基因组学的研究内容 结构基因组学: 基因定位;基因组作图;测定核苷酸序列 功能基因组学:又称后基因组学(postgenomics基因的识别、鉴定、克隆;基因结构、功能及其相互关系;基因表达调控的研究 蛋白质组学: 鉴定蛋白质的产生过程、结构、功能和相互作用方式 遗传图谱 (genetic map)采用遗传分析的方法将基因或其它dNA序列标定在染色体上构建连锁图。 遗传标记: 有可以识别的标记,才能确定目标的方位及彼此之间的相对位置。 构建遗传图谱 就是寻找基因组不同位置上的特征标记。包括: 形态标记; 细胞学标记; 生化标记;DNA 分子标记 所有的标记都必须具有多态性!所有多态性都是基因突变的结果! 形态标记: 形态性状:株高、颜色、白化症等,又称表型标记。 数量少,很多突变是致死的,受环境、生育期等因素的影响 控制性状的其实是基因,所以形态标记实质上就是基因标记。

细胞学标记 明确显示遗传多态性的染色体结构特征和数量特征 :染色体的核型、染色体的带型、染色 体的结构变异、染色体的数目变异。优点:不受环境影响。缺点:数量少、费力、费时、对生物体的生长发育不利 生化标记 又称蛋白质标记 就是利用蛋白质的多态性作为遗传标记。 如:同工酶、贮藏蛋白 优点: 数量较多,受环境影响小 ?

缺点: 受发育时间的影响、有组织特异性、只反映基因编码区的信息 DNA 分子标记: 简称分子标记以 DNA 序列的多态性作为遗传标记 优点: ? 不受时间和环境的限制 ? 遍布整个基因组,数量无限 ?

不影响性状表达 ? 自然存在的变异丰富,多态性好 ? 共显性,能鉴别纯合体和杂合体 限制性片段长度多态性(restriction fragment length polymorphism , RFLP ) DNA 序列能或不能被某一酶酶切,

标准粒子群算法(PSO)及其Matlab程序和常见改进算法

一、粒子群算法概述 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),1995 年由Eberhart 博士和kennedy博士提出,源于对鸟群捕食的行为研究。该算法最初是受到飞鸟集群活动的规律性启发,进而利用群体智能建立的一个简化模型。粒子群算法在对动物集群活动行为观察基础上,利用群体中的个体对信息的共享使整个群体的运动在问题求解空间中产生从无序到有序的演化过程,从而获得最优解。 PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的粒子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。 PSO 初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个”极值”来更新自己。第一个就是粒子本身所找到的最优解,这个解叫做个体极值pBest。另一个极值是整个种群目前找到的最优解,这个极值是全局极值gBest。另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。 二、算法原理 粒子群算法采用常数学习因子,及惯性权重,粒子根据如下的公式更新自己的速度和位置。 V ki=ωk V i?1i+c1r1(Q bi?Q k?1i)+c2r2(Q bg?Q k?1i)Q ki=Q k?1i+V ki 三、算法步骤 1、随机初始化种群中各微粒的位置和速度; 2、评价个粒子的适应度,将各粒子的位置和适应度储存在各微粒的pbest(Q bi)中,将所有pbest中适应度最优的个体的位置和适应度存储在gbest(Q bg)中。 3、更新粒子的速度和位移。 V ki=ωk V i?1i+c1r1(Q bi?Q k?1i)+c2r2(Q bg?Q k?1i)Q ki=Q k?1i+V ki 4、对每个微粒,与其前一个最优位置比较,如果较好,则将其作为当前的最优位置。 5、比较当前所有的pbest和上一迭代周期的gbest,更新gbest。 6、若满足停止条件(达到要求精度或迭代次数),搜索停止,输出结果,否则,返回2。

DNA提取方法和试剂作用

1试剂的作用 氯仿的作用? 氯仿:克服酚的缺点;加速有机相与液相分层。 最后用氯仿抽提:去除核酸溶液中的迹量酚。(酚易溶于氯仿中) 用酚-氯仿抽提细胞基因组DNA时,通常要在酚-氯仿中加少许异戊醇,为什么? 异戊醇:减少蛋白质变性操作过程中产生的气泡。异戊醇可以降低表面张力,从而减少气泡产生。另外,异戊醇有助于分相,使离心后的上层含DNA的水相、中间的变性蛋白相及下层有机溶剂相维持稳定。 用乙醇沉淀DNA时,为什么加入单价的阳离子? 用乙醇沉淀DNA时,通常要在溶液中加入单价的阳离子,如NaCl 或NaAc,Na+中和DNA分子上的负电荷,减少DNA分子之间的同性电荷相斥力,而易于聚集沉淀。 2 DNA提取分为三个基本步骤 每个步骤的具体方法可根据样品种类、影响提取的物质以及后续步骤的不同而有区别。 .细胞的破碎 细菌有坚硬的细胞壁,首先要破碎经胞。方法有三种;①机械方法:超声波处理法、研磨法、匀浆法;②化学试剂法:用SDS处理细胞;③酶解法:加入溶菌酶或蜗牛酶,都可使细胞壁破碎。 利用研磨或者超声破碎细胞,并通过加入去污剂以除掉膜脂。 加入蛋白酶,醋酸盐沉淀,或者酚/氯仿抽提,以除掉细胞内的蛋白,如与DNA 结合的组蛋白。将DNA在冷乙醇或异丙醇中沉淀,因为DNA在醇中不可溶而黏在一起,这一步也能除掉盐分。另外,目前也有利用吸附过柱的方法提取DNA 的商业化试剂盒。 DNA提取的几种方法 (1).浓盐法 A. 利用RNA和DNA在电解溶液中溶解度不同,将二者分离,常用的方法是用1M 氯纳抽提,得到的DNA粘液与含有少量蛋白质氯仿一起摇荡,使乳化,再离心除去蛋白质,此时蛋白质凝胶停留在水相及氯仿相中间,而DNA位于上层水相中,用2倍体积95%乙醇可将DNA 钠盐沉淀出来. B. 也可用0.15 MNaCL液反复洗涤细胞破碎液除去RNA,再以1MNaCL提取脱氧核糖蛋白,再按氯仿---异醇法除去蛋白. 两种方法比较,后种方法使核酸降解可能少一些. C.以稀盐酸溶液提取DNA 时,加入适量去污剂,如SDS可有助于蛋白质与DNA 的分离。在提取过程中为抑制组织中的DNase对DNA 的降解作用,在氯化钠溶液中

高通量测序生物信息学分析(内部极品资料,初学者必看)

基因组测序基础知识 ㈠De Novo测序也叫从头测序,是首次对一个物种的基因组进行测序,用生物信息学的分析方法对测序所得序列进行组装,从而获得该物种的基因组序列图谱。 目前国际上通用的基因组De Novo测序方法有三种: 1. 用Illumina Solexa GA IIx 测序仪直接测序; 2. 用Roche GS FLX Titanium直接完成全基因组测序; 3. 用ABI 3730 或Roche GS FLX Titanium测序,搭建骨架,再用Illumina Solexa GA IIx 进行深度测序,完成基因组拼接。 采用De Novo测序有助于研究者了解未知物种的个体全基因组序列、鉴定新基因组中全部的结构和功能元件,并且将这些信息在基因组水平上进行集成和展示、可以预测新的功能基因及进行比较基因组学研究,为后续的相关研究奠定基础。 实验流程: 公司服务内容 1.基本服务:DNA样品检测;测序文库构建;高通量测序;数据基本分析(Base calling,去接头, 去污染);序列组装达到精细图标准 2.定制服务:基因组注释及功能注释;比较基因组及分子进化分析,数据库搭建;基因组信息展 示平台搭建 1.基因组De Novo测序对DNA样品有什么要求?

(1) 对于细菌真菌,样品来源一定要单一菌落无污染,否则会严重影响测序结果的质量。基因组完整无降解(23 kb以上), OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;每次样品制备需要10 μg样品,如果需要多次制备样品,则需要样品总量=制备样品次数*10 μg。 (2) 对于植物,样品来源要求是黑暗无菌条件下培养的黄化苗或组培样品,最好为纯合或单倍体。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (3) 对于动物,样品来源应选用肌肉,血等脂肪含量少的部位,同一个体取样,最好为纯合。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (4) 基因组De Novo组装完毕后需要构建BAC或Fosmid文库进行测序验证,用于BAC 或Fosmid文库构建的样品需要保证跟De Novo测序样本同一来源。 2. De Novo有几种测序方式 目前3种测序技术 Roche 454,Solexa和ABI SOLID均有单端测序和双端测序两种方式。在基因组De Novo测序过程中,Roche 454的单端测序读长可以达到400 bp,经常用于基因组骨架的组装,而Solexa和ABI SOLID双端测序可以用于组装scaffolds和填补gap。下面以solexa 为例,对单端测序(Single-read)和双端测序(Paired-end和Mate-pair)进行介绍。Single-read、Paired-end和Mate-pair主要区别在测序文库的构建方法上。 单端测序(Single-read)首先将DNA样本进行片段化处理形成200-500bp的片段,引物序列连接到DNA片段的一端,然后末端加上接头,将片段固定在flow cell上生成DNA簇,上机测序单端读取序列(图1)。 Paired-end方法是指在构建待测DNA文库时在两端的接头上都加上测序引物结合位点,在第一轮测序完成后,去除第一轮测序的模板链,用对读测序模块(Paired-End Module)引导互补链在原位置再生和扩增,以达到第二轮测序所用的模板量,进行第二轮互补链的合成测序(图2)。 图1 Single-read文库构建方法图2 Paired-end文库构建方法

DNA提取方法和试剂作用详解

1 试剂的作用 氯仿的作用? 氯仿:克服酚的缺点;加速有机相与液相分层。 最后用氯仿抽提:去除核酸溶液中的迹量酚。(酚易溶于氯仿中) 用酚-氯仿抽提细胞基因组DNA 时,通常要在酚-氯仿中加少许异戊醇,为什么? 异戊醇:减少蛋白质变性操作过程中产生的气泡。异戊醇可以降低表面张力,从而减少气泡产生。另外,异戊醇有助于分相,使离心后的上层含DNA 的水相、中间的变性蛋白相及下层有机溶剂相维持稳定。 用乙醇沉淀DNA时,为什么加入单价的阳离子? 用乙醇沉淀DNA时,通常要在溶液中加入单价的阳离子,如NaCl或 NaAc,Na+中和DNA 分子上的负电荷,减少DNA 分子之间的同性电荷相斥力, 而易于聚集沉淀。 2 DNA 提取分为三个基本步骤 每个步骤的具体方法可根据样品种类、影响提取的物质以及后续步骤的不同而 有区别。 .细胞的破碎 细菌有坚硬的细胞壁,首先要破碎经胞。方法有三种;①机械方法:超声波处理法、研磨法、匀浆法;②化学试剂法:用SDS 处理细胞;③酶解法:加入溶菌酶或蜗牛酶,都可使细胞壁破碎。 利用研磨或者超声破碎细胞,并通过加入去污剂以除掉膜脂。 加入蛋白酶,醋酸盐沉淀,或者酚/氯仿抽提,以除掉细胞内的蛋白,如与DNA 结合的组蛋白。将DNA 在冷乙醇或异丙醇中沉淀,因为DNA 在醇中不可溶而黏在一起,这一步也能除掉盐分。另外,目前也有利用吸附过柱的方法提取DNA 的商业化试剂盒。 DNA 提取的几种方法 (1).浓盐法 A.利用RNA 和DNA 在电解溶液中溶解度不同,将二者分离,常用的方法是用1M 氯纳抽提,得到的DNA 粘液与含有少量蛋白质氯仿一起摇荡,使乳化,再离心除去蛋白质,此时蛋白质凝胶停留在水相及氯仿相中间,而DNA 位于上层水相中,用2 倍体积95%乙醇可将DNA 钠盐沉淀出来. B.也可用0.15 MNaCL 液反复洗涤细胞破碎液除去RNA,再以1MNaCL提取脱氧 核糖蛋白,再按氯仿---异醇法除去蛋白. 两种方法比较,后种方法使核酸降解可能少一些.

粒子群算法解决函数优化问题

粒子群算法解决函数优化问题 1、群智能算法研究背景 粒子群优化算法(Particle Swarm Optimization,PSO)是由Kennedy 和Eberhart 在研究鸟类和鱼类的群体行为基础上于1995 年提出的一种群智能算法,其思想来源于人工生命和演化计算理论,模仿鸟群飞行觅食行为,通过鸟集体协作使群体达到优。 PSO算法作为一种新的群智能算法,可用于解决大量非线性、不可微和多峰值的复杂函数优化问题,并已广泛应用于科学和工程领域,如函数优化、神经网络训练、经济调度、模式识别与分类、结构设计、电磁场和任务调度等工程优化问题等。 PSO算法从提出到进一步发展,仅仅经历了十几年的时间,算法的理论基础还很薄弱,自身也存在着收敛速度慢和早熟的缺陷。如何加快粒子群算法的收敛速度和避免出现早熟收敛,一直是大多数研究者关注的重点。因此,对粒子群算法的分析改进不仅具有理论意义,而且具有一定的实际应用价值。 2、国内外研究现状 对PSO算法中惯性权重的改进:Poli等人在速度更新公式中引入惯性权重来更好的控制收敛和探索,形成了当前的标准PSO算法。 研究人员进行了大量的研究工作,先后提出了线性递减权值( LDIW)策略、模糊惯性权值( FIW) 策略和随机惯性权值( RIW) 策略。其中,FIW 策略需要专家知识建立模糊规则,实现难度较大,RIW 策略被用于求解动态系统,LDIW策略相对简单且收敛速度快, 任子晖,王坚于2009 年,又提出了基于聚焦距离变化率的自适应惯性权重PSO算法。 郑春颖和郑全弟等人,提出了基于试探的变步长自适应粒子群算

法。这些改进的PSO算法既保持了搜索速度快的特点, 又提高了全局搜索的能力。 对PSO算法的行为和收敛性的分析:1999 年采用代数方法对几种典型PSO算法的运行轨迹进行了分析,给出了保证收敛的参数选择范围。在收敛性方面Fransvan den Bergh引用Solis和Wets关于随机性算法的收敛准则,证明了标准PSO算法不能收敛于全局优解,甚至于局部优解;证明了保证收敛的PSO算法能够收敛于局部优解,而不能保证收敛于全局优解。 国内的学者:2006 年,刘洪波和王秀坤等人对粒子群优化算法的收敛性进行分析,指出它在满足收敛性的前提下种群多样性趋于减小,粒子将会因速度降低而失去继续搜索可行解的能力,提出混沌粒子群优化算法。 2008 年,黄翀鹏和熊伟丽等人分析惯性权值因子大小对PSO算法收敛性所带来的影响,对粒子群算法进行了改进。2009 年,高浩和冷文浩等人,分析了速度因子对微粒群算法影响,提出了一种基于Gaussian 变异全局收敛的粒子群算法。并证明了它能以概率 1 收敛到全局优解。 2010 年,为提高粒子群算法的收敛性,提出了基于动力系统的稳定性理论,对惯性权重粒子群模型的收敛性进行了分析,提出了使得在算法模型群模型收敛条件下的惯性权重和加速系数的参数约束关系,使算法在收敛性方面具有显著优越性。在PSO算法中嵌入别的算法的思想和技术。 1997年,李兵和蒋慰孙提出混沌优化方法; 1998年,Angeline在PSO算法中引入遗传算法中的选择算子,该算法虽然加快了算法的收敛速度,但同时也使算法陷入局部优的概率大增,特别是在优化Griewank 基准函数的优值时得到的结果不理想; 2004 年,高鹰和谢胜利将混沌寻优思想引入到粒子群优化算法中,首先对当前群体中的优粒子进行混沌寻优, 再用混沌寻优的结果随机替换群体中的一个粒子,这样提出另一种混沌粒子群优化算法。

用MATLAB编写PSO算法及实例

用MATLAB编写PSO算法及实例

用MATLAB 编写PSO 算法及实例 1.1 粒子群算法 PSO 从这种模型中得到启示并用于解决优化问题。PSO 中,每个优化问题的潜在解都是搜索空间中的一只鸟,称之为粒子。所有的粒子都有一个由被优化的函数决定的适值( fitness value) ,每个粒子还有一个速度决定它们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。 PSO 初始化为一群随机粒子(随机解),然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个极值来更新自己;第一个就是粒子本身所找到的最优解,这个解称为个体极值;另一个极值是整个种群目前找到的最优解,这个极值是全局极值。另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。 假设在一个维的目标搜索空间中,有个粒子组成一个群落,其中第个粒子表示为一个维的向量 ,。 第个粒子的“飞行 ”速度也是一个维的向量,记为 ,。 第个粒子迄今为止搜索到的最优位置称为个体极值,记为 ,。 整个粒子群迄今为止搜索到的最优位置为全局极值,记为 在找到这两个最优值时,粒子根据如下的公式(1.1)和( 1.2)来更新自己的速度 D N i D ),,,(21iD i i i x x x X =N i ,,2,1 =i D ),,21i iD i i v v v V ,(=3,2,1 =i i ),,,(21iD i i best p p p p =N i ,,2,1 =),,,(21gD g g best p p p g =

和位置: (1.1) (1. 2) 其中:和为学习因子,也称加速常数(acceleration constant),和为 [0,1]范围内的均匀随机数。式(1.1)右边由三部分组成,第一部分为“惯性(inertia)”或“动量(momentum)”部分,反映了粒子的运动“习惯(habit)”,代表粒子有维持自己先前速度的趋势;第二部分为“认知(cognition)”部分,反映了粒子对自身历史经验的记忆(memory)或回忆(remembrance),代表粒子有向自身历史最佳位置逼近的趋势;第三部分为“社会(social)”部分,反映了粒子间协同合作与知识共享的群体历史经验。 二、算法设计 2.1 算法流程图 2.2 算法实现 算法的流程如下: ()) (2211id gd id id id id x p r c x p r c v w v -+-+*=id id id v x x +=1c 2c 1r 2 r

DNA提取方法

一、移液器使用 移液器(也称作“枪”)是所有分子实验操作不可或缺的工具,其正确使用是顺利开展各项实验的先决条件。为保证实验结果的准确性和稳定性,同时延长移液器的使用寿命,请大家细心操作并遵守以下使用规则和注意事项: 1.从未使用移液器或刚进入实验室的研究生,只有完全准确掌握移液器使用 规则后方可独立使用移液器。 2.按需要选用合适量程的移液器,调整刻度时,注意看移液器刻度表,不要 超过最大刻度。 3.装配吸头时,用力不要过猛,以免吸头难以脱卸,同时损坏移液器。 4.吸取液体时,注意要慢慢向上释放控制按钮以免吸入速度过快导致液体进 入移液器内。 5.切忌平放带有残液的吸头的移液器,更不能倒放。 6.使用移液器清洗或溶解固体物质等需反复吸打时,请装配多个叠加的吸 头,且调整刻度不超过移液器最大量程的一半。 7.移液器使用完毕,务必调到最大刻度,并稳妥地放回对应的移液器架上。 8.细心操作,如不小心使移液器表面沾到液体,请及时清洗干净;如不小心 将液体吸入移液器内,应及时清洗。 9.严禁用沾有放射性或腐蚀性物质的手套触摸移液器表面;严禁不熟悉移液 器构造者私自校对移液器刻度。 第一节叶片总DNA的提取 一、取样须知 1. 取样之前一般要先编号(牌子和离心管的编号)和挂牌,务必保证离心管中 的叶片是来自于同一编号单株,编号切勿混淆; 2. 为保证质量,所取样品尽量为幼嫩叶片组织,并尽量保证全程低温(使用冰 袋或碎冰); 3. 取样时间最好在晴天或阴天上午叶面露水干后进行,尽量使样品不沾水及泥 土。 4. 如使用塑料袋装样品,切记将袋内空气排尽,以免在–70℃保存时塑料袋破裂导致样品混合。 二、试剂的配制 1. Tris-HCl ( 1.0 M/L, pH8.0 ) 121.16g Tris-HCl 和43ml HCl 加dd H2O 定容至1 L. 2. EDTA ( 0.5M/L, pH8.0 ) 186g EDTA和25g NaOH加dd H2O 定容至1 L. 3. 2%CTAB 81.9g NaCl 100ml 1.0 M/L Tris-HCl ( pH8.0 )

基于遗传算法的智能组卷策略的研究综述Word版

《基于遗传算法的智能组卷策略的研究》综述 姓名刘春晓 学号 2015216104 专业计算机技术 班级 3班 天津大学计算机科学与技术学院 2016年 6 月

基于遗传算法的智能组卷策略的研究综述 摘要随着计算机技术的日益发展和成熟,手工组卷已经不能满足现代的教学要求,组卷智能化在提高教学质量方面发挥着很重要的作用。文章对组卷策略进行了梳理,对比和总结,主要介绍了遗传算法的优点,从遗传算法的基本流程、编码方式、适应度函数和遗传算子方面进行了归纳。接着分析了目前智能组卷策略研究的不足和挑战,最后总结了未来的研究设想。 关键词智能组卷;遗传算法;适应度函数;遗传算子 1引言 在计算机技术发展飞速的今天,计算机应用已经慢慢的渗透到人类生活的方方面面,计算机的辅助教学功能也逐渐得到大家的重视。传统的手工组卷受到人为因素的干扰,导致考试的效率低下,组卷智能化已经成为不可或缺的一项研究。 近几年,智能优化算法倍受人们关注,如人工神经网络、遗传算法,为解决复杂问题提供了新的方法,并在诸多领域取得了成功。组卷问题是一个在一定约束条件下的多目标参数优化问题,针对传统的组卷算法具有组卷速度慢、成功率较低、试卷质量不高等缺点。 智能组卷算法在计算机辅导教学过程中之所以受到重视,是因为它把人工智能技术运用到了组卷中,能够智能的设计试卷的结构和内容,包括试卷的难易度,知识点,题型和题量等,使生成的试卷质量比较高。 遗传算法(Genetic Algorithm ,GA)基于达尔文的进化论和孟德尔的自然遗传学说,是通过模拟遗传选择和自然淘汰的生活进化的随机搜索和全局优化算法(张建国 2009:1)。由于该算法有智能的搜索技术和收敛性质,可以较好的满足智能组卷的要求。所以本系统选用遗传算法作为组卷算法,以试题章节、试题数量、试题知识点、试题题型、试题难度分布、试题曝光度、覆盖度、试题分数分配等约束为组卷条件,使试卷有更好的区分度。 基于遗传算法的智能组卷系统实现了组卷智能化,优化了其他组卷算法的不足,使教学更加自动化和公平化,提高了组卷效率。 2研究现状分析 在系统开发之前,应该首先选择适合本系统的组卷算法,组卷算法的选取对试卷的质量影响颇大。只有相对好的算法才能提高组卷的效率和成功率。组卷实质上就是在复杂的约束条件下的多目标求最优解的问题,保证试卷能够满足教学要求。随着计算机技术和人工智能理论的飞速发展,各种组卷策略层出不穷,选择适合的算法对系统运行有极其重要的作用。分析各种组卷算法的优缺点,找到最优的组卷算法是该系统开发的任务之一。这里我们就现阶段组卷算法进行分析和总结。 现阶段比较成熟的组卷算法有随机选取法、回溯试探法和遗传算法。随机选取法生成的试题重复率较高,难以达到预期效果。回溯试探法是一种有条件的深度优化法,对于状态类型和题量较小的题库系统而言,组卷成功率高,但占用内

PSO算法

群体智能方法:是通过模拟自然界生物群体行为来实现人工智能的一种方法。 群体智能这个概念来自对自然界中生物群体的观察,群居性生物通过协作表现出的宏观智能行为特征被称为群体智能。 群体智能具有如下特点: (1) 控制是分布式的,不存在中心控制。因而它更能够适应当前网络环境下的工作状态,并且具有较强的鲁棒性,即不会由于某一个或几个个体出现故障而影响群体对整个问题的求解。 (2) 群体中的每个个体都能够改变环境,这是个体之间间接通信的一种方式,这种方式被称为“激发工作”。由于群体智能可以通过非直接通信的方式进行信息的传输与合作,因而随着个体数目的增加,通信开销的增幅较小,因此,它具有较好的可扩充性。 (3) 群体中每个个体的能力或遵循的行为规则非常简单,因而群体智能的实现比较方便,具有简单性的特点 (4) 群体表现出来的复杂行为是通过简单个体的交互过程突现出来的智能,因此,群体具有自组织性。 PSO基本原理 最初是为了在二维几何空间图形中优化模拟鸟群不可预测的运动。PSO 算法从这种模型中得到启示并用于解决优化问题。PSO算法中,每个优化问题的潜在解都是搜索空间中的一只鸟,称之为“粒子”。所有的粒子都有一个由目标函数决定的适应值(fitness value),每个粒子都由一个两维的速度变量决定各自飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。PSO算法初始化为一群随机粒子(随机解),然后通过迭代找到最优解。在每一次迭代中,粒子通过跟踪两个极值来更新自己。第一个极值就是粒子本身所经历的最优解,这个解被称为个体极值。另一个极值是整个种群目前所经历的最优解,这个极值被称为全局极值。另外也可以只选取整个种群中的一部分作为粒子的邻居,在所有邻居中的极值被称为局部极值。

植物DNA提取经典方法

植物DNA提取经典方法:CTAB法原理 植物DNA提取经典方法:CTAB法原理 植物DNA提取经典方法CTAB法 标题:植物DNA提取经典方法:CTAB法原理 摘要: CTAB(hexadecyltrimethylammonium bromide,十六烷基三甲基溴化铵),是一种阳离子去污剂,具有从低离子强度溶液中沉淀核酸与酸性多聚糖的特性。在高离子强度的溶液中(>0 7mol L NaCl),CTAB与蛋白质和多聚糖形成复…… 关键词:植物DNA提取经典方法CTAB法 最专业的生命科学学术交流论坛 CTAB(hexadecyltrimethylammonium bromide,十六烷基三甲基溴化铵),是一种阳离子去污剂,具有从低离子强度溶液中沉淀核酸与酸性多聚糖的特性。在高离子强度的溶液中(>0.7mol/L NaCl),CTAB与蛋白质和多聚糖形成复合物,只是不能沉淀核酸.通过有机溶剂抽提,去除蛋白、多糖、酚类等杂质后加入乙醇沉淀即可使核酸分离出来。 注:CTAB溶液在低于15℃时会形成沉淀析出,因此,在将其加入冰冷的植物材料之前必须预热,且离心时温度不要低于15℃。 一、CTAB提取缓冲液的经典配方: Tris-HCl (pH8.0)提供一个缓冲环境,防止核酸被破坏; EDTA螯合Mg2+或Mn2+离子,抑制DNase活性; NaCl 提供一个高盐环境,使DNP充分溶解,存在于液相中; CTAB溶解细胞膜,并结合核酸,使核酸便于分离;

β-巯基乙醇是抗氧化剂,有效地防止酚氧化成醌,避免褐变,使酚容易去除。 二、CTAB提取缓冲液的改进配方: (1) PVP(聚乙烯吡咯烷酮)是酚的络合物,能与多酚形成一种不溶的络合物质,有效去除多酚,减少DNA中酚的污染;同时它也能和多糖结合,有效去除多糖; (2) 蛋白质的去除:酚/氯仿抽提使用变性剂变性(SDS、异硫氰酸胍等)高盐洗涤蛋白酶处理核酸分离,纯化; (3)多糖的去除:高盐法:用乙醇沉淀时,在待沉淀溶液中加入1/2体积的5M NaCl,高盐可溶解多糖。用多糖水解酶将多糖降解。在提取缓冲液中加一定量的氯苯(1/2体积),氯苯可以与多糖的羟基作用,从而去除多糖。用PEG8000代替乙醇沉淀DNA:在500 μL DNA液中加入200μl 20% PEG8000 (含1.2 M NaCl),冰浴20min.核酸分离,纯化; (4) 多酚的去除:在抽提液中加入防止酚类氧化的试剂:β-巯基乙醇、抗坏血酸、半胱氨酸、二硫苏糖醇等加入易与酚类结合的试剂:如PVP(聚乙烯吡咯酮),PEG(聚乙二醇),它们与酚类有较强的亲和力,可防止酚类与DNA的结合; (5) 盐离子的去除:70%的乙醇洗涤核酸吸附,沉淀和溶解使用合适的吸附材料吸附核酸,其它的杂质均被洗掉,达到纯化DNA的目的另一种方式加入1/10体积的NaAc(pH5.2,3M),用预冷的乙醇或异丙醇沉淀RNA吸附或沉淀后应用70%的乙醇洗涤,以除去盐离子等若长期储存建议使用TE缓冲液溶解TE中的EDTA能螯合Mg2+或Mn2+离子,抑制DNasepH值为8.0,可防止DNA发生酸解。 三、基因组DNA提取常见问题 DNA中含有蛋白、多糖、多酚类杂质。DNA在溶解前,有酒精残留,酒精抑制

全基因组关联分析的原理和方法题库

全基因组关联分析(Genome-wide association study;GWAS)是应用基因组中数以百万计的单核苷酸多态性(single nucleotide ploymorphism,SNP)为分子遗传标记,进行全基因组水平上的对照分析或相关性分析,通过比较发现影响复杂性状的基因变异的一种新策略。 随着基因组学研究以及基因芯片技术的发展,人们已通过GWAS方法发现并鉴定了大量与复杂性状相关联的遗传变异。近年来,这种方法在农业动物重要经济性状主效基因的筛查和鉴定中得到了应用。 全基因组关联方法首先在人类医学领域的研究中得到了极大的重视和应用,尤其是其在复杂疾病研究领域中的应用,使许多重要的复杂疾病的研究取得了突破性进展,因而,全基因组关联分析研究方法的设计原理得到重视。 人类的疾病分为单基因疾病和复杂性疾病。单基因疾病是指由于单个基因的突变导致的疾病,通过家系连锁分析的定位克隆方法,人们已发现了囊性纤维化、亨廷顿病等大量单基因疾病的致病基因,这些单基因的突变改变了相应的编码蛋白氨基酸序列或者产量,从而产生了符合孟德尔遗传方式的疾病表型。复杂性疾病是指由于遗传和环境因素的共同作用引起的疾病。目前已经鉴定出的与人类复杂性疾病相关联的SNP位点有439个。全基因组关联分析技术的重大革新及其应用,极大地推动了基因组医学的发展。(2005年, Science杂志首次报道了年龄相关性视网膜黄斑变性 GWAS结果,在医学界和遗传学界引起了极大的轰动,此后一系列GWAS陆续展开。2006年, 波士顿大学医学院联合哈佛大学等多个研究机构报道了基于佛明翰心脏研究样本关于肥胖的 GWAS结果 (Herbert等. 2006);2007年, Saxena等多个研究组联合报道了与 2型糖尿病( T2D )关联的多个位点, Samani等则发表了冠心病 GWAS结果( Samani 等. 2007); 2008年, Barrett等通过 GWAS发现了 30个与克罗恩病( Crohns ' disrease)相关的易感位点; 2009年, W e is s等通过 GWAS发现了与具有高度遗传性的神经发育疾病——自闭症关联的染色体区域。我国学者则通过对 12 000多名汉族系统性红斑狼疮患者以及健康对照者的GWAS发现了 5个红斑狼疮易感基因, 并确定了 4个新的易感位点( Han 等. 2009)。截至 2009年 10月,已经陆续报道了关于人类身高、体重、血压等主要性状, 以及视网膜黄斑、乳腺癌、前列腺癌、白血病、冠心病、肥胖症、糖尿病、精神分裂症、风湿性关节炎等几十种威胁人类健康的常见疾病的 GWAS结果, 累计发表了近万篇论文, 确定了一系列疾病发病的致病基因、相关基因、易感区域和 SNP变异。)标记基因的选择:

PSO算法使用简介

PSO算法使用简介 1 PSO工具箱简介 PSOt为PSO的工具箱,该工具箱将PSO算法的核心部分封装起来,提供给用户的为算法的可调参数,用户只需要定义好自己需要优化的函数(计算最小值或者最大值),并设置好函数自变量的取值范围、每步迭代允许的最大变化量(称为最大速度,Max_V)等,即可自行优化。 与遗传算法相比,PSO仅需要调整少数几个参数即可实现函数的优化。该算法对待优化函数没有任何特别的要求(如可微分、时间连续等),因而其通用性极强,对多变量、高度非线性、不连续及不可微的情况更加具有其优势。 该工具箱的使用主要分为几个步骤: 1) 在Matlab中设置工具箱的路径; 2) 定义待优化函数; 3) 调用PSO算法的核心函数:pso_Trelea_vectorized()。 其中第三步最关键,用户需要根据自己的需要设置好参数,可使算法极快收敛。 下面对各个步骤一一介绍。 2 设置工具箱的路径 2.1 在Matlab的命令窗口点击"File-->Set Path....",如下图: 2.2 在弹出的对话框中点击"Add Folder",然后浏览找到工具箱放置的位置,如下图 2.3 若想用到该工具箱所带的测试函数,还需要用如上同样的方法,设置路径指向工具箱下的"testfunctions"文件夹; 2.4 若想用于训练神经网络的训练,设置路径指向工具箱下的"testfunctions"文件夹"nnet" 3 定义待优化函数(参见文件test_func.m) 用户根据自己的需要,定义需要优化的函数。举个例子,若想计算如下二元函数的最小值 z= 0.5*(x-3)^2+0.2*(y-5)^2-0.1 其中自变量x、y的范围均为[-50, 50]。 可按下面的方法定义该待优化函数: %%----------------------------------------------------------------%% function z=test_func(in) nn=size(in); x=in(:,1); y=in(:,2); nx=nn(1); for i=1:nx temp = 0.5*(x(i)-3)^2+0.2*(y(i)-5)^2-0.1; z(i,:) = temp; end %%----------------------------------------------------------------%% 需要特别指出的是:PSO算法的核心函数pso_Trelea_vectorized()自动初始化一组随机

DNA提取方法进展综述

DNA提取方法进展综述 2014-05-10 14:18:51 来源:浏览次数:21 网友评论 0 条 [DNA提取方法进展综述] 张宁,王凤山(山东大学药学院生化与生物技术药物研究所,山东济南250012《中国海洋药物》杂志2004年第2期(总第98期)摘要:dna的提取是分子生物学研究的基础技术,提取的DNA的纯度及结构完整性是进行基因工程(Genetic Engi [海洋生物微生物 DNA提取方法进展细胞组织蛋白质] 张宁,王凤山 (山东大学药学院生化与生物技术药物研究所,山东济南250012 《中国海洋药物》杂志2004年第2期(总第98期) 摘要:dna的提取是分子生物学研究的基础技术,提取的DNA的纯度及结构完整性是进行基因工程(Genetic Engineering)各项研究所必需的条件。近年来一些新的或改进的DNA提取纯化方法不断出现,本文对从陆生动物、植物、微生物以及海洋生物提取DNA的方法进行综述。 关键词:DNA;提取;动物;植物;微生物;海洋生物 Advances of DNA extraction methods ZHANG Ning,WANG Feng-shan (Institute o f Biochemic and Biotechnological Drugs,School of Pharmacy,Shandon g University, Jinan 250012,China) Abstract:DNA extraction is a basic technology of molecular biology. The purity and the integrality of DNA structure are necessary for different experiments of gene eng ineering. In recent years there have been some new or improved DNA extraction methods appeared. The methods of DNA extraction from animals,plants,microorga nisms and marine organisms were summarized in this article. Keywords:DNA;ex traction;an imals;plants;microorganisms;marineo rganisms 自20 世纪50年代Watson和Crick提出DNA双螺旋模型以来,分子生物学在广度和深度上都获得空前的发展。DNA作为分子生物学研究的基础,在生物领域尤其是遗传学方面的研究日渐深人,在此基础上产生的基因工程(Genetic Engineering)技术已在医药、农业、畜牧业等领域获得广泛应用。研究和应用DNA的基础是提取纯化结构完整的DNA,为此针对不同来源的DNA建立了不同的提取纯化方法。本文对从陆生动物、植物、微生物以及海洋生物来源的DNA的传统提取方法及近年来诸多的改良方法进行综述。

相关主题
文本预览
相关文档 最新文档