当前位置:文档之家› DLP2-13型锅炉中硫烟煤烟气旋风除尘湿式脱硫系统设计

DLP2-13型锅炉中硫烟煤烟气旋风除尘湿式脱硫系统设计

DLP2-13型锅炉中硫烟煤烟气旋风除尘湿式脱硫系统设计
DLP2-13型锅炉中硫烟煤烟气旋风除尘湿式脱硫系统设计

课程设计说明书

课程名称:大气污染控制工程

班级: 1360050108 姓名:丁婷婷

指导教师:王丹丹

能源与水利学院

大气污染课程设计任务书

一、课程教学目的

大气污染控制工程课程设计是大气污染控制工程课程的重要实践性环节,是环境工程专业学生在校期间第一次较全面的大气污染控制设计能力训练,在实现学生总体培养目标中占有重要地位。

通过本课程学习,掌握《大气污染控制工程》课程各基本原理和基本设计方法的应用,培养环境工程专业学生解决实际问题的能力。结合前续课程《大气污染控制工程》的内容,本课程内容为,运用各种污染物的不同控制、转化、净化原理和设计方法,进行除尘、除硫、脱氮等大气污染控制工程设计,使学生在大气污染控制工程方面得到工程训练。

(1)通过课程设计实践,树立正确的设计思想,培养综合运用大气污染控制设计课程和其他先修课程的理论与生产实际知识来分析和解决大气污染控制设计问题的能力。

(2)学习大气污染控制设计的一般方法、步骤,掌握大气污染控制设计的一般规律。

(3)进行大气污染控制设计基本技能的训练:例如计算、绘图、查阅资料和手册、运用标准和规范。

二、设计题目

1.DLP2-13型锅炉中硫烟煤烟气旋风除尘湿式脱硫系统设计

2.设计原始资料

锅炉型号:DLP2-13 即,单锅筒纵置式抛煤机炉,蒸发量2t/h,出口蒸汽压力13MPa

设计耗煤量:350kg/h

设计煤成分:C Y=60.5% H Y=3% O Y=4% N Y=1% S Y=1.5% A Y=18% W Y=12%;V Y=15%;属于中硫烟煤

排烟温度:160℃

空气过剩系数=1.4

飞灰率=21%

烟气在锅炉出口前阻力650Pa

污染物排放按照锅炉大气污染物排放标准中2类区新建排污项目执行。

连接锅炉、净化设备及烟囱等净化系统的管道假设长度50m,90°弯头10个。

3.设计内容及要求

(1)根据燃煤的原始数据计算锅炉燃烧产生的烟气量,烟尘和二氧化硫浓度。

(2)净化系统设计方案的分析,包括净化设备的工作原理及特点;运行参数的选择与设计;净化效率的影响因素等。

(3)除尘设备结构设计计算

(4)脱硫设备结构设计计算

(5)烟囱设计计算

(6)管道系统设计,阻力计算,风机电机的选择

(7)根据计算结果绘制设计图,系统图要标出设备、管件编号、并附明细表;除尘系统、脱硫设备平面、剖面布置图若干张,以解释清楚为宜,最少3张A4图,并包括系统流程图一张。

摘要

根据资料对DLP2-13型锅炉中硫烟煤烟气旋风除尘湿式脱硫系统进行设计研究

根据燃煤的原始数据首先计算锅炉燃烧产生的烟气量,烟尘和二氧化硫浓度,以确保能达到国家排放标准

其次对净化系统设计方案进行分析,讨论与其他除尘器比较旋风除尘器的优点,讨论湿式脱硫方法的工作原理及特点,还有运行参数的选择与设计,净化效率的影响因素等。

然后分别进行除尘设备,脱硫设备,烟囱设计计算,接着对管道系统进行设计,还有阻力的计算和风机电机的选择

最后根据计算结果绘制设计图,并进行简要说明

目录

前言 (3)

1燃烧技术 (4)

1.1实际耗空气量的计算 (4)

1.2 产生烟气量的计算 (5)

1.3 灰分浓度及二氧化硫浓度的计算 (5)

2净化系统设计方案分析 (6)

2.1 旋风除尘器的设计方案分析及参数选择 (6)

2.1.1 除尘器的选择 (6)

2.1.2 旋风除尘器的工作原理 (6)

2.1.3 运行参数的选择与设计 (3)

2.1.4 除尘器净化效率的影响因素 (3)

2.2湿式石灰法脱硫 (4)

2.2.1 湿式石灰法脱硫的原理 (4)

2.2.2 设备运行过程中的问题及出现这种问题的原因 (5)

2.2.3 操作影响因素 (6)

3除尘结构设备设计和计算 (8)

3.1进气口设计计算 (8)

3.2旋风除尘器高度计算 (9)

3.3旋风除尘器排气管的设计计算 (10)

3.4排灰管的设计计算及卸灰装置的选择 (10)

3.5 流体阻力计算 (11)

4脱硫设备结构计算 (12)

4.1 喷淋塔内流量计算 (12)

4.2 喷淋塔经计算 (12)

4.3喷淋塔高计算 (20)

5烟囱设计计算 (14)

5.1烟气释放热计算 (14)

5.2烟气抬升高度 (15)

5.3烟囱直径计算 (15)

5.4烟囱阻力计算 (16)

5.5烟囱高度校核 (16)

6管道系统设计计算 (17)

6.1 管径的计算 (17)

6.2摩擦阻力损失计算 (17)

6.3局部阻力损失计算 (18)

6.4风机、电机的选择 (18)

7总结 (20)

8参考资料 (21)

前言

我国大气污染程度越发严重,而由于我国环境治理中,仅水污染与固体废弃物治理的市场化程度较高,其余如大气污染治理由于易受天气影响并且会在不同地域间转移,因此一直以来,政府对大气污染治理的积极性较低,这部分市场也较为薄弱。

但随着华北地区出现的大量雾霾天气,这一现象引发了社会对大气污染的关注。事实上,我国早在几年前,对大气污染防治工作已经陆续展开,自2002年以来,我国出台了各项政策,加大了节能减排的力度,如2002年1月30日发布的《燃煤二氧化硫排放污染防治技术政策》,政策从能源合理利用、煤炭生产加工和供应、煤炭燃烧、烟气脱硫、二次污染防治等方面进行了详细的规定。2012年8月,我国发布了《节能减排“十二五”规划》,政策中对电力与非电力行业脱硫脱硝效率提出了具体的发展目标。以上各项节能减排政策对我国大气污染防治起到了一定的推动作用。

分析认为,目前我国大气污染的主要来自于工业端排放,最新数据显示,2011年,我国工业二氧化硫废气排放中,电力行业所占比例高达47.52%,而钢铁、水泥建材、有色冶金行业的二氧化硫排放量分别达10.64%、13.26%、6.04%。

从我国大气污染排放量来看,2000-2011年,中国工业废气排放量年均增速为19.06%,由2000年的138145亿标立方米增长至2011年的674509亿标立方米,11年间增长了2.39倍。

因此开发新型除尘设备技术日益紧迫,本文主要研究了旋风除尘器湿式脱硫技术的设计与选型

1 燃烧计算

1.1 实际耗空气量的计算

表1-1 1kg 应用煤的相关计算

成分

质量

)(g

摩尔数

)(mol

燃烧耗氧量

)(mol

生成气体量

)(mol

生成气体体积

)(L

C 605 50.41 50.41 50.41 1129.184 H 30 15 7.5 15 336 O 40 1.25 -1.25 —— 28 N 10 0.36 —— 0.36 8.064 S 15 0.47 0.47 0.47 10.528 水分 120 6.67 —— —— 149.408 灰分

180

——

——

——

——

1Kg 该煤完全燃烧时所需要标准状况下的氧气的体积o V 为:

kg m V 30 1.2810004

.22)25.10.477.550.41(=?-++=

1Kg 煤完全燃烧时所需要的理论空气量体积k V 为:

kg m V k 36.124.781.28=?=

实际消耗空气量体积'

k V 为: kg m 8.5686.124.13'=?=k V

1.2 产生烟气量的计算

理论烟气量:

kg

m V V V V V V N SO O H CO 31.6372.916.670.360.471550.412222==++++=++++=水分kg m 36.471.28-6.121.63=+

实际烟气量:kg m 8.9184.012.647.63=?+=y V

则,在160℃时的实际烟气体积为'

y V 为:

kg m V y 3'14.1415.273/8.918)15.273160(=?+= 该锅炉一小时产生的烟气流量Q 为:

s m h kg V Q y /37.135014.143503'=?=?=

1.3 灰分浓度及二氧化硫浓度的计算

烟气中灰分的浓度A C 为:

33/102.3714.14/%21160m mg C A ?=?= 烟气中2SO 的浓度2SO C 为:

33/102.1314.14/640.472m mg C SO ?=?=

2 净化系统设计方案分析

2.1 旋风除尘器的设计方案分析及参数选择

2.1.1 除尘器的选择

旋风除尘器一般有带有一锥形的外圆筒,进气管,排气管,圆锥观和贮灰箱的排气阀组成。当含尘气流以一定的速度(一般在14~25m/s之间,最大不超过35m/s)由进气管进入旋风除尘器后,气流由直线运动变为圆周运动。由于受到外圆筒上盖及圆筒壁的限流,迫使气流作自上而下的旋转运动。旋转过程中产生较大的离心力,尘粒在离心力的作用下,被甩向外筒壁,失去惯性后在重力的作用下,落入贮灰箱中,与气体分离。而旋转下降的气流到达锥体时,因锥体收缩的影响,而向除尘器中心汇集,根据“旋转矩”不变理论,其切向速度不断升高,气流下降到一定程度时,开始方向上升,经排气管排出。

研究表明,在旋风除尘器内,,外旋气流逐渐向下旋转,内旋气流逐渐向上旋转,向上和向下旋转气流分界面上各点的轴向速度为零,分界面以外的气流切向速度随与轴心距离的减小而增大,越接近轴心切线速度越大,分界面以内的气流切向速度随其与轴心的距离的减小而降低。值得注意的是,旋风除尘器内气流径向速度方向与尘粒的径向速度方向相反,尘粒由内向外运动,气体则由外向轴心运动。由于气流旋转的原因,旋风除尘器内压强越接近轴心处越低,因此,在排灰管至贮灰箱之间有任何漏风,都会使得旋风除尘器的除尘效率明显降低。

2.1.2 旋风除尘器的工作原理

现在的旋风除尘器具有结构简单、应用广泛、种类繁多等特点;具有分离效率高可以有效地清除微粒;处理气体量大且阻力低;适用于高温和腐蚀性气体;运行费用低;应用广泛等优点。但由于旋风除尘器内气流和粒子流动状态复杂,准确测定较困难,至今在理论研究方面仍不够完善,许多关键问题尚需实验确定。

2.1.3 运行参数的选择与设计

根据相关资料及实际运行情况,本设计中烟气的入口速度取为s

=。

20

m

v/

根据国家相关规定及标准确灰分风的最高允许排放浓度为3

mg。则本设中

/

200m

要求达到的除尘效率η为:

η

2370

(=

=

200

?

-

91.56

%

%

100

2370

/)

2.1.4 除尘器净化效率的影响因素

影响旋风除尘器效率的因素有:二次效应、比例尺寸、烟尘的物理性质和操作变量。

二次效应即捕集粒子重新进入气流,在较小粒径区间内,理应逸出的粒子由于聚集或被较大尘粒撞向壁面而脱离气流获得捕集,实际效率高于理论效率;在较大粒径区间,实际效率低于理论效率。通过环状雾化器将水喷淋在旋风除尘器内壁上,能有效控制二次效应。

高效旋风除尘器的各个部件都有一定的比例尺寸,这些比例是基于广泛调查研究结果,某个比例关系的变动,能影响旋风除尘器的效率和压力损失,气体的密度和粘度、尘粒的大小和相对密度、烟气含尘浓度等都影响旋风除尘器的除尘效率。

操作条件应控制在一个较适宜的范围内,过大会降低设备效率,过小会增加阻力损失,两种情况均不利于设备的高效运转。

2.2 湿式石灰法脱硫

将石灰石粉加水制成浆液作为吸收剂泵入吸收塔与烟气充分接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及从塔下部鼓入的空气进行氧化反应生成硫酸钙,硫酸钙达到一定饱和度后,结晶形成二水石膏。经吸收塔排出的石膏浆液经浓缩、脱水,使其含水量小于10%,然后用输送机送至石膏贮仓堆放,脱硫后的烟气经过除雾器除去雾滴,再经过换热器加热升温后,由烟囱排入大气。由于吸收塔内吸收剂浆液通过循环泵反复循环与烟气接触,吸收剂利用率很高,钙硫比较低,脱硫效率可大于95% 。

2.2.1湿式石灰法脱硫方法的原理

采用石灰/石灰石浆液吸收烟气中的2SO ,分为吸收和氧化两个阶段。先吸收生成的亚硫酸钙,然后将亚硫酸钙氧化成硫酸钙(即石膏)。该方法的实际反应机理是很复杂的,目前还不能完全了解清楚。这个过程发生的反应如下。

a 吸收:22()CaO H O Ca OH +=

()2322211

22

Ca OH SO CaSO H O H O +=+

32232211

22

CaCO SO H O CaSO H O CO ++=+↑

42223211

()22

CaSO H O SO H O Ca HSO ++=

由于烟气中含有2O ,因此吸收过程中会有氧化副反应发生。

b 氧化:在氧化过程中,主要是将吸收过程中所生成的321

2

CaSO H O 氧化

称为422CaSO H O :

4222421

23222

CaSO H O O H O CaSO H O ++=

由于在吸收过程中生成了部分42()Ca HSO ,在氧化过程中,亚硫酸氢钙也被氧化,分解出少量的2SO :

32224221

()22

Ca HSO O H O CaSO H O SO ++=+

2.2.2 设备运行过程中的问题及出现这种问题的原因

(1) 设备腐蚀:化石燃料燃烧的排烟中含多种微量的化学成分。在酸性条件下,对金属的腐蚀性相当强,包括吸收塔、言其后续设备。

(2) 结垢和堵塞:固体沉积主要以三种方式出现:湿干结垢,即因溶液水分蒸发而使固体沉积;2()Ca OH 或3CaCO 沉积或结晶析出;3CaSO 或4CaSO 从溶液中结晶析出。其后是导致脱硫塔内发生结构的主要原因。

(3) 除雾器的堵塞:液体中的小液滴,颗粒物进入除雾器,引起堵塞。解决方法:定期(每小时数次)用高速喷嘴喷清水进行冲洗。

其主要原因为:在较高Ph 值会发生相关反应生成软垢;石灰系统中,较

高Ph 值下烟气中二氧化碳的再碳酸化生成沉淀物;在塔壁和部件表面形成很难处理的硬垢。

2.2.3 操作影响因素

为了使吸收系统具有较高的2SO 吸收率,以及减少设备的结垢与堵塞,应注意以下诸因素的影响。

(1)料浆的Ph 值

料浆的Ph 值对2SO 的吸收影响很大,一般新配制的浆液Ph 值约在89 之间。随着2SO 吸收反应的进行,Ph 值迅速下降,当Ph 值低于6时,这种下降变得很缓慢,而当PH 值小于4时,则几乎不能吸收2SO 。

Ph 值的变化除对2SO 的吸收有影响外,还可影响到结垢、腐蚀和石灰石粒子的表面钝化。用含有石灰石粒子的料浆吸收2SO ,生成4CaSO 和3CaSO ,Ph 值的变化对4CaSO 和3CaSO 的溶解度有重要影响,表2.1中数据可以看出,随Ph 值的上升,3CaSO 溶解度明显下降,而4CaSO 溶解度则变化不大。随2SO 的吸收,Ph 值降低,溶液中溶有较多4CaSO ,并在石灰石粒子表面形成一层液膜,而3CaSO 得溶解又使液膜的Ph 值上升,溶解度变小使液膜中3CaSO 析出并沉淀在石灰石粒子的表面,形成一层外壳,使粒子表面钝化,钝化的外壳阻止了3CaSO 的继续溶解,抑制了吸收反应的进行,因此浆液的Ph 值应控制适当。采用消石灰浆液时,Ph 值控制在5到6之间,而采用石灰石浆液,Ph 控制为67 。

(2)石灰石的粒度

石灰石粒度的大小,直接影响到有效面积的大小。一般来说,粒度越小,脱硫率及石灰利用率越高。石灰石粒度一般控制在200 300目。

(3)吸收温度

吸收温度低,有利于吸收,但温度过低会使24H SO 与3CaCO 或2()Ca OH 间的反应速率降低,因此吸收温度不是一个独立可变的因素。

(4)洗涤器的持液量

洗涤器的持液量对24H SO 与3CaCO 的反应时重要的,因为它影响到2SO 所接触的石灰石表面积的数量。只是在洗涤器中与2SO 和2H O 接触,才能大量溶解,因此洗涤器的持液量大对吸收反应有利。

(5)气液比

气液比除对吸收推动力存在影响外,对吸收设备的持液量也有影响。增大液气比对吸收有利,当Ph 值为7时,气液比(L/V)值为15时,脱硫率接近100%。

(6)防止结垢

石灰—石灰石湿式洗涤法的主要缺点是装置容易结垢堵塞。造成固体沉淀主要以三种方式出现:湿干结垢,即因溶液水分蒸发而使固体沉淀;2()Ca OH 或

3CaCO 沉淀或结垢析出:3CaSO 或4CaSO 从溶液中结晶析出。为防止固体结垢,特别是防止4CaSO 的结垢,除使吸收器应满足持液量大,气液相间相对速度高,有较大的气液接触表面积,内部构件少,压力降低等条件,还可采用控制吸收液饱和和添加剂等方法。

控制吸收液过饱和的最好方法是在吸收液中加入二水硫酸钙晶体或亚硫酸该晶体,提供足够的沉积表面,使溶解盐优先沉淀在上面,减小固体物向设备表面沉积和增长。向吸收液中加入添加剂也是防止设备结垢的有效方法。目前使用的添加剂有镁离子、氯化钙、乙二酸等。对现已运行的石灰/石灰石流程,应用乙二酸时,不需要作任何改动。事实上,它可以在浆液循环回路的任何位置加入。以乙二酸的加入,大大提高了石灰石利用率。在相同的2SO 去除率下,无乙二酸系统的石灰石利用率仅为54% 70%,加入乙二酸后,利用率提高到80%以上。因而减少了固体废物量。克服石灰石结垢和2SO 去除率低的另外一个方法是添加镁离子以改进溶液化学性质,使以可溶性盐形式被吸收,而不是以亚硫酸钙或硫酸钙形式吸收。加入镁离子增加了吸收2SO 的容量,并且消除了洗涤塔内的结垢

3 除尘设备结构设计与计算

3.1 进气口设计计算

根据已有经验及实际运行已确定本设计中烟气的入口速度为:s m v /200=。考虑设备漏风及安全运行等因素,假定实际进入设备的烟气量为 1.2Q 。则进气口部分的截面积A 为:

200.082220/1.372.1/2.1m v Q A =?==

现有旋风除尘器的进口有三类:直入切向进入式,蜗壳切向进入式,轴向进入反转式(见图3-1)。

直入切向进入式 蜗壳切向进入式 轴向进入反转式

图3-1 现有的几类进气管

本设计中采用蜗壳切向进入式 ,它可减少进口系统对筒体内气流的撞击和干扰,其处理量大,压力损失小。其尺寸一般为高)(a 宽)(b 之比b a /在2~3之间。本设计中取2/=b a 。则进口的宽度b 为:

mm b 670=;

进口高m h 0.12270.670.0822=÷=

一般旋风除尘器,其进口高a ,宽b 分别为旋风除尘器外筒直径0D 的0.4~0.75倍和0.2~0.25倍。本设计中假定宽为外筒直径的0.25倍,则高应为0.428倍,则旋风除尘器的外筒直径0D 为:

m D 68.225.067.00=÷=

旋风除尘器的直径越小,旋转半径越小,除尘效率就越高,相应的流体阻力也越大,工程常用的旋风除尘器的直径在200mm 以上,同时,为保证除尘效率不至降低太大,筒径一般不大于mm 1000。如果处理气量大,则考虑采用并联组合形式的旋风除尘器。

所以假设取值筒径mm D 9000=,则

m b 225.025.09.0=?=,结合实际,取m b 23.0= m h 575.05.223.0=?=,结合实际,取m b 58.0= 则实际的高宽比:

52.223.0/58.0/==b h (在2-3之间)

所以 21334.0m bh A ==

则每个筒的烟气量s m Av Q /22.22.1/30== 所以,应该并联七个完全相同的旋风除尘器。

3.2 旋风除尘器高度的设计计算

性能较好的旋风除尘器,其直筒部分高度一般为其外筒直径的1~2倍,锥体部分高度为外筒直径的1~3倍,锥部底角在20°~40°之间。本设计中直筒部分高度1H ,锥体部分高度2H ,分别取为旋风除尘器外筒直径的1.7倍及2倍。则:

m H 53.19.07.11=?= m H 8.19.022=?= 旋风除尘器的总高度H 为: m H H H 33.321=+=

3.3 旋风除尘器排气管的设计计算

现有的排气管有两类:底部收缩式和直管式(见图3-2)。

直管式 底部收缩式

图3-2 排气管的类型

无论哪一类排气管,其管径一般取为旋风除尘器外筒直径的0.3~0.5倍。本设计采用直管式,其管径1D 取为,则排气管管径:

m D D 45.09.05.05.001=?==

3.4 排灰管的设计计算及卸灰装置的选择

旋风除尘器的排灰管直径2D 一般取为外筒直径的0.25倍,即 m D D 225.025.002== 底部锥角α为: )4020(24.211000

2225

900arctan

2之间在o o o -≈?-=α

卸灰装置兼有卸灰和密封两种功能,是影响除尘器的关键部件之一。若有漏风现象,不但影响正常排灰,而且严重影响除尘器效率。现有的卸灰装置有两类:二级翻板式和回转式(见图3-3)。本设计采用二级翻板式。

二级翻板式 回转式

图3-3 现有的两类卸灰装置

3.5 流体阻力计算

旋风除尘器内的压力损失一般可按下式计算:

2

2

i

u p ρζ

=?

式中:ρ——烟气密度,约为3/748.0m Kg ; i u ——除尘器内含尘气体的流速,s m /; ζ——流体阻力系数,无量纲;

其中 2

16e

d A =

ζ

式中:A ——旋风除尘器的进口截面积,2m ; e d ——排气管直径,m 带入相关值,得: 2

2

i

u p ρζ

=? Pa 8.1576748.02

2054.102

=??= )2000500(之间在Pa -

4 脱硫设备结构计算

再热烟气温度大于750C ,烟气流速在1~5m/s ,浆液Ph 大于9,石灰/石灰石浆质量浓度在10%~15%之间,液气比在8~253L m ,气液反应时间3~5s ,气流速度为3.0m/s ,喷嘴出口流速10m/s ,喷淋效率覆盖率200%~300%,脱硫石膏含水率为40%~60%,一般喷淋层为3~6层,烟气中2SO 体积分数为4000/610-,脱硫系统阻力在2500~3000Pa.

4.1 喷淋塔内流量计算

假设喷淋塔内平均温度为080C ,压力为120KPa ,则喷淋塔内烟气流量为: 273101.324

(1)273v s t Q Q K Pa

+=?

??+ 式中:v Q —喷淋塔内烟气流量,3m h ; s Q —标况下烟气流量,3m h ; K —除尘前漏气系数,0~0.1;

s m Q v /1.57)05.01(120

324

.101273802731.373=+??+?= 4.2 喷淋塔径计算

依据石灰石烟气脱硫的操作条件参数,可选择喷淋塔内烟气流速4v m s =,则喷淋塔截面A 为:

20.39254/1.57/m v Q A === 则塔径d 为:

m A d 0.70714.3/0.39254/4=?==π 取塔径mm D 10000=。

4.3 喷淋塔高度计算

喷淋塔可看做由三部分组成,分成为吸收区、除雾区和浆池。 (1) 吸收区高度

依据石灰石法烟气脱硫的操作条件参数得,选择喷淋塔喷气液反应时间t=4s ,则喷淋塔的吸收区高度为:

14416H vt m ==?= (2) 除雾区高度

除雾器设计成两段。每层除雾器上下各设有冲洗喷嘴。最下层冲洗喷嘴距最上层(3.4~3.5)m 。

则取除雾区高度为:2 3.5H m = (3) 浆池高度

浆池容量1V 按液气比浆液停留时间1t 确定: 11V L G Q t =?? 式中:

L G —液气比,取183L m ; Q —标况下烟气量,3m h ; 1t —浆液停留时间,s ;

一般1t 为min 8~min 4,本设计中取值为min 6,则浆池容积为: 33182.9860/6549001018m V =???=-

选取浆池直径等于或略大于喷淋塔0D ,本设计中选取的浆池直径1D 为3.5m ,然后再根据1V 计算浆池高度:

2

11

04D V h π= 式中:0h —浆池高度,m ; 1V —浆池容积,3m ;

1D —浆池直径,m 。

m h 28.105.314.382

.9842

0=??=

从浆池液面到烟气进口底边的高度为0.8 2m 。本设计中取为2m 。 (4) 喷淋塔高度 喷淋塔高度为:

m h H H H t 78.2928.105.316021=++=++=

燃煤供热锅炉烟气除尘系统设计

燃煤供热锅炉烟气除尘系统设计

一、燃煤锅炉房烟气除尘系统设计 设计任务书

一、课程设计的题目 燃煤锅炉烟气除尘系统设计 二、课程设计的目的 燃煤供热锅炉烟气除尘系统设计,包括集气罩、管路系统、净化设备、风机电机和烟囱几部分,主要强化学生对燃烧参数计算、燃煤烟气参数计算、净化系统计算和设备选型、管路系统和烟囱参数计算等方面的训练。经过课程设计进一步消化和巩固本课程有关颗粒污染物净化技术所学内容,并使所学的知识系统化,培养运用所学理论知识进行净化系统设计的初步能力。经过该部分的课程设计,了解颗粒污染物净化系统设计的内容、方法及步骤,自主确定大气污染控制系统的设计方案、各部分设计计算、工程图纸绘制、参考文献阅读、编写设计说明书。从而培养学生利用所学知识独立分析问题和解决问题的能力。 三、设计原始资料 锅炉型号:SZL10.5—13型,共4台 设计耗煤量:600kg/h(台) 排烟温度:190℃ 烟气密度(标准状态下):1.34kg/m3 空气过剩系数:a=1.55

排烟中飞灰占不可燃成分的比例:16% 烟气在锅炉出口前阻力:800Pa 当地大气压力:100k Pa 冬季室外温度:-1℃ 空气含水(标准状态下)按0.01293kg/m3 烟气其它性质按空气计算 煤的工业分析值: C Y=68% H Y=4% S Y=1% O Y=5% N Y=1% W Y=6% A Y=15% V Y=13% 按锅炉大气污染物排放标准(GB 13271—)中二类区标准执行。 二氧化硫排放标准(标准状态下):900mg/m3 烟尘浓度排放标准(标准状态下):200 mg/m3 净化系统布置场地如图1-1所示的锅炉房北侧20m以内。四、设计内容和要求 1.燃煤理论和实际空气量和烟气量计算、烟尘和二氧化硫浓度的计算。 2.净化效率的计算,净化系统设计方案的对比分析和优选。3.除尘系统的比较和选择:确定除尘器类型、型号、及规格,并确定其主要运行参数。 4.管路系统布置及参数计算:确定各装置的相对位置及管路布置,并确定各管段的长度和流速、计算各管段的管径、烟囱高

燃煤采暖锅炉房烟气除尘系统设计

南京工程学院 大气污染控制工程 课程设计 某燃煤采暖锅炉房烟气除尘系统 课程名称:大气污染控制工程 院(系、部):环境工程学院 班级:环境131 姓名: 起止日期: 2016-6-13 ~ 2016-6-24 指导教师:张东平、李乾军

目录 第一章总论 (3) 1.1 前言 (3) 1.2大气污染防治技能 (3) 第二章设计任务书 (4) 2.1 设计题目 (4) 2.2 设计目的 (4) 2.3 设计原始资料 (4) 2.4 设计依据和原则 (5) 第三章除尘器系统 (6) 3.1 除尘器系统概述 (6) 3.2常用除尘器的性能 (8) 第四章主要及辅助设备设计与选型 (9) 4.1 烟气量、烟尘和二氧化硫浓度的计算 (9) 4.1.1 标准状态下理论空气量 (9) 4.1.2 标准状态下理论烟气量 (9) 4.1.3 标准状态下实际烟气量 (9) 4.1.5 标准状态下烟气中二氧化硫浓度的计算 (10) 4.2 除尘器的选择 (11) 4.3 除尘器、风机、烟囱的位置及管道布置 (15) 4.3.1 各装置及管道布置的原则 (15) 4.3.2 管径的确定 (15) 4.4 烟囱的设计 (16) 4.4.1 烟囱高度的确定 (16) 4.4.2 烟囱的抽力 (17) 4.5 系统中烟气温度的变化 (18) 4.5.1 烟气在管道中的温度降 (18) 4.5.2 烟气在烟囱中的温度降 (19) 式中 H---烟囱高度,m (19) t/ (19) D---合用同一烟囱的所有锅炉额定蒸发量之和,h 4.6 系统阻力的计算 (19) 4.6.1 摩擦压力损失 (19) 4.6.2 局部压力损失 (20) 4.7 风机和电动机的计算 (23) 4.7.1 风机风量的计算 (23) 4.7.2 风机风压的计算 (23) 4.7.3 电动机功率的计算 (24) 转速/r.min-1 (25) 功率/kw (25) 参考文献 (25)

燃煤锅炉烟气除尘脱硫系统设计方案

燃煤锅炉烟气除尘脱硫系统设计方案 一、设计题目 燃煤锅炉烟气除尘系统设计。 二、课程设计的目的 通过课程设计进一步消化和巩固本课程所学内容,并使所学的知识系统化,培养运用所学理论知识进行除尘系统设计的初步能力。通过设计,了解工程设计的内容、方法及步骤,培养学生确定大气污染控制系统的设计方案、进行设计计算、CAD绘制工程图、使用技术资料、编写设计说明书的能力。 三、设计原始资料 锅炉型号:SZL4-13型,1台 排烟温度: 160℃ 烟气密度(标准状态下):1.34kg/m3 空气过剩系数: =1.4 排烟中飞灰占煤中不可燃成分的比例:16% 烟气在锅炉出口前的阻力:800 Pa 当地大气压力:97.86 Kpa

冬季室外温度:-5℃ 空气中含水(排标准状态下):10g/kg 烟气其它性质按近似空气计算 燃料的工业分析值: Y C =85% Y H = 4% Y S = 1% Y O =5% Y N = 1% Y W = 6% Y A = 15% Y V =13% 烟尘和SO 2排放标准按《锅炉大气污染物排放标准(GB13271—2001)》执行: 烟尘浓度排放(标准标准状态下):200mg/m 3; 二氧化硫排放标准(标准标准状态下):900 mg/m 3。 四、计划安排 1、资料查询和方案选定1天 2、设计计算2天 3、说明书编制及绘图2天 五、设计内容和要求 1、燃煤锅炉排烟量及烟尘和二氧化硫浓度计算 2、净化系统设计方案的分析确定 3、除尘器的选择和比较

确定除尘器的类型、型号及规格,并确定其主要运行参数。 4、管布置及计算:确定各装置的位置及管道布置 并计算各管段的管径、长度、烟囱高度和出口内径以及系统总阻力 5、风机及电机的选择设计 根据净化系统所处理烟气量、烟气温度、系统阻力等计算选择风机种类、型号及电动机的种类和功率。 六、成果 1、设计说明书 设计说明书按设计程序编写,包括方案的确定、设计计算、设备选择和有关设计的简图(工艺管网简图和设备外形图)等内容。课程设计说明书应有封面、目录、前言、正文、小结及参考文献等内容,书写工整或打印输出,装订成册。 2、图纸 A、除尘器图一张(2号图)。系统图应按比例绘制、标出设备部件编号,并附明细表。 B、除尘系统平面布置图、剖面布置图各一张(1号或2号),可以有局部放大图(3号)。布置图应按比例绘制。锅炉房及锅炉的绘制可以简化,但能表明建筑的外形和主要结构形式。在图上中应有指北针方位标志。

燃煤锅炉除尘系统设计

目录 1、设计概论 (1) 1.1 设计任务书 (1) 1.2 通风除尘系统的设计程序、内容和要求 (1) 2、燃煤锅炉排烟量及烟尘和二氧化碳浓度的计算 (2) 2.1 烟气量的计算 (2) 2.2 烟气含尘浓度的计算 (3) 2.3 烟气中二氧化硫浓度的计算 (4) 3、净化系统设计方案的分析确定 (4) 3.1 除尘器至少应达到的除尘效率 (5) 3.2 除尘器的确定 (5) 3.3 方案确定与论证 (7) 4、除尘器、风机、烟囱的位置及管道布置 (7) 4.1 各装置及管道布置的原则 (7) 4.2 管径的确定 (8) 5、烟囱的设计 (9) 5.1 烟囱高度的确定 (9) 5.2 烟囱直径的计算 (9) 5.3 烟囱的抽力 (10) 6、系统阻力计算 (11) 6.1摩擦压力损失 (11) 6.2 局部压力损失 (11) 7、风机、电动机的选择及计算 (14) 7.1 风机风量的计算 (14) 7.2风机风压的计算 (14) 8、系统中烟气温度的变化 (16) 8.1 烟气在管道中的温度降 (16) 8.2 烟气在烟囱中的温度降 (16) 9、设备一览表 (17) 10、净化处理设施的总平面布置图、立面图及剖面图 (18) 参考文献 (20) 总结 (21) 谢辞 (22)

1、设计概论 1.1 设计任务书 1.1.1设计题目:燃煤锅炉除尘系统设计 1.1.2 设计原始资料 (1) 锅炉房基本情况 型号:SZL4—13型,共4台(每台2.8Mw) 设计耗煤量:600kg/h(台) 排烟温度:180℃ 烟气密度(标准状态下):1.34kg/ m3 空气过剩系数:a=1.4 排烟中飞灰占不可燃成分的比例:16% 烟气在锅炉出口前阻力:800Pa 当地大气压力:97.86kPa 冬季室外温度:-1℃ (2) 煤的工业分析值 C Y=68% H Y=4% S Y=1% O Y=5% N Y=1% W Y=6% A Y=15% (3) 烟气性质 空气含水(标准状态下)按0.01293kg/m3;烟气其他性质按空气计算 (4) 处理要求 按锅炉大气污染物排放标准(GB13271—2001)中二类区标准执行 二氧化碳排放标准(标准状态下):900 mg/m3 烟尘浓度排放标准(标准状态下):200 mg/m3 1.2 通风除尘系统的设计程序、内容和要求 (1) 燃煤锅炉排烟量及烟尘和二氧化硫浓度的计算。 (2) 净化系统设计方案的分析确定。 (3) 除尘系统比较和选择:确定除尘器类型、型号及规格,并确定其主要运

某燃煤锅炉房烟气净化系统设计

前言 在目前,大气污染已经变成了一个全球性的问题,主要有温室效应、臭氧层破坏和酸雨。而大气污染可以说主要是人类活动造成的,大气污染对人体的舒适、健康的危害包括对人体的正常生活和生理的影响。目前,大气污染已经直接影响到人们的身体健康。 随着我国经济的高速发展,我国的二氧化硫污染越来越严重,必须通过有效的措施来进行处理,以免污染空气,影响人们的健康生活。 一、题目 某燃煤锅炉房烟气净化系统设计 二、目的 通过课程设计进一步消化和巩固本课程所学的内容,并使所学的知识系统化,培养运用所学理论知识进行净化系统设计的初步能力。通过设计,了解工程设计的内容、方法及步骤,培养学生确定大气污染控制系统的设计方案、进行设计计算、绘制工程图、使用技术资料、查阅有关设计手册、编写设计说明书的能力。 三、原始资料 锅炉型号:SZL6-1.25-AII型,共2台(每台蒸发量为6t/h) 所在地区:二类区。2006年新建。 锅炉热效率:75%,所用的煤低位热值:20939kJ/kg,水的蒸发热:2570.8kJ/kg 锅炉出口烟气温度:160℃ 烟气密度:(标准状态下)1.34kg/m3 空气过剩系数:α=1.3 排烟中飞灰占煤中不可燃成分的比例:15% 烟气在锅炉出口前阻力:800Pa 当地大气压力:98kPa 平均室外空气温度:15℃ 空气含水率(标准状态下)按0.01293kg/m3 烟气的其它性质按空气计算

煤的工业分析: C :65% H :4% S :1% O :4% N :1% W :7% A :18% 净化系统布置场地如图1所示的锅炉房北侧20m 以内。图2为锅炉立面图。 图1 锅炉房平面布置图 图2 锅炉房立面图 四、 设计计算 (一)、用煤量计算 每台锅炉的所需热量为:Q =蒸发量×水的蒸发热 =6×103×2570.8=1.54×107kJ/h 所需的煤量为:热 η?n H Q =%75209391054.17??=982.2kg/h H n ——煤的低位热值 η 热 ——锅炉的热效率 (二)、烟气量、烟尘和二氧化硫浓度的计算 以1kg 煤燃烧为基础,则 重量(g ) 摩尔数(mol ) 产物摩尔数(mol ) 需氧数(mol) C 650 54.167 CO 2:54.167 54.167 H 40 40 H 2O: 20 10

某燃煤采暖锅炉烟气除尘系统设计

目录 第一章总论 (2) 1.1 前言 2 1.2 设计任务书 (2) 1.2.1 设计题目 (2) 1.2.2 设计目的 (3) 1.2.3 设计原始资料 (3) 1.2.4 设计容和要求 (4) 1.3 设计依据和原则 (4) 第二章除尘器系统 (5) 2.1 方案确定与认证 (5) 2.2 工艺流程描述 (5) 第三章主要及辅助设备设计与选型 (5) 3.1 烟气量、烟尘和二氧化硫浓度的计算 (5) 3.1.1 标准状态下理论空气量 (5) 3.1.2 标准状态下理论烟气量 (6) 3.1.3 标准状态下实际烟气量 (6) 3.1.4 标准状态下烟气含尘浓度 (7) 3.1.5 标准状态下烟气中二氧化硫浓度的计算 (7) 3.2 除尘器的选择 (7) 3.3 除尘器、风机、烟囱的位置及管道布置 (9) 3.3.1 各装置及管道布置的原则 (9) 3.3.2 管径的确定.................................................... 错误!未定义书签。 3.4 烟囱的设计 (10) 3.4.1 烟囱高度的确定 (10) 3.4.2 烟囱的抽力.................................................... 错误!未定义书签。 3.5 系统中烟气温度的变化 (12) 3.5.1 烟气在管道中的温度降 (12) 3.5.2 烟气在烟囱中的温度降 (12) 3.6 系统阻力的计算 (13) 3.6.1 混合气体产物的量,混合气体的密度 (13) 3.6.2 摩擦压力损失 (13) 3.6.3 局部压力损失 (14) 3.7 风机和电动机的计算................................................. 错误!未定义书签。 3.7.1 风机风量的计算 .............................................. 错误!未定义书签。 3.7.1 风机风压的计算 .............................................. 错误!未定义书签。 3.7.2 电动机功率的计算............................................ 错误!未定义书签。第四章附图 .................................................................. 错误!未定义书签。 4.1 脱硫除尘工艺流程图................................................. 错误!未定义书签。 4.2 XL旋流式水膜除尘器工艺设备图 (19) 参考文献 ......................................................................... 错误!未定义书签。致 ................................................................................. 错误!未定义书签。

燃煤锅炉烟气的除尘工艺设计

大气污染控制工程课程设计设计题目:21T燃煤锅炉烟气的除尘工艺设计姓名: 学号: 年级: 系部: 专业: 指导教师: 完成时间:

目录 1设计任务及基本资料............................................ 1.1课程设计题目.................................................. 1.2课程设计参数和依据............................................ 1.3物料衡算...................................................... 1.4工艺方案的比较和选择.......................................... 2工艺计算...................................................... 2.1一级除尘装置——旋风除尘器.................................... 2.2二级除尘装置——板式电除尘器.................................. 3附图.......................................................... 3.1旋风除尘器.................................................... 3.2板式电除尘器.................................................. 4结论..........................................................

燃煤锅炉烟气除尘系统设计

燃煤锅炉烟气除尘 系统设计

第一章课程设计任务书 1.1课程设计的题目 燃煤锅炉烟气除尘系统设计 1.2课程设计的目的 经过课程设计进一步消化和巩固本能课程所学内容,并使所学的知识系统化,培养运用所学理论知识进行净化系统设计的初步能力。经过设计,了解工程设计的内容、方法及步骤,培养学生确定大气污染控制系统的设计方案、进行设计计算、绘制工程图、使用技术资料、编写设计说明书的能力。 三、设计原始资料 锅炉型号:SZL4—13型,共4台(2.8MW×4) 设计耗煤量:300kg/h(台) 排烟温度:150℃ 烟气密度(标准状态下):1.45kg/m3 空气过剩系数:α=1.2 排烟中飞灰占煤中不可燃成分的比例:16% 烟气在锅炉出口前阻力:800Pa 当地大气压力:97.86kPa 冬季室外空气温度:-1℃ 空气含水(标准状态下)按0.0l293kg/m3 烟气其它性质按空气计算

煤的工业分析值: C Y=68% H Y=4% S Y=1% O Y=l% N Y=1% W Y=6% A Y=15% V Y=13% 按锅炉大气污染物诽放标准(GBl3271一 )中二类区标准执行烟尘浓度排故标淮(标准状态下):200mg/m3 二氧化硫排放标准(标准状态下):700mg/m3。 净化系统布置场地如图3-1-1所示的锅炉房北侧15m以内。 第二章设计工艺的比较 2.1 除尘器的分类 除尘设备分为七种类型: (1)重力与惯性除尘装置:重力沉降室、档板式除尘器。 (2)旋风除尘装置:单筒旋风除尘器,多筒旋风除尘器。 (3)湿式除尘装置:喷淋式除尘器,冲激式除尘器,水膜除尘器,泡沫除尘器,斜栅式除尘器,文丘里除尘器。 (4)过滤层除尘器:颗粒层除尘器,多孔材料除尘器,纸质过滤器,纤维填充过滤器。 (5)袋式除尘器:机械振打式除尘器,电振动式除尘器,分室反吹式除尘器,喷嘴反吹式除尘器,振动式除尘器,脉冲喷吹式除尘器。 (6)静电除尘装置:板式静电除尘器,管式静电除尘器,湿式静电除尘器。 (7)组合式除尘器:为提高除尘效率,往往“在前级设粗颗

某燃煤锅炉房烟气除尘脱硫系统设计

目录 一、引言 (1) 1.1 烟气除尘脱硫的意义 (1) 1.2 设计目的 (1) 1.3 设计任务及容 (1) 1.4 设计资料 (2) 二、工艺方案的确定及说明 (3) 2.1 工艺流程图 (3) 2.2 基础资料的物料衡算 (3) 2.3 工艺方案的初步选择与确定 (5) 2.4 整体工艺方案说明 (5) 三、主要处理单元的设计计算 (6) 3.1 除尘器的选择和设计 (6) 3.1.1 除尘器的选择 (6) 3.1.2 袋式除尘器滤料的选择 (7) 3.1.3 选择清灰方式 (9) 3.1.4 袋式除尘器型号的选择 (10) 3.2 脱硫设备设计 (11) 3.2.1常见的烟气脱硫工艺 (11) 3.2.2 比对脱硫技术 (12) 3.2.3 脱硫技术的选择 (14) 3.3 湿法脱硫简介和设计 (14) 3.3.1 基本脱硫原理 (14) 3.3.2 脱硫工艺流程 (15)

3.3.3 脱硫影响因素 (15) 3.4 脱硫中喷淋塔的计算 (16) 3.4.1 塔流量计算 (16) 3.4.2 喷淋塔径计算 (16) 3.4.3 喷淋塔高计算 (17) 3.4.4 氧化钙的用量 (18) 3.5 烟囱设计 (19) 3.5.1 烟囱高度计算 (19) 3.5.2 烟囱直径计算 (19) 3.5.3 烟囱温度降 (20) 3.5.4 烟囱抽力计算 (20) 四、官网的设置 (21) 4.1 管道布置原则 (21) 4.2 管道管径计算 (21) 4.3 系统阻力计算 (22) 五、风机和电动机的计算 (23) 5.1 风机风量计算 (23) 5.2风机风压计算 (23) 5.3 电机功率计算 (25) 六、总结 (26) 七、主要参考文献 (27)

大气课程设计任务书DLP4-13型锅炉中硫烟煤烟气袋式除尘湿式脱硫系统设计

中北大学 课程设计说明书 学生姓名:徐宁学号:08040141X61 学院:信息商务学院 专业:环境工程 题目:DLP4-13型锅炉中硫烟煤烟气袋式 除尘湿式脱硫系统设计 指导教师:赵光明职称: 讲师 2011年 6月10日

中北大学 课程设计任务书 2009/2010 学年第二学期 学院:化工与环境学院 专业:环境工程 学生姓名:徐宁学号:08040141X61 课程设计题目:DLP4-13型锅炉中硫烟煤烟气 袋式除尘湿式脱硫系统设计 起迄日期: 5 月30 日~ 6 月10 日课程设计地点:环境工程专业实验室 指导教师:赵光明 系主任:王海芳 下达任务书日期: 2011年 5月 4日

课程设计任务书 1.设计目的: 通过本课程设计,掌握《大气污染控制工程》课程要求的基本设计方法,掌握大气污染控制工程设计要点及其相关工程设计要点,具备初步的大气污染控制工程方案及设备的独立设计能力;培养环境工程专业学生综合运用所学的理论知识独立分析和解决大气污染控制工程实际问题的实践能力。 2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等): 1.设计题目DLP4-13型锅炉中硫烟煤烟气袋式除尘湿式脱硫系统设计 2.设计原始资料 锅炉型号:DLP4-13 即,单锅筒横置式抛煤机炉,蒸发量4t/h,出口蒸汽压力13MPa 设计耗煤量:610kg/h 设计煤成分:C Y=61.5% H Y=4% O Y=3% N Y=1% S Y=1.5% A Y=21% W Y=8%; V Y=15%;属于中硫烟煤 排烟温度:160℃ 空气过剩系数=1.4 飞灰率=22% 烟气在锅炉出口前阻力650Pa 污染物排放按照锅炉大气污染物排放标准中2类区新建排污项目执行。 连接锅炉、净化设备及烟囱等净化系统的管道假设长度50m,90°弯头10个。 3.设计内容及要求 (1)根据燃煤的原始数据计算锅炉燃烧产生的烟气量,烟尘和二氧化硫浓度。 (2)净化系统设计方案的分析,包括净化设备的工作原理及特点;运行参数的选择与设计;净化效率的影响因素等。 (3)除尘设备结构设计计算 (4)脱硫设备结构设计计算 (5)烟囱设计计算 (6)管道系统设计,阻力计算,风机电机的选择 (7)根据计算结果绘制设计图,系统图要标出设备、管件编号、并附明细表;除尘系统、脱硫设备平面、剖面布置图若干张,以解释清楚为宜,最少4张A4图,并包括系统流程图一张。 3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: 课程设计计算说明书一份,并按照规定格式打印装订; 课程设计所需若干图纸,要求作图规范,A4纸打印。

某燃煤采暖锅炉房烟气除尘系统设计

《大气污染控制工程》课程设计任务书 指导教师:王琼宋剑飞 颗粒物污染控制 一、题目 某燃煤采暖锅炉房烟气除尘系统设计 二、目的 通过课程设计进一步消化和巩固本课程所学内容,并使所学的知识系统化,培养运用所学理论知识进行净化系统设计的初步能力。通过设计,了解工程设计的内容、方法及步骤,培养学生确定大气污染控制系统的设计方案、进行设计计算、绘制工程图、使用技术资料、编写设计说明书的能力。 三、设计原始资料 锅炉型号:SZL4-13型,共4台(2.8MW×4) 排烟温度:160 ℃ 烟气密度(标准状态下):1.34kg/m3 空气过剩系数:α=1.4 排烟中飞灰占煤中不可燃成份的比例:16% 烟气在锅炉出口前阻力:800Pa 当地大气压力:97.86kPa 冬季室外空气温度:-1℃ 空气含水(标准状态下):按0.01293kg/m3 烟气其他性质按空气计算 煤的工业分析值: 设计耗煤量:700kg/h(台) C ar=67% H ar=3.48% S ar=1.22% O ar=6.78% N ar=1% W ar=5.56% A ar=14.96% V ar=15.59% 按锅炉大气污染物标准(GB13271-2001)中二类区标准执行。 烟尘浓度排放标准(标准状态下):200mg/m3 二氧化硫排放标准(标准状态下):900mg/m3

净化系统布置场地如图1所示的锅炉房北侧15m以内。 四、设计内容和要求 1、燃煤锅炉排烟量及烟尘和二氧化硫浓度的计算。 2、净化系统设计方案的分析确定。 3、除尘器的比较和选择:确定除尘器类型、型号及规格,并确定其主要运行参 数。 4、管网布置及计算:确定各装置的位置及管道布置,并计算各管段的管径、长 度、烟囱高度和出口内径以及系统总阻力。 5、风机及电机的选择设计:根据净化系统所处理烟气量、烟气温度、系统总阻 力等计算选择风机种类、型号机电动机的种类、型号和功率。 编写设计说明书:设计说明书按设计程序编写,包括方案的确定、设计计算、设备选择和有关设计的简图等内容。课程设计说明书应有封面、目录、前言、正

燃煤采暖锅炉烟气除尘系统设计..

某燃煤采暖锅炉房烟气除尘系统设计

目录 1 前言 2 概述 2.1 设计目的与任务 2.2 设计依据及原则 2.3 设计锅炉房基本概况 3 排烟量及烟尘和二氧化硫浓度计算 3.1标准状态下理论空气量 3.2标准状态下理论烟气量 3.3标准状态下实际烟气量 3.4标准状态下烟气含尘浓度 3.5标准状态下烟气中二氧化硫浓度的计算 4 除尘器的选择 4.1除尘器应该达到的除尘效率 4.2除尘器的选择 5 确定除尘器、风机和烟囱的位置及管道的布置5.1各装置及管道布置的原则 5.2管径的确定 6 烟囱的设计 6.1烟囱高度的确定 6.2烟囱直径的计算 6.3烟囱的抽力 7 系统阻力计算 7.1摩擦压力损失 7.2局部压力损失 8 附图 9 小结 10 参考文献

大气污染控制工程课程设计是大气污染控制工程课程的重要实践性环节,是环境工程专业学生在校期间第一次较全面的大气污染控制设计能力训练,在实现学生总体培养目标中占有重要位置。 目前,越来越多的环境问题出现在了人们的生活中,其中包括水污染、环境污染、大气污染、噪声污染、固体废弃物污染等等,这些污染在有形和无形中对人们的生活和健康产生了影响。其中危害性最大、范围最广就是大气污染,他是潜移默化的,在人们不知不觉中使人们的健康受到影响,大气污染对人体的的危害是多方面的,主要表现在呼吸道疾病与生理机能障碍,以及眼鼻等粘膜组织受到刺激而患病。对于植物而言,大气污染物尤其是二氧化硫等对植物的危害是十分严重的。当污染物浓度高时,会对植物产生急性危害,使植物叶表面产生伤斑,或则直接使叶脱落枯萎;当污染物浓度不高时,会对植物产生慢性危害,使植物叶片退绿,或则表面上看不见什么危害症状,但植物的生理机能受到影响,造成植物产量下降,品质变坏。 在一个单独的捕集单除尘脱硫一体化是将高温煤气中的粉尘颗粒和气态so 2 元中脱硫。除尘脱硫一体化装置可概括为干法和湿法两中目前国内外已开发了大量脱硫除尘一体化装置,主要有水膜除尘器、文丘里旋风水膜除尘器、卧式旋风水膜除尘器、喷淋塔除尘脱硫装置、冲击式水浴除尘器、自激式除尘器、旋流板塔脱硫除尘一体化装置以及高压静电滤槽复合型卧式除尘器等湿式处理装置。由于除尘脱硫一体化工艺具有投资少、运转费用低、脱硫率适中、操作管理简便、结构紧凑、占地面积小等优点,近年来已被广泛应用。

燃煤锅炉脱硫系统设计

环境工程综合实验 课程设计 专业: 环境工程 姓名: 学号:

目录 1 课程设计题目 (2) 2 设计依据 (2) 2、1 技术标准及依据 (2) 2、2 设计参数及参数范围 (3) 2、3 设计原则及设计目标 (3) 3 污染源强分析 (3) 3、1 污染物浓度的计算 (3) 3、2烟气中SO2的浓度计算 (5) 3、3烟气SO2排放量的计算 (6) 4 工艺设计 (7) 4、1 工艺选择 (7) 4、2吸收设备的选择 (7) 4、3 工艺原理 (7) 4、4 脱硫系统工艺流程 (8) 4、5 工艺组成 (8) 5 相关的设计计算 (9) 5、1 脱硫剂液箱容量与设计 (9) 5、2 增压风机 (9) 5、3 SO2吸收系统 (10) 5、3、1 塔径及底面积计算 (10) 5、3、2 脱硫塔高度计算 (10) 6 附图 (11) 附图1 双碱法烟气脱硫工艺流程图 (11) 附图2 吸收塔系统 (11) 附图3 吸收塔平面图 (12) 1 课程设计题目 四川省某火电厂30t/h燃煤锅炉烟气的脱硫系统设计 2 设计依据 2、1 技术标准及依据 (1)《大气污染物综合排放标准》(GB16297-1996) (2)《工业锅炉及炉窑湿法烟气脱硫工程技术规范》(HJ462-2009) (3)《大气污染防治手册》 (4)《锅炉大气污染物排放标准》(GB13271-2001) (5)《环境空气质量标准》(GB3095-1996)

(6)《四川省大气污染物排放标准》 2、2 设计参数及参数范围 (1)根据技术标准与排放标准,确定设计参数及设计范围。 锅炉型号:30 t/h 锅炉一台 烟气排放量:19000m3/h 燃料种类:无烟煤 燃煤量:2、237152t/h 炉内温度:700℃ 锅炉排烟温度:155℃ 烟气含氧量:60、2605mol/kg(燃煤) m 目前SO2排放浓度:1353mg/3 N 含硫率:1、1% 锅炉热效率:75% 空气过剩系数:1、2 (2)拟用双碱法,据《工业锅炉及炉窑湿法烟气脱硫工程技术规范》(HJ 462-2009),故有: 液气比(G/L)为2 钙硫比(Ca/S)为1、1 净化效率η不小于95% 可用率为95% 2、3 设计原则及设计目标 设计原则: (1)设计中为将来更加严格的排放标准及规模扩大留有余地。 (2)因地制宜,节省场地。 (3)严禁转移污染物,全面防治二次污染。 设计目标: (1)根据《四川省大气污染物排放标准》标准,该火电厂标准状态下SO2排放浓度应小于300 mg/m3 (2)为保证电厂周围居民区空气质量,同时执行《环境空气质量标准》(GB3095—1996)的二级标准,即小于居民区大气中SO2最高允许的日平均浓度0、15mg/m3 (3)总量控制指标达标 3 污染源强分析 3、1 污染物浓度的计算 含硫率为1、1%,选择煤种为无烟煤

21T燃煤锅炉烟气的除尘工艺设计汇总

大气污染控制工程课程设计 设计题目:21T燃煤锅炉烟气的除尘工艺设计姓名: 学号: 年级: 系部: 专业: 指导教师: 完成时间:

目录 1设计任务及基本资料...................................................................................................... - 1 -1.1 课程设计题目.............................................................................................................. - 1 - 1.2 课程设计参数和依据.................................................................................................. - 1 - 1.3 物料衡算...................................................................................................................... - 2 - 1.4 工艺方案的比较和选择.............................................................................................. - 3 - 2工艺计算.......................................................................................................................... - 5 -2.1 一级除尘装置——旋风除尘器.................................................................................. - 5 - 2.2 二级除尘装置——板式电除尘器.............................................................................. - 7 - 3附图 ............................................................................................................................... - 11 -3.1 旋风除尘器................................................................................................................ - 11 - 3.2 板式电除尘器............................................................................................................ - 11 - 4结论 ............................................................................................................................... - 11 -

(精选文档)型锅炉低硫烟煤烟气旋风除尘湿式脱硫系统设计说明书

1.设计题目SHF35-39型锅炉低硫烟煤烟气旋风除尘湿式脱硫系统设计 2.设计原始资料 锅炉型号:SHF35-39 即,双锅筒横置式沸腾炉,蒸发量35t/h,出口蒸汽压力39MPa 设计耗煤量:4.2t/h 设计煤成分:C Y=55.2% H Y=8% O Y=4% N Y=1% S Y=0.8% A Y=16% W Y=15%;V Y=18%;属于低硫烟煤 排烟温度:160℃ 空气过剩系数=1.2 飞灰率=35% 烟气在锅炉出口前阻力820Pa 污染物排放按照锅炉大气污染物排放标准中2类区新建排污项目执行。 连接锅炉、净化设备及烟囱等净化系统的管道假设长度200m,90°弯头40个。 3.设计内容及要求 (1)根据燃煤的原始数据计算锅炉燃烧产生的烟气量,烟尘和二氧化硫浓度。 (2)净化系统设计方案的分析,包括净化设备的工作原理及特点;运行参数的选择与设计;净化效率的影响因素等。 (3)除尘设备结构设计计算 (4)脱硫设备结构设计计算 (5)烟囱设计计算 (6)管道系统设计,阻力计算,风机电机的选择 (7)根据计算结果绘制设计图,系统图要标出设备、管件编号、并附明细表;除尘系统、脱硫设备平面、剖面布置图若干张,以解释清楚为宜,最少4张A4图,并包括系统流程图一张。

中北大学 课程设计任务书 2009/2010 学年第二学期 学院:化工与环境学院 专业:环境工程 学生姓名:学号: 课程设计题目: 起迄日期:月日~月日课程设计地点: 指导教师: 系主任: 下达任务书日期: 年月日

课程设计任务书

课程设计任务书

请同学们注意要求: 一、装订顺序:说明书封面,任务书,目录,正文、参考文献、附图。 二、格式 (1)用1 1.1 1.1.1 做标题,标题左顶格,不留空格。 (2)一级标题3号宋体加黑;二级标题4号宋体加黑;三级标题小4号宋体加黑; (3)“目录”居中,用小4号宋体加黑,1.5倍行距; (4)正文小4号宋体,1.5倍行距。 (5)“参考文献”同一级标题,参考文献内容格式同正文。 (6)页码排序从正文开始,用“第~页”形式,居中。

燃煤锅炉烟气的除尘脱硫工艺设计.doc

燃煤锅炉烟气的除尘脱硫课程设计 专业:环境工程 班级:B080703 学号:B08070304 姓名:曹书杰 指导老师:高辉

目录 前言 (3) 1 设计任务书 (4) 1.1课程设计题目 (4) 1.2设计原始材料 (4) 2 设计方案的选择确定 (4) 2.1除尘系统选择的相关计算 (4) 2.2旋风除尘器的工作原理、应用及特点 (6) 2.3 旋风除尘器的结构设计及选用| (6) 2.4 旋风除尘器分割粒径、分级效率和总效率的计算 (7) 2.5脉冲袋式除尘器的工作原理、应用及特点 (7) 2.6 袋式除尘器的结构设计及选型 (8) 3 除尘系统效果分析 (8) 4锅炉烟气脱硫工艺的论证选择 (9) 5 风机和泵的选用及节能设备 (13) 7 设计结果综合评价 (14)

前言 近20年来,随着国民经济的迅速发展,我国的SO 2排放量连年增长, SO 2 的排 放已导致许多地区出现了严重的酸雨现象,由此引起我国酸雨区不断扩大,造成全国每年经济损失1000亿元以上,接近当年国民生产总值的2%。烟气脱硫是当前环境保护的一项重要工作。在大气污染防治技术的研究开发方面,近年来我国取得众多成果,与此同时,大气污染的治理也取得了很大进展。 本次课程设计的题目是蒸发量为20t/h燃煤锅炉烟气脱硫除尘装置的设计。主要涉及内容包括根据锅炉生产能力,燃煤量,煤质等数据计算烟气量,烟尘浓度和SO2浓度;根据排放标准论证除尘系统和确定旋风除尘器型号,并计算旋风除尘器各部分的尺寸;根据粉尘粒径分布数据计算所设计旋风除尘器的分割粒径,分级效率和总效率;确定二级除尘设备型号,计算设备主要尺寸;计算除尘系统的总除尘效率及粉尘排放浓度,并对烟气脱硫工艺进行论证选择,其中初步设计要求绘制除尘器结构图和烟气净化系统图各一张,设计深度为一般设计深度。 通过本次课程设计应掌握旋风除尘器和二级除尘设备袋式除尘器的工作原理,其中旋风除尘器的工作原理为含尘气流由进气管以较高的速度沿切向方向进入除尘器内在圆筒体与排气管之间的圆环内做旋转运动,尘粒在离心力的作用下,穿过气流流线向外筒壁移动,达到器壁后,失去其惯性,在重力和二次涡流的作用下,尘粒沿器壁向下滑动,直至排灰口排出。 设计标准主要参考《大气污染物排放限值》,工艺运行设计达到国家GB13271--91锅炉大气污染物排放标准。 除尘脱硫设计原则(1)脱硫率>80%。除尘效率>97%;(2)技术较为成熟,运行费用低;(3)投资省;(4)能利用现有设施;(5)建造工期短,方便;(6)系统简便,易于操作管理;(7)主体设备的使用寿命>8a;(8)烟气脱硫以氧化镁为主要吸收剂,并充分利用锅炉排渣水的脱硫容量,达到以废治废,降低运行成本的目的。 能用于烟气脱硫和除尘的设备很多,但要满足运转稳定可靠、不影响生产同时去除且压力降较小等要求,以袋式除尘器和旋流板为宜。

SHP10-25型锅炉低硫烟煤烟气袋式除尘湿式脱硫系统设计

1引言 随着经济的不断发展,工业化和现代化不断的推进,这样就给环境带来了前所未有的压力。工业生产中产生了大量的废气排放到大气中,给环境,人和动物下带来了很大的威胁。人类的生活水平的不断提高,对环境质量的要求不断提高,特别是对于环境空气质量的要求提高,于是对环境空气污染的控制成为了当前的一个重要的问题也是一个难题。在大气污染控制中,除尘,脱硫也是个重要的控制过程。 过滤式除尘器,又称空气过滤器,使含尘气流通过过滤材料将粉尘分离捕集的装置,采用滤纸或玻璃纤维,填充层做滤料的空气过滤器,主要用于通风及空气调节等方面的气体净化。采用纤维织物做滤料的袋式除尘器,在工业尾气除尘等方面应用较广。 2设计概况 2.1袋式除尘器 袋式除尘器的除尘效率一般可达99%以上。虽然它是最古老的除尘方式之一,但是由于它效率高,性能稳定可靠,操作简单,因而获得了越来越广泛的应用。同时在结构形式,滤料,清灰方式和运行方式等方面也都得到了不断的发展。滤袋形状传统上是圆形,后来出现了扁形,扁袋在相同的过滤面积下的体积更小,具有较好的应用价值。 2.1.1袋式除尘器工作原理 含尘气流从下部的孔板进入圆筒形滤袋内,在通过滤料的孔隙时,粉尘被捕集与滤料上,透过滤料的清洁空气有排出口排出。沉积在滤料上的粉尘,可在机械振动作用下从滤料表面脱落,落入灰斗中。常用的滤料由棉,毛,人造纤维等加工而成,滤料本身网孔较大,孔径一般为20~50μm,表面起绒的滤料,为5~10μm,因而新鲜的滤料的除尘效率较低。颗粒因截留,惯性碰撞,静电和扩散等作用,逐渐在滤袋表面形成粉尘层,常称为粉尘初层。初层形成后,它成为袋式除尘器的主要过滤层,提高了除尘效率,滤布只不过起着形成粉尘初层和支撑它的作用,但随着颗粒在滤袋上积聚,滤袋两侧的压力差增大,会把有些已附

燃煤锅炉烟气除尘系统设计

第一章课程设计任务书 课程设计的题目 燃煤锅炉烟气除尘系统设计 课程设计的目的 通过课程设计进一步消化和巩固本能课程所学内容,并使所学的知识系统化,培养运用所学理论知识进行净化系统设计的初步能力。通过设计,了解工程设计的内容、方法及步骤,培养学生确定大气污染控制系统的设计方案、进行设计计算、绘制工程图、使用技术资料、编写设计说明书的能力。 三、设计原始资料 锅炉型号:SZL4—13型,共4台×4) 设计耗煤量:300kg/h(台) 排烟温度:150℃ 烟气密度(标准状态下):m3 空气过剩系数:α= 排烟中飞灰占煤中不可燃成分的比例:16% 烟气在锅炉出口前阻力:800Pa 当地大气压力: 冬季室外空气温度:-1℃ 空气含水(标准状态下)按/m3 烟气其他性质按空气计算

煤的工业分析值: C Y=68%H Y=4%S Y=1%O Y=l% N Y=1%W Y=6%A Y=15%V Y=13% 按锅炉大气污染物诽放标准(GBl3271一2001)中二类区标准执行 烟尘浓度排故标淮(标准状态下):200mg/m3 二氧化硫排放标准(标准状态下):700mg/m3。 净化系统布置场地如图3-1-1所示的锅炉房北侧15m以内。 第二章设计工艺的比较 除尘器的分类 除尘设备分为七种类型: (1)重力与惯性除尘装置:重力沉降室、档板式除尘器。 (2)旋风除尘装置:单筒旋风除尘器,多筒旋风除尘器。 (3)湿式除尘装置:喷淋式除尘器,冲激式除尘器,水膜除尘器,泡沫除尘器,斜栅式除尘器,文丘里除尘器。 (4)过滤层除尘器:颗粒层除尘器,多孔材料除尘器,纸质过滤器,纤维填充过滤器。 (5)袋式除尘器:机械振打式除尘器,电振动式除尘器,分室反吹式除尘器,喷嘴反吹式除尘器,振动式除尘器,脉冲喷吹式除尘器。 (6)静电除尘装置:板式静电除尘器,管式静电除尘器,湿式静电除尘器。 (7)组合式除尘器:为提高除尘效率,往往“在前级设粗颗粒除尘装置,反级设细颗粒除尘装置”的串联组合式除尘装置 除尘器的选择

相关主题
文本预览
相关文档 最新文档