当前位置:文档之家› 高功率微波与电子系统电路单元相互作用的理论分析

高功率微波与电子系统电路单元相互作用的理论分析

高功率微波与电子系统电路单元相互作用的理论分析
高功率微波与电子系统电路单元相互作用的理论分析

电气14级四个班级虚拟仪器课程设计题目2015秋季2016.1.18-22

12级《虚拟仪器》课程设计任务书 一、设计题目及任务 学生按分组组别从以下对应题目号中选择一题进行设计。 1.粮仓管理系统设计(利用labVIEW)(3-4人) 1)一个粮仓系统有五个独立的粮仓,假设粮仓中各有一个控制节点,用来测量其内部温度及湿度,并有两个执行机构,分别用于打开通气窗口及打开风扇。 2)假设五个粮仓的数据都汇聚在一个集中节点,该节点将数据传至上位监控计算机(串行口)。(数据协议自定,要将五个节点区分开) 3)设计一个监控界面,用于实时监控五个粮仓的实时数据。并保留每天的数据。可以按日期及指定的粮仓来查询数据,并显示历史曲线。 4)用户可以设置报警线,当温度超过报警线时,要求下传数据,启动相应的执行机构。 并在控制面板中有所显示。 5)要求用实际串口完成。(可以在另一个电脑上用串口调试助手,模拟集中节点) 2.利用声卡的数据采集与输出(LabVIEW)(3-4人) 1)通过话筒,利用声卡采集一段声音 2)显示该段声音的频率分析,分析特点,并存储起来。 3)试着根据存储的声音特色,区别不同的人。 4)存储不同的声音,利用声卡实现回放。 3.虚拟仪器的网络控制(3-4人) 1)设计一个程序控制8个外设小灯的点亮方式,要求两种方式A:每个小灯间隔时间T,依次亮,时间T可调,并循环。B:先1.3.5.7.9亮隔时间T,2.4.6.8.10亮,并循环,T 可调。 2)要求主面板与硬件的8个小灯同步。 3)通过网络在另一台计算机上控制此程序的运行(利用LabVIEW的DateSocket技术) 4.基于NI数据采集卡的虚拟示波器(3-4人) 1):波形来自外来的信号发生器(可以外接,也可以仿真) 2:通过采集此信号(波形采集) 3):主界面要求为一个典型的示波器界面,各个调节按钮的功能应该均具备。 4):要求显示波形的特征量。 5:)存储并回放波形。 5.动态分析仪(3-4人) 1):设计一个典型系统的动态响应的过度过程的分析仪。 2):输入为:单位阶跃、单位斜坡、单位加速度、脉冲输入、正弦。 3):系统为典型的一阶系统和二阶系统。相关参数可调 4):当用户在主界面输入不同的输入及系统时,要求输出其动态响应的时域及频域分析。 5):如果在上述系统中加入延时环节(延时时间可调),对应的动态响应应如何? 6.基于NI数据采集卡的虚拟信号放生器(3-4人)

单相三相交流电路功率计算公式

单相、三相交流电路功率计算公式 1 / 19

相电压:三相电源中星型负载两端的电压称相电压。用UA、UB、UC 表示。 相电流:三相电源中流过每相负载的电流为相电流,用IAB、IBC、ICA 表示。 线电压:三相电源中,任意两根导线之间的电压为线电压,用UAB、UBC、UCA 表示。线电流:从电源引出的三根导线中的电流为线电流,用IA、IB、IC 表示。 如果是三相三线制,电压电流均采用两个互感器,按V/v接法,测量结果为线电压和线电流; 如果是三相四线制: 1、电压可采用V/v接法,电流必须采用Y/y接法,测量结果为线电压和线电流,线电流也等于相电流。 2、电压和电流均采用Y/y接法,测量结果为相电压和相电流,相电流也等于线电流。 Y/y接法时,电压互感器一次接在火线及零线之间,每个电压互感器二次输出接一个独立仪表。 每根火线穿过一个电流互感器,每个电流互感器二次输出接一个独立仪表。 2 / 19

电压V/v接法时,电压互感器一次接在火线之间,二次分别连接一个电压表,如需测量 另一个线电压,可将两个互感器的二次输出的n端连接在一起,a、b端连接第三个电压 表。 电流V/v接法时,两根火线分别穿过一个电流互感器,每个互感器的二次分 别接一个电流表,如需测量第三个线电流,可将两个的s2端连接在一起,与 两个互感器的s1端一起共三个端子,另外,将三个电流表的负端连在一起, 其它三个端子分别与上述三个端子连接在一起。 三相电流计算公式 I=P/(U*1.732)所以1000W的线电流应该是1.519A。 功率固定的情况下,电流的大小受电压的影响,电压越高,电流就越小,公式是I=P/U 当电压等于220V时,电流是4.545A,电压等于380V时,电流是2.63A,以上说的是指的单相的情况。 380V三相的时候,公式是I=P/(U*1.732),电流大小是1.519A 三相电机的电流计算 I= P/(1.732*380*0.75) 式中: P是三相功率 (1.732是根号3) 380 是三相线电压 (I是三相线电 3 / 19

电工学电路中的谐振电子教案

教案首页第()次课授课时间(30分钟)

授课内容

由相量图可知:当电容电压和电感电压相等时,由于它们方向相反,电路中的总电压就等于电阻上的电压,总电压与总电流的相位相同,电路呈现电阻性,发生串联谐振。 C L U U = 两边同时除以电流可得: (二)串联谐振的特点 1. L 和C 串联部分相当于短路; 2. U L 和U C 将远远大于U 和U R ,串联谐振又称为电压谐振。 I U R U L U C =U 1 =谐振条件:ωn C ωn L X L = X C ? =谐振频率:? 1LC n =ωLC f n π21

例1、串联谐振在电力工程中的应用: 对MOA 避雷器作的高压实验——几十万伏工频电压 例2、下图为收音机的接收电路,各地电台所发射的无线电电波在天 线线圈中分别产生各自频率的微弱的感应电动势 e 1 、e 2 、e 3 、…调节可变电容器,使某一频率的信号发生串联谐振,从而使该频率的电台信号在输出端产生较大的输出电压,以起到选择收听该电台广播的目的。 三、并联谐振 (一) 谐振的条件及谐振频率 由并联电路的特点可知:电阻、电容和电感两端的电压与电源总电压的大小是相等的,而电压、电流又都是相量,所以先画出并联交流电路的相量图。我们以电压为参考相量: e R L C 1e 2e 3u o + -+ -+ -- +

由相量图可知:当电容电流和电感电流相等时,由于它们方向相反, 电路中的总电流就等于电阻上的电流,总电压与总电流的相位相同,电路呈现电阻性,发生并联谐振。 C L I I = 由于并联电路两端的电压相等,可得: I L I C I R I ++= U I C I L I R = I 谐振条件:ωn C 1 ωn L =X L = X C ? 1 谐振频率:? LC n 1=ωLC f n π2=

电子电路设计与制作教学大纲

《电子电路设计与制作》教学大纲1.课程中文名称:电子电路设计与制作 2.课程代码: 3.课程类别:实践教学环节 4.课程性质:必修课 5.课程属性:独立设课 6.电子技术课程理论课总学时:256总学分:16 电子电路设计与制作学时:3周课程设计学分:3 7.适用专业:电子信息类各专业 8.先修课程:电路分析基础、模拟电子技术、数字电子技术、PCB电路设计一、课程设计简介 实验课、课程设计、毕业设计是大学阶段既相互联系又相互区别的三大实践性教学环节。实验课是着眼于实验验证课程的基本理论,培养学生的初步实验技能;毕业设计是针对本专业的要求所进行的全面的综合训练;而课程设计则是针对某几门课程构成的课程群的要求,对学生进行综合性训练,培养学生运用课程群中所学到的理论学以致用,独立地解决实际问题。电子电路设计与制作是电子信息类各专业必不可少的重要实践环节,它包括设计方案的选择、设计方案的论证、方案的电路原理图设计、印制板电路(即PCB)设计、元器件的选型、元器件在PCB板上的安装与焊接,电路的调试,撰写设计报告等实践内容。电子电路设计与制作的全过程是以学生自学为主,实践操作为主,教师的讲授、指导、讨论和研究相结合为辅的方式进行,着重就设计题目的要求对设计思路、设计方案的形成、电路调试和参数测量等展开讨论。 由指导教师下达设计任务书(学生自选题目需要通过指导教师和教研室共同审核批准),讲解示范的案例,指导学生各自对自己考虑到的多种可行的设计方案进行

比较,选择其中的最佳方案并进行论证,制作出满足设计要求的电子产品,撰写设计报告。需要注意是,设计方案的原理图须经Proteus软件仿真确信无误后,才能进行印刷电路图的制作,硬件电路的制作,以避免造成覆铜板、元器件等材料的浪费。电路系统经反复调试,完全达到(或超过)设计要求后,再完善设计报告。设计的整个过程在创新实验室或电子工艺实验室中完成。 二、电子电路设计与制作的教学目标与基本要求 教学目标: 1、通过课程设计巩固、深化和扩展学生的理论知识,提高综合运用知识的能力,逐步提升从事工程设计的能力。 2、注重培养学生正确的工程设计思想,掌握工程设计的思路、内容、步骤和方法。使学生能根据设计要求和性能参数,查阅文献资料,收集、分析类似电路的性能,并通过设计、安装、焊接、调试等实践过程,使电子产品达到设计任务书中要求的性能指标的能力。 3、为后续的毕业设计打好基础。课程设计的着眼点是让学生开始从理论学习的轨道上逐渐转向实际运用,从已学过的定性分析、定量计算的方法,逐步掌握工程设计的步骤和方法,了解工程设计的程序和实施方法;通过课程设计的训练,可以给毕业设计提供坚实的铺垫。 4、培养学生获取信息和综合处理信息的能力,文字和语言表达能力以及协调工作能力。课程设计报告的撰写,为今后从事技术工作撰写科技报告和技术文件打下基础。 5、提高学生运用所学的理论知识和技能解决实际问题的能力及其基本工程素质。 基本要求: 1、能够根据设计任务和指标要求,综合运用电路分析、电子技术课程中所学到的理论知识与实践操作技能独立完成一个设计课题的工程设计能力。 2、会根据课题需要选择参考书籍,查阅手册、图表等有关文献资料。能独立思考、深入钻研课程设计中所遇到的问题,培养自己分析问韪、解决问题的能力。

正弦交流电路的功率

正弦交流电路的功率 电类设备及其负载都要提供或吸收一定的功率。如某台变压器提供的容量为250kV A ,某台电动机的额定功率为2.5kW ,一盏白炽灯的功率为60W 等等。由于电路中负载性质的不同,它们的功率性质及大小也各自不一样。前面所提到的感性负载就不一定全部都吸收或消耗能量。所以我们要对电路中的不同功率进行分析。 3.8.1瞬时功率 如图 3.21所示,若通过负载的电流为)sin(2i t I i ?ω+=,负载两端的电压为)sin(2u t U u ?ω+=,其参考方向如图。在电流、电压关联参考方向下,瞬时功率为 ()()i u t I t U ui p ψωψω++==sin 2sin 2 ()()i u i u t t UI t t UI ψωψωψωψω+++---+=cos cos ()()i u i u t UI UI ψψωψψ++--=2cos cos 设i u ψψ?-=,且为了简化,设0=i ψ,上式可写成 )2cos(cos ?ω?+-=t UI UI p (3-45) 可见,正弦交流电路的瞬时功率由恒定分量和正弦分量两部分构成,其中,正弦分量的频率是电压、电流频率的两倍,波形如图3.22所示

图3.21 复阻抗 图3.22 瞬时功率 由图可以看出,当i u ,瞬时值同号时0>p ,从外电路吸收功率,当i u ,瞬时值异号时0

p 的部分大于0

用结点电压法求解含源网络-电路分析基础课程设计

用结点电压法求解含源网络 周全(5030309773) 结点电压法是一种运用范围较广的分析方法,用结点电压法分析含源网络时需要注意的是: 1.列方程前,应把实际电压源模型等效变换为实际电流模型; 2.理想电压源去路中的电流不能忽略 3.与理想电流源串联的元件应看成短路; 4.将受控源按独立源处理,并用结点电压表示其控制量 一、常规题: 例:列出图中电路的结点电压方程 解:取与理想电压源去路所连的两个结点之一的①为参考结点,这时结点②的 电压=1V ,可作为已知量,因此不必列写结点②的结点电压方程,对结点③,④的结点电压方程为: 2322341(11)330.5111(11)30.50.20.51n n n n n n u u u u u u ?+++=+??++++=???????? 2?4 补充方程 2n u u =? 把 u 2=1V 和 u 2=-u n4 代入方程组,整理即得 3434293 n n n n u u u u +=???+=??

二、用结点电压分析法求解电路时碰到的非常规情况: 用结点电压分析法求解的常规情况很多书上都有相应的题目,但我在做题时发现了一道用节点电压法解。 例:用结点电压法求解图示电路u 和u 3 解:选结点③为参考结点,对①,②列方程 121211(21)2(11)5n n n n n u u u u u u +?=???++=??=? 1u 0 整理以上方程可得 12123262n n n n u u u u ?=???+=? 可以看出,该方程无解,此题说明,当电路中含有受控源时,有可能解不存在,而对一个实际的物理系统来说,解应该是存在的,这道题当时做时很容易想为什么解不出,却没想到这题模型本来就是不合实际电路的,而答案正是要我们发现这一点,所以我觉得这道题还是很巧妙的。

用矩阵方法使网孔分析法通解-电路分析基础课程设计

用矩阵方法使网孔分析法通解 黄明康 5030309754 F0303025 在网络电路的学习中,我们一般使用结点分析法与网孔分析法。我们知道他们有各自的用途,但其实如果使用得当,只用其中的一个方法就可以解所有目前已经可解得网络电路。而在我看来这得当的使用就是巧妙运用数学。之所以如此,我认为是因为结点分析法的基础KCL与网孔分析法的基础KVL是相容的,即可以用结点分析法的地方就可以用网孔分析法解题。 先来看个例子,从网孔分析法说起,如图(1)所示,是一个非常适合用结点分析法与网孔分析法解题的网络。 正如上课时所做的,我们用网孔分析法解之,以im1、im2、im3为支路电流列出回路的矩阵方程,方程如式(2)。

最左边的矩阵是各回路的电阻矩阵,解出此方程,再根据VCR就能得出整个网路电路的各个参数。由于篇幅所限,也由于这已是大家皆知的常规方法,对于为何使用这种方法及其可用性、使用方法等在此不再冗述。 而我关心的是,这种方法是在这么一个可以说是完美的电路网络中运用的,所以一旦电路中的某个器件变了,可能使这种方法不可用。而其实上课时已经提出了这种问题,也给出了改进了的解题方法——运用网路电路的一些性质化解电路成可用网孔分析法的电路。 但这种方法在解题中会使不熟练的我不经意中掉入“陷阱”。我更愿意用以下的方法用数学解题,这样可以使我们不必太过计较概念。 对于我的方法,也请先看一个例子,如图(3): 这样,这个电路就不能单纯的运用网孔分析法了。那么按之前所述,运用网路电路的一些性质化解电路成可用网孔分析法的电路,然后解之,正如图(4)

a 和图(4) b 中所示过程。 然后得出电阻网络矩阵方程,解出所要的量。 对于以上的例题,也有所谓的虚网孔电流法如式(5): 其实,虚网孔电流法仅仅只是根据我们在网孔分析法的引出中得出的规律重新又列出了简单的方程组,这跟我们最初想要使用结点分析法和网孔分析法的初衷不符,初衷是按给出的网络电路图直接写出矩阵方程。这样就使我们可以更好的应对复杂的网络。 当然,也正是虚网孔电流法使我想起了网孔分析法的一般矩阵解法。仍就看图(3):

电子课程设计报告书写要求

电子课程设计报告书写要 求 Prepared on 22 November 2020

电子课程设计报告书写要求 (以数字电子钟为例) 1、封面(按以前的封面格式) 2、任务书 3、正文 一、数字电子钟总体设计方案 依据数字电子钟的任务要求,设计的总体方案如图1-1所示 图1-1 数字电子钟总体方案 (下面对总体原理进行说明)。。。。。。 二、各模块原理设计和分析 1、时基电路模块设计 本设计的时基电路模块由两个独立分模块组成,一个是由555定时器和RC 构成的秒脉冲电路;另一个是由的晶振和CD4060构成的振荡器,分频器构成的2Hz时基电路。 (1)555构成的秒脉冲电路 设计的555秒脉冲电路如图2-1所示 (电路工作原理阐述。。。。。。) (画出555振荡波形参考课件,给图标2-2) 参数计算 (列出振荡周期表达式,给定R80、R81和C10参数计 算周期) (2)晶振和CD4060构成的振荡分频电路 本设计采用频率为的晶振和CD4060构成精确的时基电路,见图2-3。 电路原理。。。。。。

由于晶振的频率为=215Hz,通过CD4060的14级分频输出为2Hz,必须再经过一次2分频才能实现秒脉冲,设计的2分频电路如图2-4所示。。。。。。。 图 2-4 晶振秒脉冲时基电 路 2、计时电路模块设计 该模块分别由” 秒”计数电路、”分”计 数电路和”小时”计数电路构成;秒和分都是60进制,小时是24进制,设计采用CD4518做计数器。 (1) CD4518计数器分析 CD4518是双8421-BCD编码同步加法计数 器如图2-5所示。 。。。。。。 列出CD4518的功能表和时序图(2-6)和 文字说明 (2)60进制电路设计 分和秒都是60进制,电路原理和 结构相同。60进制电路如图2-7所示。 电路原理。。。。。。 (3)24进制电路设计

电路分析基础教案

I.组织教学 起立、清点人数 向各位同学致以新春的问好,同时祝贺同学们新的一年,新春快乐,学习进步,事事顺心。向全班同学自我介绍,并留下相关联系方式。 1.本门课教师的要求 (1)要求同学们要按时上课,按时下课,课堂上不得扰乱课堂秩序。 (2)作业每周教一次,并认真完成 (3)考试成绩构成:平时成绩平时占40%期末占60%,平时成绩作业占20%,表现及考勤占20%如果课堂上因为违纪被点名一次扣1分,直到扣完为止。作业缺一次扣一分直到扣完为止。 2.希望同学们有问题主动和任课教师交流 II.复旧引新: 1.高中和初中物理中有关的电路知识 III.授新课:(第一次课) 第1章电路的基本概念和基本定律本章介绍电路模型,电路的基本物理量、基本定律和基本元件,以及电路模型的应用实例。通过本章的学习,了解实际电路的功能和特点,电路模型的概念和意义,实际电路与电路模型内在的联系和区别。电流和电压参考方向是电路分析中最基本的概念,基尔霍夫电流定律和电压定律是电路理论的基石,应熟练掌握和运用。要理解和掌握电路基本元件的定义和元件方程与参考方向的关系,以及功率和能量的计算。学习电路理论应注重与实际应用的结合。

1.1 电路与电路模型 1.1.1 电路 1、电路的构成 (1)电源:提供电能的装置 (2)负载:消耗电能的装置 (3)中间环节:用来连接电源和负载,起传递和控制电能的作用。如下图: 2、电路的分类及作用 (1)电力电路:实现电能传输和转换功能的电路(2)信号电路:实现信号的传递和处理功能的电路 实际上在同一电路中又可能将同时包含这两种电路,比如电视机 1.1.2电路模型: 通过模型化的方法研究客观世界是人类认识自然的一个基本方法。为了能对模型进行定量分析研究,通常是将实际条件理想化、具体事物抽象化、复杂系统简单化。建立起来的模型应能反映事物的基本特征,以便对实际事物本

电路分析基础课程设计

太原理工大学 《电路分析基础B》课程设计报告 设计名称有源低通滤波器 专业班级 学号 姓名

课程设计实验报告 实验题目:有源滤波器的设计 实验目的: 1. 掌握有源滤波电路的基本概念,了解滤波电路的选频特性、通频带等概念,加深对有源滤波电路的认识和理解。 2. 在Electronics Workbench环境下用仿真的方法来研究滤波电路,了解元件参数对滤波效果的影响。 3. 根据给定的低通和高通滤波器结构和元件,分析其工作特点及滤波效果,分析电路的频率特性。 4.利用低通滤波器搭建带通和带阻滤波器电路,观察和分析其输出波形特点,分析电路的频率特性。 实验仪器:双踪示波器、扫频仪、电路板、信号发生器、稳压电源、电阻、电容、运算放大器、电脑 有源滤波器的概念: 滤波器是一种能够通过一定频率信号而阻止或衰减其他频率信号的装置。能通过的频率构成通带,而被衰减的频率则构成滤波器的阻带。无源滤波器是由电感、电容和电阻构成的。但是由于受到尺寸和实际性能的限制,电感在某些频率范围是不适用的;如果用能模拟电感的有源器件来代替电感,则构成了有源滤波器,用有源部件代替电感得到有源滤波器的方法有多种,我们所用的有源部件为集成电路运算放大器。有源滤波器一般用电压转移函数来说明(s=jω)。在正弦稳态条件下,电压转移函数可写成H(jω)=▏H(j)▕ 其中▏H(j)▕是幅值或增益函数,是相位函数。 有源滤波器的分类: 按滤波器通带和阻带在频率内的位置,滤波器可分为:低通、高通、带通、带阻等类别。 低通滤波器: 低通滤波器是一种能让从直流到到截止频率的低频分量通过,同时衰减或抑制高频分量的器件。其特性用幅频特性曲线表示,此处幅频特性指的是电压转移

电工电子教案(含戴维南定理)分析

教案

第2章 电路的分析方法 本章课程导入 1、为什么要学会电路的分析方法?因为这是设计与运用电路的 必然性所决定的。 2、下面我们看一个例题,求图示电路中的电流I=? 运用中学所学知识,这电流求不出。这是因为我们对电路结构的约束关系不了解,不知道求解复杂电路的方法,所以不会求。本章的学习任务主是学会电路的基本分析方法。 §2.0 串联电路与并联电路(补充内容) 一、电阻的串联 等效电路与等效变换:具有相同电压电流关系(即伏安关系,简写为V AR )的不同电路称为等效电路,将某一电路用与其等效的电路替换的过程称为等效变换。将电路进行适当的等效变换,可以使电路的分析计算得到简化。 1、电阻串联:多个电阻首尾相连,通过同一个电流。 2、等效电阻:n 个电阻串联可等效为一个电阻: 3、分压公式:k k k R U R I U R == 两个电阻串联时:1112R U U R R =+ 2 212 R U U R R =+ 注意:上式是在图示U 、U 1、U 2的方向前提下才成立,若改变U 1或U 2的方向上式需相应加一个“-”号。 4、串联电路的实际应用主要有: (1)常用电阻的串联来增大阻值,以达到限流的目的; (2)常用电阻串联构成分压器,以达到同一电源能供给不同电压的需要; (3)在电工测量中,应用串联电阻来扩大电压表的量程。 二、电阻的并联 1、电阻并联:多个电阻连接在两个公共的节点之间,现端承受同一电压。 2、等效电阻:n 个电阻并联可等效为一个电阻: 121111 n R R R R =+++ L 或 G=G 1+G 2+---+G n 3、分流公式:k k k U R I I R R == 或 K K K G I G U I G == 两个电阻并联时:2112R i i R R =+ 1212 R i i R R =+ 注意:上式是在图示I 、I 1、I 2的方向前提下才成立,若改变I 1或I 2的方向上式需相应加一 12n R R R R =+++ I n R n R I 2 R 2 + U 1 - + U 2 - R +u 1-+u 2- +u n -

电路分析基础类(硬件实验)-实验报告

本科实验报告 实验名称:电路分析基础类(硬件实验)

实验1 基本元件伏安特性的测绘 一、实验目的 1. 掌握线性、非线性电阻及理想、实际电压源的概念。 2. 掌握测试电压、电流的基本方法。 3. 掌握电阻元件及理想、实际电压源的伏安特性测试方法,学习利用逐点测试法绘制伏安特性曲线。 4. 掌握直流稳压电源、直流电流表、直流电压表的使用方法。 二、实验设备 1.电路分析综合实验箱 2.直流稳压电源 3.万用表 4.变阻箱 三、实验内容 1. 测绘线性电阻的伏安特性曲线 图1.1 R=Ω。 1)测试电路如图1.1所示,图中U S为直流稳压电源,R为被测电阻,阻值200 2)调节直流稳压电源U S的输出电压,当伏特表的读数依次为表1.1中所列电压值时,读毫安表的读数,将相应的电流值记录在表格中。 表1.1

3)在图1.3上绘制线性电阻的伏安特性曲线,并将测算电阻阻值标记在图上。 2. 测绘非线性电阻的伏安特性曲线 图1.2 1)测试电路如图1.2所示,图中D为二极管,型号为1N4007,R W为可调电位器。 2)缓慢调节R W,使伏特表的读数依次为表1.2中所列电压值时,读毫安表的读数,将相应的电流值记录在表格中。 表1.2 3)在图1.4上绘制非线性电阻的伏安特性曲线。 图1.3 图1.4 3. 测绘理想电压源的伏安特性曲线

(a)(b) 图1.5 1)首先,连接电路如图1.5(a)所示,不加负载电路,直接用伏特表测试直流稳压电源的输出电压,将其设置为10V。 2)然后,测试电路如图1.5(b)所示,其中R L为变阻箱,R为限流保护电阻。 3)调节变阻箱R L,使毫安表的读数依次为表1.3中所列电流值时,读伏特表的读数,将相应的电压值记录在表格中。 表1.3 4)在图1.7上绘制理想电压源的伏安特性曲线。 4. 测绘实际电压源的伏安特性曲线 1)首先,连接电路如图1.6(a)所示,不加负载电路,直接用伏特表测试实际电压源的输出电压,将其设置为10V。其中R S为实际电压源的内阻,阻值R S = 51Ω。 (a)(b) 图1.6

单相、三相交流电路功率计算公式

单相、三相交流电路功率计算公式

相电压:三相电源中星型负载两端的电压称相电压。用UA、UB、UC 表示。 相电流:三相电源中流过每相负载的电流为相电流,用IAB、IBC、ICA 表示。 线电压:三相电源中,任意两根导线之间的电压为线电压,用UAB、UBC、UCA 表示。线电流:从电源引出的三根导线中的电流为线电流,用IA、IB、IC 表示。 如果是三相三线制,电压电流均采用两个互感器,按V/v接法,测量结果为线电压和线电流; 如果是三相四线制: 1、电压可采用V/v接法,电流必须采用Y/y接法,测量结果为线电压和线电流,线电流也等于相电流。 2、电压和电流均采用Y/y接法,测量结果为相电压和相电流,相电流也等于线电流。 Y/y接法时,电压互感器一次接在火线及零线之间,每个电压互感器二次输出接一个独立仪表。 每根火线穿过一个电流互感器,每个电流互感器二次输出接一个独立仪表。

电压V/v接法时,电压互感器一次接在火线之间,二次分别连接一个电压表,如需测量 另一个线电压,可将两个互感器的二次输出的n端连接在一起,a、b端连接第三个电压 表。 电流V/v接法时,两根火线分别穿过一个电流互感器,每个互感器的二次分 别接一个电流表,如需测量第三个线电流,可将两个的s2端连接在一起,与 两个互感器的s1端一起共三个端子,另外,将三个电流表的负端连在一起, 其它三个端子分别与上述三个端子连接在一起。 三相电流计算公式 I=P/(U*1.732)所以1000W的线电流应该是1.519A。 功率固定的情况下,电流的大小受电压的影响,电压越高,电流就越小,公式是I=P/U 当电压等于220V时,电流是4.545A,电压等于380V时,电流是2.63A,以上说的是指的单相的情况。 380V三相的时候,公式是I=P/(U*1.732),电流大小是1.519A 三相电机的电流计算 I= P/(1.732*380*0.75) 式中: P是三相功率 (1.732是根号3) 380 是三相线电压 (I是三相线电

西安邮电 电路分析基础课程设计报告

西安郵電學院 电路分析基础课程设计 报告书 系部名称:电子与信息工程系 学生姓名: 专业名称:电子信息工程 班级: 时间:2011年09月13日至 2011年09月23 日

设计1:设计二极管整流电路。 条件:输入正弦电压,有效值220V ,频率50Hz ; 要求:输出直流电压20V ±2V 。 电路图: V1311 V 50 Hz 0Deg R114 Ohm R2 1 Ohm D1 DIODE_VIRTUAL C11pF XSC1 A B G T 电路的波形图为: 结果: 将有效值220V ,频率50Hz 的交流电经整流桥后再次经过电容滤波输出 202V V 的直流电压。

结论分析: 整流是利用二极管的单向导电性,把正负交变的交流电变为单向的脉动直流电,再经过滤波电路使波形变得平滑,然后再经过稳压电路的作用,最后得到波形平直、电压稳定的直流电。图中没有用变压器而是用两个电阻起到分压的作用,使R=1Ω的两端电压分得20V 左右的电压。将电容并在R=1Ω的两端使得电容两端的电压也是20V 左右。电容充当电源放电而且电压保持不变,因为一直有来自二极管的电流充电,而且周期为0.02秒,即电容两端电压能维持不变的放电到输出端。将电容的C 调的小一点可以使充放电的速度加快,就可以使得输出电压变化幅度很小。 设计2:降低电力传输损耗电路的设计 条件:一感性的电力传输线路(包含电路损耗),负载为感性阻抗,传输电压可变。电路等效结构如图4.2-1所示: 要求:设计设计两种降低传输损耗的方法。不得改变整个电路的阻抗性质。分别画出电路,给出详细的分析。 电路图: + 1r 1jX 1Z U _ I _ + 2U 图4.2-1

交流电路的功率

2.4 交流电路的功率 2.4.1 瞬时功率 如图2-30所示,若通过阻抗Z的电流为i=I m sinωt,则Z两端的电压为u=U m sin(ωt+φ),在电流、电压关联参考方向下,瞬时功率为 p=ui=U m sin(ωt+φ)×I m sinωt=UI cosφ-UI cos(2ωt+φ)(2-54) 图2-30 正弦交流电路 在式(2-54)中,第一项为不变的部分,总是大于等于零,是耗能元件上瞬时功率;第二项为变化的部分,是储能元件上瞬时功率。由此可见,在每一瞬间,电源提供的功率一部分被耗能元件消耗,另一部分与储能元件进行能量交换。 2.4.2 有功功率与功率因数 一个周期内瞬时功率的平均值称为平均功率,也称有功功率。 式中,λ=cosφ称为电路的功率因数。可见,正弦交流电路中的有功功率不但与电压、电流有关,还与电压和电流相位差的余弦值有关。 可见,在正弦交流电路中,电感、电容元件实际不消耗电能,而电阻总是消耗电能的。 有功功率是电路实际消耗的功率,即二端网络中,各电阻所消耗的有功功率之和。有功功率的单位是瓦特(W)。 2.4.3 无功功率 电路中的电感元件与电容元件要与电源之间进行能量交换,根据电感元件、电容元件的无功功率,考虑到与相位相反,于是 Q=(U L-U C)I=(X L-X C)I2=UI sinφ(2-56) 单个电感元件, Q L=U L I L sinφ=U L I L>0 单个电容元件,

Q C=U C I C sinφ=-U C I C<0 即电感的无功功率取正值,而电容的无功功率取负值,以便区别。在既有电感又有电容的电路中,总的无功功率为Q L与Q C的代数和,即 Q=Q L-Q C 无功功率的单位是乏(var)。 2.4.4 视在功率 在交流电路中,电压与电流有效值的乘积,只能表示电源可能提供的最大功率,叫视在功率,用字母S表示。即 S=UI=I2|Z| (2-57) 视在功率的单位是伏安(V·A),常用来表示电气设备的容量。 根据上面对有功功率P、无功功率Q和视在功率S的分析,将交流电路表示电压间关系的电压三角形的各边乘以电流I即成为功率三角形,如图2-31所示。 图2-31 功率三角形 由功率三角形可得到P、Q、S三者之间的关系为 P=UI cosφ Q=UI sinφ 【例2-17】已知电阻R=30Ω,电感L=382mH,电容C=40μF,串联后接到电压u= sin(314t+30°)V的电源上。求电路的P、Q和S。 解:电路的阻抗为 电压相量

电路分析教案

电路分析教案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

北京理工大学珠海学院 信息科学技术学院 教案 课程名称:电路分析基础 课程性质:专业基础必修 主讲教师:吴安岚 联系电话: E-MAIL:

课时分配表

第1课 一.章节名称 电路和电路模型;电路的基本物理量 二.教学目的 1、掌握内容:理想电路元件、电路模型的概念; 电流、电压、电位、功率的概念;电流、电压参考方向。 2、了解内容:电路的作用、组成。 三.安排课时:2学时 四.教学内容(知识点) 1.理想电路元件、电路模型; 电流、电压、电位、功率的定义、表达式、单位; 电流、电压参考方向。 2.功率的正负,功率平衡。 3.电路的作用、组成、分类。 五.教学重难点 重点:1.电流、电压参考方向。 2.功率的正负,功率平衡。 难点:功率的正负,功率平衡。 六.选讲例题 重点讲解P8的检查学习结果。 七.作业要求 ,纸质。 八.环境及教具要求 多媒体教室、多媒体课件。

九.教学参考资料 邱关源《电路》,蔡元宇《电路及磁路》,李瀚荪《电路分析基础》。 第2课 一.章节名称 基尔霍夫定理 二.教学目的 1、掌握内容:基尔霍夫定理;按电流、电压参考方向列KCL、KVL方程。KCL、KVL定理推广。 2、了解内容:无。 三.安排课时:2学时 四.教学内容(知识点) 1.基尔霍夫定理; 2.按电流、电压参考方向列写KCL、KVL方程。解方程。 3.KCL、KVL定理推广。例题。 五.教学重难点 重难点:1、按电流、电压参考方向列KCL、KVL方程。 2、电流、电压参考方向的正确标注与应用。 六.选讲例题 重点讲解P9[例]、P10[例]和P11的检查学习结果。 七.作业要求 ,1.纸质。 八.环境及教具要求 多媒体教室、多媒体课件。

微波电路与系统,切比雪夫阻抗变换器

微波电路与系统大作业 设计一个4节切比雪夫匹配变换器,以匹配40Ω的传输线到60Ω的负载,在整个通带上最大允许的驻波比值为,求出其带宽,并画出输入反射系数与频率的关系曲线。 1基本理论 图1多节匹配变换器上的局部反射系数 局部反射系数可在每个连接处定义如下: 10 010 Z Z Z Z -Γ= + (1a ) 11n n n n n Z Z Z Z ++-Γ= + (1b ) L N N L N Z Z Z Z -Γ= + (1c ) 总反射系数可近似为 ()242012j j jN N e e e θθθθ---Γ=Γ+Γ+Γ++Γ (2) 进一步假定该变化器可制成为对称的,则有0N Γ=Γ,11N -Γ=Γ,22N -Γ=Γ,(注意,这里并不意味着n Z 是对称的),于是式(2)可表示为 ()(2)(2)01{[][]}jN jN jN j N j N e e e e e θθθθθθ-----Γ=Γ++Γ++ (3) 若N 是奇数,则其最后一项是(N 1)/2(e e )j j θθ--Γ+;若N 是偶数,则其最后一项是

N/2Γ。 切比雪夫变换器是以通带内的波纹为代价而得到最佳带宽的。第n 阶切比雪夫多项式n ()T x 是用表示的n 次多项式,前4阶切比雪夫多项式是 1(x)x T = (4a ) 22(x)2x -1T = (4b ) 33(x)4x -3x T = (4c ) 424()881T x x x =-+ (4d ) 因为cos n θ可展开为cos(n 2)m θ-形式的多项和,所以式(4)给出的切比雪夫多项式能改写为如下有用的形式: 1T (sec cos )sec cos m m θθθθ= (5a ) 22T (sec cos )sec (1cos2)1m m θθθθ=+- (5b ) 33T (sec cos )sec (cos33cos )3sec cos m m m θθθθθθθ=+- (5c ) 424T (sec cos )sec (cos44cos23)4sec (cos21)1m m m θθθθθθθ=++-++ (5d ) 现在使用正比于来综合切比雪夫等波纹的通带,此处N 是变换器的阶数。于是,用式(3)的变形 ()012{cos cos(-2)cos(-2)} =A (sec cos ) jN n jN N m e N N N n e T θθ θθθθθθ--Γ=Γ+Γ++Γ+ (6) (6)式所示级数中的最后一项在N 是奇数时为(N 1)/2cos θ-Γ;在N 为偶数时为 N/2(1/2)Γ。我们可通过令=0θ(对应零频率)求出常数A 。于是有 (0)(sec )L N m L Z Z AT Z Z θ-Γ= =+ 001 A (sec ) L L N m Z Z Z Z T θ-= + (7) 若通带内的最大允许反射系数幅值是m Γ,则由式 可得m =A Γ,因为在通带内

《电路分析基础课程设计指导》

第一章 软件简介 随着时代的发展,计算机技术在电子电路设计中发挥越来越大的作用。八十年代后期,出现了一批优秀的电子设计自动化(EDA :Electronic Design Automation )软件,如PSPICE 、EWB 等,EDA 软件工具代表着电子系统设计的技术潮流。本章介绍加拿大IIT 公司(Interactive Image Technologies )最新推出的EDA 软件Multisim 7的用户界面和基本操作。 1.1 Multisim 7用户界面 这一节将系统地介绍Multisim 7用户界面的基本操作和命令。启动Windows “开始”菜单中的Multisim 7,弹出如图1-1所示的Multisim 7用户界面。 1.1.1 菜单栏 表1-1 Multisim 菜单命令 菜单 命令 功能说明 Edit Flip Horizontal 水平翻转所选择的元件 图1-1 Multisim 7用户界面 菜单栏 标准工具栏 仿真开关 元件列表 元件工具栏 虚拟工具栏 电路窗口 仪表工具栏

1

标准工具栏如图1-2所示。 图1-2 标准工具栏 图1-3 仿真开关 1.1.4 元件工具栏 2

3 Multisim 7把所有的元件分成13类库,再加上放置分层模块、总线、 登陆网站共同组成元件工具栏,如图1-4所示 图1-4 元件工具栏 元件工具栏从左向右依次是电源库(Source )、基本元件库(Basic )、二极管库(Diode )、晶体管库(Transistor )、模拟元件库(Analog )、TTL 元件库(TTL )、CMOS 元件库(CMOS )、数字元件库(Miscellaneous Digital )、混合元件库(Mixed )、指示元件库(Indicator )、其它元件库(Miscellaneous )、射频元件库(RF )、机电类元件库(Electromechanical )、放置分层 模块、放置总线、登陆https://www.doczj.com/doc/5b1068447.html, 和https://www.doczj.com/doc/5b1068447.html, 网站 1.1.5 虚拟工具栏 虚拟工具栏由10个按钮组成,如图1-5所示。点击每个按钮可以打开相应的工具栏,利用工具栏可以放置各种虚拟元件。 图1-5 虚拟工具栏 虚拟工具栏的按钮从左向右依次是电源元件工具栏(Power Source Components Bar ) 、信号源元件工具栏(Signal Source Components Bar )、基本元件工具栏(Basic Components Bar )、二极管元件工具栏(Diodes Components Bar )、晶体管元件工具栏(Transistors Components Bar )、模拟元件工具栏(Analog Components Bar )、其它元件工具栏(Miscellaneous Components Bar )、额定元件工具栏(Rated Components Bar )、3D 元件工具栏(3D Components Bar )和测量元件工具栏(Measurement Components Bar )。 1.1.6 电路窗口 电路窗口(Workspace )是创建、编辑电路图,仿真分析、波形显示的地方。 1.1.7 仪表工具栏 Multisim 7提供了18种仪表,仪表工具栏通常位于电路窗口的右边,也可以用鼠标将其拖至菜单的下方,呈水平状,如图1-6所示。 图1-6 仪表工具栏 仪表工具栏从左向右依次是数字万用表(Multimeter )、函数信号发生器(Function Generation )、瓦特表(Wattmeter )、示波器(Oscilloscope )、4通道示波器(4 Channel Oscilloscope )、波特图仪(Bode Plotter )、

第三讲:交流电路中的复数功率

交流电路中的复数功率 一 节点与支路的功率平衡 1 节点功率平衡-复数形式的基尔霍夫电流定律(KCL ) 通过节点i 的电流为1I 、2I ……n I . 其正方向如图一所示(离开节点i 为正),应满足基尔霍夫电流定律: 0n 21=+++I I I (1) 对应的共轭电流也必须是 0???n 21=+++I I I (2) (2)式两端同乘以节点i 的电压i U 得到 0?U ?U ?U n i 2i 1i = +++I I I 这就是节点i 的复数功率i S 的平衡方程。 0S S S n 21=+++ (3) 根据复数功率的定义 1S = P 1 + j Q 1 2S = P 2 + j Q 2 …… n S = P n + j Q n P i 为各支路的有功功率。 Q i 为各支路的无功功率 最后得到各支路的有功功率和无功功率平衡方程为 P 1+P 2+……P n = 0 Q 1+Q 2+……Q n = 0 (4) 这里的有功功率无功功率方向与对应的电流方向一致,均定义成离开节点i 为正,反之为负。如果屏

幕上规定的功率方向不一致,应该在前面加一负号才能满足(4)式给出的平衡方程。 2 支路功率平衡—复数形式的欧姆定律与电功率 电力系统中联络线的模型通常用π 型等值电路表示,如图2所示。 Z I j i U U -= Z =R +j X 线路的电阻与电抗, j B = 1/j X c 为线间电容对应的电纳,分别挂在线路的两侧各为j B /2。 支路功率方向的规定如图2所示。 支路功率平衡的意义是建立在能量守恒的基础上的,即输入线路的视在功率S i =P i +j Q i .应等于节点j 侧输出的视在功率S j =P j +j Q j 加上线路的损耗与充电无功功率: P i = P j + ΔP ij (5) Q i = Q j + ΔQ ij 其中: ΔP ij = I 2R ΔQ ij = I 2X – U 2B (6) I 为通过R +j X 阻抗的电流,U 为联络线路的平均电压,X I 2为联络线路电抗的无功损耗,B U 2为线间电容的充电无功,二者差一负号,它与支路传送功率的大小无关,只与电压有关,而运行中电压变化不大,这一批无功损失近似不变。近似 由公式(5)可看出,支路有功功率的平衡关系为: R I P P j i 2 += 输入支路的有功功率P i 必然大于支路末端流出去的有功功率P j , 二者差值为线路电阻损失I 2R ,而且高压线路的电阻很小,ΔP ij = I 2R 也很小,与P i 与P j , 近似相等,P i 略大于P j 。 支路的无功功率平衡关系为: Q i = Q j + I 2X – U 2B (7) 因为线路充电无功B U 2 的存在,使得支路无功功率的平衡关系变得复杂起来,输入支路的无 功Q i 不一定大于支路末端流出去得无功功率Q j ;当线路送得功率不多,使得电抗造成得无功损失I 2X 与充电无功U 2B 抵消时,Q i 与Q j 相等,这时线路不增加新的无功损耗。而I 2X < U 2B 时,Q i 会小于Q j ,在支路不输送功率,I = 0的情况下支路会变成一个无功补偿源,详细说明如下: Q i = Q j – U 2B 即 U 2B = Q j – Q i , 由支路ij 发出的无功功率等于从支路两侧送入系统的无功,Q i 方向为从I 到J 因此差一负号。 特殊情况下,当i 侧开关断开。Q i =0则得到 Q j = U 2B ,相当于在母线j 节点上接一个补偿电容器,它发的无功从节点j 流入系统。

相关主题
文本预览
相关文档 最新文档