当前位置:文档之家› 谐波抑制和谐波滤除区别

谐波抑制和谐波滤除区别

谐波抑制和谐波滤除区别

“滤波”与“抑制谐波”的区别与联系

在公司的电能产品样本和方案中经常出现补偿装置具有抑制谐波或滤除谐波功能,好多员工对抑制谐波和滤除谐波区分不清,更有甚者将二者颠倒,二者区别与联系如下:

抑制谐波的补偿装置也叫失谐滤波器,它的调谐点偏离系统的特征谐波电流(电压)较远,相对流过支路的谐波电流比较少,比如公司TBB和ZTSC产品,经常选用6%的电抗器来抑制5次谐波,实际选择6%电抗器的补偿支路,调谐点在4.08远小于5,这样补偿支路流过5次谐波电流少,但达到了谐波不放大,补偿设备安全运行的目的。

滤除谐波的补偿装置也叫调谐滤波器,它的调谐点比较接近系统的谐波电流(电压),流过支路的谐波电流比较多,比如公司ZRFC和ZTFC产品,经常设置5次滤波支路,调谐点在4.75<5,所以大量5谐波电流流过支路,滤波效果比较好。

抑制谐波和滤除谐波装置电气原理一样,区别就是两者的使用目的不同,补偿装置的“抑制”功能在于提高功率因数的同时不放大系统中的谐波,保证补偿

谐波的危害及其抑制措施

谐波的危害及其抑制措施 中国联通苏州分公司 柳振伟 摘要:本文对谐波的概念及产生原理、谐波产生的问题作了较为详细的描述,并对目前解决谐波问题的措施作了分析。 关键词:交频器;谐波危害;抑制谐波措施 一、概述 理想状态下,优质的电力供应应该提供具有正弦波形的电压。但在实际中供电电压的波形会由于某些原因而偏离正弦波形,即产生谐波。我们所说的供电系统中的谐波是指一些频率为基波频率(在我国工业用电频率以50Hz 为基波频率)整数倍的正弦波分量,又称为高次谐波。在供电系统中,产生谐波的根本原因是由于给具有非线性阻抗特性的电气设备(又称为非线性负荷)供电的结果。这些非线性负荷在工作时向电源反馈高次谐波,导致供电系统的电压、电流波形畸变,使电力质量变坏。因此,谐波是电力质量的重要指标之一。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。谐波频率是基频率波的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理证明,任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。谐波是正弦波,每个谐波都具有不同的频率,幅度与相角。谐波可以I 区分为偶次与奇次性,第3、5、7次编号的为奇次谐波,而2、4,6、8等为偶次谐波,如基波为50Hz 时,2次谐波为lOOHz,3次谐波则是150Hz。一般地讲,奇次谐波引起的危害比偶次谐波更多更大。在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。对于三相整流负载,出现的谐波电流是6n±1次谐波,例如5、7,11、13、17、19等,变频器主要产生5、7次谐波。一个正弦波在5次谐波和7次谐波的影响下怎样发生畸变。(相对于基波的24%和9%),如下图所示。 图1 基波和谐波 图2 失真波形 谐波的危害表现为引起电气没备(电机、变压器和电容器等)附加损耗和发热,使同步发电机的额定输出功率降低,转矩降低,变压器温度升高,效率降低,绝缘加速老化,缩短使用寿命,甚至损坏,从而降低继电保护、控制、以及检测装

谐波危害及抑制谐波的方法

谐波危害及抑制谐波的方法 2008-05-05 23:08:43| 分类:默认分类| 标签:|字号大中小订阅 随着工业、农业和人民生活水平的不断提高,除了需要电能成倍增长,对供电质量及供电可靠性的要求也越来越多,电力质量(PowerQuality)受到人们的日益重视。例如,工业生产中的大型生产线、飞机场、大型金融商厦、大型医院等重要场合的计算机系统一旦失电,或因受电力网上瞬态电磁干扰影响,致使计算机系统无法正常运行,将会带来巨大的经济损失。电梯、空调等变频设备、电视机、计算机、复印机、电子式镇流器荧光灯等已成为人民日常生活的一部分,如果这些装置不能正常运行,必定扰乱人们的正常生活。但是,电视机、计算机、复印机、电子式照明设备、变频调速装置、开关电源、电弧炉等用电负载大都是非线性负载,都是谐波源,如将这些谐波电流注入公用电网,必然污染公用电网,使公用电网电源的波形畸变,增加谐波成份。 近几年,传感技术、光纤、微电子技术、计算机技术及信息技术日臻成熟。集成度愈来愈高的微电子技术使计算器的功能更加完美,体积愈来愈小,从而促使各种电器设备的控制向智能型控制器方向发展。随着微电子技术集成度的提高,微电子器件工作电压变得更低,耐压水平也相对更低,更易受外界电磁场干扰而导致控制单元损坏或失灵。例如,20世纪70年代计算机迅速普遍推广,电磁干扰及抑制问题更是十分突出,一些功能正常的计算机常出现误动作,而无法找出原因。1966年日本三基电子工业公司率先开发了“模拟脉冲的高频噪音模拟器”,将它产生的脉冲注入被试计算机的电源部分,结果发现计算机在注入100~200V脉冲时就误动作,难怪计算机在现场无法正常工作,其原因之一是计算机的电源受到了污染。因此,受谐波电流污染的公用电源,轻者干扰设备正常运行,影响人们的正常生活,重者致使工业上的大型生产线、系统运行瘫痪,会造成严重经济损失。 国际电工委员会(IEC)已于1988年开始对谐波限定提出了明确的要求。美国“IEEE电子电气工程师协会”于1992年制定了谐波限定标准IEEE—1000。在IEEEstd.519—1992标准中明确规定了计算机或类似设备的谐波电压畸变因数(THD)应在5%以下,而对于医院、飞机场等关键场所则要求THD应低于3%。 1 电网谐波的产生 1.1电源本身谐波--由于发电机制造工艺的问题,致使电枢表面的磁感应强度分布稍稍偏离正弦波,因此,产生的感应电动势也会稍稍偏离正弦电动势,即所产生的电流稍偏离正弦电流。当然,几个这样的电源并网时,总电源的电流也将偏离正弦波。 1.2由非线性负载所致 1.2.1非线性负载---谐波产生的另一个原因是由于非线性负载。当电流流经线性负载时,负载上电流与施加电压呈线性关系;而电流流经非线性负载时,则负载上电流为非正弦电波,即产生了谐波。 1.2.2 主要非线性负载装置 (1)开关电源的高次谐波:开关电源由五部分组成:一次整流、开关振荡回路、二次整流、负载和控制,这几个部分产生的噪声不完全一样。这几种干扰可以通过电源线等产生辐射干扰,也可以通过电源产生传导干扰。 (2)变压器空载合闸涌流产生谐波:铁心中磁通变化时,会产生8~15倍额定电流的涌流,由于线圈电阻的存在,变压器空载合闸涌流一般经过几个周波即可达到稳定。所产生的励磁涌流所含的谐波成份以3次谐波为主。

谐波电流及抑制

一.谐波电流 一般来说, 理想的交流电源应是纯正弦波形, 但因现实世界中的输出阻抗及非线性负载的原因, 导致电源波形失真。近年来整流性负载的大量使用, 造成大量的谐波电流, 也间接污染了市电, 产生电压的谐波成份. 另外一些市售的发电机或UPS本身输出电压就非纯正弦波, 甚至有方波的情形, 失真情形更严重, 所含谐波成份占了很大的比。 1.谐波的危害 谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。谐波可引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容器等设备烧毁。谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。对于电力系统外部,谐波对通信设备和电子设备会产生严重干扰。 2.谐波是怎么产生的 一是发电源质量不高产生谐波: 发电机由于三相绕组在制作上很难做到绝对对称,铁心也很难做到绝对均匀一致和其他一些原因,发电源多少也会产生一些谐波,但一般来说很少。

二是输配电系统产生谐波: 输配电系统中主要是电力变压器产生谐波,由于变压器铁心的饱和,磁化曲线的非线性,加上设计变压器时考虑经济性,其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,因而含有奇次谐波。它的大小与磁路的结构形式、铁心的饱和程度有关。铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大,其中3次谐波电流可达额定电流%。 三是用电设备产生的谐波: 晶闸管整流设备。由于晶闸管整流在电力机车、铝电解槽、充电装置、开关电源等许多方面得到了越来越广泛的应用,给电网造成了大量的谐波。我们知道,晶闸管整流装置采用移相控制,从电网吸收的是缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,从而给电网留下的也是另一部分缺角的正弦波,显然在留下部分中含有大量的谐波。如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流,其中3次谐波的含量可达基波的30%;接容性负载时则含有奇次谐波电压,其谐波含量随电容值的增大而增大。如果整流装置为三相全控桥6脉整流器,变压器原边及供电线路含有5次及以上奇次谐波电流;如果是12脉冲整流器,也还有11次及以上奇次谐波电流。经统计表明:由整流装置产生的谐波占所有谐波的近40%,这是最大的谐波源。

变频器谐波抑制方法

变频器谐波抑制方法 对小容量的通用变频器,高次谐波很少成为问题,但当使用的变频器容量大或数量多时,往往就会产生高次谐波电流和高次谐波干扰问题,因此对于高次谐波先采取适当的对策和预防措施是非常重要的。 1. 改善变频器结构 可以从变频器自身硬件结构或者整个变频系统的构建方式和设备选择等方面考虑,从根本上减少变频系统注入电网的谐波、无功等污染。 (1) 变频系统的供电电源与其他设备的供电电源相互独立,或在变频器和其他用电设备的输入侧安装隔离变压器; (2) 在整流环节采用多重化技术,提高脉波数,可以有效地提高特征谐波次数,降低特征谐波幅值。对于大容量晶闸管变频器可以采取这种方法,利用多重化抑制流向电源侧的高次谐波; (3) 采用高频整流电路,改善整流波形,提高功率因数,直流电压可调节; (4) 逆变环节采用高开关频率高的电力电子器件,如MOSFET,IGBT等,可以提高载波频率比,抑制变频器输出端的高频谐波。 (5) 在逆变环节采用多重化技术,提高脉波数,使输出的电流电压波形更加接近正弦波。但重数越多电路越复杂,可靠性会随之降低,三重化电路可以兼顾输出波形质量和设备可靠性,较理想。 2. 采用合适的控制策略 从变频器控制器这一点出发,可采用更合适的控制策略或者在原来的控制策略基础上作点优化和改进,原理上更大限度地减少谐波的产生。以实际应用中常用的正弦脉宽调制法(SPWM)法和特定消谐法(SHE)法为例。 根据SPWM基本理论,当调制波频率为fr,载波频率为fc,载波频率比N=fc/fr,单极性SPWM控制在输出电压中产生N-3次以上的谐波,双极性SPWM控制在输出电压中产生N-2次以上的谐波。比如,N=25,采用单极性SPWM控制,低于22次的谐波全被消除,采用双极性SPWM控制,低于23次的谐波全被消除。 但输出电压频率较高的时候,由于受到元件开关频率的限制,N值不可能大,SPWM 控制的优势就不太明显了,这个时候选择SHE法可以在开关次数相等的情况下输出质量较高的电压、电流,降低了对输入、输出滤波器的要求。

基于matlab谐波抑制的仿真研究(毕设)

电力系统谐波抑制的仿真研究 目 录 1 绪论…………………………………………………………………………… 1.1 课题背景及目的………………………………………………………… 1.2国内外研究现状和进展………………………………………………… 1.2.1国外研究现状 …………………………………………………… 1.2.1国内研究现状 …………………………………………………… 1.3 本文的主要内容…………………………………………………………… 2 有源电力滤波器及其谐波源研究……………………………………………… 2.1 谐波的基本概念………………………………………………………… 2.1.1 谐波的定义……………………………………………………… 2.1.2谐波的数学表达………………………………………………… 2.1.3电力系统谐波标准………………………………………………… 2.2 谐波的产生……………………………………………………………… 2.3 谐波的危害和影响……………………………………………………… 2.4 谐波的基本防治方法…………………………………………………… 2.5无源电力滤波器简述…………………………………………………… 2.6 有源电力滤波器介绍…………………………………………………… 2.6.1 有源滤波器的基本原理.……………………………………… 2.6.2 有源电力滤波器的分类.……………………………… 2.7并联型有源电力滤波器的补偿特性…………………………………… 2.7.1谐波源………………………………………………………… 2.7.2有源电力滤波器补偿特性的基本要 求…………………………… 2.7.3影响有源电力滤波器补偿特性的因素…………………………… 2.7.4并联型有源电力滤波器补偿特性……………………………… 2.8 谐波源的数学模型的研究……………………………………………… 2.8.1 单相桥式整流电路非线性负荷………………………………… 2.8.2 三相桥式整流电路非线性负荷.………………………………… 3 基于瞬时无功功率的谐波检测方法…………………………………………… 3.1谐波检测的几种方法比较…………………………………………… 3.2三相电路瞬时无功功率理论…………………………………………… 3.2.1瞬时有功功率和瞬时无功功 率……………………………………… 3.2.2瞬时有功电流和瞬时无功电流……………………………………… 3.3 基于瞬时无功功率理论的p q -谐波检测算法.…………………… 3.4基于瞬时无功功率理论的p q i i -谐波检测法.…………………… 4并联有源电力滤波器的控制策略…………………………………………… 4.1并联型有源电力滤波器系统构成及其工作原理………………………… 4.2并联有源电力滤波器的控制研究.……………………………… 4.2.1并联有源电力滤波器直流侧电压控制…………………… 4.2.2有源电力滤波器电流跟踪控制技术…………………………… 4.2.2.1 P WM 控制原理………………………………………… 4.2.2.2滞环比较控制方

谐波抑制的方法及其特点

电力系统谐波抑制方法及其特点分析 随着电力电子技术的发展,接入电网的整流、换流设备和其他各种非线性负荷设备日益增加,这些电气设备产生大量的谐波电流注入电网,危及电力设备、用户设备和电力系统的安全运行。必须采取措施,抓紧治理,抑制电力系统谐波,把电网中的谐波含量控制在允许范围之内[1]。 电力系统谐波抑制是改善电能质量、净化电网的一个重要方面。对谐波抑制的方法主要有三种途径:第一种是在谐波源上采取措施,从改进电力电子装置入手,使注入电网的谐波电流减少,也就是最大限度地避免谐波的产生;第二种是在电力电子装置的交流侧利用LC无源滤波器和电力有源滤波器对谐波电流分别提供频域谐波补偿和时域谐波补偿。这类方法属于对已产生的谐波进行有效抑制的方法;第三种就是改善供电环境[2]。 1、降低谐波源的谐波含量 降低谐波源的谐波含量也就是在谐波源上采取措施,最大限度地避免谐波的产生。这种方法比较积极,能够提高电网质量,可大大节省因消除谐波影响而支出的费用,并避免因加装消谐装置而引发的其它负面影响。具体方法有: 1.1 增加换流装置的脉动数 换流装置是电网中的主要谐波源之一,其产生的谐波主要集中在特征谐波,非特征谐波含量通常很少,特征频谱为:n=kp士1,则可知脉动数p增加,n也相应增大,而工n、工l/n,故谐波电流将减少。因此,增加整流脉动数,可平滑波形,减少谐波。例如:当脉动数由6增加到12时,可有效的消除幅值较大的低频项,从而使谐波电流的有效值大大降低。 1.2 利用脉宽调制(PWM)技术 PWM技术,就是在所需的频率周期内,通过半导体器件的导通和关断把直流电压调制成等幅不等宽的系列交流电压脉冲,可达到抑制谐波的目的。若要消除某次特定谐波,可在控制PWM输出波形的各个转换时刻,保证四分之一波形的对称性,根据输出波形的傅里叶级数展开式,使需要消除的谐波幅值为零,基波幅值为给定量,组成非线性超越方程组计算各个开关通断时刻,达到消除指定谐波和控制基波幅值的目的。PwM技术的优点是在载波频率高时,输出中所含低次谐波分量很小,从而提供了功率因数。目前被采用的PWM技术有最优脉宽调制(OPWM)、改进正弦脉宽调制、△调制、跟踪型PWM和自适应PWM控制等。 1.3 三相整流变压器采用Y,d(Y/△)或D,y(△/Y)的接线方式 这种接线方式可抑制3的倍数次的高次谐波,也可作为隔离变压器使用。以△/Y形接线方式为例:当高次谐波电流从晶闸管反串到变压器副边绕组内时,其中3的倍数次高次谐波电流无路可通,所以自然就被抑制而不存在。但将导致铁心内出现3的倍数次高次谐波磁通(三相相位一致),而该磁通将在变压器原边绕组内产生3的倍数次高次谐波电动势,从而产生3的倍数次的高次谐波电流。因为它们相位一致,只能在三角形绕组内产生环流,将能量消耗在绕组的电阻中,故原边绕组端子上不会出现3的倍数次的高次谐波电动势,不致使谐波注入公共电网。作为隔离变压器使用时,可使3N次谐波电流与配电系统相隔离。这种接线形式的优点是可以自然消除3的整数倍次的谐波。 1.4 采用多电平变流技术 也称整流电路的多重化,即将多个方波叠加,以消除次数较低的谐波,从而

谐波工作原理

谐波工作原理 1.什么是电力谐波 理想上,电力系统只供应纯基波成份之无污染正弦波形,其电源频率仅50Hz(或60Hz)。但现代诸多工业或信息设备均为非线性负载,其负载电流波形并非纯正弦波,畸变的波形中可被分析出许多整数倍于基波频率的成份,这些基频以外之交流周期性波形即称为谐波。若其频率为基波的n倍,则称之为n次谐波,如250 Hz为50 Hz的5倍则称为5次谐波。 1 其中K1为基波成份之有效值 Kn为各谐波成份之有效数值(n分别为2, 3…) K1 is rms of fundamental wave. Kn is rms of each single harmonic. (n = 2, 3 …) 欲表示某单一谐波之污染量,则可采用 Single harmonic distortion can show as below SHDn(%) = Kn ? 100% K1 2.电力谐波的影响 当谐波严重污染电力系统时,除影响系统供电品质外,亦可能破坏电力设备或影响设备之正常运转,如功因改善电容器打穿,变压器及电缆过载或绝缘破坏等事故;当电力系统中电压闪烁污染严重时,会造成日光灯或白炽灯等灯具光度的闪变,使人的眼睛产生不舒适感觉;当三相负载严重失衡时,造成三相电压不平衡导致感应马达线圈异常过热,或干扰邻近计算机,导致荧光幕扭曲;当雷击或开关、电容器切换时引起之瞬时突波,可能使电力设备因过电压或过电流而发生故障;当雷击、盐害或人为与天灾引起之事故,导致系统电压骤降(Voltage sags)与骤升(Swell),可能造成电力设备欠压或过压,导致保护电驿动作,造成电力中断。故电力品质测量分析与改善技术之研究为当今各国电力公司与工业界工作之重点。 谐波存在电力系统中将可能引起若干问题: The effect of harmonic could cause many problems: 系统或负载过电压、过电流 System or load over-voltage, over-current. 因集肤效应因而引起的电缆温升破坏及严重降压 Because of skin effect, the temperature of wire cable rise and serious voltage step down. 变压器马达及发电机等的铜损、铁损增加而过温

谐波产生的根本原因及治理对策

谐波的产生主要是来自下列具有非线性特性的电气设备:(1)具有铁磁饱和特性的铁芯没备,如:变压器、电抗器等;(2)以具有强烈非线性特性的电弧为工作介质的设备,如:气体放电灯、交流弧焊机、炼钢电弧炉等;(3)以电力电子元件为基础的开关电源设备,如:各种电力变流设备(整流器、逆变器、变频器)、相控调速和调压装置,大容量的电力晶闸管可控开关设备等,它们大量的用于化工、电气铁道,冶金,矿山等工矿企业以及各式各样的家用电器中。以上这些非线性电气设备(或称之为非线性负荷)的显著的特点是它们从电网取用非正弦电流,也就是说,即使电源给这些负荷供给的是正弦波形的电压,但由于它们只有其电流不随着电压同步变化的非线性的电压-电流特性,使得流过电网的电流是非正弦波形的,这种电流波形是由基波和与基波频率成整数倍的谐波组成,即产生了谐波,使电网电压严重失真在电力系统中对谐波的抑制就是如何减少或消除注入系统的谐波电流,以便把谐波 电压控制在限定值之内,抑制谐波电流主要有四方面的措施: 1)降低谐波源的谐波含量。也就是在谐波源上采取措施,最大限度地避免谐波的产生。这种方法比较积极,能够提高电网质量,可大大节省因消除谐波影响而支出的费用。2)采取脉宽调制(PWM)法。采用脉宽调制(PWM)技术,在所需要的频率周期内,将直流电压调制成等幅不等宽的系列交流电压脉冲,这种方法可以大大抑制谐波的产生。3)在谐波源处吸收谐波电流。这类方法是对已有 的谐波进行有效抑制的方法,这是目前电力系统使用最广泛的抑制谐波方法。4)改善供电系统及环境。对于供电系统来说,谐波的产生不可避免,但通过加大供电系统短路容量、提高供电系统的电压等级、加大供电设备的容量、尽可能保持三相负载平衡等措施都可以提高电网抗谐波的能力。选择合理的供电电压并尽可能保持三相电压平衡,可以有效地减小谐波 对电网的影响。谐波源由较大容量的供电点或高一级电压的电网供电,承受谐波的能力将会 增大。对谐波源负荷由专门的线路供电, 减少谐波对其它负荷的影响,也有助于集中抑制和消除高次谐波。 谐波的产生原因及其危害介绍 一、概述 在理想的情况下,优质的电力供应应该提供具有正弦波形的电压。但在实际中供电电压的波形会由于某些原因而偏离正弦波形,即产生谐波。我们所说的供电系统中的谐波是指一些频率为基波频率(在我国取工业用电频率50Hz为基波频率)整数倍的正弦波分量,又称为高次谐波。在供电系统中,产生谐波的根本原因是由于给具有非线性阻抗特性的电气设备(又称为非线性负荷)供电的结果。这些非线性负荷在工作时向电源反馈高次谐波,导致供电系统的电压、电流波形畸变,使电力质量变坏。因此,谐波是电力质量的重要指标之一。[/B][/size] 谐波的危害表现为引起电气没备(电机、变压器和电容器等)附加损耗和发热:使同步发电机的额定输出功率降低,转矩降低,变压器温度升高,效率降低,绝缘加速老化,缩短使用寿命,甚至损坏:降低继电保护、控制、以及检测装置的工作精度和可靠性等。谐波注入电网后会使无功功率加大,功率因数降低,甚至有可能引发并联或串联谐振,损坏电气设备以及干扰通信线路的正常工作。供电系统中的谐波问题已引起各界的广泛关注,为保证供电系统中所有的电气,电子设备能在电磁兼容意义的基础上进行正常、和谐的工作,必须采取有力的措施,抑制并防止电网中因谐波危害所造成的严重后果。

整流器件的谐波抑制仿真

整流器件的谐波抑制仿真 :The use of nonlinear loads in power system make harmonic pollution ,in order to solve the harmonic pollution ,active power filter is used. This paper introduces the basic principles of active filter ,and establishs a Matlab / Simulink simulation model and analysis. The results show that the active filter has good compensation characteristic. 0 引言随着电力电子技术的迅速发展和电力电子装置的应用越来越广泛,电磁环境受到严重的污染,电网谐波污染问题成为一个非常严峻问题。此外电网中使用的异步电动机、变压器和电弧炉等负荷消耗大量的无功功率,若得不到及时补偿将致使电网电压波动、供电设备容量增加、损耗增加。因此,谐波补偿成为当前的一个非常严峻的问题。 谐波抑制的手段主要包括无源滤波和有源滤波。无源滤波器是由电容器和电抗器串联而组成的,并且调谐在某种特定的谐波频率,对它所调谐的谐波具有一个低阻抗作用;有源滤波器是产生与其所测得的畸变的谐波电流的相位相反的一组谐波电流,谐波电流因此被抵消并且最终变成一个没有畸变的正弦波。本文中 主要介绍并联型有源滤波器的原理,并进行MATLAE仿真和分析。

1并联有源滤波器的工作原理 系统的主要组成包括:指令电流运算电路、电流跟踪控制电路、驱动电路和主电路。Is 为电网提供的电流,il 为负载电流,ic 为有源滤波器的输出电流。基本原理为当需要对非线性负载所产生谐波电流进行补偿时,由检测电路测量出补偿对象负载电流il 中的谐波电流成分iLh ,将它相位相反后当作要补偿电流的指令信号,因此由补偿电流发生电路产生的补偿电流ic 和负载电流中的谐波信号iLh 等大、反相,补偿电流与电网中的谐波和无功电流相消,因此电网的电流和负载的基波电流相等,使的电源电流变为正弦波。 2有源滤波器的Matlab 仿真研究 2.1谐波检测谐波电流检测法有很多,包含用模拟带通滤波器,傅立叶变换谐波检测分析,瞬时无功功率谐波检测等等。本文采用的办法是基于瞬时无功功率的谐波检测法,其基本原理如图2 所示。 图2 中: C=sin s t -cos s tcos s t sin 3 t , =■ 1 -1/2 -1/20 ■ 12 -■/2 其中 ia 、ib 、ic 分别为谐波补偿之前 a、b、c 的三相电流,输入电流ia、ib、ic通过C32坐标变换后使其再经过滤波器(LPF),然后再经过一次C32反变换后就可以得到基波电流分量

电力谐波的产生原因及其抑制方法

电力谐波的产生原因及其抑制方法 随着工业的快速发展,在电力系统中,非线性负荷大量增加。这样的非线性负荷在电网中产生的干扰越来越严重,也越来越复杂化,使得电网的供电质量越来越差,对同一电网的其他用电设备和小型用户的影响越来越大。在电力系统中,谐波污染与电磁干扰、功率因数降低成为了三大公害。 一、谐波产生的原因 谐波是指一个电气量的正弦波分量.其频率为基波频率的整数倍,不同频率的谐波对不同的电气设备会有不同的影响。谐波主要由谐波电流源产生,当正弦波(基波)电压施加到非线性负载上时,负载吸收的电流与其上施加的电压波形不一至,其电流发生了畸变。由于负载与整个网络相连接,这样畸变电流就可以流人到电网中,这样的负载就成了电力系统中的谐波源。 二、谐波源的种类 在电力系统中产生谐波的主要谐波源有两种。 1.含有半导体等非线性电气元件的用电设备。比如工业中常见的各种整流电气装置、大容量变频器、大型交直流变换装置以及其他的电力、电子装置。 2.含有电弧和铁磁材料等的非线性材料的用电设备,比如电弧炉、变压器、发电机组等电气设备。 三、谐波的危害 1.使供电线路和用电设备的热损耗增加。 (1) 谐波对线路的影响 对供电线路来说,由于集肤效应和邻近效应,线路电阻随着频率的增加会很快增加,在线路中会有很大的电能浪费。另外,在电力系统中,由于中性线电流都很小,所以其线径一般都很细,当大量的谐波电流流过中性线时,会在其上产生大量的热量,不仅会破坏绝缘,严重时还会造成短路,甚至引起火灾。 而当谐波频率与网络谐振频率相近或相同时,会在线路中产生很高的谐振电压。严重时会使电力系统或用电设备的绝缘击穿,造成恶性事故。 (2) 对电力变压器的影响 谐波电琏的存在增加了电力变压器的磁滞损耗、涡流损耗及铜损,对带有不对称负荷的变压器来说,会大大增加励磁电流的谐波分量。 (3)对电力电容器的影响 由于电容器对谐波的阻抗很小,谐波电流叠加到基波电流上,会使电力电容器中流过的电流有很大的增加,使电力电容器的温升增高,引起电容器过负荷甚至爆炸。同时,谐波还可能与电容器一起在电网中形成谐振,并又施加到电网中。 (4)对电机的影响 谐波会使电机的附加损耗增加,也会产生机械震动,产生甚至引起谐波过电压.使得电机绝缘损坏。 2.对继电保护和自动装置的影响 对于电磁式继电器来说,电力谐波常会引起继电保护以及自动装置的误动作或拒动,造成整个保护系统的可靠性降低.容易引起系统故障或使系统故障扩大。 3.对通信线路产生干扰。 在电力线路上流过幅度较大的奇次低频谐波电流时,通过电磁耦合,会在邻近电力线路

谐波危害及抑制谐波的方法

谐波危害及抑制谐波的方法--- 【摘要】电网中谐波问题日益严重,文章对此综述了谐波危害及抑制谐波的方法。 【关键词】电网谐波危害抑制技术 随着电网容量迅速增长,电网运行电压也不断提高,国外输电设备电压已达1000KV﹐我国从20世纪80年代开始进入大电网时期,输变设备电压已达500KV。最近开始西北地区黄河上游水电深度开发,国家电力公司已批准建设第一条750KV输电线路。 随着工业、农业和人民生活水平的不断提高,除了需要电能成倍增长,对供电质量及供电可靠性的要求也越来越多,电力质量(PowerQuality)受到人们的日益重视。例如,工业生产中的大型生产线、飞机场、大型金融商厦、大型医院等重要场合的计算机系统一旦失电,或因受电力网上瞬态电磁干扰影响,致使计算机系统无法正常运行,将会带来巨大的经济损失。电梯、空调等变频设备、电视机、计算机、复印机、电子式镇流器荧光灯等已成为人民日常生活的一部分,如果这些装置不能正常运行,必定扰乱人们的正常生活。但是,电视机、计算机、复印机、电子式照明设备、变频调速装置、开关电源、电弧炉等用电负载大都是非线性负载,都是谐波源,如将这些谐波电流注入公用电网,必然污染公用电网,使公用电网电源的波形畸变,增加谐波成份。 近几年,传感技术、光纤、微电子技术、计算机技术及信息技术日臻成熟。集成度愈来愈高的微电子技术使计算器的功能更加完美,体积愈来愈小,从而促使各种电器设备的控制向智能型控制器方向发展。随着微电子技术集成度的提高,微电子器件工作电压变得更低,耐压水平也相对更低,更易受外界电磁场干扰而导致控制单元损坏或失灵。例如,20世纪70年代计算机迅速普遍推广,电磁干扰及抑制问题更是十分突出,一些功能正常的计算机常出现误动作,而无法找出原因。1966年日本三基电子工业公司率先开发了“模拟脉冲的高频噪音模拟器”,将它产生的脉冲注入被试计算机的电源部分,结果发现计算机在注入100~200V脉冲时就误动作,难怪计算机在现场无法正常工作,其原因之一是计算机的电源受到了污染。因此,受谐波电流污染的公用电源,轻者干扰设备正常运行,影响人们的正常生活,重者致使工业上的大型生产线、系统运行瘫痪,会造成严重经济损失。 国际电工委员会(IEC)已于1988年开始对谐波限定提出了明确的要求。美国“IEEE电子电气工程师协会”于1992年制定了谐波限定标准IEEE—1000。在IEEE s t d.519-1992标准中明确规定了计算机或类似设备的谐波电压畸变因数(THD)应在5%以下,而对于医院、飞机场等关键场所则要求THD 应低于3%。 1电网谐波的产生 1.1电源本身谐波 由于发电机制造工艺的问题,致使电枢表面的磁感应强度分布稍稍偏离正弦波,因此,产生的感应电动势也会稍稍偏离正弦电动势,即所产生的电流稍偏离正弦电流。当然,几个这样的电源并网时,总电源的电流也将偏离正弦波。 1.2由非线性负载所致 1.2.1非线性负载

抑制谐波干扰常用的方法

抑制谐波干扰常用的方法 在实际使用过程中,经常遇到变频器谐波干扰问题. 抑制谐波干扰常用的方法:谐波的传播途径是传导和辐射。 解决传导干扰主要是在电路中把传导的高频电流滤掉或者隔离;解决辐射干扰就是对辐射源或被干扰的线路进行屏蔽。 具体常用方法: (1)变频系统的供电电源与其他设备的供电电源相互独立,或在变频器和其他用电设备的输入侧安装隔离变压器,切断谐波电流。 (2)在变频器输入侧与输出侧串接合适的电抗器,或安装谐波滤波器,滤波器的组成必须是LC型,吸收谐波和增大电源或负载的阻抗,达到抑制谐波的目的。 (3)电动机和变频器之间电缆应穿钢管敷设或用铠装电缆,并与其他弱电信号在不同的电缆沟分别敷设,避免辐射干扰。 (4)信号线采用屏蔽线,且布线时与变频器主回路控制线错开一定距离(至少20cm以上),切断辐射干扰。 (5)变频器使用专用接地线,且用粗短线接地,邻近其他电器设备的地线必须与变频器配线分开,使用短线。这样能有效抑制电流谐波对邻近设备的辐射干扰。 这些都是理论知识,在应用中我们要更多的结合现场工况。 例1 记得还是1999年的事情,当初是在四川内江某一铁路水厂做变频自动化改造项目。现场布线的时候,将所有控制线和动力线全部绑在一起,在刚调试变频器没有运行的时候,功能测试,数据的显示都很正常。但当变频器一投入运行,整个数据就全乱了,数据波动特别大,完全不能正常显示。 后经检查,发现控制线与动力线布在一起。与业主沟通之后,由于地沟有限,增加镀锌管,控制线穿管布线。然后将镀锌管焊接接地线接地。处理后,数据仍然有一定的跳动,尤其是频率比较低的时候,等频率上升到35HZ以上,数据就比较稳定了。

谐波的实用抑制措施及滤波器的应用

谐波的实用抑制措施及滤波器的应用 1引言 谐波问题日益明显,那种认为这是电力部门的事,工业与建筑电力系统来讨论谐波问题是自找麻烦。这是不对的,如果不顾GB的规定,用户发射的谐波量超标后,受害者还是用户自己,当然也恶化了电力系统,称之为电力公害,是很恰当的。由于电压型谐波源日趋增多,而常见的商品又是并联滤波器,因此本文着重讨论了二者是否匹配等诸多实际问题,以及中性线上采用三次谐波滤波器(串联无源滤波器SPF的一种)的特殊问题,由于这些问题新而复杂,笔者一孔之见,难免错或偏,欢迎指正。礼经电器 2各种不同的谐波抑制措施 文献[1]中已说明IEC有关谐波标准,对工程而言的限制量是指谐波电压,谐波电压Uh=Ih·Xh,因此抑制措施可分为抑制谐波电流Ih和降低谐波阻抗Xh,抑制谐波电流首先是对单个设备的,经合成后可得系统的谐波电流,谐波阻抗是指系统而言的,如果采用这些措施之后仍然不满足,最后才考虑采用装设的电力滤波器。 2.1抑制谐波电流的发射量 对于不同类型的设备,抑制措施是不一样的。 (1)移相调压交流控制器 从文献[2]的表2可看出,可能的最大谐波电流值决定于负载的阻抗性质R/Z和移相角的控制,这和要求的功率输出有关,不是电气工程设计者能决定的。如果可能的话,负载的接线尽量采用三相而且不引

出中性线。 (2)电流型谐波源(直流用大电感滤波) 根据文献[2]2.2节分析,抑制措施如下: 提高整流的脉动数是最主要的,三相桥是6脉动,谐波电流从5次起,大功率整流器可采用12或更大脉动数,则滤波电流至少从11次起,按公式Ih/I1=1/h,谐波次数越高,谐波电流越小; 要有一定的平滑度,即滤波电抗值要足够大; 持电源电压三相平衡和整流设备三相的结构和性能的对称性,以避免出现非特征谐波; 如果有单独的整流变压器,而且经济上合算,则可将整流变的原边电压升级,由低压升到中压或高压,这在降低谐波电流的同时又降低了系统的谐波阻抗。 (3)电压型谐波源(直流用大电容滤波) 工业用设备如交—直—交变频装置 按文献[2]2.3节表3所列数据,谐波电流的大小和用电设备接电源点的系统短路功率成正相关关系。因此,减少谐波电流的首选实用办法就是在变频器交流侧加一个交流电抗器,电抗值为4%左右,按笔者2001年了解的情况[3],知名的国内外变频器生产厂中有些厂家已成套内装有电抗器,有些厂家说明可按要求对电抗器成套供货。增加线路电抗器后,除了能明显降低谐波外,尚有一些其它好处,但也有负作用,如变频器入口处的电压损失增加,装置的重量和造价增加。上述问题文献[3]有详细介绍。[FS:Page]

谐波抑制

课程名称:课程编号: 论文题目: 电力系统中谐波抑制的设计方法 研究生姓名: 学号: 论文评语: 成绩: 任课教师: 评阅日期:

目录 1 前言 (1) 2 谐波的危害 (1) 2.1增加了无功功率消耗和铜损 (1) 2.2损害电容器 (1) 2.3造成系统故障 (2) 2.4引起谐振过电压 (2) 3 谐波的抑制措施 (2) 4 LC滤波器的设计 (4) 5 有源滤波器的应用 (9) 6工程设计实例 (13) 6.1基于最小容量安装法设计电容器仿真研究 (15) 6.2补偿结果的分析 (18) 7 结语 (20)

1 前言 随着大功率半导体电力变流器、变频器等电力电子设备的广泛应用,愈来愈多的谐波电流被注入了电网,由于电力电子器件的非线性工作特性决定了基波电流滞后,且谐波的消极影响越来越严重,因此,如何有效地抑制谐波是电力设计中的一项重要内容。 2 谐波的危害 2.1增加了无功功率消耗和铜损 在电流波形畸变的情况下,电力系统的视在功率应为: S=P+Q+T (1) 式中:S为视在功率;P为有功功率;Q为无功功率;T为畸变功率。 由于谐波电压和电流的频率不同,其相角差随频率差作周期性变化,累计的功率之和为零,所以畸变功率具有无功功率性质。谐波电流将使电力系统中的元件如电动机产生谐波铜耗、谐波杂散损耗及谐波铁耗。谐波损耗的存在使得电动机总损耗增加,温升增加及效率降低。电动机将多吸收无功功率,导致功率因数下降。 2.2 损害电容器 含有高次谐波的电压加在电容器两端时,由于电容器对高次谐波阻抗很小,谐波电流加在电容器的基波上,使电容器的总运行电流增大,温升提高,很容易发生过负荷以至损坏,导致使用寿命缩短。同时,谐波对电容器参数匹配产生影响,有可能在电网中造成高次谐波

谐波产生的原因危害和抑制措施

谐波产生的原因危害和抑制措施 0前言 随着电力电子技术的飞速发展,各种新型用电设备越来越多地问世和使用,高次谐波的影响越来越严重。电力系统受到谐波污染后,轻则影响系统的运行效率,重则损坏设备以至危害电力系统的安全运行。以前,电力系统考核电能质量的主要指标是电压的幅值和频率,现在世界各国都把电网电压正谐波形畸变率极限值作为电能质量考核指标之一,正确认识谐波已成为电力工作者的重要任务之一。因此,研究和分析谐波产生的原因、危害和抑制谐波的措施具有重要的实际意义。 1谐波产生的原因 在供电系统中谐波的发生主要是由两大因素造成的: (1)可控硅整流装置和调压装置等的广泛使用,晶闸管在大量家用电器中的普通采用以及各种非线性负荷的增加导致波形畸变。 (2)设备设计思想的改变。过去倾向于采用在额定情况以下工作或裕量较大的设计。现在为了竞争,对电工设备倾向于采用在临界情况下的设计。例如有些设计为了节省材料使磁性材料工作在磁化曲线的深饱和区段,而在这些区段内运行会导致激磁材料波形严重畸变。 2谐波对电力系统的危害 谐波对电力系统的污染日益严重,谐波源的注入使电网谐波电流、谐波电压增加,其危害波及全网,对各种电气设备都有不同程度的影响和危害。现将对具体设备的危害分析如下:(1)交流发电机。同步电动机及感应电动机在定子绕组和转子绕组产生附加热损耗,热损耗除谐波电流铜损I2nR以外,还由于电流的集肤效应,产生附加损耗,对转子引起热损耗增大。对大型汽轮发电机来说,若发生多次谐波振荡,谐波电流超过额定电流的25%时,由于上述原因可能会导致转子局部过热而损坏。对变压器来说,铁芯产生热损耗,尤其是涡流损耗大,在变压器绕组中有谐波电流,在铁芯中感应磁通,产生铁损。 (2)架空线路谐波电流产生热损,较大的高次谐波电流分量能显著地延缓潜供电流的熄灭,导致单相重合闸失败。电缆中的谐波电流会产生热损,使电缆介损、温升增大。 (3)电力电容器由于谐波电流会引起附加绝缘介质损耗,加快电力电容器绝缘老化。系统谐波电压或电流发生谐振则引起过电压和过电流,对电气设备绝缘损坏,引起噪音与振动。(4)电子计算机会由于谐波干扰发生失真;工业电子设备功能会因其被破坏。 (5)对继电保护、自动控制装置和计算机产生干扰和造成误动作,造成电能计量的误差(6)谐波电流在高压架空线路上的流动除增加线损外,还将对相邻通讯线路产生干扰影响。 3电力系统抑制谐波的措施 为了把谐波对电力系统的干扰(污染)限制在系统可以接受的范围内,我国和国际上分别颁布了“电力系统谐波管理暂行规定”和IEC标准,明确了各种谐波源产生谐波的极限值。 电力系统抑制谐波的主要措施有 (1)在补偿电容器回路中串联一组电抗器 在未加Xc前,略去电阻,谐波源In母线处的谐波电压为:Un=Xsn?In;并联了补偿电容器后,则谐波源的输入谐波电抗为:此时谐波电压,注入系统的谐波电流Un,Isn>In.即并联电容器使系统的谐波被放大了。如果对应某次谐波有Xsn-Xcn=0即发生谐波,则其谐波电流、电压都趋于无穷大。为了摆脱这一谐振点,通常在电容器支路串接电抗器,其感抗值的选择应使在可能产生的任何谐波下,均使电容器回路的总电抗为感抗而不是容抗,从根本上消除了产生谐波的可能性。 (2)装设由电容、电感及电阻组成的单调谐滤波器和高通滤波器 单调谐滤波器是针对某个特定次数的谐波而设计的滤波器,高通滤波器是为了吸收若干较高次谐波的滤波器。应装设的滤波器类型、组数及其调谐频率(滤波次数)可由具体计算决定。

抑制谐波与提高功率因素

抑制谐波与提高功率因素 2015109218何源达一、抑制谐波分量的方法 (1)加装LC滤波器 供配电系统中加装电抗器L与电容器C组成LC调谐滤波器,即可补偿无功功率,又可吸收谐波。缺点是只能补偿固定频率的谐波,且易和系统中其他频率谐波发生谐振,导致谐波放大。 (2)设置有源的谐波器(APF) 它在工作时主动地注入一个电流来精确地补偿由负荷产生的谐波电流,就会获得一个纯粹的正弦波。这种滤波设备的工作靠数字信号处理(DSP)技术来控制快速绝缘栅双极晶体管(IGBT)。因为设备是与供电系统并联工作的,它只控制谐波电流,基波电流并不流过该滤波器。 (3)装用D,yn11接法的隔离变压器 其一次为三角形联结,3的奇次倍谐波在原边绕组内形成环流,不至于将谐波电流注入公共电网造成污染。此外,D,yn11联结组别变压器还能提供更小的零序阻抗,有利于切除单相接地故障。 (4)增加换流装置的脉动数 换流装置是电网中的主要谐波源之一,其产生的谐波主要集中在特征谐波,非特征谐波含量通常很少,特征频谱为:n=kp士1,则可知脉动数p增加,n也相应增大,而工n、工l/n,故谐波电流将减少。因此,增加整流脉动数,可平滑波形,减少谐波。例如:当脉动数由6增加到12时,可有效的消除幅值较大的低频项,从而使谐波电流的有效值大大降低。 (5)利用脉宽调制(PWM)技术 PWM技术,就是在所需的频率周期内,通过半导体器件的导通和关断把直流电压调制成等幅不等宽的系列交流电压脉冲,可达到抑制谐波的目的。若要消除某次特定谐波,可在控制PWM输出波形的各个转换时刻,保证四分之一波形的对称性,根据输出波形的傅里叶级数展开式,使需要消除的谐波幅值为零,基波幅值为给定量,组成非线性超越方程组计算各个开关通断时刻,达到消除指定谐波和控制基波幅值的目的。PwM技术的优点是在载波频率高时,输出中所含低次谐波分量很小,从而提供了功率因数。目前被采用的PWM技术有最优脉宽调制(OPWM)、改进正弦脉宽调制、△调制、跟踪型PWM和自适应PWM控制等。 (6)采用多电平变流技术

整流器件的谐波抑制仿真-精选资料

整流器件的谐波抑制仿真 : The use of nonlinear loads in power system make harmonic pollution , in order to solve the harmonic pollution , active power filter is used. This paper introduces the basic principles of active filter establishs a Matlab / Simulink simulation model and analysis. The results show that the active filter compensation characteristic. 0 引言 随着电力电子技术的迅速发展和电力电子装置的应用越来 越广泛, 电磁环境受到严重的污染, 电网谐波污染问题成为一个 非常严峻问题。 此外电网中使用的异步电动机、 变压器和电弧炉 等负荷消耗大量的无功功率, 若得不到及时补偿将致使电网电压 波动、供电设备容量增加、损耗增加。因此,谐波补偿成为当前 的一个非常严峻的问题。 谐波抑制的手段主要包括无源滤波和有源滤波。 无源滤波器 是由电容器和电抗器串联而组成的, 并且调谐在某种特定的谐波 频率,对它所调谐的谐波具有一个低阻抗作用; 有源滤波器是产 生与其所测得的畸变的谐波电流的相位相反的一组谐波电流, 波电流因此被抵消并且最终变成一个没有畸变的正弦波。 本文中 主要介绍并联型有源滤波器的原理,并进行MATLAE 仿真和分析。 , and has good

相关主题
文本预览
相关文档 最新文档