当前位置:文档之家› 2011届高考物理一轮复习重要题型名师精讲之万有引力与航天

2011届高考物理一轮复习重要题型名师精讲之万有引力与航天

2011届高考物理一轮复习重要题型名师精讲之万有引力与航天
2011届高考物理一轮复习重要题型名师精讲之万有引力与航天

第4讲 万有引力与航天

1.

图4-4-4

三颗人造地球卫星A 、B 、C 在同一平面内沿不同的轨道绕地球做匀速圆周运动,且绕

行方向相同,已知R A <R B <R C .若在某一时刻,它们正好运行到同一条直线上,如图4

-4-4所示.那么再经过卫星A 的四分之一周期时,卫星A 、B 、C 的位置可能是( )

答案:C

2.(2009·全国Ⅰ,19)天文学家新发现了太阳系外的一颗行星.这颗行星的体积是地球的4.7倍,质量是地球的25倍.已知某一近地卫星绕地球运动的周期约为1.4小时,引力常

量G =6.67×10-11 N·m 2/k g 2,由此估算该行星的平均密度约为( )

A .1.8×103 k g/m 3

B .5.6×103 k g/m 3

C .1.1×104 k g/m 3

D .2.9×104 k g/m 3

解析:近地卫星绕地球做圆周运动时,所受万有引力充当其做圆周运动的向心力,即:

G Mm R 2=m ????2πT 2R ,由密度、质量和体积关系M =ρ·43πR 3解两式得:ρ=3πGT 2

≈5.60×103 k g/m 3.由已知条件可知该行星密度是地球密度的25/4.7倍,即ρ=5.60×103×254.7

k g/m 3=2.9×104 k g/m 3.

答案:D

3.质量相等的甲、乙两颗卫星分别贴近某星球表面和地球表面围绕其做匀速圆周运动,已知该星球和地球的密度相同,半径分别为R 和r ,则( )

A .甲、乙两颗卫星的加速度之比等于R ∶r

B .甲、乙两颗卫星所受的向心力之比等于1∶1

C .甲、乙两颗卫星的线速度之比等于1∶1

D .甲、乙两颗卫星的周期之比等于R ∶r

解析:由F =G Mm R 2和M =ρ43πR 3可得万有引力F =43

G πRmρ,又由牛顿第二定律F =ma 可得,A 正确.卫星绕星球表面做匀速圆周运动时,万有引力等于向心力,因此B 错误.由F =43G πRmρ,F =m v 2R 可得,选项C 错误.由F =43G πRmρ,F =mR 4π2T 2可知,周期之比为1∶1,故D 错误.

答案:A

4.

图4-4-5

为纪念伽利略将望远镜用于天文观测400周年,2009年被定为以“探索我的宇宙”为主题的国际天文年.我国发射的“嫦娥一号”卫星经过一年多的绕月运行,完成了既定任务,于2009年3月1日16时13分成功撞月.如图4-4-5为“嫦娥一号”卫星撞月的模拟图,卫星在控制点①开始进入撞月轨道.假设卫星绕月球做圆周运动的轨道半径为R ,周期为T ,引力常量为G .根据题中信息,以下说法正确的是( )

A .可以求出月球表面的重力加速度

B .可以求出月球对“嫦娥一号”卫星的引力

C .“嫦娥一号”卫星在控制点①处应减速

D .“嫦娥一号”在地面的发射速度大于11.2 k m/s

解析:根据G m 1m 2R 2=m 24π2

T 2R ,已知卫星的T 、R 和引力常量G ,可以求月球的质量m 1;因为不知道“嫦娥一号”卫星的质量,故无法知道月球对“嫦娥一号”卫星的引力,B 项错误;在控制点①,卫星要做向心运动,故需要减速,C 项正确;11.2 k m/s 是第二宇宙速度,是卫星脱离地球引力的束缚成为太阳的人造行星的最小发射速度,而“嫦娥一号”卫星并不能脱离地球引力的范围,故其发射速度小于11.2 k m/s ,D 项错误. 答案:C 5.

图4-4-6

神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系麦哲伦云时,发现了LMCX-3双星系统,它由可见星A 和不可见的暗星B 构成.两星视为质点,不考虑其他天体的影响,A 、B 围绕两者的连线上的O 点做匀速圆周运动,它们之间的距离保持不变,如图4-4-6所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T .

(1)可见星A 所受暗星B 的引力F A 可等效为位于O 点处质量为m ′的星体(视为质点)对它的引力,设A 和B 的质量分别为m 1、m 2,试求m ′(用m 1、m 2表示);

(2)求暗星B 的质量m 2与可见星A 的速率v 、运行周期T 和质量m 1之间的关系式.

解析:(1)由G m 1m 2(r 1+r 2)2=m 1ω2r 1=m 2ω2r 2,可得r 1/r 2=m 2/m 1, 又由G m 1m 2(r 1+r 2)2=G m 1m ′r 21,可解得:m ′=m 32(m 1+m 2)2

. (2)由v =2πr 1T ,得r 1=v T 2π,再由G m 1m 2(r 1+r 2)2=m 1v 2r 1可得:G m 32(m 1+m 2)2=v 3T 2π

. 答案:(1)m ′=m 32(m 1+m 2)2 (2)G m 32(m 1+m 2)2=v 3T 2π

1.可以发射一颗这样的人造地球卫星,使其圆轨道( )

A .与地球表面上某一纬度线(非赤道)是共面同心圆

B .与地球表面上某一经度线所决定的圆是共面同心圆

C .与地球表面上的赤道线是共面同心圆,且卫星相对地球表面是静止的

D .与地球表面上的赤道线是共面同心圆,但卫星相对地球表面是运动的

解析:人造卫星绕地球做圆周运动所需的向心力是万有引力提供的,人造卫星受地球的引力一定指向地心,所以任何人造卫星的稳定轨道平面都是通过地心的.A 选项所述的卫星不能满足这个条件,A 错.B 选项所述的卫星虽然满足这个条件,但是由于地球在自转,经线所决定的平面也在转动,这样的卫星又不可能有与地球自转同方向的速度,所以不可能始终在某一经线所决定的平面内,如图所示,故B 项也错.无论高低如何,轨道平面与地球赤道平面重合的卫星都是存在的,C 选项所述卫星就是地球同步卫星,而D 项所述卫星不是同步卫星,故C 、D 项都对.

答案:CD

2.据报道,2009年4月29日,美国亚利桑那州一天文观测机构发现一颗与太阳系其他行

星逆向运行的小行星,代号为2009HC82.该小行星绕太阳一周的时间为T 年,直径2~3千米,而地球与太阳之间的距离为R 0.如果该行星与地球一样,绕太阳运动可近似看做匀速圆周运动,则小行星绕太阳运动的半径约为( )

A .R 03T 2

B .R 0 31T

C .R 0 31T 2

D .R 03T 解析:小行星和地球绕太阳做圆周运动,都是由万有引力提供向心力,有Gm 1m 2R

2=m 2????2πT 2

R ,可知小行星绕太阳运行轨道半径为R =R 0 3T 21

2=R 0 3T 2,A 正确. 答案:A 3.

图4-4-7

2008年9月27日16时40分,我国航天员翟志刚打开“神舟”七号载人飞船轨道舱舱门,首度实施空间出舱活动,在茫茫太空第一次留下中国人的足迹(如图4-4-7所示).翟志刚出舱时,“神舟”七号的运行轨道可认为是圆周轨道.下列关于翟志刚出舱活动的说法正确的是( )

A .假如翟志刚握着哑铃,肯定比举着五星红旗费力

B .假如翟志刚自由离开“神舟”七号,他将在同一轨道上运行

C .假如没有安全绳束缚且翟志刚使劲向前推“神舟”七号,他将可能沿竖直线自由落向地球

D .假如“神舟”七号上有着和轮船一样的甲板,翟志刚在上面行走的步幅将比在地面上大

解析:“神舟”七号上的一切物体都处于完全失重状态,受到的万有引力提供向心力,A 错B 对;假如没有安全绳束缚且翟志刚使劲向前推“神舟”七号,将使他对地的速度减小,翟志刚将在较低轨道运动,C 错误;由于“神舟”七号上的一切物体都处于完全失重状态,就算“神舟”七号上有着和轮船一样的甲板,翟志刚也几乎不能行走,D 错

误.

答案:B 4.

图4-4-8

在美国东部时间2009年2月10日上午11时55分(北京时间11日0时55分),美国一颗质量约为560 k g 的商用通信卫星“铱33”与俄罗斯一颗已经报废的质量约为900 k g 军用通信卫星“宇宙2251”相撞,碰撞发生的地点在俄罗斯西伯利亚上空,同时位于国际空间站轨道上方434千米的轨道上,如图4-4-8所示.如果将卫星和空间站的轨道都近似看做圆形,则在相撞前一瞬间下列说法正确的是( )

A .“铱33”卫星比“宇宙2251”卫星的周期大

B .“铱33”卫星比国际空间站的运行速度大

C .“铱33”卫星的运行速度大于第一宇宙速度

D .“宇宙2251”卫星比国际空间站的角速度小

解析:由题意知两卫星的轨道半径相等且大于空间站的轨道半径,故A 项错.又v = GM r

,所以“铱33”卫星的运行速度小于空间站的运行速度,第一宇宙速度为地球表面卫星的最大运行速度,故B 、C 均错.由ω=GM r 3

可知,半径越小,ω越大,故D 正确.

答案:D

5.(2010·杭州七校联考)一宇宙飞船绕地心做半径为r 的匀速圆周运动,飞船舱内有一质量

为m 的人站在可称体重的台秤上.用R 表示地球的半径,g 表示地球表面处的重力加速度,g ′表示宇宙飞船所在处的地球引力加速度,F N 表示人对秤的压力,下列说法中正确的是( )

A .g ′=0

B .g ′=R 2r

2g C .F N =0 D .F N =m R r g 解析:做匀速圆周运动的飞船及其上的人均处于完全失重状态,台秤无法测出其重力,

故F N =0,C 正确,D 错误;对地球表面的物体,GMm R 2=mg ,宇宙飞船所在处,GMm r 2=mg ′,可得:g ′=R 2r

2g ,A 错误,B 正确. 答案:BC

6.“探路者”号宇宙飞船在宇宙深处飞行过程中,发现A 、B 两颗均匀球形天体,两天体

各有一颗靠近其表面飞行的卫星,测得两颗卫星的周期相等,以下判断正确的是( )

A .天体A 、

B 的质量一定不相等

B .两颗卫星的线速度一定相等

C .天体A 、B 表面的重力加速度之比等于它们的半径之比

D .天体A 、B 的密度一定相等

解析:假设某行星有卫星绕其表面旋转,万有引力提供向心力,可得G Mm R 2=m 4π2

T 2R ,那么该行星的平均密度为ρ=M V =M 43

πR 3=3πGT 2卫星的环绕速度v = GM R ,表面的重力加速度g =G M R 2=G ·4ρπR 3

,所以正确答案是CD. 答案:CD

7.2008年9月25日21时10分,载着翟志刚、刘伯明、景海鹏三位宇航员的“神舟七号”

飞船在中国酒泉卫星发射中心发射成功.9月27日翟志刚成功实施了太空行走.如果“神

舟七号”飞船在离地球表面h 高处的轨道上做周期为T 的匀速圆周运动,已知地球的半径R ,万有引力常量为G .在该轨道上,“神舟七号”航天飞船( )

A .运行的线速度大小为2πh T

B .运行的线速度小于第一宇宙速度

C .运行时的向心加速度大小为4π2(R +h )T 2

D .地球表面的重力加速度大小可表示为4π2(R +h )3

T 2R 2

解析:本题考查天体运动和万有引力定律的应用.由于飞船的轨道半径为R +h ,故A 项错误;第一宇宙速度是环绕的最大速度,所以飞船运行的速度小于第一宇宙速度,B

项正确;运行的向心加速度为a =4π2(R +h )T 2,C 项正确;在地球表面mg =G Mm R

2,对飞船G Mm (R +h )2

=m 4π2

T 2(R +h ),所以地球表面的重力加速度g =4π2(R +h )3T 2R 2,D 项正确. 答案:BCD 8.

图4-4-9

2008年9月我国成功发射“神舟七号”载人航天飞船.如图4-4-9为“神舟七号”

绕地球飞行时的电视直播画面,图中数据显示,飞船距地面的高度约为地球半径的120

.已知地球半径为R ,地面附近的重力加速度为g ,大西洋星距地面的高度约为地球半径的6倍.设飞船、大西洋星绕地球均做匀速圆周运动.则( )

A .“神舟七号”飞船在轨运行的加速度为0.91g

B .“神舟七号”飞船在轨运行的速度为gR

C .大西洋星在轨运行的角速度为 g 343R

D .大西洋星在轨运行的周期为2π 343R g

解析:“神舟七号”飞船在轨运行时,由牛顿第二定律得GMm 1(R +h )2=m 1a =m 1v 2(R +h )

,h =R 20

,由物体在地球表面受到的万有引力近似等于物体重力得:GM =gR 2,所以有a =400441g =0.91g ,v = 20gR 21

,故A 正确.大西洋星绕地球做匀速圆周运动时,由牛顿第二定律得GMm 2(R +h ′)2

=m 2(R +h ′)ω2=m 2(R +h ′)4π2T 2,且h ′=6R ,所以有ω= g 343R

,T =2π 343R g ,故CD 正确. 答案:ACD

9.(2009·福建,14)“嫦娥一号”月球探测器在环绕月球运行过程中,设探测器运行的轨道

半径为r ,运行速率为v ,当探测器在飞越月球上一些环形山中的质量密集区上空时

( )

A .r 、v 都将略为减小

B .r 、v 都将保持不变

C .r 将略为减小,v 将略为增大

D .r 将略为增大,v 将略为减小

解析:当探测器飞越月球上一些环形山中的质量密集区的上空时,相当于探测器和月球

重心间的距离变小了,由万有引力定律F =Gm 1m 2r 2可知,探测器所受月球的引力将增大,这时的引力略大于探测器以原来轨道半径运行所需要的向心力,探测器将做靠近圆心的运动,使轨道半径略为减小,而且月球的引力对探测器做正功,使探测器的速度略微增加,故A 、B 、D 选项错误,C 选项正确.

答案:C 10.

图4-4-10

如图4-4-10是“嫦娥一号”奔月示意图,卫星发射后通过自带的小型火箭多次变轨, 进入地月转移轨道,最终被月球引力捕获,成为绕月卫星,并开展对月球的探测.下列说法正确的是( )

A .发射“嫦娥一号”的速度必须达到第三宇宙速度

B .在绕月圆轨道上,卫星周期与卫星质量有关

C .卫星受月球的引力与它到月球中心距离的平方成反比

D .在绕月圆轨道上,卫星受地球的引力大于受月球的引力

解析:本题考查了与万有引力定律相联的多个知识点, 如万有引力公式、宇宙速度、卫星的周期等, 设问角度新颖.第三宇宙速度是卫星脱离太阳系的最小发射速度,所以“嫦娥一号”卫星的发射速度一定小于第三宇宙速度,A 项错误;设卫星轨道半径为

r ,由万有引力定律知卫星受到的引力F =G Mm r 2,C 项正确.设卫星的周期为T ,由G Mm r 2=m 4π2T 2r 得T 2=4π2GM r 3,所以卫星的周期与月球质量有关,与卫星质量无关,B 项错误.卫星在绕月轨道上运行时,由于离地球很远,受到地球引力很小,卫星做圆周运动的向心力主要是月球引力提供,D 错误.

答案:C

11.宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处;若他在某

星球表面以相同的初速度竖直上抛同一小球,需经过时间5t 小球落回原地.(取地球表面重力加速度g =10 m/s 2,阻力不计)

(1)求该星球表面附近的重力加速度g ′;

(2)已知该星球的半径与地球半径之比为R 星∶R 地=1∶4,求该星球的质量与地球质量之比M 星∶M 地.

解析:(1)设竖直上抛初速度为v 0,则v 0=gt /2=g ′·5t /2,故g ′=15

g =2 m/s 2. (2)设小球质量为m ,则mg =GMm R 2 M =gR 2G ,故M 星M 地=g ′R 2星gR 2地

=15×116=180. 答案:(1)2 m/s 2 (2)180

12.

图4-4-11

欧盟和我国合作的“伽利略”全球卫星定位系统的空间部分由平均分布在三个轨道平

面上的30颗轨道卫星构成,每个轨道平面上有10颗卫星,从而实现高精度的导航定位.现假设“伽利略”系统中每颗卫星均围绕地心O 做匀速圆周运动,轨道半径为r ,一个轨道平面上某时刻10颗卫星所在位置如图4-4-11所示,相邻卫星之间的距离相等,卫星1和卫星3分别位于轨道上A 、B 两位置,卫星按顺时针运行.地球表面重力加速度为g ,地球的半径为R ,不计卫星间的相互作用力.求卫星1由A 位置运行到B 位置所需要的时间.

解析:设地球质量为M ,卫星质量为m ,每颗卫星的运行周期为T ,万有引力常量为G ,

由万有引力定律和牛顿定律有G mM r 2=mr ????2πT 2 ① 地球表面重力加速度为g =G M R

2 ② 联立①②式可得T =2πR r 3g ③

卫星1由A 位置运行到B 位置所需要的时间为t =210

T ④ 联立③④式可得t =2π5R

r 3g . 答案:2π5R

r 3g

2019高考物理一轮复习天体运动题型归纳

天体运动题型归纳 李仕才 题型一:天体的自转 【例题1】一物体静置在平均密度为ρ的球形天体表面的赤道上。已知万有引力常量为G ,若由于天体自转使物体对天体表面压力怡好为零,则天体自转周期为( ) A .1 2 4π3G ρ?? ??? B .1 2 34πG ρ?? ??? C .1 2 πG ρ?? ??? D .1 2 3πG ρ?? ??? 解析:在赤道上2 2 R m mg R Mm G ω+=① 根据题目天体表面压力怡好为零而重力等于压力则①式变为 22R m R Mm G ω=②又 T π ω2= ③ 33 4 R M ρπ= ④ ②③④得:2 3GT π ρ= ④即21 )3(ρπG T =选D 练习 1、已知一质量为m 的物体静止在北极与赤道对地面的压力差为ΔN ,假设地球是质量分布 均匀的球体,半径为R 。则地球的自转周期为( ) A. 2T = 2T =R N m T ?=π2 D.N m R T ?=π2 2、假设地球可视为质量均匀分布的球体,已知地球表面的重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常数为G ,则地球的密度为: A. 0203g g g GT π- B. 0203g g g GT π- C. 23GT π D. 23g g GT πρ=

题型二:近地问题+绕行问题 【例题1】若宇航员在月球表面附近高h 处以初速度0v 水平抛出一个小球,测出小球的水平射程为L 。已知月球半径为R ,引力常量为G 。则下列说法正确的是 A .月球表面的重力加速度g 月=hv 2 L 2 B .月球的质量m 月=hR 2v 20 GL C .月球的第一宇宙速度v = v 0 L 2h D .月球的平均密度ρ=3hv 2 2πGL 2R 解析 根据平抛运动规律,L =v 0t ,h =12g 月t 2 ,联立解得g 月=2hv 2 0L 2;由mg 月=G mm 月R 2, 解得m 月=2hR 2v 2 0GT 2;由mg 月=m v 2 R ,解得v =v 0L 2hR ;月球的平均密度ρ=m 月43πR 3=3hv 2 2πGL 2R 。 练习:“玉兔号”登月车在月球表面接触的第一步实现了中国人“奔月”的伟大梦想。机器人“玉兔号”在月球表面做了一个自由下落试验,测得物体从静止自由下落h 高度的时间t ,已知月球半径为R ,自转周期为T ,引力常量为G 。则下列说法正确的是 A .月球表面重力加速度为t 2 2h B .月球第一宇宙速度为 Rh t C .月球质量为hR 2 Gt 2 D .月球同步卫星离月球表面高度 3hR 2T 2 2π2t 2-R 【例题2】过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b ”的发现拉开了研究太阳系外行星的序幕。“51 peg b ”绕其中心恒星做匀速圆周运动,周期约为4天,轨道半径约为地球绕太阳运动半径的1 20 。该中心恒星与太阳的质量比约为 A.1 10 B .1 C .5 D .10

万有引力与航天试题附答案

万有引力与航天单元测试题 一、选择题 1.关于日心说被人们接受的原因是( ) A.太阳总是从东面升起,从西面落下 B.若以地球为中心来研究的运动有很多无法解决的问题 C.若以太阳为中心许多问题都可以解决,对行星的描述也变得简单 D.地球是围绕太阳运转的 2.有关开普勒关于行星运动的描述,下列说法中正确的是( ) A.所有的行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上 B.所有的行星绕太阳运动的轨道都是圆,太阳处在圆心上 C.所有的行星轨道的半长轴的三次方跟公转周期的二次方的比值都相等 D.不同的行星绕太阳运动的椭圆轨道是不同的 3.关于万有引力定律的适用范围,下列说法中正确的是( ) A.只适用于天体,不适用于地面物体 B.只适用于球形物体,不适用于其他形状的物体 C.只适用于质点,不适用于实际物体D.适用于自然界中任意两个物体之间 4.已知万有引力常量G,要计算地球的质量还需要知道某些数据,现在给出下列各组数据,可以计算出地球质量的是( ) A.地球公转的周期及半径B.月球绕地球运行的周期和运行的半径 C.人造卫星绕地球运行的周期和速率D.地球半径和同步卫星离地面的高度 5.人造地球卫星由于受大气阻力,轨道半径逐渐变小,则线速度和周期变化情况是( ) A.速度减小,周期增大,动能减小B.速度减小,周期减小,动能减小 C.速度增大,周期增大,动能增大D.速度增大,周期减小,动能增大 6.一个行星,其半径比地球的半径大2倍,质量是地球的25倍,则它表面的重力加速度是地球表面重力加速度的( ) A.6倍B.4倍C.25/9倍D.12倍 7.假如一个做圆周运动的人造卫星的轨道半径增大到原来的2倍仍做圆周运动,则( )

最新高考物理万有引力与航天解题技巧及经典题型及练习题(含答案)

最新高考物理万有引力与航天解题技巧及经典题型及练习题(含答案) 一、高中物理精讲专题测试万有引力与航天 1.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的质量。 【答案】(1)02tan v g t θ= (2)202tan v R Gt θ 【解析】 【分析】 平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度;根据万有引力等于重力求出星球的质量; 【详解】 (1)根据平抛运动知识可得 2 00 122gt y gt tan x v t v α=== 解得02v tan g t α = (2)根据万有引力等于重力,则有 2 GMm mg R = 解得2202v R tan gR M G Gt α == 2.宇宙中存在一些离其他恒星较远的三星系统,通常可忽略其他星体对它们的引力作用,三星质量也相同.现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星做囿周运动,如图甲所示;另一种是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的囿形轨道运行,如图乙所示.设这三个 星体的质量均为 m ,且两种系统中各星间的距离已在图甲、图乙中标出,引力常量为 G , 则: (1)直线三星系统中星体做囿周运动的周期为多少? (2)三角形三星系统中每颗星做囿周运动的角速度为多少?

【答案】(1)3 45L Gm 23 3Gm L 【解析】 【分析】 (1)两侧的星由另外两个星的万有引力的合力提供向心力,列式求解周期; (2)对于任意一个星体,由另外两个星体的万有引力的合力提供向心力,列式求解角速度; 【详解】 (1)对两侧的任一颗星,其它两个星对它的万有引力的合力等于向心力,则: 222 222()(2)Gm Gm m L L L T π+= 3 45L T Gm ∴=(2)三角形三星系统中星体受另外两个星体的引力作用,万有引力做向心力,对任一颗 星,满足:2 222cos30()cos30L Gm m L ω?=? 解得:3 3Gm L ω 3.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M (4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示) 【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) 2hR t 【解析】 (1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t (2)小球做平抛运动时在竖直方向上有:h= 12 gt 2 ,

高考物理一轮复习专题加速度的理解题型荟萃

加速度的理解 题型特色 该题型考查加速度的概念,辨析速度、速度的变化和速度的变化率三个不同的概念;考查理解、推理能力,以及应用数学工具解决物理问题的能力.. 考点回归 (1)加速度.加速度是指速度大小和方向(如匀速圆周运动)变化的“快慢”,加速度的大小0v v v a t t -?==? ,即速度变化越快,加速度越大;速度变化越慢,加速度越小。加速度是矢量,方向与速度变化的方向相同,由合外力的方向决定。 (2)速度、速度的变化和速度变化率的辨析.这三个量的物理意义截然不同,彼此互不等价.速度最大(最小)时,速度变化未必最大(最小),加速度未必最大(最小).可是速度变化为零时,加速度必为零;加速度为零时,速度变化也必为零.加速度最大时,速度可能为零;速度最大时,加速度可能为零,加速度的方向与速度的方向无关. 典例精讲 例1. 关于物体的加速度 与速度的关系,下列说法中可能正确的是( ). A.加速度的大小在不断减小,速度的大小在不断增加 B.加速度的方向始终不变而速度的方向在时刻变化 C.加速度的方向始终改变而速度的方向时刻不变 D.加速度和速度的大小都在变化,加速度最大时速度最小,速度最大时加速度最小【详解示范】如弹簧振子的运动,物体在弹簧拉力的作用下向平衡位置运动,拉力逐渐减小,速度不断增大,选项A 正确,平抛运动中加速度始终不变,而速度的方向时刻变化,选项B 正确。加速度的方向始终改变,就意味着速度的增量与原来的速度方向有可能不在一条直线上,后来的速度应是一者的合成,合成以后的速度与原来的速度必然不会同向,速度的方向变了.速度也就变了,选项C 错误.如弹簧振子的运动,加速度与速度的关系正是选项D 所描述的情况.选项D 正确。. 【答案】ABD. 例2. 物体 做直线运动,某时刻速度的大小为4m/s,1s 后速度的大小变为10m/s,在这1s 内该物体的( ) A.平均速度一定是7 m/s B.平均速度可能是-6 m/s C.加速度的大小一定是6 m/s 2 D.加速度的大小可能很大 【详解示范】物体做直线运动,速度的变化可能是均匀的,也可能是非均匀的.若速度是均匀增大的,根据速度时间图像,用“面积”等效法,平均速度等于7 m/s,选项A 错误;若速度是均匀减小的,则平均速度为-6m/s,选项B 正确.若速度是均匀增大的,加速度为6m/s 2,选项C 错误.若速度是非均匀变化的,在这1s 内,速度变化有可能很大,选项D 正确。 【答案】BD 题型攻略

曲线运动万有引力与航天测试题带答案

第4章曲线运动万有引力与航天 一、选择题(本大题共15小题) 1.一个物体受到恒定的合力作用而做曲线运动,则下列说法正确的是 A.物体的速率可能不变 B.物体一定做匀变速曲线运动,且速率一定增大 C.物体可能做匀速圆周运动 D.物体受到的合力与速度的夹角一定越来越小,但总不可能为零 2.一物体在光滑的水平桌面上运动,在相互垂直的x方向和y方向上的分运动速度随时间变化的规律如图1所示.关于物体的运动,下列说法正确的是 图1 A.物体做曲线运动 B.物体做直线运动 C.物体运动的初速度大小是50 m/s D.物体运动的初速度大小是10 m/s 3.小船过河时,船头偏向上游与水流方向成α角,船相对静水的速度为v,其航线恰好垂直于河岸.现水流速度稍有增大,为保持航线不变,且准时到达对岸,下列措施中可行的是 A.增大α角,增大船速v B.减小α角,增大船速v C.减小α角,保持船速v不变 D.增大α角,保持船速v不变 4.(2011·上海市闸北调研)质量为2 kg的质点在x-y平面上做曲线运动,在x方向的速度图象和y方向的位移图象如图2所示,下列说法正确的是

图2 A .质点的初速度为5 m/s B .质点所受的合外力为3 N C .质点初速度的方向与合外力方向垂直 D .2 s 末质点速度大小为6 m/s 5.如图3所示,甲、乙、丙三个轮子依靠摩擦转动,相互之间不打滑,其半径分别为r 1、r 2、r 3.若甲轮的角速度为ω1,则丙轮的角速度为 图3 A.r 1ω1r 3 B.r 3ω1 r 1 C. r 3ω1r 2 D.r 1ω1 r 2 6.如图4所示,轻杆的一端有一个小球,另一端有光滑的固定轴O.现给球一初速度,使球和杆一起绕O 轴在竖直面内转动,不计空气阻力,用F 表示球到达最高点时杆对小球的作用力.则F 图4 A .一定是拉力 B .一定是推力 C .一定等于0 D .可能是拉力,可能是推力,也可能等于0

高考物理万有引力定律的应用的技巧及练习题及练习题(含答案)及解析

高考物理万有引力定律的应用的技巧及练习题及练习题(含答案)及解析 一、高中物理精讲专题测试万有引力定律的应用 1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M (4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示) 【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t 【解析】 (1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t (2)小球做平抛运动时在竖直方向上有:h=12 gt 2 , 解得该星球表面的重力加速度为:g=2h/t 2; (3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2 Mm G R 所以该星球的质量为:M=2 gR G = 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v , 由牛顿第二定律得: 2 2Mm v G m R R = 重力等于万有引力,即mg=2Mm G R , 解得该星球的第一宇宙速度为:v = = 2.一颗在赤道平面内飞行的人造地球卫星,其轨道半径为3R .已知R 为地球半径,地球表面处重力加速度为g. (1)求该卫星的运行周期. (2)若卫星在运动方向与地球自转方向相同,且卫星角速度大于地球自转的角速度ω0.某时刻该卫星出现在赤道上某建筑物的正上方,问:至少经过多长时间,它会再一次出现在该建筑物的正上方?

高中物理万有引力与航天练习题及答案及解析

高中物理万有引力与航天练习题及答案及解析 一、高中物理精讲专题测试万有引力与航天 1.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G ) 【答案】 【解析】 设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w 1,w 2.根据题意有 w 1=w 2 ① (1分) r 1+r 2=r ② (1分) 根据万有引力定律和牛顿定律,有 G ③ (3分) G ④ (3分) 联立以上各式解得 ⑤ (2分) 根据解速度与周期的关系知 ⑥ (2分) 联立③⑤⑥式解得 (3分) 本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解 2.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月; (2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v . 【答案】(1)22h g t =月 (2)2 2 2hR M Gt =;2hR v = 【解析】

【分析】 (1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度; (2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】 (1)月球表面附近的物体做自由落体运动 h =1 2 g 月t 2 月球表面的自由落体加速度大小 g 月=2 2h t (2)若不考虑月球自转的影响 G 2 Mm R =mg 月 月球的质量 2 2 2hR M Gt = 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2 v R 月球的“第一宇宙速度”大小 v 【点睛】 结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v . 3.宇航员在某星球表面以初速度v 0竖直向上抛出一个物体,物体上升的最大高度为h .已知该星球的半径为R ,且物体只受该星球的引力作用.求: (1)该星球表面的重力加速度; (2)从这个星球上发射卫星的第一宇宙速度. 【答案】(1)202v h (2) v 【解析】 本题考查竖直上抛运动和星球第一宇宙速度的计算. (1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则2 02v g h =' 解得,该星球表面的重力加速度20 2v g h '= (2) 卫星贴近星球表面运行,则2 v mg m R '= 解得:星球上发射卫星的第一宇宙速度v v = =

2021届高考物理一轮复习题型突破: 5.1 功 和 功 率

温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。 关键能力·题型突破 考点一功和恒力做功 对功的理解 【典例1】(2017·全国卷Ⅱ)如图,一光滑大圆环固定在桌面上,环面位于竖直平面内,在大圆环上套着一个小环,小环由大圆环的最高点从静止开始下滑,在小环下滑的过程中,大圆环对它的作用力( ) A.一直不做功 B.一直做正功 C.始终指向大圆环圆心 D.始终背离大圆环圆心 【解析】选A。因为大圆环对小环的作用力始终与速度垂直不做功,因此A正确、B错误;从静止开始在小环下滑的过程中,大圆环对它的作用力先背离大圆环圆心,后指向大圆环圆心,故C、D项错误。 恒力做功 【典例2】(多选)质量为m=2 kg的物体沿水平面向右做直线运动,t=0时刻受到一个水平向左的恒力F,如图甲所示,取水平向右为正方向,此物体的v-t图象如图乙所示,g取10 m/s2,则( )

A.物体与水平面间的动摩擦因数μ=0.5 B.10 s内恒力F对物体做功102 J C.10 s末物体在计时起点位置左侧2 m处 D.10 s内物体克服摩擦力做功34 J 【解析】选C、D。设物体向右做匀减速直线运动的加速度为a1,则由v-t图象得加速度大小a1=2 m/s2,方向与初速度方向相反,设物体向左做匀加速直线运动的加速度为a2,则由v-t图象得加速度大小a2=1 m/s2,方向与初速度方向相反,根据牛顿第二定律得,F+μmg=ma1,F-μmg=ma2,解得F=3 N,μ=0.05,故A错误;根据v-t图象与横轴所围成的面积表示位移得,x=×4×8 m-×6× 6 m=-2 m,负号表示物体在起点的左侧,则10 s内恒力F对物体做功W=Fx=3× 2 J=6 J,故B错误,C正确;10 s内物体克服摩擦力做功W f=F f s=0.05×20 ×(×4×8+×6×6) J=34 J,故D正确。 【多维训练】(2019·长沙模拟)一物块放在水平地面上,受到水平推力F的作用,力F与时间t的关系如图甲所示,物块的运动速度v与时间t的关系如图乙所示。10 s后的v-t图象没有画出,重力加速

第六章《万有引力与航天》测试题(含详细解答)

《万有引力与航天》测试题 一、选择题(每小题4分,全对得4分,部分对的得2分,有错的得0分,共48分。) 1.第一次通过实验比较准确的测出引力常量的科学家是( ) A . 牛顿 B . 伽利略 C .胡克 D . 卡文迪许 2.如图1所示a 、b 、c 是在地球大气层外圆形轨道上运动的3颗卫星,下列说法正确的是( ) A .b 、c 的线速度大小相等,且大于a 的线速度; B .b 、c 的向心加速度大小相等,且大于a 的向心加速度; C .c 加速可追上同一轨道上的b ,b 减速可等候同一轨道上的c ; D .a 卫星由于某种原因,轨道半径变小,其线速度将变大 3.宇宙飞船为了要与“和平号“轨道空间站对接,应该:( ) A.在离地球较低的轨道上加速 B.在离地球较高的轨道上加速 C.在与空间站同一高度轨道上加速 D.不论什么轨道,只要加速就行 4、 发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火, 使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q 点,轨道2、3相切于P 点,如图2所示。则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是:( ) A .卫星在轨道3上的速率大于在轨道1上的速率。 B .卫星在轨道3上的角速度小于在轨道1上的角速度。 C .卫星在轨道1上经过Q 点时的速度大于它在轨道2 上经过Q 点时的速度。 D .卫星在轨道2上经过P 点时的加速度等于它在轨道3 b a c 地球 图1

上经过P 点时的加速度 5、 宇航员在围绕地球做匀速圆周运动的空间站中会处于完全失重中,下列说法中正确的是 ( ) A.宇航员仍受重力的作用 B.宇航员受力平衡 C.宇航员受的重力正好充当向心力 D.宇航员不受任何作用力 6.某星球质量为地球质量的9倍,半径为地球半径的一半,在该星球表面从某一高度以10 m/s 的初 速度竖直向上抛出一物体,从抛出到落回原地需要的时间为(g 地=10 m/s 2 )( ) A .1s B . 91s C .18 1 s D . 36 1 s 7.假如地球自转速度增大,关于物体重力,下列说法正确的是( ) A 放在赤道地面上的万有引力不变 B 放在两极地面上的物体的重力不变 C 放在赤道地面上物体的重力减小 D 放在两极地面上的物体的重力增加 8、设想把质量为m 的物体放在地球的中心,地球的质量为M ,半径为R ,则物体与地球间的万有引力是( ) A.零 B.无穷大 C.2 GMm R D.无法确定 9.对于质量m 1和质量为m 2的两个物体间的万有引力的表达式12 2m m F G r ,下列说法正确的是 ( ) 和m 2所受引力总是大小相等的 B 当两物体间的距离r 趋于零时,万有引力无穷大 C.当有第三个物体m 3放入之间时,m 1和m 2间的万有引力将增大 D.所受的引力性质可能相同,也可能不同 10地球赤道上的重力加速度为g ,物体在赤道上随地球自转的向心加速度为a ,要使赤道上物 体“飘” 起来,则地球的转速应为原来转速的( )

高考物理万有引力定律的应用答题技巧及练习题(含答案)含解析

高考物理万有引力定律的应用答题技巧及练习题(含答案)含解析 一、高中物理精讲专题测试万有引力定律的应用 1.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018”.例如,我国将进行北斗组网卫星的高密度发射,全年发射18颗北斗三号卫星,为“一带一路”沿线及周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速圆周运动的周期为T ,地球质量为M 、半径为R ,引力常量为G . (1)求静止轨道卫星的角速度ω; (2)求静止轨道卫星距离地面的高度h 1; (3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是T ,距离地面的高度为h 2.视地球为质量分布均匀的正球体,请比较h 1和h 2的大小,并说出你的理由. 【答案】(1)2π=T ω;(2)2 3124GMT h R π (3)h 1= h 2 【解析】 【分析】 (1)根据角速度与周期的关系可以求出静止轨道的角速度; (2)根据万有引力提供向心力可以求出静止轨道到地面的高度; (3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度; 【详解】 (1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度2π=T ω (2)静止轨道卫星做圆周运动,由牛顿运动定律有:2 1 212π=()()()Mm G m R h R h T ++ 解得:2 312 =4π GMT h R

(3)如图所示,同步卫星的运转轨道面与地球赤道共面,倾斜同步轨道卫星的运转轨道面与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也是T ,根据牛顿运动定律,2 2 22 2=()()()Mm G m R h R h T π++ 解得:2 322 =4GMT h R π - 因此h 1= h 2. 故本题答案是:(1)2π=T ω;(2)2312=4GMT h R π - (3)h 1= h 2 【点睛】 对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的物理量. 2.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8) (1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度. 【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】 【分析】 【详解】 (1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a = 又有:sin cos mg mg ma θμθ+= 解得:2 7.5m/s g = (2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有: 2 mv mg R =

高考(2015-2019)物理真题分项B4版——专题(五)万有引力与航天(试题版)

专题五 万有引力与航天 1、(2019全国Ⅰ卷)在星球M上将一轻弹簧竖直固定在水平桌面上,把物体P轻放在弹簧上端,P 由静止向下运动,物体的加速度a与弹簧的压缩量x间的关系如图中实线所示。在另一星球N上用完全相同的弹簧,改用物体Q完成同样的过程,其a–x关系如图中虚线所示,假设两星球均为质量均匀分布的球体。已知星球M的半径是星球N的3倍,则() A.M与N的密度相等 B.Q的质量是P的3倍 C.Q下落过程中的最大动能是P的4倍 D.Q下落过程中弹簧的最大压缩量是P的4倍 2、(2019全国Ⅱ卷)2019年1月,我国嫦娥四号探测器成功在月球背面软着陆,在探测器“奔向”月球的过程中,用h表示探测器与地球表面的距离,F表示它所受的地球引力,能够描述F随h变化关系的图像是() 3.(2019全国Ⅲ卷)金星、地球和火星绕太阳的公转均可视为匀速圆周运动,它们的向心加速度大小分别为a金、a地、a火,它们沿轨道运行的速率分别为v金、v地、v火。已知它们的轨道半径R金a地>a火B.a火>a地>a金C.v地>v火>v金D.v火>v地>v金 4、(2019北京卷)2019年5月17日,我国成功发射第45颗北斗导航卫星,该卫星属于地球静止轨道卫星(同步卫星)。该卫星() A.入轨后可以位于北京正上方B.入轨后的速度大于第一宇宙速度 C.发射速度大于第二宇宙速度 D.若发射到近地圆轨道所需能量较少 5、(2019天津卷)2018年12月8日,肩负着亿万中华儿女探月飞天梦想的嫦娥四号探测器成功发射,“实现人类航天器首次在月球背面巡视探测,率先在月背刻上了中国足迹”。已知月球的质量为M、半径为R,探测器的质量为m,引力常量为G,嫦娥四号探测器围绕月球做半径为r的匀速圆周运动时,探测器的() A.周期为 23 4πr GM B.动能为 2 GMm R C.角速度为 3 Gm r D.向心加速度为 2 GM R 6、(2019 江苏卷)1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动.如图所示,设卫星在近地点、远地点的速度分别为v1、v2,近地点到地心的距离为r,地球质量为M,引力常量为G.则() A. r GM v v v= > 1 2 1 ,B. r GM v v v> > 1 2 1 , C. r GM v v v= < 1 2 1 , D. r GM v v v> > 1 2 1 , 7、(2018全国Ⅰ卷)2017年,人类第一次直接探测到来自双中子星合并的引力波。根据科学家们复原的过程,在两颗中子星合并前约100 s时,它们相距约400 km,绕二者连线上的某点每秒转动12圈,将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星() A. 质量之积 B. 质量之和 C. 速率之和 D. 各自的自转角速度 1

2020年高考物理一轮复习 热点题型归纳与变式演练 专题19 电场能的性质(含解析)

专题19 电场能的性质 【专题导航】 目录 热点题型一电势高低、电势能大小的判断 (1) 热点题型二电势差与电场强度的关系 (3) 在匀强电场中由公式U=Ed得出的“一式二结论” (4) U=Ed在非匀强电场中的应用 (7) 热点题型三电场线、等势线(面)及带电粒子的运动轨迹问题 (7) 带电粒子运动轨迹的分析 (8) 等势面的综合应用 (9) 热点题型四静电场的图象问题 (10) v-t图象 (11) φ-x图象 (12) E-x图象 (13) Ep-x图象 (14) 【题型演练】 (15) 【题型归纳】 热点题型一电势高低、电势能大小的判断 1.电势高低的判断

2.电势能大小的判断 3.电场中的功能关系 (1)若只有电场力做功,电势能与动能之和保持不变. (2)若只有电场力和重力做功,电势能、重力势能、动能之和保持不变. (3)除重力、弹簧弹力之外,其他各力对物体做的功等于物体机械能的变化. (4)所有外力对物体所做的功等于物体动能的变化. 【例1】(2019·广东韶关质检)如图所示,虚线表示某电场的等势面,实线表示一带电粒子仅在电场力作用下 运动的径迹.粒子在A 点的加速度为 a A 、动能为 E k A 、电势能为 E p A ;在B 点的加速度 为a B 、动能为 E k B 、 电势能为 E p B .则下列结论正确的是 ( ) A .a A >a B ,E k A >E k B B .a A E p B C .a A a B , E k A E k B ,选项C 正确,B 错误.

高考物理万有引力定律知识点总结-学生版

万有引力定律知识点总结 一.开普勒行星运动规律: 行星轨道视为圆处理 则3 2r K T =(K 只与中心天体质量M 有关) 二、万有引力定律 (1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比. (2)公式:F =G 2 21r m m ,其中2 211/1067.6kg m N G ??=-,叫做引力常量。 (3)适用条件:此公式适用于质点间的相互作用.当两物体间的距离远远大于物体本身的大小时,物体可视为质点.均匀的球体可视为质点,r 是两球心间的距离. 三.万有引力定律的应用 (1).万有引力=向心力 (一个天体绕另一个天体作圆周运动时,r=R+h ) G M m R h m ()+=2 V R h m R hm T R h 22 2 224()()()+=+=+ωπ 人造地球卫星(只讨论绕地球做匀速圆周运动的人造卫星r GM v = ,r 越大,v 越小;3 r GM = ω,r 越大,ω越小;GM r T 3 24π= ,r 越大,T 越大; 2 n GM a r = , r 越大,n a 越小。 (2)、用万有引力定律求中心星球的质量和密度 求质量:①天体表面任意放一物体重力近似等于万有引力:mg = G M m R 2 →2 gR M G = M ,半径为R ,环绕星球质量为m ,线速 度为v ,公转周期为T ,两星球相距r ,由万有引力定律有:2 222? ? ? ??==T mr r mv r GMm π,可得出中心天 体的质量:23 2 2 4GT r G r v M π== 求密度: 34/3M M V R ρπ== 地面物体的重力加速度:mg = G M m R 2 高空物体的重力加速度:mg ‘‘ = G 2 )(h R Mm + 黄金替换式: 即mg R Mm G =2 从而得出2 gR GM = (g 是表面的重力加速度) 四、三种宇宙速度

高考物理一轮复习各专题复习题及答案解析

运动的描述与匀变速直线运动课时作业 课时作业(一)第1讲描述直线运动的基本概念 时间/40分钟 基础达标 图K1-1 1.[2018·杭州五校联考]智能手机上装载的众多APP软件改变着我们的生活.如图K1-1所示为某地图APP软件的一张截图,表示了某次导航的具体路径,其推荐路线中有两个数据:10分钟,5.4公里.关于这两个数据,下列说法正确的是() A.研究汽车在导航图中的位置时,可以把汽车看作质点 B.10分钟表示的是某个时刻 C.5.4公里表示此次行程的位移的大小 D.根据这两个数据,我们可以算出此次行程的平均速度的大小 2.[2018·河北唐山统测]下列关于加速度的说法正确的是() A.加速度恒定的运动中,速度大小恒定 B.加速度恒定的运动中,速度的方向恒定不变 C.速度为零时,加速度可能不为零 D.速度变化率很大时,加速度可能很小 3.如图K1-2所示,哈大高铁运营里程为921公里,设计时速为350公里.某列车到达大连北站时刹车做匀减速直线运动,开始刹车后第5s内的位移是57.5m,第10s内的位移是32.5m,已知10s末列车还未停止运动,则下列说法正确的是 ()

图K1-2 A.在研究列车从哈尔滨到大连所用时间时不能把列车看成质点 B.921公里是指位移 C.列车做匀减速直线运动时的加速度大小为6.25m/s2 D.列车在开始刹车时的速度为80m/s 4.下表是四种交通工具做直线运动时的速度改变情况,下列说法正确的是 () A.①的速度变化最大,加速度最大 B.②的速度变化最慢 C.③的速度变化最快 D.④的末速度最大,但加速度最小 5.一个质点做方向不变的直线运动,加速度的方向始终与速度的方向相同,但加速度大小先保持不变,再逐渐减小直至为零,则在此过程中() A.速度先逐渐增大,然后逐渐减小,当加速度减小到零时,速度达到最小值 B.速度先均匀增大,然后增大得越来越慢,当加速度减小到零时,速度达到最大值 C.位移逐渐增大,当加速度减小到零时,位移将不再增大 D.位移先逐渐增大,后逐渐减小,当加速度减小到零时,位移达到最小值 图K1-3 6.如图K1-3所示,一小球在光滑水平面上从A点开始向右运动,经过3s与距离A点6m的竖直墙壁碰撞,碰撞时间很短,可忽略不计,碰后小球按原路以原速率返回.取小球在A点时为计时起点,并且取水平向右的方向为正方向,则小球在7s内的位移和路程分别为() A.2m,6m B.-2m,14m

(完整版)高中物理万有引力部分知识点总结

高中物理——万有引力与航天 知识点总结 一、开普勒行星运动定律 (1)所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。 (2)对于每一颗行星,太阳和行星的联线在相等的时间内扫过相等的面积。 (3)所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。 二、万有引力定律 1.内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比. 2.公式:F=Gm1m2/r^2,其中G=6.67×10-11 N·m2/kg2,称为万有引力常量。 3.适用条件: 严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但

此时r应为两物体重心间的距离。对于均匀的球体,r是两球心间的距离。 三、万有引力定律的应用 1.解决天体(卫星)运动问题的基本思路 (1)把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供,关系式: F=Gm1m2/r^2=mv^2/r=mω2r=m(2π/T)2r (2)在地球表面或地面附近的物体所受的重力等于地球对物体的万有引力,即mg=Gm1m2/r^2,gR2=GM. 2.天体质量和密度的估算 通过观察卫星绕天体做匀速圆周运动的周期T,轨道半径r,由万有引力等于向心力,即G r2(Mm)=m T2(4π2)r,得出天体质量M=GT2(4π2r3). (1)若已知天体的半径R,则天体的密度 ρ=V(M)=πR3(4)=GT2R3(3πr3) (2)若天体的卫星环绕天体表面运动,其轨道半径r等于天体半径R,则天体密度ρ=GT2(3π) 可见,只要测出卫星环绕天体表面运动的周期,就可求得天体的密度. 3.人造卫星 (1)研究人造卫星的基本方法

高考物理万有引力与航天基础练习题

高考物理万有引力与航天基础练习题 一、高中物理精讲专题测试万有引力与航天 1.如图所示,返回式月球软着陆器在完成了对月球表面的考察任务后,由月球表面回到绕月球做圆周运动的轨道舱.已知月球表面的重力加速度为g ,月球的半径为R ,轨道舱到月球中心的距离为r ,引力常量为G ,不考虑月球的自转.求: (1)月球的质量M ; (2)轨道舱绕月飞行的周期T . 【答案】(1)G gR M 2 = (2)2r r T R g π=【解析】 【分析】 月球表面上质量为m 1的物体,根据万有引力等于重力可得月球的质量;轨道舱绕月球做圆周运动,由万有引力等于向心力可得轨道舱绕月飞行的周期; 【详解】 解:(1)设月球表面上质量为m 1的物体,其在月球表面有:11 2Mm G m g R = 1 12 Mm G m g R = 月球质量:G gR M 2 = (2)轨道舱绕月球做圆周运动,设轨道舱的质量为m 由牛顿运动定律得: 2 2Mm 2πG m r r T ??= ??? 222()Mm G m r r T π= 解得:2r r T R g π= 2.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:

(1)该星球表面的重力加速度; (2)该星球的质量。 【答案】(1)02tan v g t θ= (2)202tan v R Gt θ 【解析】 【分析】 平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度;根据万有引力等于重力求出星球的质量; 【详解】 (1)根据平抛运动知识可得 2 00 122gt y gt tan x v t v α=== 解得02v tan g t α = (2)根据万有引力等于重力,则有 2 GMm mg R = 解得2202v R tan gR M G Gt α == 3.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少? (3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1)2R g ,16R g (2)速度之比为2 87R g π 【解析】 【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解; 解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2Mm G mg R =

2021届高考物理一轮复习方略关键能力·题型突破+4.2 平抛运动的规律及应用

关键能力·题型突破 考点一平抛运动的规律 单个物体的平抛运动 【典例1】(多选)一位同学玩投掷飞镖游戏时,将飞镖水平抛出后击中目标。当飞镖在飞行过程中速度的方向平行于抛出点与目标间的连线时,其大小为v。不考虑空气阻力,已知连线与水平面间的夹角为θ,则飞镖( ) A.初速度v0=vcos θ B.飞行时间t= C.飞行的水平距离x= D.飞行的竖直距离y= 【一题多解】选A、C。 方法一:将运动分解成水平方向的匀速直线运动和竖直方向的自由落体运动,飞镖的初速度v0=vcos θ,选项A正确;根据平抛运动的规律有x=v0t,y=gt2,tan θ=,解得t=,x=,y=,选项C正确,B、D错误。 方法二:求飞行时间还可以沿抛出点与目标间的连线和垂直连线方向

建立平面直角坐标系,则沿连线方向上,飞镖做初速度为v0cos θ,加速度为gsin θ的匀加速直线运动;垂直连线方向上做初速度为v0sin θ,加速度为-gcos θ的类竖直上抛运动,故由题意可知飞镖飞到速度为v时,垂直连线方向的速度减为0,所用时间为,再次回到连线所用的时间也为(竖直上抛运动的对称性),故飞行时间为。 多个物体的平抛运动 【典例2】(2019·潮州模拟)甲、乙两位同学在不同位置沿水平各射出一枝箭,箭落地时,插入泥土中的形状如图所示,已知两支箭的质量、水平射程均相等,若不计空气阻力及箭长对问题的影响,则甲、乙两支箭 ( ) A.空中运动时间之比为1∶ B.射出的初速度大小之比为1∶ C.下降高度之比为1∶3 D.落地时动能之比为3∶1 【通型通法】

1.题型特征:两个物体水平抛出。 2.思维导引: 【解析】选B。根据竖直方向的自由落体运动可得 h=gt2 水平射程:x=v0t 可得:x=v0 由于水平射程相等,则:v甲=v乙① 末速度的方向与水平方向之间的夹角的正切值: tan θ== 可得:2gh 甲=3,6gh乙=② 联立①②可得:h甲=3h乙,即下落的高度之比为3∶1; 根据竖直方向的自由落体运动可得h=gt2,可知运动时间之比为∶1,故A、C错误;射出的初速度大小之比为1∶,故B正确;它们下落的高度之比为3∶1;但射出的初速度大小之比为1∶,

相关主题
文本预览
相关文档 最新文档