当前位置:文档之家› 氦氖激光束的模式分析

氦氖激光束的模式分析

氦氖激光束的模式分析
氦氖激光束的模式分析

氦氖激光束的模式分析

1958年法国人柯勒斯(Connes)根据多光束的干涉原理,提出了一种共焦球面干涉仪。到了60年代,这种共焦系统广泛用作激光器的谐振腔。同时,由于激光科学的发展,迫切需要对激光器的输出光谱特性进行分析。全息照相和激光准直要求的是单横模激光器;激光测长和稳频技术不仅要求激光器具有单横模性质,而且还要求具有单纵模的输出。于是在共焦球面干涉仪的基础上发展了一种球面扫描干涉仪。这种干涉仪以压电陶瓷作扫描元件或用气压进行扫描,其分辨率可达107以上。

共焦腔结构有许多优点。首先由于共焦腔具有高度的模简并特性,所以不需要严格的模匹配,甚至光的行迹有些离轴也无甚影响。同时对反射镜面的倾斜程度也没有过分苛刻的要求,这一点对扫描干涉仪是特别有利的。由于共焦腔衍射损失小而且在反射镜上的光斑尺寸很小,因此可以大大降低对反射面的加工要求,便于批量生产、推广使用。

【实验目的】

1.了解扫描干涉仪原理,掌握其使用方法。

2.学习观测激光束横模、纵模的实验方法。

【实验仪器】

WGL-4 型氦氖激光器模式实验装置 (含氦氖激光器及其电源、扫描干涉仪、高速光电接收器及其电源、锯齿波发生器、示波器。)

【实验原理】

一、激光器模的形成

激光是由受激辐射产生的。在光子作用下,当高能级的粒子向低能级跃迁时,产生一个和入射光子频率,相位及传播方向相同的光子,称为受激辐射。

在热平衡情况下,原子的能量按玻尔兹曼分布。当原子受外界能量激励时(称泵浦),从低能级跃迁到高能级,泵浦方式可能是光激励,碰撞激励,热激励,化学激励等。介质经过泵浦可出现高能级粒子布居数超出低能级的情况,这种违反玻尔兹曼分布的情况称为粒子数反转。在实现粒子数反转的情况下,受激辐射可以大于受激吸收,从而产生光放大。因此,实现粒子数反转是激光产生的基本条件。

He—Ne激光器的工作物质是He 、Ne混合气体,泵浦方式为气体放电。气体放电引起粒子碰撞,碰撞激发He原子,He原子的能量经共振转移交给Ne原子,使Ne 原子的3S2、2S2能级的粒子布居数超过比它低的3P4、2P4能级。3S2—2P4的能级间距所相应的波长为6328?。

激光器的三个基本组成部分是增益介质、谐振腔和激励能源。如果用某种激励方式,在介质的某一对能级间形成粒子数反转分布,由于自发辐射和受激辐射的作用,将有一定频率的光波产生,在腔内传播,并被增益介质逐渐增强、放大,如图1所示。实际上,由于能级总有一定的宽度以及其它因素的影响,增益介质的增益有一个频率

分布,如图1所示,图中)

G为光的增益系数。只有频率落在这个范围内的光在介质

(

中传播时,光强才能获得不同程度的放大。但只有单程放大,还不足以产生激光,要产生激光还需要有谐振腔对其进行光学反馈,使光在多次往返传播中形成稳定、持续

的振荡。形成持续振荡的条件是,光在谐振腔内往返一周的光程差应是波长的整数倍,即

m m nL λ=2 (1-1)

式中,n 为折射率,对气体n ≈1;L 为腔长;m 为正整数。这正是光波相干的 极大条件,满足此条件的光将获得极大增强。每一个m 对应纵向一种稳定的电磁

场分布,叫作一个纵模,m 称作纵模序数。m 是一个很大的数,通常我们不需要知道它的数值,而关心的是有几个不同的m 值,即激光器有几个不同的纵模。从(1-1)式中,我们还看出,这也是驻波形成的条件,腔内的纵模是以驻波形式存在的,m 值反映的恰是驻波波腹的数目,纵模的频率为

nL

c m m 2=ν (1-2)

同样,一般我们不去求它,而关心的是相邻两个纵模的频率间隔

nL

c nL c m nL c m m m 222)!(1=-+=-+νν (1-3)

因此,当:n 、L 已知时,可以算出纵模间隔。从(1-3)式中看出,相邻纵模频率间隔和激光器的腔长成反比,即腔越长,相邻纵模频率间隔越小,满足振荡条件的纵模个数越多;相反,腔越短,相邻纵模频率间隔越大,在同样的增益曲线范围内,纵模个数就越少。因而用缩短腔长的办法是获得单纵模运行激光器的方法之一。光波在腔内往返振荡时,一方面有增益,使光不断增强;另一方面也存在着多种损耗,使光强减弱,如介质的吸收损耗、散射损耗、镜面的透射损耗、放电毛细管的衍射损耗等。所以,不仅要满足谐振条件,还需要增益大于各种损耗的总和,才能形成持续振荡,有激光输出。如图2所示,有五个纵模满足谐振条件,其中有两个纵模的增益小于损耗,所以,有三个纵模形成持续振荡。对于纵模的观测,由于m 值很大,相邻纵模频率差异很小,一般的分光仪器无法分辨,必须使用精度较高的检测仪器才能观测到。

图 1 光的增益曲线

谐振腔对光多次反馈,在纵向形成不同的场分布,那么对横向会产生影响,这是

因为光每经过放电毛细管反馈一次,就相当于一次衍射,多次反复衍射,就在横向形成了一个或多个稳定的衍射光斑。每一个衍射光斑对应一种稳定的横向电磁场分布,称为一个横模。图3中,给出了几种常见的基本横模光斑图样。我们所看到的复杂的光斑则是这些基本光斑的叠加。激光的模式用mnq

TEM 来表示激光谐振腔内电磁场的情况,其中,m 、n 为横模的标记,q 为纵模的标记。m 是沿X 轴场强为零的节点数,n 是沿Y 轴场强为零的节点数。

激光器模式的分析

(1)激光器的纵模

当腔长L 恰是半个波长的整数倍时,才能在腔内形成驻波,形成稳定的振荡,故有

2/λ=q L (1-4)

q 即为纵模的阶数,λ是光波在激活物质中的波长,故有ν=λ2/n c ,c 是光速。代入

图 2 纵模和纵模间隔

图3 常见的横模光斑图

式(4),得

L n qc q 22/=ν

q ν为在腔内能形成稳定振荡的频率,不同的整数q 值对应着不同的输出频率q ν。相邻两纵模(1=?q )的频率差为

L n c 22/=ν? (1-5)

激光器对不同频率有不同的增益,只有当增益值大于阈值的频率才能形成振荡而产生激光。例如L =1m 的氦氖激光器,其相邻纵模频率差Hz L c 8105.12/?==ν?,若其增益曲线的频宽为1.5×109HZ ,则可输出10个纵模。腔长L 越短,则ν?越大,输出的纵模就越少。对于增益频宽1.5×109HZ 的激光,若L 小于0.15m ,则将输出一个纵模,即输出单纵模的激光。

(2)激光器的横模

对于满足形成驻波共振条件的各个纵模来说,还可能存在着横向场分布不同的横模。同一纵模不同横模,其频率亦有差异。某一个任意的mnq TEM 模的频率mnq ν经计算得

})]1)(1arccos[()1(22{42/12

12r L r L n m q L n c mnq --++π+=ν 其中1r 、2r 分别是谐振腔两反射镜的曲率半径。若横模阶数由m 增到m m m ?+=',n

增到n n n ?+=',则有

})]1)(1arccos[()1(22{42/12

12r L r L n m n m q L n c q n m --?+?+++π+=ν'' 两式相减,得不同横模之间的频率差 })]1)(1arccos[()(1{22/1212r L r L n m L n c n m mn --?+?π=ν?'

' (1-6)

将横模频率差的式(1-6)和纵模频率差的式(1-5)相比,二者差一个分数因子,并且相邻横模(m ?、1=?n )之间的频率差ν?一般总是小于相邻纵模频率差L n c 22/的。例如,增益频宽为1.5×109HZ 、腔长L =0.24m 的平凹(∞==21,1r m r )谐振激光器,其纵模频率差按式(11)算得为6.25×108HZ ;对于横模00TEM 和横模01TEM 之间的频率差用01

00、ν?(即000=-=?m 、101=-=?n )表示,将各值代入,可得相邻横模频

率差

Hz n 32/12801001002.1})]24.01)(124.01arccos[()10(1{24.02103?=∞

--+π?=ν?、 (0.12=n ) 这支激光器的增益频宽Hz 9105.1?里含有2.5个纵模。当用扫描干涉仪来分析这支激光器的模式时,若它仅存在00TEM 模,有时可看到3个尖峰,有时看到两个尖峰;

当还存在01TEM 模时,可有两组或三组尖峰,有的组可能有一个峰。这些都是由于激

光器腔长L 的变化所得到的。用扫描干涉仪分析激光器模式是很方便的。

二、共焦球面扫描干涉仪工作原理

1.共焦球面扫描干涉仪。

图4为共焦球面扫描干涉仪内部结构示意图。它是由两个曲率半径r 相等、镀有高反膜层的球面镜M 1、M 2组成,二者之间的距离L 称作腔长。压电陶瓷内外两面加上

锯齿波电压后,驱动一个反射镜作周期性运动,用以改变腔长L 而实现光谱扫描。由于腔长L 恰等于曲率半径r ,所以两反射镜焦点重合,组成共焦系统。当一束波长为λ的光近轴入射到干涉仪内时,在忽略球差情况下,光线走一闭合路径,即光线在腔内反射,往返两次之后又按原路行进。从图5可以看出,一束入射光将有1、2两组透射光。若m 是光线在腔内往返的次数,则1组经历了4m 次反射;2组经历了4m+2次反射。设反射镜的反射率为R ,Harcher 给出了1、2两组的透射光强分别为

1222

2201]sin )12(1[)1(-β-+-=R R R T I I

(2-1) 图 5 共焦球面扫描干涉仪内部光路图

图 4 共焦球面扫描干涉仪内部结构示意图

122I R I = (2-2)

这里0I 是入射光强,T 是透射率,β是往返一次所形成的位相差,即

λπ=β/222L n (2-3)

2n 是腔内介质的折射率.

当k k (π=β是任意整数),即

λ=k L n 24 (2-4)

时,透射率有极大值

22201max )1/(/R T I I T -== (2-5)

由于腔内存在着各种各样的吸收,我们假设吸收率为A ,则有

1=++A T R (2-6)

将式(2-5)代入式(2-4),在反射率1≈R 情况下,可有

2

max )1(41T

A T +≈ (2-7)

据式(2-4)可知,改变腔长L 或改变折射率2n ,就可以使不同波长的光以最大透射

率透射,实现光谱扫描。可用改变腔内气体气压的方法来改变2n ,本实验中将锯齿波

电压加到压电陶瓷上驱动和压电陶瓷相连的反射镜来改变腔长L ,以达到光谱扫描的目的。

3.共焦球面干涉仪的性能指标

(1)自由光谱范围λ?

由干涉方程式(4)λ=k L n 24对k 和λ求全微分得k k ?λ-=λ?,则

L n k k 2214/)/(λ=λ=λ?=? (2-8)

式(2-8)所表示的λ?就是干涉仪的自由光谱范围。由νν?=λλ?//可知,用ν?频率间隔来表示光谱自由范围则有

L n c 24/=ν? (2-9)

自由光谱范围ν?在12=n 时,仅由腔长L 决定。它表征波长在λ~

λ?+λ范围内的光,产生的干涉圆环不相互重叠。

(2)分辨本领0R

干涉仪的分辨本领0R 定义为波长λ和在该处可分辨的最小波长间隔δλ的比值,

δλλ=/0R (2-10)

(3)精细常数F

精细常数F 是描述干涉仪谱线的细锐程度的,它被定义为干涉仪的自由光谱范围和分辨极限之比,即

δνν?=δλλ?=//F (2-11)

F 也表征了在自由光谱范围内可分辨的光谱单元的数目。干涉仪精细常数受反射镜面的规整度和反射率R 影响。共焦球面干涉仪的反射率R 和精细常数F 之间有

)1/(2R R F -π= (2-12)

【实验内容及步骤】

1.实验装置如图 5 所示。实验装置的各组成部分说明如下:

(1)待测He-Ne 激光器。

(2)激光电源。

(3)共焦球面扫描干涉仪。使激光器的各个模按波长(或频率)展开,其透射光中心波长为632.8nm 。仪器上有四个鼓轮,其中两个鼓轮用于调节腔的上下、左右位置,另外两个鼓轮用于调节腔的方位。

(4)驱动器。驱动器电压除了加在扫描干涉仪的压电陶瓷上,还同时输出到示波器的X 轴作同步扫描。为了便于观察,我们希望能够移动干涉序的中心波长在频谱图中的位置,以使每个序中所有的模式能完整地展现在示波器的荧光屏上。为此,驱动器还增设了一个直流偏置电路,用以改变扫描的电压起点。

图 5 实验装置图

(5)光电二极管。将扫描干涉仪输出的光信号转变成电信号,并输入到示波器Y 轴。

(6)示波器。用于观测He-Ne 激光器的频谱图。

2.实验内容及步骤

(1)按实验装置图连接线路。经检查无误,方可进行实验。

(2)开启激光电源。

(3)使激光束通过小孔光阑。调节扫描干涉仪的上下、左右位置,使激光束正入射到扫描干涉仪中,再细调干涉仪,使干涉仪腔镜反射回来的光点回到光阑的小孔附近(注意:不要使光点回到光阑的小孔中),且使反射光斑的中心与光阑的小孔大致重合,这时入射光束与扫描干涉仪的光轴基本平行。

(4)开启扫描干涉仪驱动器和示波器的电源开关。调节驱动器输出电压的大小(即调节“幅度”旋钮)和频率,在光屏上可以看到激光经过扫描干涉仪后形成的光斑。

注意:如果在光屏上形成两个光斑,要在保持反射光斑的中心与光阑的小孔大致重合的条件下,调节扫描干涉仪的鼓轮,使经过扫描干涉仪后形成的两个光斑重合。

(5)降低驱动器的频率,观察光屏上的干涉条纹,调节干涉仪上的轮,使干涉条纹最宽。

注意:调节过程中,要保持反射光斑的中心与光阑的小孔大致重合

(6)将光电二极管对准扫描干涉仪输出光斑的中心,调高驱动器的频率,观察示波器上展现的频谱图。进一步细调扫描干涉仪的鼓轮及光电二极管的位置,使谱线尽量强。

(7)根据干涉序个数和频谱的周性期,确定哪些模属于同一个干涉序。

(8)改变驱动器的输出电压(即调节“幅度”旋钮),观察示波器上干涉序数目的变化。改变驱动器的扫描电压起点(即调节“直流偏置”旋钮),可使某一个干涉序或某几个干涉序的所有模式完整地展现在示波器的荧光屏上。

(9)根据自由光谱范围的定义,确定哪两条谱线之间对应着自由光谱范围..R S ν?(本实验使用的扫描干涉仪的自由光谱范围..R S ν?= 3.75GHz)。测出示波器荧光屏上与

..R S ν?相对应的标尺长度,计算出二者的比值,既示波器荧光屏上1毫米对应的频率间

隔值。

(10)在同一干涉序内,根据纵模定义,测出纵模频率间隔1=??q ν。将测量值与理论值相比较 (注:待测激光器的腔长L 由实验室给出)。

提示:本实验使用的He-Ne 激光器发出的激光的偏振态有两个,它们互相垂直,相互独立。只有偏振态相同的纵模的间隔才符合(1-3)式。因此测量纵模间隔需要判断哪些模对应同一偏振态。

(11)确定示波器荧光屏上频率增加的方向,以便确定在同一纵模序数内哪个模是基横模,哪些模是高阶横模。

提示:激光器刚开启时,放电管温度逐渐升高,腔长L 逐渐增大,根据(1-2)式,q ν逐渐变小。在示波器荧光屏上可以观察到谱线向频率减小的方向移动,所以,其反方向就是示波器荧光屏上频率增加的方向。

(12)测出不同横模的频率间隔n m ?+??ν,并与理论值相比较,检查辨认是否正确,

确定n m ?+?的数值。(注:谐振腔两个反射镜的曲率半径1R 、2R 由实验室给出)。

(13)观察激光束在远处光屏上的光斑形状。这时看到的应是所有横模的叠加图,需结合图3中单一横模的形状加以辨认,确定出每个横模的模序,既每个横模的m 、n 值。

【思考题】

1.观测时,为何要先确定出示波器荧光屏上被扫出的干涉序的数目?

相对一般光源,激光有良好的单色性和方向性。受激辐射后经过谐振腔等多种机制的作用和相互干涉,最后形成一个或者多个离散的、稳定的谱线,这些谱线就是激光的模。在激光生产与应用中,我们常常需要先知道激光器的模式状况,如定向、制导、精密测量、光通讯等工作需要光束质量较好的基横模激光器,而激光稳频和激光测距等应用不仅要求基横模而且要求单色性更好的单纵模激光器。因此,激光器模式分析是激光研究和应用的基础.激光横模决定了激光器光束质量,不同激光技术应用对激光光束有不同要求,因此利用光学器件对激光光束进行变换是光电专业科研与技术人员必备的技能。

【注意事项】

1.实验过程中要注意眼睛的防护,绝对禁止用眼睛直视激光束。

2.开启或关闭扫描干涉仪的驱动器时,必须先将“幅度”旋钮置于最小值(反时针方向旋转到底),以免将其损坏。

3.扫描干涉仪的压电陶瓷易碎,在实验过程中应轻拿轻放。

4.扫描干涉仪的通光孔,在平时不用时应用胶带封好,防止灰尘进入。

5.锯齿波发生器不允许空载,必须连接扫描干涉仪后,才能打开电源。

【参考文献】

1. L .《激光光谱学的基础和技术》W ·戴姆特瑞德 著 黄潮 译

2.《Introduction to Optical Electronics 》 A ,YARIV

3. 周炳琨《激光原理》 北京.国防工业出版社. 1995

4. 俞宽新 等 《激光原理与激光技术》 北京工业大学出版社 200

5.1. 附

WGL-4 型 氦氖激光器模式实验装置技术参数:

氦氖激光器

谐振腔曲率半径 1m ∞

中心波长632.8nm 共焦球面扫描干涉仪

腔长20mm

凹面反射镜曲率半径20mm

凹面反射镜反射率99%

精细常数>100

自由光谱范围4GHz

5-1 氦氖激光器的模式分析 实验报告

近代物理实验报告 指导教师: 得分: 实验时间: 2009 年 03 月 17 日, 第 三 周, 周 三 , 第 5-8 节 实验者: 班级 材料0705 学号 200767025 姓名 童凌炜 同组者: 班级 材料0705 学号 200767007 姓名 车宏龙 实验地点: 综合楼 501 实验条件: 室内温度 ℃, 相对湿度 %, 室内气压 实验题目: 氦氖激光器的模式分析 实验仪器:(注明规格和型号) 扫描干涉仪;高速光电接收器;锯齿波发生器;示波器; 半外腔氦氖激光器及电源;准直用氦氖激光器及电源;准直小孔。 实验目的: (1) 了解扫描干涉仪原理,掌握其使用方法; (2) 学习观测激光束横模、纵模的实验方法。 实验原理简述: 1. 激光器模式的形成 激光器由增益介质、谐振腔、激励能源三个基本部分组成。如果用某 种激励的方式,使介质的某一对能级间形成的粒子数反转分布,由于 自发辐射的作用,将有一定频率的光波产生,并在谐振腔内传播,被 增益介质增强、放大。形成持续振荡的条件是:光在谐振腔内往返一 周的光程差为波长的整数倍,即 q q uL λ=2 满足此条件的光将获得极大的增强。 每一个q 对应纵向一种稳定的电磁场分布λq ,叫一个纵模,q 称为纵模 序数。纵模的频率为 uL c q q 2=ν 相邻两个纵模的频率间隔为 uL c q 21= ?=?ν 因此可以得知, 缩短腔长的方法是获得单纵模运行激光器的办法之一。

当光经过放电毛细管时,每反馈一次就相当于一次衍射,多次反复衍射,就在横向的同一波腹处形成一个或多个稳定的衍射光斑。每一个衍射光斑对应一种稳定的横向电磁场分布,称为一个横模。模式指激光器内能够发生稳定光振荡的形式,每一个膜,既是纵模,又是横模,纵模描述了激光器输出分立频率的个数,横模描述了垂直于激光传播方向的平面内光场的分布情况。激光的线宽和相干长度由纵模决定,光束的发散角、光斑的直径和能量的横向分布由横模决定。,一个膜由三个量子数表示,通常记作TEM mnq 。 横模序数越大,频率越高。不同横模间的频率差为: ?? ??????????????--?+?=?2/121,)1)(1(arccos )(12''R L R L n m uL c n m mn πν 相邻横模频率间隔为: ?? ??????????????--?=?=?=?+?2/12111)1)(1(arccos 1'R L R L q n m πνν 相邻横模频率间隔与纵模频率间隔的比值是一个分数,分数的大小由激光器的腔长和曲率半径决定,腔长与曲率半径的比值越大,分数值就越大。 另外, 激光器中产生的横模个数,除了与增益有关外,还与放电毛细管的粗细、内部损耗等因素有关。 2. 共焦球面扫描干涉仪 共焦球面干涉仪用压电陶瓷作为扫描元件或用气压进行扫 描。 2.1 共焦球面扫描干涉仪的机构和工作原理 共焦球面扫描干涉仪是一个无源腔,由两块球形凹面反射镜 构成,两块镜的曲率半径和腔长相等(即R 1=R 2=l ,构成共焦 腔)。其中一块反射镜固定不动,另一块反射镜固定在可随 外电压变化而变化的压电陶瓷环上。如右图所示,由低膨胀 系数材料制成的间隔圈,用以保持两球形凹面反射镜R 1、R 2 总处于共焦状态。 当一束波长为λ的光近轴入射到 干涉仪内时,在忽略球差的条件 下,在共焦腔中经四次反射形成 一条闭合路径,光程近似为4l , 如右图所示 编号为1和1’ 的两组透光强分别为: 1222201]sin )12(1)[1(--+-=βR R R T I I 和 121'I R I = β为往返一次所形成的相位差,即

氦氖激光的生物学作用原理

氦氖激光的生物学作用原理 氦氖激光对机体有独特的生物学作用,利用这些作用,可使氦氖激光广泛应用于临床。本文对氦氖激光照射在机体免疫、血液循环、组织代谢及神经等不同系统功能上的作用进行综述。 标签:氦氖激光;机体免疫;血液循环;组织代谢;综述 激光技术为临床诊断提供了崭新的手段。强激光治疗可至靶组织发生不可逆性损伤,而弱激光治疗则不会。其不同波长不同剂量照射不同部位所产生的作用不同。 1弱氦氖激光照射对血液循环的作用[1] 1.1降低血液粘滞度实验证明,低能量激光可通过降低红细胞聚集性、红细胞压积及血小板聚集率,降低血液的高凝状态。 1.2促进红细胞变形低能量激光能够改善脂蛋白色谱改变,使红细胞磷脂成分增加,磷脂和胆固醇比值正值化,使红细胞变形力增强。 1.3增强血液携氧能力激光照射血液后使血液中多种酶的活性被激发,蛋白质的动能增加,铁卟啉的氧化作用加速。 2弱激光的生物学刺激效应 激光总体上可分为热效应、压强效应、光化学效应及电磁场效应,而弱激光具有另一种作用:生物刺激作用。其生物效应直接产生于辐射而不是热效应。 2.1累积作用小剂量有累积作用,一次大剂量照射或将该剂量分成小剂量多次照射所引起的生物效应相同。 2.2抛物线效应即照射次数有阈值,有一极大值。再增加照射次数刺激作用反而减弱,甚至变为抵制作用。 2.3刺激或抵制弱激光刺激是产生兴奋还是抑制,取决于它的能量密度。一般来说,能量密度越小时表现为兴奋作用,能量密度大时表现为抑制作用。 3对组织代谢的影响 3.1提高多种酶活性[2] 弱激光照射可提高多种酶活性,这些酶类的激活,可提高内源性胰岛素水平,促进糖代谢利用和ATP的产生。 3.2促进细胞增殖效应实验证实低强度激光对成纤维细胞、纤维原细胞、内

氦氖激光束的模式分析..

氦氖激光束的模式分析 1958年法国人柯勒斯(Connes)根据多光束的干涉原理,提出了一种共焦球面干涉仪。到了60年代,这种共焦系统广泛用作激光器的谐振腔。同时,由于激光科学的发展,迫切需要对激光器的输出光谱特性进行分析。全息照相和激光准直要求的是单横模激光器;激光测长和稳频技术不仅要求激光器具有单横模性质,而且还要求具有单纵模的输出。于是在共焦球面干涉仪的基础上发展了一种球面扫描干涉仪。这种干涉仪以压电陶瓷作扫描元件或用气压进行扫描,其分辨率可达107以上。 共焦腔结构有许多优点。首先由于共焦腔具有高度的模简并特性,所以不需要严格的模匹配,甚至光的行迹有些离轴也无甚影响。同时对反射镜面的倾斜程度也没有过分苛刻的要求,这一点对扫描干涉仪是特别有利的。由于共焦腔衍射损失小而且在反射镜上的光斑尺寸很小,因此可以大大降低对反射面的加工要求,便于批量生产、推广使用。 【实验目的】 1.了解扫描干涉仪原理,掌握其使用方法。 2.学习观测激光束横模、纵模的实验方法。 【实验仪器】 WGL-4 型氦氖激光器模式实验装置 (含氦氖激光器及其电源、扫描干涉仪、高速光电接收器及其电源、锯齿波发生器、示波器。) 【实验原理】 一、激光器模的形成 激光是由受激辐射产生的。在光子作用下,当高能级的粒子向低能级跃迁时,产生一个和入射光子频率,相位及传播方向相同的光子,称为受激辐射。 在热平衡情况下,原子的能量按玻尔兹曼分布。当原子受外界能量激励时(称泵浦),从低能级跃迁到高能级,泵浦方式可能是光激励,碰撞激励,热激励,化学激励等。介质经过泵浦可出现高能级粒子布居数超出低能级的情况,这种违反玻尔兹曼分布的情况称为粒子数反转。在实现粒子数反转的情况下,受激辐射可以大于受激吸收,从而产生光放大。因此,实现粒子数反转是激光产生的基本条件。 He—Ne激光器的工作物质是He 、Ne混合气体,泵浦方式为气体放电。气体放电引起粒子碰撞,碰撞激发He原子,He原子的能量经共振转移交给Ne原子,使Ne 原子的3S2、2S2能级的粒子布居数超过比它低的3P4、2P4能级。3S2—2P4的能级间距所相应的波长为6328?。 激光器的三个基本组成部分是增益介质、谐振腔和激励能源。如果用某种激励方式,在介质的某一对能级间形成粒子数反转分布,由于自发辐射和受激辐射的作用,将有一定频率的光波产生,在腔内传播,并被增益介质逐渐增强、放大,如图1所示。实际上,由于能级总有一定的宽度以及其它因素的影响,增益介质的增益有一个频率 分布,如图1所示,图中) G为光的增益系数。只有频率落在这个范围内的光在介质 ( 中传播时,光强才能获得不同程度的放大。但只有单程放大,还不足以产生激光,要产生激光还需要有谐振腔对其进行光学反馈,使光在多次往返传播中形成稳定、持续

5-1 氦氖激光器的模式分析 实验报告

近代物理实验报告 指导教师: 得分: 实验时间: 2009 年 03 月 17 日, 第 三 周, 周 三 , 第 5-8 节 实验者: 班级 材料0705 学号 200767025 姓名 童凌炜 同组者: 班级 材料0705 学号 200767007 姓名 车宏龙 实验地点: 综合楼 501 实验条件: 室内温度 ℃, 相对湿度 %, 室内气压 实验题目: 氦氖激光器的模式分析 实验仪器:(注明规格和型号) 扫描干涉仪;高速光电接收器;锯齿波发生器;示波器; 半外腔氦氖激光器及电源;准直用氦氖激光器及电源;准直小孔。 实验目的: (1) 了解扫描干涉仪原理,掌握其使用方法; (2) 学习观测激光束横模、纵模的实验方法。 实验原理简述: 1. 激光器模式的形成 激光器由增益介质、谐振腔、激励能源三个基本部分组成。如果用某种激励的方式,使介质的某一对能级间形成的粒子数反转分布,由于自发辐射的作用,将有一定频率的光波产生,并在谐振腔内传播,被增益介质增强、放大。形成持续振荡的条件是:光在谐振腔内往返一周的光程差为波长的整数倍,即 q q uL λ=2 满足此条件的光将获得极大的增强。 每一个q 对应纵向一种稳定的电磁场分布λq ,叫一个纵模,q 称为纵模序数。纵模的频率为 uL c q q 2=ν 相邻两个纵模的频率间隔为 uL c q 21= ?=?ν 因此可以得知, 缩短腔长的方法是获得单纵模运行激光器的办法之一。

当光经过放电毛细管时,每反馈一次就相当于一次衍射,多次反复衍射,就在横向的同一波腹处形成一个或多个稳定的衍射光斑。每一个衍射光斑对应一种稳定的横向电磁场分布,称为一个横模。模式指激光器内能够发生稳定光振荡的形式,每一个膜,既是纵模,又是横模,纵模描述了激光器输出分立频率的个数,横模描述了垂直于激光传播方向的平面内光场的分布情况。激光的线宽和相干长度由纵模决定,光束的发散角、光斑的直径和能量的横向分布由横模决定。,一个膜由三个量子数表示,通常记作TEM mnq 。 横模序数越大,频率越高。不同横模间的频率差为: ?? ??????????????--?+?=?2 /121,)1)(1(arccos )(12' 'R L R L n m uL c n m mn πν 相邻横模频率间隔为: ?? ? ?????????????--?=?=?=?+?2 /12111)1)(1(arccos 1' R L R L q n m πνν 相邻横模频率间隔与纵模频率间隔的比值是一个分数,分数的大小由激光器的腔长和曲率半径决定,腔长 与曲率半径的比值越大,分数值就越大。 另外, 激光器中产生的横模个数,除了与增益有关外,还与放电毛细管的粗细、内部损耗等因素有关。 2. 共焦球面扫描干涉仪 共焦球面干涉仪用压电陶瓷作为扫描元件或用气压进行扫描。 2.1 共焦球面扫描干涉仪的机构和工作原理 共焦球面扫描干涉仪是一个无源腔,由两块球形凹面反射镜构成,两块镜的曲率半径和腔长相等(即R 1=R 2=l ,构成共焦腔)。其中一块反射镜固定不动,另一块反射镜固定在可随外电压变化而变化的压电陶瓷环上。如右图所示,由低膨胀系数材料制成的间隔圈,用以保持两球形凹面反射镜R 1、R 2总处于共焦状态。 当一束波长为λ的光近轴入射到干涉仪内时,在忽略球差的条件下,在共焦腔中经四次反射形成一条闭合路径,光程近似为4l ,如右图所示 编号为1和1’ 的两组透光强分别为: 1 222201]sin )12(1)[1(--+-=βR R R T I I 和 121'I R I = β为往返一次所形成的相位差,即 λπβ/22?=ul

氦氖激光器及电源的选购

氦氖激光器及电源的选购 外腔式氦氖激光器内腔式氦氖激光器氦氖激光器生产厂家 倍压整流电路激光电源变压器电路激光电源开关电路激光电源 激光器的横向模式激光器的纵模间隔氦氖激光器的型号命名 氦氖激光器 从原理上讲氦氖激光器主要由放电管(既充有工作物质氦气与氖气的玻璃管及电极)、输出镜及全反镜(既光学谐振腔)、电源(既激励装置)三部部分组成,但在实际中把它们做成激光器(放电管、输出镜及全反镜)与电源两部分。氦氖激光器按放电管与输出镜、全反镜连接方式的不同可分为外腔式氦氖激光器、内腔式氦氖激光器及半外腔式氦氖激光器(因使用很少故不作介绍)三种。氦氖激光电源从电路上分通常可分为倍压整流电路激光电源、变压器电路激光电源和开关电路激光电源三种。 当激光器工作时,输出镜及全反镜互相平行且与调直的放电管垂直,并保持不变时激光器输出功率最大且稳定,当输出镜及全反镜互相平行且与调直的放电管垂直的状态发生变化,激光器输出功率会产生波动,输出功率会下降,严重时不出光。 1、外腔式氦氖激光器 外腔式氦氖激光器的放电管与输出镜及全反镜非一体。放电管两端被磨成一特殊角度(布鲁斯特角),用两块石英玻璃密封, 两块石英玻璃称为布氏窗。布氏窗(角)使输出激光成线偏振光。 放电管及输出镜、全反镜被安装于放电管的直度及输出镜与全反镜的平行度都可以调节的机壳内,机壳的上下盖有散热孔内。 输出镜、全反镜的平行度调节装是很重要的。输出镜、全反镜的调节螺丝可分为有粗细调(螺距大与小)与无粗细调两种结构,且有外置与内置之分。 无粗细调的输出镜、全反镜调节螺丝螺距通常是0.5mm,调节时调节螺丝稍动一点输出功率起伏就很大,且不可锁定。 有粗细调的输出镜、全反镜调节螺丝粗调螺距是0.75mm,主要是不出光时调光用,且可锁定不动,细调螺距是0.05mm,调节时调节螺丝转动输出功率起伏不会很大。 输出镜、全反镜的调节螺丝置于激光器外部,优点是调节方便,但在人多手杂的实验室,特别是对学生开放的实验及在搬动时不小心碰到调节螺丝、在运输中由于振动调节螺丝与包装箱相碰都容易造成输出镜、全反镜平行度偏差而不出光(特别对螺距是0.5mm 的、不可锁定的调节螺丝)。调节螺丝置于激光器内部,可避免这些事情产生,要调节输出镜、全反镜螺丝可通过调节孔可用螺丝刀调节(一般不用调节)。 外腔式氦氖激光器布氏窗与输出镜、全反镜之间的密封也是很重的,如密封性不好,会造成在使用过程中输出功率不断下降。由于静电作用,放电管极易吸灰,灰尘、潮气会污染布氏窗、输出镜、全反镜。布氏窗与输出镜、全反镜之间的密封,有用无弹性的圆筒状部件(如涤纶薄膜卷成的圆筒等)套在布氏窗与输出镜、全反镜之间的,有用乳胶指套套在布氏窗与输出镜、全反镜之间的,有用模具成型耐老化的硅胶套紧扣在布氏窗与输出镜、全反镜之间的。无弹性的圆成筒状部件密封差,而乳胶指套大半年就老化了,模具成型耐老化的硅胶密封最好。 外腔式氦氖激光器优点是单模输出激光功率大(放电管2米长的氦氖激光器单模输出功率近百毫瓦)、激光线偏震输出。缺点是结构复杂,成本高。价格高。 2、内腔式氦氖激光器

HeNe激光器模式分析

实验二 He-Ne 激光器的模式分析 一、实验目的 1. 用共焦球面扫描干涉仪测量He-Ne 激光器的相邻纵模间隔,判别高阶横模的阶次。 2. 了解激光的频谱结构,掌握扫描干涉仪的使用方法及测定其性能指标的实验技能。 3. 观察激光器的频率漂移及跳模现象,了解其影响因素;观察激光器的输出横向光场分布花样,体会谐振腔的调整对它的影响。 二 实验设备 He-Ne 激光器、激光电源、小孔光阑、共焦球面扫描干涉仪、锯齿波发生器、放大器、示波器等 三、实验原理 1.激光的频率特性 激光器的光学谐振腔内可存在一系列具有分立谐振频率的本征模式,但其中频率位于工作物质增益带宽范围内,并满足阈值条件的本征模才会振荡形成激光。 通常把激光光波场的空间分布,分解为沿传播方向(腔轴方向)的分布E(z)和垂直于传播方向在横截面内的分布E(x,y),即谐振腔模式可分为纵模和横模,用符号TEM mn 标志不同模式的模式分布。对激光束的模式进行频率分析,可以分辨出它的精细 结构。 由无源腔理论可知:共轴稳定球面谐振腔TEM mn 模的频率为 ??? ????????? ??-???? ??-+++=2111arccos )1(12R L R L n m q nL C v mnq π (2.1) 式中m 、n 为横模阶次,q 为纵模阶次,L 为腔长,R 1R 2是腔面两反射镜的曲率半径,n 是工作物质的折射率。 当m=n=0时为基横模,而m 或n ≠0时叫做高阶横模。对于不同的横模(m 、n 不同)有不同的横向光强分布,所以观察光斑图案或测量光强分布也能分析横模结构。但对于含有高阶横模的结构,则必须借助于频率分析才能分辨。由(2.1)式可知,q 一定时,不同的横模对应有不同的振荡频率,其频率间隔为

氦氖激光器模式分析

模式分析 一.氦-氖(He-Ne)激光器简介 氦氖激光器(或He-Ne激光器)由光学谐振腔(输出镜与全反镜)、工作物质(密封在玻璃管里的氦气、氖气)、激励系统(激光电源)构成。二电极通过毛细管放电激励激光工作物质,在氖原子的一对能级间造成集居数反转,产生受激辐射。由于谐振腔的作用,使受激辐射在腔内来回反射,多次通过激活介质而不断加强。如果单程增益大于单程损耗,即满足激光振荡的阈值条件时,则有稳定的激光输出。内腔式激光器的腔镜封装在激光管两端。 二.氦-氖(He-Ne)激光器的工作原理 氦氖激光器的激光放电管内的气体在涌有一定高的电压及电流(在电场作用下气体放电),放电管中的电子就会由负极以高速向正极运动。在运动中与工作物质内的氦原子进行碰撞,电子的能量传给原子,促使原子的能量提高,基态原子跃迁到高能级的激发态。这时如有基态氖原子与两能级上的氦原子相碰,氦原子的能量传递给氖原子,并从基态跃迁到激发的能级状态,而氦原子回到了基态上。因为放电管上所加的电压,电流连续不断供给,原子不断地发生碰撞。这就产生了激光必须具备的基本条件。在发生受激辐射时,分别发出波长3.39μm,632.8nm,1.53μm三种激光,而这三种激光中除632.8nm为可见光中的红外光外,另二种是红外区的辐射光。因反射镜的反射率不同,只输出一种较长的光波632.8nm的激光。 三.He-Ne激光器结构及谐振腔 He-Ne激光器的结构形式很多,但都是由激光管和激光电源组成。激光管由放电管、电极和光学谐振腔组成。放电管是氦一氖激光器的心脏,它是产生激光的地方。放电管通常由毛细管和贮气室构成。放电管中充入一定比例的氦(He)、氖(Ne)气体,当电极加上高电压后,毛细管中的气体开始放电使氖原子受激,产生粒子数反转。贮气室与毛细管相连,这里不发生气体放电,它的作用是补偿因慢漏气及管内元件放气或吸附气体造成He,Ne气体比例及总气压发生的变化,延长器件的寿命。放电管一般是用GG17玻璃制成。输出功率和波长要求稳定性好的器件可用热胀系数小的石英玻璃制作。He-Ne激光管的阳极一般用钨棒制成,阴极多用电子发射率高和溅射率小的铝及其合金制成。为了增加电子发射面积和减小阴极溅射,一般都把阴极做成圆筒状,然后用钨棒引到管外。He-Ne激光器由于增益低,谐振腔一般用平凹腔,平面镜为输出端,透过率约1%~2%,凹面镜为全反射镜。He-Ne激光管的结构形式是多种多样的,按谐振腔与放电管的放置方式不同可分内腔式、外腔式和半内腔式。 四.氦-氖(He-Ne)激光器的速率方程

激光器的热透镜效应讲解

新型光学谐振器和热透镜效应 Thomas Graf Rudolf Weber, and Heinz-P. Weber 应用物理研究所,Beme Sidlerstrasse 5大学,CH - 301 2 Beme,瑞士 概要 激光谐振腔支持稳定的振荡的最大功率范围主要是由活性介质(热)材料常数和冷却方法所决定。通过控制稳定的基本模式操作的功率范围,可以转移到更高的能量,具有特殊的腔设计和腔内光学但稳定范围的宽度不会受到影响。此外,在泵的活性介质强度增加也加剧了非球面元件的热诱导的扭曲。因此,开发新颖的谐振器时,分析这些热效应具有重大意义。我们目前对热诱导的扭曲,一种新型的多棒激光腔,变量配置的谐振器(VCR)进行分析。对热效应进行了数值模拟和实验的研究。我们目前对各种抽水和冷却方案进行比较后发现复合棒端面泵浦激光器提供最有效的冷却。VCR被开发调控基本模式激光器的功率范围。由于其能力作为法布里- 珀罗谐振器,它克服了稳定性与传统的多棒谐振器相关的问题,并允许一个新的Q开关技术作为一种环形腔运行。 关键词:固态激光器,二极管泵浦激光器,光学谐振器,热透镜效应,热致双折射。 1.介绍 二极管泵浦固态激光器,有着广泛的工业和科学应用。二极管激光器价格的不断下降,应用正在扩展到高功率范围。此外,泵浦方式的改善使二极管激光辐射高效和紧聚焦到激光材料。由于大量吸收功率,这将导致强烈的局部加热。因此,在固态激光材料的热效应已经获得了相当高功率,半导体激光泵浦全固态激光器作为一个发展中的关键问题的重要性被提高。 选中激光材料后,热效应只与冷却的方法有关,然后必须采用适当的谐振器设计。我们在下面的实验和数值调查报告二极管激光的热效应泵浦全固态激光器和特殊的光学谐振器的发展。热透镜效应和应力引起的双折射用于比较四种不同的冷却技术。完全验证的数值有限元(FE)代码,它也适用于区分不同的热透镜效应的贡献- 比如弯曲的表面和折射率变化与温度和应力性曲折分析高功率激光器的功率调整的极限。进一步的功率调节功能则需要使用更长的侧面泵浦激光棒多棒谐振器的使用。多棒谐振器特别适合规模在几十瓦的顺序输出功率,高光束质量的激光器的输出功率。在这种情况下,热扭曲分发到几个激光棒,在同一个腔泵的功率降低。我们报告一个独特的激光谐振腔,变量配置的谐振器(VCR),他具有反向泵浦多棒谐振器的可调性。特别是录像机的稳定性能与传统的多棒的法布里- 珀罗谐振解决了严重的稳定性问题,并允许一个新的Q开关技术。在下面的章节中,我们将首先考虑球面镜片的近似热引起的扭曲,并讨论TEM0模式激光器的规定下能量的限制。 我们对不同的激光棒的冷却方法进行了比较。热致双折射所造成的损失在短期内第3节中讨论。

氦氖激光治疗仪

医疗设备申购报告 名称:氦氖激光治疗仪(40mw) 数量:1台每台价位:9千--1万左右。 经济效益: 收费标准:激光针 (编号430000019) 价位:26元 每次照射时间:15-20分钟 (它的功率是40W,相当于24小时耗电量是一度,耗电量几乎可以忽略不计) 例: 每例病人每天2次,40分钟收费是52元 若平均每天5例人次,每天收入是260元,每周是1820元,每月是7280元,每年是87360元。 社会效益: 它通过对创伤面照射起到杀菌和加快愈合,减少病人住院日,减低病人经济负担。 氦氖激光治疗仪JH30型氦氖激光治疗仪机器简介:配有光学转向镜头与扩束镜头,激光束可作任意方向旋转,光斑6~100mm可调,配有二分叉光纤壹支,可作穴位照射,有定位控制,照射角度:水平360度垂直120度. 激光治疗原理: JH30型HeNe激光治疗仪采用现代激光与传统针灸结合作用于人体,通过照射经络穴位调整内阴阳平衡和气血运行,从而达到治疗目的。治疗优越性:激光针灸具有针感强,疗效显著,无接触感染,无痛,无副作用之功效,本机即可激光直射输出,作激光扩束照射治疗,也可采用二份叉光纤输出,对人体多穴位进行激光理疗。主要用途:颈周炎、肩周炎、骨炎、腱鞘炎、皮肤溃疡、烧伤、带状疱疹、对创伤面照射起到杀菌和加快愈合的作用,特别对老烂脚效果更为明显。骨科:关节炎、骨折、手术患者等均有一定的疗效。 性能指标: 激光器类型:封离型氦氖激光器 工作波长: 632.8nm 激光输出功率: 40 mW 光纤输出末端功率: 14mW x 2 光斑模式: 多模 功率不稳定度: 优于+/-10% 稳定工作电流: 18+/-1毫安 定时时间: 0------60分钟 工作电源: AC220伏+/-10% 50赫+/-1赫

氦氖激光器系列实验

氦氖激光器实验 袁庆勇 081273018 信息工程 一、实验仪器 氦氖激光器、光功率指示仪、硅光电池接收器、狭缝、微动位移台、扫描干涉仪、高速光电接收器及其电源、锯齿波发生器、示波器、氦氖激光器及其电源。 氦氖激光器技术参数: 谐振腔曲率半径 1m ∞ 中心波长 632.8nm 共焦球面扫描干涉仪技术参数: 腔长20mm 凹面反射镜曲率半径20mm 凹面反射镜反射率99% 精细常数>100 自由光谱范围4GHz 二、实验目的 Ⅰ、氦氖激光束光斑大小和发散角 1、掌握测量激光束光斑大小和发散角的方法。 2、深入理解基模激光束横向光场高斯分布的特性及激光束发散角的意义。 Ⅱ、共焦球面扫描干涉仪与氦氖激光束的模式分析 1、了解扫描干涉仪原理,掌握其使用方法。 2、学习观测激光束横模、纵模的实验方法。 三、实验原理 激光束的发散角和横向光斑大小是激光应用中的两个重要参数,激光束虽有方向性好的特点,但它不是理想的平行光,而具有一定大小的发散角。在激光准直和激光干涉测长仪中都需要设置扩束望远镜来减小激光束的发散度。 1、激光束的发散角θ θ为激光束的发散角,()()0=2/2/z z θλπωω=,z 很大 只要我们测得离束腰很远的z 处的光斑大小2 w(z),便可算出激光束发散角。 2、激光束横向光场分布 将光束半径w(z)定义为振幅下降到中心振幅1/e 的点离中心的距离,光束半径w(z)也可定义为光强下将为中心光强e -2倍的点离中心点的距离。 3、光束半径和发散角的测量 束腰处的光斑半径为 由这个值,也可从算出激光束的发散角θ 4、纵模频率差△ν=c/2n 2L ,L 为激光器腔长 5、不同横模之间的频率差 6、自由光谱范围△λ: 7、精细常数F :()F=1-R

氦氖激光器实验论文

共焦球面扫描干涉仪调整及高斯光束变换与测量实验 刘岩1, 贾艳1 (1.东北师范大学,吉林长春 130000) 摘要:本文介绍了氦氖激光器的原理及其相关的基本结构,并系统的做了氦氖激光器系列实验中的共焦球面扫描干涉仪调整实验和高斯光束变换与测量实验。 关键词:氦氖激光器;共焦球面扫描;高斯光束;干涉仪 中图分类号:G3 文献标识码:A 引言 虽然在1917年爱因斯坦就预言了受激辐射的存在,但在一般热平衡情况下,物质的受激辐射总是被收激吸收所掩盖,未能在实验中观察到。直到1960年,第一台红宝石激光器才面世,他标志了激光技术的诞生。激光器由光学谐振腔、工作物质、激励系统构成,相对一般光源,激光有良好的方向性,也就是说,光能量在空间的分布高度集中在光的传播方向上,但它也有一定的发散度。在激光的横截面上,光强是以高斯函数型分布的,故称作高斯光束。同时激光还具有单色性好的特点,也就是说,它可以具有非常窄的谱线宽度。受激辐射后经过谐振腔等多种机制的作用和相互干涉,最后形成一个或者多个离散的、稳定的谱线,这些谱线就是激光的模。在激光生产与应用中,如定向、制导、精密测量、焊接、光通讯等,我们常常需要先知道激光器的构造,同时还要了解激光器的各种参数指标。因此,激光原理与技术综合实验是光电专业学生的必修课程。 1 实验原理 1.1氦氖激光器原理与结构 氦氖激光器(简称He-Ne激光器)由光学谐振腔(输出镜与全反镜)、工作物质(密封在玻璃管里的氦气、氖气)、激励系统(激光电源)构成。对He-Ne 激光器而言增益介质就是在毛细管内按一定的气压充以适当比例的氦氖气体,当氦氖混合气体被电流激励时,与某些谱线对应的上下能级的粒子数发生反转,使介质具有增益。介质增益与毛细管长度、内径粗细、两种气体的比例、总气压以及放电电流等因素有关。对谐振腔而言,腔长要满足频率的驻波条件,谐振腔镜的曲率半径要满足腔的稳定条件。总之腔的损耗必须小于介质的增益,才能建立激光振荡。内腔式He-Ne激光器的腔镜封装在激光管两端,而外腔式He-Ne激光器的激光管、输出镜及全反镜是安装在调节支架上的。调节支架能调节输出镜与全反镜之间平行度,使激光器工作时处于输出镜与全反镜相互平行且与放电管垂直的状态。在激光管的阴极、阳极上串接着镇流电阻,防止激光管在放电时出现闪烁现象。氦氖激光器激励系统采用开关电路的直流电源,体积小,份量轻,可靠性高,可长时间运行。 图1 氦氖激光器原理图 1.2 高斯光束的基本性质 众所周知,电磁场运动的普遍规律可用Maxwell方程组来描述。对于稳态传输光频电磁场可以归结为对光现象起主要作用的电矢量所满足的波动方程。在标量场近似条件下,可以简化为赫姆霍兹方程,高斯光束是赫姆霍兹方程在缓变振幅近似下的一个特解,它可以足够好地描述激光光束的性质。使用高斯光束的复参数表示和ABCD定律能够统一而简洁的处理高斯光束在腔内、外的传输变换问题。在缓变振幅近似下求解赫姆霍兹方程,可以得到高斯光束的一般表达式: () 2 2 2() [] 2() 00 , () r z kr i R z A A r z e e z ω ψ ω ω --- =?(1) 式中,A0为振幅常数;ω(z)定义为场振幅减小到最大值的e-1的r值称为腰斑,它是高斯光束光斑半径的最小值;ω(z)、R(z)、Ψ分别表示了高斯光束的光斑半径、等相面曲率半径、相位因子,是描述高斯光束的三个重要参数,其具体表达式分别为:

3-氦氖激光器的参数测量

氦氖激光器的参数测量(参考讲义) 一台激光器的小信号增益系数,腔内损耗α,饱和光强及最佳透过率是重要的激光参数,直接影响着激光器的输出功率。本实验在外腔激光器中用全反射腔镜,激光输出是通过在腔内插入可旋转平行板,利用平行板的反射率与入射角的关系,使激光的输出功率随平行板的旋转角度而改变,旋转平行板等效于可变透射率的输出镜。通过测量激光输出功率与等效透射率的关系,用作图法获得以上参数。 0G s I opt Γ一、 实验原理 光谱线的宽度一般由以下几部分组成:自然增宽N v Δ,碰撞增宽 ,和多谱勒增宽 ,自然增宽和碰撞增宽属均匀增宽线型,多谱勒增宽属非均匀增宽线型,自然增宽与谱线上下能级寿命成反比,如下式所示 ????????+=Δττπν121121N (1) 式中1τ,2τ分别为上、下能级寿命。碰撞增宽与气体压力p 成正比,如下式所示 ap =Δρν (2) 式中a 为压力加宽系数,因不同气体不同谱线而异。多谱勒增宽由激发谱线的粒子速度分布决定,与介质温度T 及原子量M 有关,还与激发谱线的中心频率0ν成正比,如下式所示 ()02/17/1016.7ννM T D ?×=Δ (3) 式中0ν为谱线中心频率。对某一谱线究竟哪种增宽起主要作用,属哪种线型有具体的物理条件决定。 1. 不同线型的增益饱和特性 激光介质的增益吸收关于是随腔内光强的增加而下降的,这种现象叫做增益饱和,不同线型其增益饱和行为不同。以均匀增宽为主的线型其增益饱和特性由下式描述: )()/1()2/()()2/()(002202 v G I I v v v v v G s v +Δ+?Δ= (4) 式中为腔内光强趋于零时频率中心处的益系数,叫做小信号增益系数。 为线型宽度,为频率为)(00v G v Δv I v 的激光强度,为饱和光强。s I s I 与下列物理量的关系)1(为

氦氖激光器系列实验

氦氖激光器系列实验 第一章 简 介 氦氖激光器系列实验,主要用于氦氖激光器相关的参数测量。通过有关实验,可以掌握氦氖激光器的调整方法,了解激光器的基本原理、基本结构以及输出激光的特性等。主要用于高校物理教学演示。 1.1实验项目 1、氦氖激光器半内腔谐振腔调节实验。 2、氦氖激光器功率稳定性的测量实验。 3、氦氖激光器光斑发散角的测量实验。 4、用共焦球面扫描干涉仪观察、分析、判断激光器的模式组成。 1.2 技术参数 半内腔氦氖激光器 谐振腔曲率半径 1m ∞ 中心波长 632.8nm 全内腔氦氖激光器 腔长 250mm 功率 ≥1.5mW 中心波长 632.8nm 共焦球面扫描干涉仪 反射中心波长 632.8nm 自由光谱范围 2.5GHz 精细常数 >100 第二章 激光原理 2.1普通光源的发光—受激吸收和自发辐射 普通常见光源的发光(如电灯、火焰、太阳等地发光)是由于物质在受到外来能量(如光能、电能、热能等)作用时,原子中的电子就会吸收外来能量而从低能级跃迁到高能级, 即原子被激发。激发的过程是一个“受激吸收”过程。处在高能级(E 2)的电子寿命很短 (一般为10-8~10-9秒),在没有外界作用下会自发地向低能级(E 1)跃迁,跃迁时将产生光(电磁波)辐射。辐射光子能量为 12E E h ?=ν

这种辐射称为自发辐射。原子的自发辐射过程完全是一种随机过程,各发光原子的发光过程各自独立,互不关联,即所辐射的光在发射方向上是无规则的射向四面八方,另外其位相、偏振状态也各不相同。由于激发能级有一个宽度,所以发射光的频率也不是单一的,而有一个范围。在通常热平衡条件下,处于高能级E 2上的原子数密度N 2,远比处于低能级的原子数密度低,这是因为处于能级E 的原子数密度N 的大小随能级E 的增加而指数减小,即N ∝exp(-E /kT ),这是著名的波耳兹曼分布规律。于是在上、下两个能级上的原子数密度比为 ]/)(exp[/1212kT E E N N ??∝ 式中k 为波耳兹曼常量,T 为绝对温度。因为E 2>E 1,所以N 2<

He-Ne激光器模式分析

He-Ne 激光器模式分析 一 实验目的 1 了解激光器的模式结构,加深对模式概念的理解。 2 通过测试分析,掌握模式分析的基本方法。 3 对本实验使用的分光仪器——共焦球面扫描干涉仪,了解其原理、性能,学会正确使用。 二 实验仪器 实验装置如图1所示。实验装置的各组成部分说明如下: 1 待测He-Ne 激光器。 2 激光电源。 3 小孔光阑。 4 共焦球面扫描干涉仪。 5 接收器。 6 电子计算机。 三 实验原理 1 激光器模的形成 我们知道,激光器的三个基本组 成部分是增益介质、谐振腔和激励能 源。如果用某种激励方式,在介质的 某一对能级间形成粒子数反转分布, 由于自发辐射和受激辐射的作用,将 有一定频率的光波产生,在腔内传播, 并被增益介质逐渐增强、放大,如图2 所示。实际上,由于能级总有一定的宽度以及其它因素的影响,增益介质的增益有一个频率分布,如图3所示,图中)( G 为光的增益系数。只有频率落在这个范围内的光在介质中传

播时,光强才能获得不同程度的放大。但只有单程放大,还不足以产生激光,要产生激光还需要有谐振腔对其进行光学反馈,使光在多次往返传播中形成稳定、持续的振荡。形成持续振荡的条件是,光在谐振腔内往返一周的光程差应是波长的整数倍,即 q q L λμ=2 (1) 式中,μ为折射率,对气体μ≈1;L 为腔长; q 为正整数。这正是光波相干的极大条件,满足 此条件的光将获得极大增强。每一个q 对应纵向 一种稳定的电磁场分布,叫作一个纵模,q 称作 纵模序数。q 是一个很大的数,通常我们不需要 知道它的数值,而关心的是有几个不同的q 值, 即激光器有几个不同的纵模。从(1)式中,我们还看出,这也是驻波形成的条件,腔内的纵模是以驻波形式存在的,q 值反映的恰是驻波波腹的数目,纵模的频率为 L c q q μν2= (2) 同样,一般我们不去求它,而关心的是相邻两个纵模的频率间隔 L c L c q 221≈=?=?μν (3) 从(3)式中看出,相邻纵模频 率间隔和激光器的腔长成反比, 即腔越长,相邻纵模频率间隔越 小,满足振荡条件的纵模个数越 多;相反,腔越短,相邻纵模频 率间隔越大,在同样的增益曲线 范围内,纵模个数就越少。因而 用缩短腔长的办法是获得单纵 模运行激光器的方法之一。 光波在腔内往返振荡时,还需要增益大于各种损耗的总和,

氦氖激光治疗皮肤溃疡的疗效观察

氦氖激光治疗皮肤溃疡的疗效观察 发表时间:2012-11-22T11:38:22.610Z 来源:《医药前沿》2012年第22期供稿作者:石红梅陆伟玲 [导读] 目的分析氦氖激光治疗皮肤溃疡的疗效。方法 92例皮肤溃疡者分为治疗组46例,对照组46例,治疗组采用局部清创和外敷药物的同时应用氦氖激光治疗,对照组仅用局部清创加外用药敷法,15天后两组比较疗效。 石红梅陆伟玲(云南省玉溪市中医院外Ⅱ科 653100) 【摘要】目的分析氦氖激光治疗皮肤溃疡的疗效。方法 92例皮肤溃疡者分为治疗组46例,对照组46例,治疗组采用局部清创和外敷药物的同时应用氦氖激光治疗,对照组仅用局部清创加外用药敷法,15天后两组比较疗效。结果治疗组的痊愈率,有效率和痊愈平均时间明显优于对照组(p<0.05 p<0.05 p<0.05)。结论氦氖激光治疗皮肤溃疡能提高疗效,缩短病程,减少不良反应。【关键词】氦氖激光皮肤溃疡 【中图分类号】R454.2 【文献标识码】A 【文章编号】2095-1752(2012)22-0175-02 皮肤溃疡是临床上常见的皮肤病,其病程迁移,病灶反复难愈,我科于2010年11月—2012年9月对92例皮肤溃疡者采用局部清创+外敷药物的基础上加用氦氖激光照射,取得良好疗效。 1、资料与方法 1.1 一般资料皮肤溃疡92例,男54例,女、38例,年龄11-72岁,平均病程1.3个月(3d-2年)龟头及阴部溃疡34例,小腿溃疡18例,胸背部溃疡11例,髋臀部溃疡15例,颈部溃疡6例,溃疡面积0.5x1cm-8x10cm,病种包括术后切口感染,外伤创面不愈,烧伤后化脓感染,骨髓炎等。全部患者分为治疗组46例,对照组46例。 1.2 治疗组先用3%双氧水清洗创面,0.9%外用生理盐水清洗后,采用多功能氦氖激光治疗仪照射,波长63 2.8nm,输出功率10mW,光纤维垂直于溃疡面照射,光源距溃疡面5-10cm,若有分泌物应及时用无菌棉签蘸干,每次照射15-20分钟,每日1次,10次为1个疗程,疗程间隔5天,溃疡面积较大者采用分点分块依次照射,照射完后用碘伏纱或凡士林纱布覆盖溃疡面,对照组仅局部清创和外敷药物同时疗法,且每日换药一次,两组患者在治疗期停用其它一切药物治疗,并在治疗15天后进行疗效对比。 1.3 评定标准痊愈:溃疡面完全愈合、疱状消失;有效:溃疡面变浅,愈合面积极达1/2,自觉疱状明显减轻;无效:溃疡面及自觉疱状无好转。痊愈加显效例数的百分比为有效率。 1.4 统计学处理 计量资料以X±S 表示,均数比较采用 X2 检验。 2、结果 两组经过15天治疗后,两组痊愈率和有效率比较,差异均有显著性 x2=5.8413 p<0.05;x2 =4.61 p<0.05 见表1;两组患者痊愈平均时间比较,差异均有显著性p<0.05 见表2。 表1 治疗组与对照组痊愈率和有效率比较 组别痊愈显效好转无效有效率 治疗组 34(73.91) 6(13.04) 4(57.00) 2(4.35) 86.95 对照组 20(43.47) 10(21.74) 8(17.39) 8(17.39) 65.21 表2 治疗组与对照组痊愈平均时间比较 组别痊愈时间平均愈合时间 ≤5天 5--10天 10—15天 治疗组 17 11 6 6.94± 3.22 对照组 2 6 12 11.47±2.96 3、讨论 氦氖激光属低功率激光,其生物特性有(1)低输出率,对组织有较深的穿透力。(2)无光热效应,对组织结构无任何伤害,激光对组织产生的生物效应是由激光的生物刺激来实现的[1],而激光的生物刺激所引起的上皮细胞,成纤维细胞的增聚,以及激光对炎性细胞、微血管及神经未梢而刺激效应,是促进溃疡愈合的关键,大量研究表明:氦氖激光可促进照射部位的微血管扩张,血流加速,增加静脉回流,改善并纠正微循环障碍等。氦氖激光还具有激活酶的活性和氧代谢,从而促进组织新陈代谢,增加ATP,蛋白质,糖原合成,恢复细胞功能,为溃疡愈合提供能量和物质基础。近研究表明,氦氖激光照射后可增加免疫球蛋白和补体,提高机体免疫力[2]。总之,氦氖激光照射促进溃疡愈合,是氦氖激光照射的局部生物刺激效应加系统生物刺激效应而得到的综合生物刺激效应的结果[3]。本文的结果表明,治疗皮肤溃疡,氦氖激光疗效显著,无痛苦及副作用。 参考文献 [1]骆清铬.低功率激光治疗作用机理的探讨[J].中国激光医学杂志,1994,3(1):39-41. [2]高养华.氦氖激光的免疫学反应[J].激光杂志,1990,11(1):33-39. [3]杨淑兰,顾玉英,刘凡光.氦氖激光照射促进皮肤溃疡愈合研究现状[J].现代康复,2004,4(9):1382-1383.

氦氖激光治疗说明及拆解

氦氖激光治疗原理: 氦氖激光是一种原子气体激光器。世界上首台氦-氖激光器诞生于1960年。氦氖激光工作在可见光区和红外光区。可产生多种波长的激光光谱,其中主要有623.8nm的红光和1.15μ及3.39μm的红外光。因反射镜的反射率不同,只能输出波长较长的623.8nm的激光。 632.8nm波长的激光照射能使血液中蛋白质分子结构改变,其生物效应改变血液流变学性质,使全血粘度降低,血浆粘度降低,RBC变形能力增强,调整机体免疫状态,改善机体中毒状态,增强超氧歧化酶活性,清除中分子物质,清除某些有毒物质。使血液凝固性降低,抑制血栓形成,改善血液循环与微循环,提高机体免疫能力。 氦氖激光治疗主要用途: 理疗科:颈周炎、肩周炎、骨炎、腱鞘炎、高血压等。 皮肤科:皮肤溃疡、烧伤、带状疱疹、对创伤面照射起到杀菌和加快愈合的作用,特别对老烂脚效果更为明显。五官科:对中耳炎、眼疾、支气管哮喘、鼻炎、扁桃体炎、过敏性鼻炎效果特好。 精神卫生:对失眠、精神分裂症效果明显。 骨科:关节炎、骨折、甲沟炎等。 妇科:子宫慢性炎症、宫颈糜烂等。 儿科:小孩遗尿、腹泻、小儿麻痹症等。 泌尿科:前列腺炎。 氦氖激光器的结构: 氦氖激光器的结构一般由放电管和光学谐振腔所组成。激光器的中心是一根毛细玻璃管,称作放电管(直径为1mm左右);外套为储气部分(直径约45mm);阳极是钨针,;阴极是钼或铝制成的圆筒,壳的两端贴有两块与放电管垂直并相互平行的反射镜,构成平凹谐振腔。两个镜板都镀以多层介质膜,一个是全反射镜,通常镀17层膜。交替地真空镀氟化镁(MgF2)与硫化锌(ZnS)。另一镜作为输出镜,通常镀7层或9层膜(由最佳透过率决定)。毛细管内充入总气压约为2Torr的He、Ne混合气体,其混合气压比为5:1-7:1 左右。当一些氖原子在实现了粒子数反转的两能级间发生跃迁,辐射出平行于激光器方向的光子时,这些光子将在两反射镜之间来回反射,于是就不断地引起受激辐射,实现其对光波的放大,从而得到传播方向相同、相位一致、频率单一而能量高度集中的激光。这两个互相平行的反射镜,一个反射率接近100%,即完全反射。另一个反射率约为98%,激光就是从后一个反射镜射出的。 氦氖激光器(激光管)的简要结构见下图所示: 氦氖激光器是精密器件,下面给一张英文的结构图:

相关主题
文本预览
相关文档 最新文档