当前位置:文档之家› 流体力学与传热习题参考解答(英文)(DOC)

流体力学与传热习题参考解答(英文)(DOC)

流体力学与传热习题参考解答(英文)(DOC)
流体力学与传热习题参考解答(英文)(DOC)

1. Water is pumped at a constant velocity 1m/s from large reservoir resting on the floor to the open top of an absorption tower. The point of discharge is 4 meter above the floor, and the friction losses from the reservoir to the tower amount to 30 J/kg. At what height in the reservoir must the water level be kept if the pump can develop only60 J/kg?

222211

2f 1U P U P w=Z g+h (Z g+)22ρρ

++-+

U 1=0 12P =P 10Z = W=60j/kg f h 30/kg =

2U =1m/s 2(60300.5)/g 3m Z =--=

21Z Z Z 431m ?=-=-=

2. The fluid (density 1200 kg/m 3 ) is pumped at a constant rate 20 m 3 /h from the large reservoir to the evaporator. The pressure above the reservoir maintains atmosphere pressure and the pressure of the evaporator keeps 200 mmHg (vacuum). The distance between the level of liquid in the reservoir and the exit of evaporator is 15 meter and frictional loss in the pipe is 120 J/kg not including the exit of evaporator, what is the pump effective work and power if the diameter of pipe is 60 mm?

22

1

1

2212f U U

Z g+

W Z g+h 22

ρρP P ++=++

10P = 5422200

P x1.013x10 2.67x10N /m 760

=-=- 31200Kg /m ρ= 1U 0= f h 120J /kg =

22

V 20U 1.97m /s A 3600*4006===π/*. 1Z 0= 2Z 15=

42

2.67x101.97W 15x9.81120246.88J /kg 12002

=-+++=

N W Q 246.88x1200x20/3600=1646W ρ==

3. Water comes out of the pipe (Φ108x4 mm), as shown in Fig. The friction loss of the pipeline which does not cover the loss at the exit of pipe can be calculated by the following equation:

h f =6.5U 2

where U is the velocity in the pipe, find a. water velocity at section A-A'. b. water flow rate, in m 3 /h.

22

1

1

2212f U U

Z g+

Z g+h 22

ρ

ρP P +=++ 1U 0= 12P =P 1Z 6m = 2Z 0=

2

f h 6.5U = 2

2U 6x9.81 6.5U 2

=+ U 2.9m /s = 23V=UA=2.94x01

x360082m /h =π/.

4. Water passes through the variable pipe. The velocity in the small pipe is 2.5 m/s. The vertical glass tubes are inserted respectively at the section A and B to measure the pressure (see fig.) If the friction loss between two section is 15 J/kg, what is the water column difference between two glass tubes? By the way, draw the relative liquid column height of two tubes in the Fig.

a a

b b U A U A = 2b U 2.5*(33/47)1.23m/s == 22

a

a b b a b f U U Z g+Z g+h 22ρρP P +=++ a b Z =Z 22

a b b a f U U h 22

ρρP P -=-+221.23/2 2.5/21512.63=-+= a b P P R g ρ-=? 33

12.63

R=1.29x10m 9.8x10

-?=

5. A centrifugal pump takes brine (density 1180 kg/m 3 , viscosity 1.2 cp) from the bottom of a supply tank

and delivers it into another tank. The line between the tanks is 300 m of 25 mm diameter pipe (inner diameter). The flow rate is 2 m 3 /h. In this line, there are two gate valves, four elbows (90o ) and one return bend, what is the friction loss if the roughness of pipe is 0.025 mm?

22

f fst flocal U U h h h 4f k d 22

l ∑=+=+∑

31180kg /m ρ= 300m, d=0.025m l =

3-3v 2m /h =1.2cp=1.2x10Pa.s μ= k=0.025mm k/d=0.025/25=0.001 c l r k =0.4 k =1 k =2x0.07=0.14 el re k 4x0.75 3 k 1.5-2.2===

2u v/A 2/(3600x /4x0.025)1.13m/s π===

4u d Re 2.78x10ρμ

== f 0.063=

2f 2h 4x0.0063x300/0.025x1.13/2+ (0.4+1+2x0.07+4x0.7+1.5)x1.13/2 =197.86J/kg

∑=

6. The orifice meter (diameter of orifice 0.0001 m) is installed for measuring the flow rate. The indicating liquid of orifice is mercury if U shape pressure gauge reading is 0.6 meter and orifice coefficient can be taken

as 0.61, what is the flow rate of water?

o u c =

20o 0V u s 0.61x /4x0.0001π==

835.8x10m /s -=

7. Water flows through a pipe with a diameter di 100 mm as shown in figure.

a. when the valve is closed, R is 600 mm and h equals 1500 mm. While the valve opens partially, R=400 mm and h=1400 mm, f=0.00625 (Finning factor) and k c =0.5 (contraction coefficient), what is the flow rate of water, in m 3 /h?

b. If the valve opens fully, what is the pressure of section 2-2', in N/m 2 ? The equivalent length of the valve is 1.5 m and the Fanning factor f keeps the same?(ρH2O =1000kg/m 3, ρHg =13600kg/m 3)

(1) the valve opens partially ,for selection 1-1’ and 2-2’ , we have

221122

12f1-2u u gZ gZ h 22ρρ

P P ++=+++

2212Hg H o 0 g(R h)39630N/m ρρP =P =-=

22

12f1-2

c u u u 0 Z =0 h 4f +k 2.13u

d 22

===l

We can get Z1 from the valve closed

21Hg H O h=1.5m R=0.6m Z gR/h 6.66m ρρ=-=

229.81x6.66u /2 2.13u 39630/1000=++

23h u=3.13m/s V 3600x /4x0.1x3.1388.5m /h π==

(2) when the valve opens fully, for section 1-1’ and 3-3’, we have

223311

13f1-3u u gZ gZ h 22ρρ

P P ++=+++

311Z 0 Z 6.66m u =0==

22e f1-3c u 3.1.5

h (4f k )(4x0.00625x +0.5) 4.81u d 20.01l l ++=+== 22

9.81x6.66u /2 4.81u =+ u 3.51m /s =

For section 1-1’ and 2-2’

221122

12f1-2u u gZ gZ h 22ρρ

P P ++=+++

112120 Z 6.66 Z 0 u 0 u 3.51P =====

2

2f1-2c l u h (4f k )

(4x0.00625x15/0.10.5)3.51/226.2J /kg d 2

=+=+= 22

22

9.81x6.66 3.15/226.2N

32970m

ρ

P

=++P =

8. The rotameter is installed to measure the water flow rate, as shown in figure. If the total length including equivalent length of pipeline A is 10 m and the reading of rotameter is 2.72 m 3 /h, what is the flow rate for pipeline B? (f A =0.0075, f B =0.0045)

For parallel pipe line

fA fB total A B

22

A fA A 2

A h h V V +V u (l+le) 2.72h 4f 4x0.0075x10/0.053/2()

d 23600x /4x0.053π∑=∑=∑∑== 0.333J /kg =

2

2B fB B B B 23B B B B u (l+le)h 4f 4x0.0045x2/0.3/2xu 0.333

d 2

u 2.36m /s V =u A 2.36x /4x0.23600m /h

π∑∑======

10. A flat furnace wall is constructed of 120 mm layer of sil-o-cel brick, with a thermal conductivity 0.08 w/(m o C), backed by a 150 mm of common brick, of conductivity 0.8 w/(m o C), the temperature of inner face of the wall is 1400 o , and that of the outer face is 200o C.

a. What is the heat loss through the wall in w per square meter.

b. To reduce the heat loss to 600 w/m 2 by adding a layer of cork with k 0.2 w/(m o C) on the outside of common brick, how many meters of cork are requied?

a. 2Q t 1400200711N /m 11L R 0.080.80.120.15

∑?-===∑+

b. 600=(1400-200)/(0.12/0.08+0.15/0.8+x/0.2) x=0.0625m

13. Air at the normal pressure passes through the pipe (d i 20 mm) and is heated from 20o C to 100o C. What is the film heat transfer coefficient between the air and pipe wall if the average velocity of air is 10 m/s? The properties of air at 60 o C are as follows:

density 1.06 kg/m 3 , viscosity 0.02 cp, conductivity 0.0289 w/(m o C), and heat capacity 1 kJ/kg-K

443

u d 10x0.02x1.06 Re=1.06x10100.02x10

ρμ-==>

12T +T 20100T=6022+==℃ 0.14

1ωμμ??

= ???

10000.020.0010.6920.0289

p c x x k μ

==Pr=

()

()

0.8

1/3

081/34Nu 0027Re Pr 0.027x 1.06x10x 0.69239.66==.=.

()2i i i h d 39.66 h 39.66x0.0289/0.02=57.22w/m .k k

==

14. A hot fluid with a mass flow rate 2250 kg/h passes through a ?25x2.5 mm tube. The physical properties of fluid are as follows:

k=0.5 w/(m o C), C p =4 kJ/kg-K, viscosity 10-3 N-s/m 2 , density 1000 kg/m 3 Find: a. Heat transfer film coefficient h i , in w/(m 2 -K).

b. If the flow rate decreases to 1125 kg/h and other conditions are the same, what is the h i ?

c. If the diameter of tube (inside diameter) decreases to 10 mm, and the velocity u keeps the same as that of case a, calculate h i .

d. When the average temperature of fluid and quantity of heat flow per meter of tube are 40 o C and 400 w/m, respectively, what is the average temperature of pipe wall for case a?

e. From this problem, in order to increase the heat transfer film coefficient and enhance heat transfer, what kinds of methods can you use and which is better, explain? Hint: for laminar flow, Nu=1.86[Re Pr]1/3 for turbulent flow Nu=0.023Re 0.8 Pr 1/3

(1) 444N 2250x4

u d Gd d 3600x x0.02

Re 3.98x10100.001

ρππμμμ=====>

()

()1/3

0.8

081/3424Nu 0023Re Pr 0.023x 3.98x10

220.1

0.5Nuk 220.1x0.5

hi 5500w /m k d 0.02

??

== ???

=

==.=.

(2) 12w 2w = 4421Re Re /2=2x1010=>

0.8

0.8

2211Nu Re 0.5Nu Re ??== ??? 0.8i2i1

h 0.5h = ()0.82

i2h 5500x0.53159w /m k ==

(3) 4433

3u d 2000x0.01

Re 2x10100.001

ρμ

=

=

=>

0.8

1/3Nu 0.023Re

Pr = ()2hi=6347w/m k

(4)i i w w Q=h A (t-t )=400=500x2x0.02(t-t )π

w t=40t 39.41=℃ ℃

(5) there methods : increase u or hi or decrease d The first is better

15. In a double pipe exchange (Φ23x2 mm), the cold fluid (Cp=1 kJ/kg, flow rate 500 kg/h) passes through

the pipe and the hot fluid goes through the outside. The inlet and outlet temperatures of cold fluid are 20 and 80 o , and the inlet and outlet temperatures of hot fluid are 150 and 90o , respectively. The h i (film coefficient inside pipe) is 700 w/(m 2 o C)and overall heat transfer coefficient U o (based on the outside surface of pipe) is 300w/(m 2 o C), respectively. If the heat loss is ignored and the conductivity of pipe wall (steel) is taken as 45 w/(m o C), find:

(1) heat transfer film coefficient outside the pipe h o ? (2) the pipe length required for counter flow, in m?

(3) what is the pipe length required if the heating medium changes to saturated vapor(140 o C) and it condenses to saturated liquid and other conditions keep unchanged?

(4) When the exchanger is used for a year, it is found that it cannot meet the need of production (the outlet temperature of cold fluid cannot reach 80 o C), explain why?

(a)

0m o 0i i m d l d 111230.002x23

h Vo h d kd 300700x1945x21

??=-+=-- ?

?? 1/h0=1/U0-(do/hidi+bdo/kdm)=1/300-23/700*19-0.002*23/45*21

()

2

0h 642.9w /m k

= 12

t +t LMTD=702

??℃=

Q=UoAo ?Tm=mcCp(Tcb-Tca) 300*2π*0.023*70L=500/3600*1000*(80-20)

L=5.4m

(c) 8020

LMTD=

86.514020ln

14080

-=--℃

1122

L t

70/86.5L t ?==? 2L 0.81L 1

4.

4m == (d) scale is formed on the outside ,V 0 is decreased

16. Water flows turbulently in the pipe of Φ25x2.5 mm shell tube exchanger. When the velocity of water u is

1 m/s, overall heat transfer coefficient Uo (based on the outer surface area of pipe) is 2115 w/(m

2 o C). If the u becomes 1.5 m/s and other conditions keep unchanged, Uo is 2660 w/( m 2 o C ). What is the film coefficient ho outside the pipe? (Heat resistances of pipe wall and scale are ignored) o i h h Uo 111+= (1) o

i o h h U 1'1'1+= (2) (1)-(2)= 0.80.80.80.812111111

21152660u C u C 1C 1.5C -=-=-

C=2859 i

o h Uo h 1

11-= ho=8127W/(m2K)

17. Water and oil pass parallelly through an exchanger which is 1 m long. The inlet and outlet temperatures of water are 15 and 40 o C, and those of oil are 150 and 100 o C, respectively. If the outlet temperature of oil decreases to 80 o C, and the flow rates and physical properties and inlet temperatures of water and oil maintain the same, what is the pipe length of new exchanger? (Heat loss and pipe wall resistance are neglected)

()()h h 12c c 21m Q W C T -T W C t t VA t ==-=?

()()h h 12

c c 2

1W C T -T 'W C t 't =-

21501004015

15080t 15--=-- 2t 50=℃

212m 1112m 2L T T 't 1508092.5

1.85

L T T t 15010069.8

-?-===-?- 2m 1m 2L 1.85m L 1=1m t 92.5 t 69.8

=?=?=

18. Air which passes through the pipe in turbulent flow is heated from 20 to 80 o C. The saturated vapor at 116.3 o C condenses to saturated water outside the pipe. If air flow rate increases to 120% of the origin and inlet and outlet temperatures of air stay constant, what kind of method can you employ in order to do that? (Heat resistance of pipe wall and scale can be ignored)

)(111ca cb pc c m i i T T C m T A h -=?=1Q

)'(2212ca cb pc c m i T T C m T A h -=?=2Q 1

28.0121

12

i22.12.1h m m c c m i m T T

m m T h T ??===

?? )

803.116/()203.116ln(20

801---=?m T

)

80/()20ln(20

802---=

?h h m T T T

Th=118.5oC

19. Water flows through the pipe of a Φ25x2.5 mm shell-tube exchanger from 20 to 50 o C. The hot fluid (C p 1.9 kJ/kg o C, flow rate 1.25 kg/s) goes along the shell and the temperatures change from 80 to 30 o C. Film coefficients of water and hot fluid are 0.85kw/(m 2 o C) and 1.7 kw/(m 2 o C). What is the overall heat transfer coefficient Uo and heat transfer area if the scale resistance can be ignored? (the conductivity of steel is 45w/(m o C).

W=1.25Kg/s Cp=1.9Kj/kg ℃

()()2h p 12Q W C T T 1.25x1.9x 80-30119Kw =-==

m 3010t 30ln

10

-?=

()2

00m 00i i m 1V 472w/m k d l d 1h h d kd ++==32i 0m Q 119x10A 13.9m V t 472x18.2===?

20. A spherical particle (density 2650 kg/m 3) settles freely in air at 20 o C (density of air 1.205 kg/m 3 , viscosity 1x10-5 Pa.s). Calculate the maximum diameter of particle if the settle obeys the Stoke s’ Law?

Re ≤1 ()2p t p

D g U 18D ρρμμ

ρP -=

=

()23

p 18D g μρρρP =- ()1/3

-10p 18x10D 1.205x9.81x 2650-1.205??= ? ?

??

=3.85x10-5

21. A filter press(A=0.1 m 2 ) is used for filtering slurry. The vacuum inside the filter is 500 mm Hg. One liter filtrate can be got after filtering of 5 min and 0.6 more liter filtrate is obtained after 5 more min. How much filtrate will be got after filtering of 5 more min?

for filter press 22e V 2VV =KA θ+ 5 min 22e 12V 0.1x5K +=(1) 10min 22e 1.62x1.6V 0.1x10K +=(2) From (1) (2),we can see Ve=0.7 K=48

15 min 2

2

V 2x0.7V=48x0.1x15+ V=2.07m 3

/h

22. The following data are obtained for a filter press (A=0.0093 m 2) in a lab.

------------------------------------------------------------------------------------------------ pressure difference (kg f /cm 2 ) filtering time (s) filtrate volume (m 3 )

1.05 50

2.27?10-3 660 9.10?10-3

3.50 17.1 2.27?10-3 233 9.10?10-3 Find

1) filtering constant K, q e , t e at pressure difference 1.05 kg f /cm 2 ?

2) if the frame of filter is filled with the cake at 660 s, what is the end filtering rate (dV/dt)E at P 1.05 kg f /cm 2 ?

3) compressible constant of cake s?

For p=1.05Kg/cm 2

2e 2

e 2

e q 2qq K 0.002270.0002272x q 50K 0.00930.000930.000910.000912x q 660K 0.000930.00093θ

+=??

+= ?

??

??

+= ?

??

We can see K=0.015 qe=0.026

For p=3.5Kg/cm

2

1-s K=2k ?P 1-s K'=2k '?P

1s

K 'K '-?P ??= ??P ?? ()

2E e V KA 2V+V d d θ??=

???

23. A slurry is filtered by a 0.1 m 2 filter press at constant pressure if the cake is incompressible. The filter basic equation is as follows: (q+10)2 = 250(t+ 0.4) where q---l/m 2 t----min

find (1) how much filtrate is got after 249.6 min?

(2) if the pressure difference is double and the resistance of cake is constant, how much filtrate can be obtained after 249.6 min? (cake is imcompressible)

(1)let θ=249.6 ()()2

q+10250x 249.60.4=+

q=240 V=qA=240*0.1=24 (2) K 2k =?P K'2k '=?P

'2?P =?P K '2K 500== ()()2

q'+10500x 249.60.4=+ q ’=343.6 v=34.36

流体力学中英文对照外文翻译文献

中英文对照外文翻译(文档含英文原文和中文翻译)

14选择的材料取决于于高流动速度 降解或材料由于疲劳,腐蚀,磨损和气蚀故障糜烂一次又一次导致泵运营商成本高昂的问题。这可能通过仔细选择材料的性能以避免在大多数情况下发生。一两个原因便可能导致错误的材料选择:(1)泵输送的腐蚀性液体的性质没有清楚地指定(或未知),或(2),由于成本的原因(竞争压力),使用最便宜的材料。 泵部件的疲劳,磨损,空化攻击的严重性和侵蚀腐蚀与流速以指数方式增加,但应用程序各种材料的限制,不容易确定。它们依赖于流速度以及对介质的腐蚀性泵送和浓度夹带的固体颗粒,如果有的话。另外,交变应力诱导通过压力脉动和转子/定子相互作用力(RSI)真的不能进行量化。这就是为什么厚度的叶片,整流罩和叶片通常从经验和工程判断选择。 材料的本讨论集中在流之间的相互作用现象和物质的行为。为此,在某些背景信息腐蚀和经常使用的材料,被认为是必要的,但是一个综合指南材料的选择显然是超出了本文的范围。在这一章中方法开发出促进系统和一致方法选择材料和分析材料的问题领域。四个标准有关,用于选择材料暴露于高流动速度: 1.疲劳强度(通常在腐蚀环境),由于高的速度在泵本身与高压脉动,转子/定子的相互作用力和交变应力。 2.腐蚀诱导高的速度,特别是侵蚀腐蚀。 3.气蚀,由于已广泛在章讨论。 4.磨耗金属损失造成的流体夹带的固体颗粒。 磨损和汽蚀主要是机械磨损机制,它可以在次,被腐蚀的钢筋。与此相反,腐蚀是一种化学金属,泵送的介质,氧和化学试剂之间的反应。该反应始终存在- 即使它是几乎察觉。最后,该叶轮尖端速度可以通过液压力或振动和噪声的限制。 14.1叶轮和扩散的疲劳性骨折 可避免的叶轮叶片,整流罩或扩散器叶片的疲劳断裂施加领域的状态;它们很少观察到。在高负荷的泵,无视基本设计规则或生产应用不足的医疗服务时,这种类型的伤害仍然是有时会遇到。的主要原因在静脉或罩骨折包括: ?过小的距离(间隙B或比D3*= D3/ D2)叶轮叶片之间扩散器叶片(表10.2)。 ?不足寿衣厚度。 ?不足质量:叶片和护罩之间的圆角半径缺失或过于引起的小,铸造缺陷,脆性材料(韧性不足)热处理不足。 ?可能地,过度的压力脉动引起的泵或系统,第一章。10.3。 ?用液压或声叶轮的固有模式之间共振激发。也可能有之间的一个流体- 结构交互叶轮的侧板,并在叶轮侧壁间隙流动.. 转子/定子的互动和压力脉动章中讨论。10产生交替在叶轮叶片的压力和所述整流罩以及在扩散器叶片。这些应力的准确的分析几乎是不可能的(甚至虽然各组分能很好通过有限元程序进行分析),因为叶轮由不稳定压力分布的水力负荷不能定义。它不仅取决于流在叶轮,集电极和侧壁的差距,同时也对声学现象,并可能在脉动系统(也指章。10.3)。为了开发一致的实证过程评估装载叶轮和扩散器,用于选择叶片和护罩厚度或对所述的损伤的分析中,可以使用下一个均匀的负荷的简单梁的模型作为起点。因此,封闭的叶轮或扩散器的叶片是通过夹紧在两端的梁建模。开式叶轮或扩散器的描述由光束夹紧在一端,但游离在其他。根据表14.1和14.2的计算是基于以下assumptions1: 1.考虑叶片的最后部分中,在所述叶轮出口处的束夹在两者的宽度为X =5×e和跨度L = B2(E =标称叶片端厚度没有可能配置文件)。如果刀片是异形,平均叶片厚度青霉用于确

流体力学中英文术语

Index 翻译(Fluid Mechanics) Absolute pressure,绝对压力(压强)Absolute temperature scales, 绝对温标Absolute viscosity, 绝对粘度Acceleration加速度centripetal, 向心的convective, 对流的Coriolis, 科氏的 field of a fluid, 流场 force and,作用力与……local, 局部的 Uniform linear, 均一线性的Acceleration field加速度场Ackeret theory, 阿克莱特定理Active flow control, 主动流动控制Actuator disk, 促动盘 Added mass, 附加质量Adiabatic flow绝热流 with friction,考虑摩擦的isentropic,等熵的 air, 气体 with area changes, 伴有空间转换Bemoullii’s equation and, 伯努利方程Mach number relations,马赫数关系式,pressure and density relations, 压力-速度关系式sonic point,critical values, 音速点,临界值,stagnation enthalpy, 滞止焓Adiabatic processes, 绝热过程Adiabatic relations, 绝热关系 Adverse pressure gradient, 逆压力梯度 Aerodynamic forces, on road vehicles, 交通工具,空气动力 Aerodynamics, 空气动力学 Aeronautics, new trends in, 航空学,新趋势 Air空气 testing/modeling in, 对……实验/建模 useful numbers for, 关于……的有用数字 Airbus Industrie, 空中客车产业 Aircraft航行器 airfoils机翼 new designs, 新型设计 Airfoils, 翼型 aspect ratio (AR), 展弦比 cambered, 弧形的 drag coefficient of , 阻力系数 early, 早期的 Kline-Fogleman, 克莱恩-佛莱曼 lift coefficient, 升力系数 NACA, (美国) 国家航空咨询委员会separation bubble, 分离泡 stalls and, 失速 stall speed, 失速速度 starting vortex, 起动涡 stopping vortex, 终止涡 Airfoil theory, 翼型理论 flat-plate vortex sheet theory, 平板面涡理论 Kutta condition, 库塔条件 Kutta-Joukowski theorem, 库塔-儒科夫斯基定理 1

流体力学英语词汇翻译(2)

流体力学英语词汇翻译(2) 流体力学英语词汇翻译(2)流体力学英语词汇翻译(2)动量厚度momentum thickness 能量厚度energy thickness 焓厚度enthalpy thickness 注入injection 吸出suction 泰勒涡taylor vortex 速度亏损律velocity defect law 形状因子shape factor 测速法anemometry 粘度测定法visco[si] metry 流动显示flow visualization 油烟显示oil smoke visualization 孔板流量计orifice meter 频率响应frequency response 油膜显示oil film visualization 阴影法shadow method 纹影法schlieren method 烟丝法smoke wire method

丝线法tuft method 氢泡法nydrogen bubble method 相似理论similarity theory 相似律similarity law 部分相似partial similarity 定理pi theorem, buckingham theorem 静[态]校准static calibration 动态校准dynamic calibration 风洞wind tunnel 激波管shock tube 激波管风洞shock tube wind tunnel 水洞water tunnel 拖曳水池towing tank 旋臂水池rotating arm basin 扩散段diffuser 测压孔pressure tap 皮托管pitot tube 普雷斯顿管preston tube 斯坦顿管stanton tube 文丘里管venturi tube u形管u-tube 压强计manometer

流体力学与传热学

1、对流传热总是概括地着眼于壁面和流体主体之间的热传递,也就是将边界层的(热传导)和边界层外的(对流传热)合并考虑,并命名为给热。 2、在工程计算中,对两侧温度分别为 t1,t2 的固体,通常采用平均导热系数进行热传导计算。平均导热系数的两种表示方法是或。答案;λ = 3、图 3-2 表示固定管板式换热器的两块管板。由图可知,此换热器为或。体的走向为 管程,管程流 1 1 4 2 2 3 3 5 图 3-2 3-18 附图答案:4;2 → 4 → 1 → 5 → 3;3 → 5 → 1 → 4 → 2 4、4.黑体的表面温度从 300℃升至 600℃,其辐射能力增大到原来的(5.39)倍. 答案: 5.39 分析: 斯蒂芬-波尔兹曼定律表明黑体的辐射能力与绝对温度的 4 次方成正比, ? 600 + 273 ? 摄氏温度,即 ? ? =5.39。 ? 300 + 273 ? 5、 3-24 用 0.1Mpa 的饱和水蒸气在套管换热器中加热空气。空气走管内, 20℃升至 60℃,由则管内壁的温度约为(100℃) 6、热油和水在一套管换热器中换热,水由 20℃升至 75℃。若冷流体为最小值流体,传热效率 0.65,则油的入口温度为 (104℃)。 7、因次分析法基础是 (因次的一致性),又称因次的和谐性。 8、粘度的物理意义是促使流体产生单位速度梯度的(剪应力) 9、如果管内流体流量增大 1 倍以后,仍处于滞流状态,则流动阻力增大到原来的(2 倍) 10、在滞流区,若总流量不变,规格相同的两根管子串联时的压降为并联时4 倍。 11、流体沿壁面流动时,在边界层内垂直于流动方向上存在着显著的(速度梯度),即使(粘度)很小,(内摩擦应力)仍然很大,不容忽视。 12、雷诺数的物理意义实际上就是与阻力有关的两个作用力的比值,即流体流动时的(惯性力)与(粘性力)之比。 13、滞流与湍流的本质区别是(滞流无径向运动,湍流有径向运动) 二、问答题:问答题: 1、工业上常使用饱和蒸汽做为加热介质而不用过热蒸汽,为什么?答:使用饱和蒸汽做为加热介质的方法在工业上已得到广泛的应用。这是因为饱和蒸汽与低于其温度的壁面接触后,冷凝为液体,释放出大量的潜在热量。虽然蒸汽凝结后生成的凝液覆盖着壁面,使后续蒸汽放出的潜热只能通过先前形成的液膜传到壁面,但因气相不存在热阻,冷凝传热的全部热阻只集中在液膜,由于冷凝给热系数很大,加上其温度恒定的特点,所以在工业上得到日益广泛的应用。如要加热介质是过热蒸汽,特别是壁温高于蒸汽相应的饱和温度时,壁面上就不会发生冷凝现象,蒸汽和壁面之间发生的只是通常的对流传热。此时,热阻将集中在靠近壁面的滞流内层中,而蒸气的导热系数又很小,故过热蒸汽的对流传热系数远小于蒸汽的冷凝给热系数,这就大大限制了过热蒸汽的工业应用。 2、下图所示的两个 U 形管压差计中,同一水平面上的两点 A、或 C、的压强是否相等? B D P1 A P2 p 水 B C 空气 C 水银图 1-1 D 水 P1 1-1 附图 P2 A B D p h1 。 答:在图 1—1 所示的倒 U 形管压差计顶部划出一微小空气柱。空气柱静止不动,说明两侧的压强相等,设为 P。由流体静力学基本方程式: p A = p + ρ空气 gh1 + ρ水 gh1 p B = p + ρ空气 gh1 + ρ空气 gh 1 Q ρ水 > ρ空气 p C = p + ρ空气 gh1 ∴ p A> pB 即 A、B 两点压强不等。而

流体力学与传热习题参考解答(英文).

1. Water is pumped at a constant velocity 1m/s from large reservoir resting on the floor to the open top of an absorption tower. The point of discharge is 4 meter above the floor, and the friction losses from the reservoir to the tower amount to 30 J/kg. At what height in the reservoir must the water level be kept if the pump can develop only60 J/kg? 2222112f 1U P U P w=Z g+h (Z g+)22ρρ ++-+ U 1=0 12P =P 10Z = W=60j/kg f h 30/kg = 2U =1m/s 2(60300.5)/g 3m Z =--= 21Z Z Z 431m ?=-=-= 2. The fluid (density 1200 kg/m 3 ) is pumped at a constant rate 20 m 3 /h from the large reservoir to the evaporator. The pressure above the reservoir maintains atmosphere pressure and the pressure of the evaporator keeps 200 mmHg (vacuum). The distance between the level of liquid in the reservoir and the exit of evaporator is 15 meter and frictional loss in the pipe is 120 J/kg not including the exit of evaporator, what is the pump effective work and power if the diameter of pipe is 60 mm? 22112212f U U Z g+W Z g+h 22 ρρP P ++=++ 10P = 5422200P x1.013x10 2.67x10N /m 760 =-=- 31200Kg /m ρ= 1U 0= f h 120J /kg = 22V 20U 1.97m /s A 3600*4006 ===π/*. 1Z 0= 2Z 15= 42 2.67x101.97W 15x9.81120246.88J /kg 12002 =-+++= N W Q 246.88x1200x20/3600=1646W ρ== 3. Water comes out of the pipe (Φ108x4 mm), as shown in Fig. The friction loss of the pipeline which does not cover the loss at the exit of pipe can be calculated by the following equation:

第三部分流体力学、传热学知识

第三部分 —流体力学、传热学知识 一、单项选择题 1、在水力学中,单位质量力是指(C) □A.单位面积液体受到的质量力;□B.单位体积液体受到的质量力;□C.单位质量液体受到的质量力;□D.单位重量液体受到的质量力。 2、液体中某点的绝对压强为100kN/m2,则该点的相对压强为( B ) □A.1 kN/m2 □B.2 kN/m2 □C.5 kN/m2 □D.10 kN/m2 3、有压管道的管径d与管流水力半径的比值d /R=(B) □A.8 □B.4 □C.2 □D.1 4、已知液体流动的沿程水力摩擦系数 与边壁相对粗糙度和雷诺数Re都有关,即可以判断该液体流动属于( C ) □A.层流区□B.紊流光滑区 □C.紊流过渡粗糙区□D.紊流粗糙区 5、现有以下几种措施: ①对燃烧煤时产生的尾气进行除硫处理;②少用原煤做燃料; ③燃煤时鼓入足量空气;④开发清洁能源。 其中能减少酸雨产生的措施是(C) □A.①②③□B.②③④□C.①②④□D.①③④6、“能源分类相关图”如下图所示,下列四组能源选项中,全部符合图中阴影部分的能源是(C)

□A.煤炭、石油、潮汐能□B.水能、生物能、天然气□C.太阳能、风能、沼气□D.地热能、海洋能、核能7、热量传递的方式是什么?(D) □A.导热□B.对流□C.热辐射□D.以上三项都是8、流体运动的连续性方程是根据(C)原理导出的? □A.动量守恒□B.质量守恒□C.能量守恒□D.力的平衡9、当控制阀的开口一定,阀的进、出口压力差Δp(B) □A.增加□B.减少□C.基本不变□D.无法判断10、热流密度q与热流量的关系为(以下式子A为传热面积,λ为导热系数,h为对流传热系数)(B) □A.q=φA □B.q=φ/A □C.q=λφ□D.q=hφ 11、如果在水冷壁的管子里结了一层水垢,其他条件不变,管壁温度与无水垢时相比将( B ) □A.不变□B.提高□C.降低□D.随机改变 12、在传热过程中,系统传热量与下列哪一个参数成反比? ( D ) □A.传热面积□B.流体温差 □C.传热系数□D.传热热阻 13、下列哪个不是增强传热的有效措施?(D) □A.波纹管□B.逆流

流体力学常用英语词汇

流体动力学 fluid dynamics 连续介质力学 mechanics of continuous media 介质 medium 流体质点 fluid particle 无粘性流体 nonviscous fluid, inviscid fluid 连续介质假设continuous medium hypothesis 流体运动学 fluid kinematics 水静力学 hydrostatics 液体静力学 hydrostatics 支配方程 governing equation 分步法 fractional step method 伯努利定理 Bernonlli theorem 毕奥-萨伐尔定律 Biot-Savart law 欧拉方程 Euler equation 亥姆霍兹定理 Helmholtz theorem 开尔文定理 Kelvin theorem 涡片 vortex sheet 库塔-茹可夫斯基条件 Kutta-Zhoukowski condition 布拉休斯解 Blasius solution 达朗贝尔佯廖 d'Alembert paradox 雷诺数 Reynolds number 施特鲁哈尔数 Strouhal number 随体导数 material derivative 不可压缩流体 incompressible fluid 质量守恒 conservation of mass 动量守恒 conservation of momentum 能量守恒 conservation of energy 动量方程 momentum equation 能量方程 energy equation 控制体积 control volume 液体静压 hydrostatic pressure 涡量拟能 enstrophy 压差 differential pressure 流[动] flow 流线 stream line 流面 stream surface 流管 stream tube 迹线 path, path line 流场 flow field 流态 flow regime 流动参量 flow parameter 流量 flow rate, flow discharge 涡旋vortex 涡量 vorticity 涡丝 vortex filament 涡线 vortex line 涡面 vortex surface 涡层 vortex layer 涡环 vortex ring 涡对 vortex pair 涡管 vortex tube 涡街 vortex street 卡门涡街 Karman vortex street 马蹄涡 horseshoe vortex 对流涡胞 convective cell 卷筒涡胞 roll cell 涡 eddy 涡粘性 eddy viscosity 环流 circulation 环量 circulation 速度环量 velocity circulation 偶极子 doublet, dipole 驻点stagnation point 总压[力] total pressure 总压头 total head 静压头 static head 总焓 total enthalpy 能量输运 energy transport 速度剖面 velocity profile 库埃特流 Couette flow 单相流 single phase flow 单组份流 single-component flow 均匀流uniform flow 非均匀流 nonuniform flow 二维流 two-dimensional flow 三维流 three-dimensional flow 准定常流 quasi-steady flow 非定常流 unsteady flow, non-steady flow 暂态流 transient flow 周期流 periodic flow 振荡流 oscillatory flow 分层流 stratified flow 无旋流 irrotational flow 有旋流 rotational flow 轴对称流 axisymmetric flow 不可压缩性 incompressibility 不可压缩流[动] incompressible flow 浮体floating body 定倾中心 metacenter 阻力 drag, resistance

(完整版)流体力学常用名词中英文对照

流体力学常用名词流体动力学fluid dynamics 连续介质力学mechanics of continuous 介质medium 流体质点fluid particle 无粘性流体nonviscous fluid, inviscid 连续介质假设continuous medium hypothesis 流体运动学fluid kinematics 水静力学hydrostatics 液体静力学hydrostatics 支配方程governing equation 伯努利方程Bernoulli equation 伯努利定理Bernonlli theorem 毕奥- 萨伐尔定律Biot-Savart law 欧拉方程Euler equation 亥姆霍兹定理Helmholtz theorem 开尔文定理Kelvin theorem 涡片vortex sheet 库塔- 茹可夫斯基条件Kutta-Zhoukowski condition 布拉休斯解Blasius solution 达朗贝尔佯廖d'Alembert paradox 雷诺数Reynolds number 施特鲁哈尔数Strouhal number 随体导数material derivative 不可压缩流体incompressible fluid 质量守恒conservation of mass 动量守恒conservation of momentum 能量守恒conservation of energy 动量方程momentum equation 能量方程energy equation 控制体积control volume 液体静压hydrostatic pressure 涡量拟能enstrophy 压差differential pressure 流[动] flow 流线stream line 流面stream surface 流管stream tube 迹线path, path line 流场flow field 流态flow regime 流动参量flow parameter 流量flow rate, flow discharge 涡旋vortex 涡量vorticity 涡丝vortex filament 涡线vortex line 涡面vortex surface 涡层vortex layer 涡环vortex ring 涡对vortex pair 涡管vortex tube 涡街vortex street 卡门涡街Karman vortex street 马蹄涡horseshoe vortex 对流涡胞convective cell 卷筒涡胞roll cell 涡eddy 涡粘性eddy viscosity 环流circulation 环量circulation 速度环量velocity circulation 偶极子doublet, dipole 驻点stagnation point 总压[ 力] total pressure 总压头total head 静压头static head 总焓total enthalpy 能量输运energy transport 速度剖面velocity profile 库埃特流Couette flow 单相流single phase flow 单组份流single-component flow 均匀流uniform flow 非均匀流nonuniform flow 二维流two-dimensional flow 三维流three-dimensional flow 准定常流quasi-steady flow 非 定常流unsteady flow, non-steady flow 暂态流

【精品】流体力学与传热学教案设计

流体力学与传热学 流体静力学:研究静止流体中压强分布规律及对固体接触面的作用问题 流体动力学:研究运动流体中各运动参数变化规律,流体与固体作用面的相互作用力的问题 传热学研究内容:研究热传导和热平衡规律的科学上篇:流体力学基础 第一章流体及其主要力学性质 第一节流体的概念 一流体的概述 ⒈流体的概念:流体是液体和气体的统称 ⒉流体的特点:易流动性—在微小剪切力的作用下,都将连续不断的产生变形(区 别于固体的特点) ⑴液体:具有固定的体积;在容器中能够形成一定的自由表面;不可压缩性 ⑵气体;没有固定容积;总是充满所占容器的空间;可压缩性

二连续介质的模型 ⒈连续介质的概念 所谓连续介质即是将实际流体看成是一种假想的,由无限多流体质点所组成的稠密而无间隙的连续介质.而且这种连续介质仍然具有流体的一切基本力学性质. ⒉连续介质模型意义 所谓流体介质的连续性,不仅是指物质的连续不间断,也指一些物理性质的连续不间断性.即反映宏观流体的密度,流速,压力等物理量也必定是空间坐标的连续函数(可用连续函数解决流体力学问题)

第二节流体的性质 一密度—--表征流体质量性质 ⒈密度定义:单位体积内所具有的流体质量 ⑴对于均质流体:ρ=m/v 式中ρ-流体的密度(㎏/m 3) m-流体的质量(㎏) v —流体的体积(m 3) ⑵对于非均质流体:ρ=⒉比体积(比容):单位质量流体所具有的体积(热力学和 气体动力学概念) ⑴对于均质流体:v=V/m=1/ρ(m 3/㎏) 3.液体的密度在一般情况下,可视为不随温度或压强而变化;但气体的密度则随温度和压强可发生很大的变化。 二流体的压缩性和膨胀性 dv dm v m v =??→?0lim

流体力学与传热200612A(附参考标准答案)

,考试作弊将带来严重后果! 华南理工大学期末考试 《 流体力学与传热 》试卷 1. 考前请将密封线内填写清楚; 2. 所有答案请直接答在试卷上(或答题纸上); 3.考试形式:闭卷; 、 流体在圆形管道中作完全湍流流动,如果只将流速增加一倍,阻力损失为原来的 4 倍;如果只将管径增加一倍而流速不变,则阻力损失为原来的 1/2 倍。 、离心泵的特性曲线通常包括 H-Q 曲线、 N -Q 和 η-Q 曲线 、气体的粘度随温度升高而 增加 ,水的粘度随温度升高而 降低 。 4、测量流体体积流量的流量计有 转子流量计 、 孔板流量计 和 涡轮流量计。 、(1)离心泵最常用的调节方法是 B (A ) 改变吸入管路中阀门开度 (B ) 改变压出管路中阀门的开度 (C ) 安置回流支路,改变循环时的大小 (D ) 车削离心泵的叶轮 )漩涡泵常用的调节方法是 B (A ) 改变吸入管路中阀门开度 (B ) 安置回流支流,改变循环量的大小 (C ) 改变压出管路中阀门的开度 (D ) 改变电源的电压。 6、沉降操作是指在某种 力场 中利用分散相和连续相之间的 密度 ,使之发生相对运动而实现分离的操作过程。 、最常见的间歇式过滤机有 板框过滤机和叶滤机 连续式过滤机有 真空转筒过滤机 。 、在一卧式加热器中,利用水蒸汽冷凝来加热某种液体,应让加热蒸汽在 壳程流动,加热器顶部设 排放不凝气,防止壳程α值大辐度下降。 、(1)为了减少室外设备的热损失,保温层外所包的一层金属皮应该是 A (A )表面光滑,颜色较浅; (B)表面粗糙,颜色较深 (C )表面粗糙,颜色较浅 (2)某一套管换热器用管间饱和蒸汽加热管内空气,设饱和蒸汽温度为C ?100,空气进口温度为C ?,出口温度为C ?80,问此套管换热器内管壁温应是_C__。 (A)接近空气平均温度 (B )接近饱和蒸汽和空气的平均温度 (C )接近饱和蒸汽温度 、举出三种间壁式换热器 套管 、 夹套换热器 、 蛇管换热器 。

流体力学英语

流体力学英语 流体力学 流体动力学fluid dynamics 连续介质力学mechanics of continuous media 介质medium 流体质点fluid particle 无粘性流体nonviscous fluid, inviscid fluid 连续介质假设continuous medium hypothesis 流体运动学fluid kinematics 水静力学hydrostatics 液体静力学hydrostatics 支配方程governing equation 伯努利方程Bernoulli equation 伯努利定理Bernonlli theorem 毕奥-萨伐尔定律Biot-Savart law 欧拉方程Euler equation 亥姆霍兹定理Helmholtz theorem 开尔文定理Kelvin theorem 涡片vortex sheet 库塔-茹可夫斯基条件Kutta-Zhoukowski condition 布拉休斯解Blasius solution 达朗贝尔佯廖d'Alembert paradox 雷诺数Reynolds number 施特鲁哈尔数Strouhal number 随体导数material derivative 不可压缩流体incompressible fluid 质量守恒conservation of mass 动量守恒conservation of momentum 能量守恒conservation of energy 动量方程momentum equation 能量方程energy equation 控制体积control volume 液体静压hydrostatic pressure 涡量拟能enstrophy 压差differential pressure 流[动] flow 流线stream line 流面stream surface

流体力学专业词汇

流体动力学fluid dynamics 连续介质力学mechanics of continuous media 介质medium 流体质点fluid particle 无粘性流体nonviscous fluid, inviscid fluid 连续介质假设continuous medium hypothesis 流体运动学fluid kinematics 水静力学hydrostatics 液体静力学hydrostatics 支配方程governing equation 伯努利方程Bernoulli equation 伯努利定理Bernonlli theorem 毕奥-萨伐尔定律Biot-Savart law 欧拉方程Euler equation 亥姆霍兹定理Helmholtz theorem 开尔文定理Kelvin theorem 涡片vortex sheet 库塔-茹可夫斯基条件Kutta-Zhoukowski condition 布拉休斯解Blasius solution 达朗贝尔佯廖d'Alembert paradox 雷诺数Reynolds number 施特鲁哈尔数Strouhal number 随体导数material derivative 不可压缩流体incompressible fluid 质量守恒conservation of mass 动量守恒conservation of momentum 能量守恒conservation of energy 动量方程momentum equation 能量方程energy equation 控制体积control volume 液体静压hydrostatic pressure 涡量拟能enstrophy 压差differential pressure 流[动] flow 流线stream line 流面stream surface 流管stream tube 迹线path, path line 流场flow field 流态flow regime 流动参量flow parameter 流量flow rate, flow discharge 涡旋vortex 涡量vorticity

08年流体力学及传热

836 华南理工大学 2008年攻读硕士学位研究生入学考试试卷(请在答题纸上做答,试卷上做答无效,试后本卷必须与答题纸一同交回) 科目名称:流体力学与传热 适用专业:材料加工工程,化工过程机械,油气储运工程 共页一、单项选择题(本大题共10小题,每小题2分,共20分,在每小题的四 个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内) 1.若流体的密度仅随___________变化而变化,则该流体称为正压性流体。 ( ) A.质量 B.体积 C.温度 D.压强 2.亚声速流动,是指马赫数__________时的流动。( ) A.等于1 B.等于临界马赫数 C.大于1 D.小于1 3.气体温度增加,气体粘度( )。 A.增加 B.减小 C.不变 D.增加或减小 4.流体流动时,流场各质点的参数不随时间变化,仅随空间位置而变,这种流动称为( )。 A.定常流 B.非定常流 C.非均匀流 D.均匀流 5.流体在流动时,根据流体微团________来判断流动是有旋流动还是无旋流动。( ) A.运行轨迹是水平的 B.运行轨迹是曲线 C.运行轨迹是直线 D.是否绕自身轴旋转 6.在同一瞬时,流线上各个流体近质点的速度方向总是在该点与此线( ) A.重合 B.相交 C.相切 D.平行

7.当某管路流动在湍流粗糙管平方阻力区范围内时,则随着雷诺数Re的增大,其沿程损失系数λ将( ) A.增大 B.减小 C.不变 D.增大或减小 8.流体在管内作层流流动时,其沿程损失hf值与断面平均流速v的__________次方成正比。( ) A.1 B.1.75 C.1.75—2 D.2 9.层流与湍流的本质区别是( ) A. 流速不同; C. 雷诺数不同; B. 流通截面积不同 D 层流无横向运动,湍流有横向运动 10.利用因次分析法的目的在于( )。 A.使实验和关联工作简化; C. 建立数学表达式; B.增加实验结果的可靠性; D. 避免出现因次错误; 二 、填空题(本大题共3小题,共15分) 1.边界层的形成是流体具有 的结果。流体沿壁面流动时,在边界层内垂直于流动方向上存在着显著的_____,即使_____很小,_______仍然很大,不容忽视。(本题8分) 2.边长为α的正方形载面风道,其当量直径为 。(本题3分) 3.雷诺数的物理意义实际上就是与阻力有关的两个作用力的比值,即流体流动时的__ 与__ 之比。(本题4分) 三、计算题(共72分) 1.用普通U形管压差计测量气体管路上两截面的压强差,指示液用水,读数R为12mm。为了放大读数,改用微差压差计,指示液A、C的密度分别

流体力学复习资料及英文专有名词解释

Chapter 1 Fluid statics 流体静力学 1. 连续介质假定(Continuum assumption):The real fluid is considered as no-gap continuous media, called the basic assumption of continuity of fluid, or the continuum hypothesis of fluid.流体是由连续分布的流体质点(fluid particle)所组成,彼此间无间隙。它是流体力学中最基本的假定,1755年由欧拉提出。在连续性假设之下,表征流体状态的宏观物理量在空间和时间上都是连续分布的,都可以作为空间和时间的函数。 2. 流体质点(Fluid particle ): A fluid elementthat is small enough with enoughmoles to make sure that the macroscopic meandensity has definite valueis defined as a Fluid Particle.宏观上足够小,微观上足够大。 3. 流体的粘性(Viscosity ): is an internal property of a fluid that offers resistance to shear deformation. It describes a fluid's internal resistance to flow and may be thought as a measure of fluid friction.流体在运动状态下抵抗剪切变形的性质,称为黏性或粘滞性。它表示流体的内部流动阻力,也可当做一个流体摩擦力量。The viscosity of a gas increases with temperature, the viscosity of a liquid decreases with temperature. 4. 牛顿内摩擦定律(Newton’s law of viscosity ): 5. The dynamic viscosity (动力黏度)is also called absolute viscosity (绝对黏度). The kinematic viscosity (运动黏度)is the ratio of dynamic viscosity to density. 6. Compressibility (压缩性):As the temperature is constant, the magnitude of compressibility is expressed by coefficient of volume compressibility (体积压缩系数) к , a relative variation rate (相对变化率) of volume per unit pressure. The bulk modulus of elasticity (体积弹性模量) E is the reciprocal of coefficient of volume compressibility к. 7. 流体的膨胀性(expansibility; dilatability):The coefficient of cubical expansion (体积热膨胀 系数) αt is the relative variation rate of volume per unit temperature change. 8. 表面张力Surfacetension : A property resulting from the attractive forces between du dz τμ=μ νρ =

(完整版)流体力学与传热学试题及答案

流体力学与传热学试题及参考答案 一、填空题:(每空1分) 1、对流传热总是概括地着眼于壁面和流体主体之间的热传递,也就是将边界层的 和边界层外的 合并考虑,并命名为给热。 答案:热传导;对流传热 2、在工程计算中,对两侧温度分别为t1,t2的固体,通常采用平均导热系数进行热传导计算。平均导热系数的两种表示方法是 或 。 答案;2 2 1λλλ+= - ;2 2 1t t += - λ 3、图3-2表示固定管板式换热器的两块管板。由图可知,此换热器为 管程,管程流体的走向为 或 。 1 2 3 图3-2 3-18 附图 答案:4;2→4 →1→5→3;3→5→1→4→2 4、黑体的表面温度从300℃升至600℃,其辐射能力增大到原来的 倍. 答案: 5.39 分析: 斯蒂芬-波尔兹曼定律表明黑体的辐射能力与绝对温度的4次方成正比, 而非 摄氏温度,即4 273300273600?? ? ??++=5.39。 5、3-24 用0.1Mpa 的饱和水蒸气在套管换热器中加热空气。空气走管内,由20℃升至60℃,则管内壁的温度约为 。 答案:100℃ 6、热油和水在一套管换热器中换热,水由20℃升至75℃。若冷流体为最小值流体,传热效率0.65,则油的入口温度为 。 答案:104℃ 分析:Θε= 20 20 751--T =0.65 ∴1T =104℃ 1 2 3

7、因次分析法的基础是 ,又称因次的和谐性。 答案:因次的一致性 8、粘度的物理意义是促使流体产生单位速度梯度的_____________。 答案:剪应力 9、如果管内流体流量增大1倍以后,仍处于滞流状态,则流动阻力增大到原来的 倍。 答案:2 10、在滞流区,若总流量不变,规格相同的两根管子串联时的压降为并联时的 倍。 答案:4 11、流体沿壁面流动时,在边界层内垂直于流动方向上存在着显著的_______________,即使____________很小,____________仍然很大,不容忽视。 答案:速度梯度;粘度;内摩擦应力 12、雷诺数的物理意义实际上就是与阻力有关的两个作用力的比值,即流体流动时的______ 与__ ____ 之比。 答案:惯性力;粘性力 13、滞流与湍流的本质区别是 。 答案:滞流无径向运动,湍流有径向运动; 二、问答题:(每小题8分) 1、工业上常使用饱和蒸汽做为加热介质而不用过热蒸汽,为什么? 答:使用饱和蒸汽做为加热介质的方法在工业上已得到广泛的应用。这是因为饱和蒸汽与低于其温度的壁面接触后,冷凝为液体,释放出大量的潜在热量。虽然蒸汽凝结后生成的凝液覆盖着壁面,使后续蒸汽放出的潜热只能通过先前形成的液膜传到壁面,但因气相不存在热阻,冷凝传热的全部热阻只集中在液膜,由于冷凝给热系数很大,加上其温度恒定的特点,所以在工业上得到日益广泛的应用。 如要加热介质是过热蒸汽,特别是壁温高于蒸汽相应的饱和温度时,壁面上就不会发生冷凝现象,蒸汽和壁面之间发生的只是通常的对流传热。此时,热阻将集中在靠近壁面的滞流内层中,而蒸气的导热系数又很小,故过热蒸汽的对流传热系数远小于蒸汽的冷凝给热系数,这就大大限制了过热蒸汽的工业应用。 2、下图所示的两个U 形管压差计中,同一水平面上的两点A 、B 或C 、D 的压强是否相等? 水银 图1-1 1-1附图 12

相关主题
文本预览
相关文档 最新文档