当前位置:文档之家› MT9V113D00STCK22AC1-200 CMOS数字图像传感器

MT9V113D00STCK22AC1-200 CMOS数字图像传感器

MT9V113D00STCK22AC1-200 CMOS数字图像传感器
MT9V113D00STCK22AC1-200 CMOS数字图像传感器

MT9V113D00STCK22AC1-200评估板概述

评估板旨在演示该半导体图像传感器产品的功能。该床头

板旨在直接插入Demo 2X系统。板上的测试点和跳线可访问时

钟,I / O和其他杂项信号。

EVAL BOARD USER’S MANUAL

MT9V113D00STCK22AC1-200特征

?时钟输入

?默认– 27

MHz晶体振荡

?可选的演示2X

控制的MClk

?两线串行接口

?可选基地址

?并行接口

?MIPI接口?符

合ROHS

Figure 1. MT9V113 Evaluation Board 框图

Figure 2. Block Diagram of MT9V113PACSTCH?GEVB

MT9V113PACSTCH?GEVB

Top View

+3V3_VAA J10

+1V8_VDD J13 FLASH JP1

CONFIG. SW1

ATEST J14

ON_LED SW5 GPIO[1:0] J4 CLK_SELECT J1

RESET SW1

+VDDIO J9

Figure 3. Top View of Evaluation Board

Bottom View

MIPI Connector U5 EEPROM ADDR SW4

Baseboard Connector J2

Figure 4. Bottom View of the Evaluation Board ? Connectors

2

MT9V113PACSTCH?GEVB

跳线针位置

床头板上的跳线从引脚最左侧的引脚1开始。分组的跳线会随着每个跳线的增加而增加引脚尺寸。

Pin 1 Pins 1?4

Figure 5. Pin Locations for a Single Jumper. Pin 1 is Located at the Leftmost Side

and Increases as it Moves to the Right

ADR1

ADR0

Figure 6. Address Switch Locations in their Default Positions. The first Switch(ADR0)

and the second Switch (ADR1) of SW3 are set to ON

STDBY

OE_N

Figure 7. Switch Descriptions od Switch SW4 in their Default Positions.The first Switch (STDBY)

is Set OFF while the Second Switch (OE_N) is Set to it

Jumper/Header Functions & Default Positions

Table 1. JUMPERS AND HEADERS

Jumper/Header No. Jumper/Header Name Pins Description JP1 FLASH Open (Default) Connects to external flash

J4 GPIO[1:0] Open (Default) Connects to GPIO signals

J9 +VDDIO 1?2 (Default) Connects to on-board +3V3_VDD power supply

Open External power supply connection J10 1?2 (Default) Connects to on-board +3V3_VAA power supply +3V3_VAA Open External power supply connection

1?2 (Default) Connects to on-board +1V8_VDD power supply J13 +1V8_VDD Open External power supply connection

J14 ATEST Open (Default) For test/debug

SW1 RESET N/A When pushed, 400 ms reset signal will be sent to MT9V113

Table 1. JUMPERS AND HEADERS (continued)

Jumper/Header No. Jumper/Header Name Pins Description

STDBY Off Normal Mode

(Default)

STDBY On Standby State

SW1 STDBY/SADDR SADDR Off I2C address set to 0x20

(Default)

SADDR On I2C address set to 0x30

A2 On, A1 OffEEPROM Address set to 0xA8

(Default)

A2 On, A1 On EEPROM Address set to 0xAC SW4 EEPROM ADDR A2 Off, A1 OnEEPROM Address set to 0xA4

A2 Off, A1 Off EEPROM Address set to 0xA0 SW5 ON_LED On (Default) Connects LED indicator to +Vdd_BUS

Off Turn off LED indicator 与Demo 2X基板的接口 Demo 2X基板具有类似的26针连接器,可与床头板的J2配对。四个安装孔使用垫片和螺钉固定底板和床头板。

以上是“奥伟斯科技”分享的产品信息,如果您需要订购此款物料,请查看我们的官网与我们联系,非常感谢您的关注与支持!奥伟斯科技提供专业的智能电子锁触摸解决方案,并提供电子锁整套的芯片配套:低功耗触摸芯片低功耗单片机马达驱动芯片显示驱动芯片刷卡芯片时针芯片存储芯片语音芯片低压MOS管 TVS二极管;优势产品未尽详细,欢迎查询!

中国CMOS图像传感器行业研究-行业发展概况

中国CMOS图像传感器行业研究-行业发展概况 (一)行业发展概况 1、集成电路行业 2010年以来,以智能手机、平板电脑为代表的新兴消费电子市场的兴起,以及汽车电子、工业控制、仪器仪表、智能照明、智能家居等物联网市场的快速发展,带动整个半导体行业规模迅速增长。2017年,全球半导体行业整体销售额达到4,122亿美元,同比增长21.63%,增速创七年来新高。 数据来源:全球半导体贸易协会(WSTS)

根据全球半导体贸易协会(WSTS)预测,2018年全球半导体市场规模将达到4,512亿美元,同比增长9.5%。 数据来源:全球半导体贸易协会(WSTS)

2、CMOS图像传感器行业 (1)图像传感器行业概况 图像传感器为物联网感知层众多传感器中最重要的一种核心传感器。图像传感器主要采用感光单元阵列和辅助控制电路获取对象景物的亮度和色彩信号,并通过复杂的信号处理和图像处理技术输出数字化的图像信息。图像传感器中的感光单元一般采用感光二极管(Photodiode)实现光电信号的转换。感光二极管在接受光线照射之后能够产生电流信号,电流的强度与光照的强度成正比例关系。每个感光单元对应图像传感器中的一个像元,像元也被称为像素单元(Pixel)。 图像传感器主要分为CCD图像传感器和CMOS图像传感器两大类。CCD和CMOS 都是利用感光二极管进行光电转换,将图像转换为数字信号,但二者在感光二极管的周边信号处理电路和感光单元产生的电信号的处理方式不同。 CCD和CMOS的感光元件在接受光照之后直接输出的电信号都是模拟信号。在CCD传感器中,每一个感光元件都不对此作进一步的处理,而是将它直接输出到下一个感光元件的存储单元,结合该元件生成的模拟信号后再输出给第三个感光元件,依次类推,直到结合最后一个感光元件的信号才能形成统一的输出。由于感光元件生成的电信号非常微弱,无法直接进行模数转换工作,因此这些输出数据必须做统一的放大处理。由于CCD本身无法将模拟信号直接转换为数字信号,因此还需要一个专门的模数转换芯片进行处理,最终以数字图像矩阵的形式输出给专门的图像处

CMOS图像传感器的研究进展_李继军.

. net 光学制造 1内蒙古工业大学理学院, 内蒙古呼和浩特 0100512北京师范大学遥感与 GIS 研究中心遥感科学国家重点实验室, 北京 10087! " 5 Li Jijun 1 Du Yungang 1Zhang Lihua 1, 2 Liu Quanlong 1Chen Jianrui 1 1School of Science, Inner Mongolia University of Technology , Hohhot, Inner Mongolia 010051, China, 2State Key Laboratory of Remote Sensing Science, Research Center of Remote Sensing &GIS, Beijing Normal University ,Beijing 100875, China #$$$$$$$$$$$% &’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ( 摘要 20世纪 90年代以来, 随着超大规模集成 (VLSI 技术的发展, CMOS 图像传感器显示出强劲的发展势头。简要介绍了 CMOS 图像传感器的结构及工作原理, 详细比较了 CMOS 图像传感器与 CCD 的性能特点, 讨论了 CMOS 图像传感器的关键技术问题,并给出了相应的解决途径,综述了 CMOS 图像传感器的国内外研 究现状, 最后对 CMOS 图像传感器的发展趋势进行了展望。 关键词光电子学; 传感器; CMOS 图像传感器; CCD ; 关键技术问题 Abstract

Since the 1990s, with the development of very large scale integration (VLSI,CMOS image sensors have been developed rapidly. The structure and working principle of CMOS image sensors are introduced. The performances between CMOS image sensor and CCD are compared in detail. The key technical problems of CMOS image sensors are discussed, and the related solving ways are given. The development situation of CMOS image sensors at home and abroad is reviewed, and the development trends of CMOS image sensors are prospected. Key words optoelectronics; sensor; CMOS image sensor; CCD; key technical problem 中图分类号 O436 doi :10.3788/LOP20094604.0045 1引言 CMOS 图像传感器的研究始于 20世纪 60年代末, 受当时工艺技术的限制, 发展和应用有限。直到 20世纪 90年代初,随着大规模集成电路设计技术和信号处理技术的提高, CMOS 图像传感器才日益受到重视 [1~3], 成为固体图像传感器的研发热点。近几年来, 随着集成电路设计技术和工艺水平的长足进步 , CMOS 图像传感器的一些性能指标已接近甚至超过CCD 图像传感器 [4~6]。 本文简要介绍了 CMOS 图像传感器的结构及工作原理,详细比较了 CMOS 图像传感器与 CCD 的性 能特点,讨论了 CMOS 图像传感器的关键技术问题, 并给出了相应的解决途径, 综述了 CMOS 图像传感器的国内外研究现状, 最后对 CMOS 图像传感器的发展趋势进行了展望。 2结构及工作原理 CMOS 图像传感器的总体结构如图 1所示

CMOS图像传感器的基本原理及设计考虑.

CMOS图像传感器的基本原理及设计考虑 摘要:介绍CMOS图像传感器的基本原理、潜在优点、设计方法以及设计考虑。 关键词:互补型金属-氧化物-半导体图像传感器;无源像素传感器;有源像素传感器 1引言 20世纪70年代,CCD图像传感器和CMOS图像传感器同时起步。CCD图像传感器由于灵敏度高、噪声低,逐步成为图像传感器的主流。但由于工艺上的原因,敏感元件和信号处理电路不能集成在同一芯片上,造成由CCD图像传感器组装的摄像机体积大、功耗大。CMOS图像传感器以其体积小、功耗低在图像传感器市场上独树一帜。但最初市场上的CMOS图像传感器,一直没有摆脱光照灵敏度低和图像分辨率低的缺点,图像质量还无法与CCD图像传感器相比。 如果把CMOS图像传感器的光照灵敏度再提高5倍~10倍,把噪声进一步降低,CMOS 图像传感器的图像质量就可以达到或略微超过CCD图像传感器的水平,同时能保持体积小、重量轻、功耗低、集成度高、价位低等优点,如此,CMOS图像传感器取代CCD图像传感器就会成为事实。 由于CMOS图像传感器的应用,新一代图像系统的开发研制得到了极大的发展,并且随着经济规模的形成,其生产成本也得到降低。现在,CMOS图像传感器的画面质量也能与CCD图像传感器相媲美,这主要归功于图像传感器芯片设计的改进,以及亚微米和深亚微米级设计增加了像素内部的新功能。 实际上,更确切地说,CMOS图像传感器应当是一个图像系统。一个典型的CMOS图像传感器通常包含:一个图像传感器核心(是将离散信号电平多路传输到一个单一的输出,这与CCD图像传感器很相似),所有的时序逻辑、单一时钟及芯片内的可编程功能,比如增益调节、积分时间、窗口和模数转换器。事实上,当一位设计者购买了CMOS图像传感器后,他得到的是一个包括图像阵列逻辑寄存器、存储器、定时脉冲发生器和转换器在内的全部系统。与传统的CCD图像系统相比,把整个图像系统集成在一块芯片上不仅降低了功耗,而且具有重量较轻,占用空间减少以及总体价格更低的优点。 2基本原理 从某一方面来说,CMOS图像传感器在每个像素位置内都有一个放大器,这就使其

CMOS图像传感器的性能

CMOS图像传感器的性能 2.2.1光电转换的原理和性能 当光子入射到半导体材料中,光子被吸收而激发产生电子–空穴对,称为光生载流子,如图2.3(a)所示。量子效率(Quantum Efficiency,QE)被定义为产生光生载流子的光子数占总入射光子数的百分比;或者被定义为η,即每个入射光子激发出来的光生载流子数。 式中,N e为被激发出来的电子数;N v为入射的光子数。不同的半导体材料对入射光的响应随其波长而变化,对于硅材料而言波长覆盖整个可见光范围,截止在 约1.12μm的近红外波长,如图2.3(b)所示。 (a)(b) 图2.3硅半导体材料的光照响应 光电信号的噪声水平决定了能检测到的最小光功率,即光电转换的灵敏度。硅光电传感器的噪声构成包括: ●来源于信号和背景的散粒噪声(shot noise);

●闪烁噪声(flicker noise),即1/f噪声; ●来源于电荷载流子热扰动的热噪声(thermal noise)。 噪声特性用噪声等效功率NEP(Noise Equivalent Power)表达,信号功 率和噪声等效功率的比值,被称为信噪比(Signal Noise Ratio,SNR),是描述传感器性能的重要参数之一。 当入射光子照射在半导体材料的PN结上,如图2.4(a)所示,如果在PN 结上施加电压使光生载流子形成电流,产生如图2.4(b)所示的I-V特性曲线。曲线上V>0的正向偏置一段被称为太阳能电池模式;PN结反向偏置V<0的平直一段曲线,被称为光电二极管模式;I-V特性的反向击穿段被称为雪崩模式。通常在图像传感器中,光电转换元件工作在光电二极管模式,如图2.3(c)所 示。图2.3中PN结的反向电流I leak为 I leak=I ph+I diff (a)(b) 图2.4PN结光电二极管示意图

CMOS图像传感器的工作原理及研究

CMOS图像传感器的工作原理及研究 摘要:介绍了CMOS图像传感器的工作原理,比较了CCD图像传感器与CMOS图像传感器的优缺点,指出了CMOS图像传感器的技术问题和解决途径,综述了CMOS图像传感器的现状和发展趋势。 1 引言 自从上世纪60年代末期,美国贝尔实验室提出固态成像器件概念后,固体图像传感器便得到了迅速发展,成为传感技术中的一个重要分支,它是PC机多媒体不可缺少的外设,也是监控中的核心器件。互补金属氧化物半导体(CMOS)图像传感器与电荷耦合器件(CCD)图像传感器的研究几乎是同时起步,但由于受当时工艺水平的限制,CMOS图像传感器图像质量差、分辨率低、噪声降不下来和光照灵敏度不够,因而没有得到重视和发展。而CCD 器件因为有光照灵敏度高、噪音低、像素少等优点一直主宰着图像传感器市场。由于集成电路设计技术和工艺水平的提高,CMOS图像传感器过去存在的缺点,现在都可以找到办法克服,而且它固有的优点更是CCD器件所无法比拟的,因而它再次成为研究的热点。 70年代初CMOS传感器在NASA的Jet Pro pul sion Laboratory(JPL)制造成功,80年代末,英国爱丁堡大学成功试制出了世界第一块单片CMOS型图像传感器件,1995年像元数为(128×128)的高性能CMOS有源像素图像传感器由喷气推进实验室首先研制成功[1],1997年英国爱丁堡VLSI Ver sion公司首次实现了CMOS图像传感器的商品化,就在这一年,实用CMOS技术的特征尺寸已达到0.35mm,东芝研制成功了光敏二极管型APS,其像元尺寸为5.6mm×5.6mm,具有彩色滤色膜和微透镜阵列,2000年日本东芝公司和美国斯坦福大学采用0.35mm技术开发的CMOS-APS已成为开发超微型CMOS摄像机的主流产品。 2 技术原理 CCD型和CMOS型固态图像传感器在光检测方面都利用了硅的光电效应原理,不同点在于像素光生电荷的读出方式。CMOS图像传感器芯片的结构 [2]如图1所示。典型的CMOS像素阵列[3],是一个二维可编址传感器阵列。传感器的每一列与一个位线相连,行允许线允许所选择的行内每一个敏感单元输出信号送入它所对应的位线上(图2),位线末端是多路选择器,按照各列独立的列编址进行选择。根据像素的不同结构[4],CMOS图像传感器可以分为无源像素被动式传感器(PPS)和有源像素主动式传感器(APS)。根据光生电荷的不同产生方式APS又分为光敏二极管型、光栅型和对数响应型,现在又提出了DPS(digital pixel sensor)概念。

CMOS图像传感器的基本原理及设计

CMOS图像传感器的基本原理及设计考虑 1、引言 20世纪70年代,CCD图像传感器和CMOS图像传感器同时起步。CCD图像传感器由于灵敏度高、噪声低,逐步成为图像传感器的主流。但由于工艺上的原因,敏感元件和信号处理电路不能集成在同一芯片上,造成由CCD图像传感器组装的摄像机体积大、功耗大。CMOS图像传感器以其体积小、功耗低在图像传感器市场上独树一帜。但最初市场上的CMOS图像传感器,一直没有摆脱光照灵敏度低和图像分辨率低的缺点,图像质量还无法与CCD图像传感器相比。 如果把CMOS图像传感器的光照灵敏度再提高5倍~10倍,把噪声进一步降低,CMOS图像传感器的图像质量就可以达到或略微超过C CD图像传感器的水平,同时能保持体积小、重量轻、功耗低、集成度高、价位低等优点,如此,CMOS图像传感器取代CCD图像传感器就会成为事实。 由于CMOS图像传感器的应用,新一代图像系统的开发研制得到了极大的发展,并且随着经济规模的形成,其生产成本也得到降低。现在,CMOS图像传感器的画面质量也能与CCD图像传感器相媲美,这

主要归功于图像传感器芯片设计的改进,以及亚微米和深亚微米级设计增加了像素内部的新功能。 实际上,更确切地说,CMOS图像传感器应当是一个图像系统。一个典型的CMOS图像传感器通常包含:一个图像传感器核心(是将离散信号电平多路传输到一个单一的输出,这与CCD图像传感器很相似),所有的时序逻辑、单一时钟及芯片内的可编程功能,比如增益调节、积分时间、窗口和模数转换器。事实上,当一位设计者购买了CM OS图像传感器后,他得到的是一个包括图像阵列逻辑寄存器、存储器、定时脉冲发生器和转换器在内的全部系统。与传统的CCD图像系统相比,把整个图像系统集成在一块芯片上不仅降低了功耗,而且具有重量较轻,占用空间减少以及总体价格更低的优点。 2、基本原理 从某一方面来说,CMOS图像传感器在每个像素位置内都有一个放大器,这就使其能在很低的带宽情况下把离散的电荷信号包转换成电压输出,而且也仅需要在帧速率下进行重置。CMOS图像传感器的优点之一就是它具有低的带宽,并增加了信噪比。由于制造工艺的限制,早先的CMOS图像传感器无法将放大器放在像素位置以内。这种被称为PPS的技术,噪声性能很不理想,而且还引来对CMOS图像传感器的种种干扰。

CMOS图像传感器的工作原理

CMOS图像传感器的工作原理 1引言 图像传感器是将光信号转换为电信号的装置,在数字电视、可视通信市场中有着广泛的应用。60年代末期,美国贝尔实脸室发现电荷通过半导体势阱发生转移的现象,提出了固态成像这一新概念和一维CCD(Charge-Coupled Device 电荷耦合器件)模型器件。到90年代初,CCD技术已比较成热,得到非常广泛的应用。但是随着CCD应用范围的扩大,其缺点逐渐暴露出来。首先,CCD技术芯片技术工艺复杂,不能与标准工艺兼容。其次,CCD技术芯片需要的电压功耗大,因此CCD技术芯片价格昂贵且使用不便。目前,最引人注目,最有发展潜力的是采用标准的CMOS(Complementary Metal Oxide Semiconductor 互补金属氧化物场效应管)技术来生产图像传感器,即CMOS图像传感器。CMOS图像传感器芯片采用了CMOS工艺,可将图像采集单元和信号处理单元集成到同一块芯片上。由于具有上述特点,它适合大规模批量生产,适用于要求小尺寸、低价格、摄像质量无过高要求的应用,如保安用小型、微型相机、手机、计算机网络视频会议系统、无线手持式视频会议系统、条形码扫描器、传真机、玩具、生物显微计数、某些车用摄像系统等大量商用领域。20世纪80年代,英国爱丁堡大学成功地制造出了世界上第一块单片CMOS图像传感器件。目前,CMOS图像传感器正在得到广泛的应用,具有很强地市场竞争力和广阔地发展前景。 2 CMOS图像传感器基本工作原理

右图为CMOS图像传感器的功能框图。 首先,外界光照射像素阵列,发生光电效应,在像素单元内产生相应的电荷。行选择逻辑单元根据需要,选通相应的行像素单元。行像素单元内的图像信号通过各自所在列的信号总线传输到对应的模拟信号处理单元以及A/D转换器,转换成数字图像信号输出。其中的行选择逻辑单元可以对像素阵列逐行扫描也可隔行扫描。行选择逻辑单元与列选择逻辑单元配合使用可以实现图像的窗口提取功能。模拟信号处理单元的主要功能是对信号进行放大处理,并且提高信噪比。另外,为了获得质量合格的实用摄像头,芯片中必须包含各种控制电路,如曝光时间控制、自动增益控制等。为了使芯片中各部分电路按规定的节拍动作,必须使用多个时序控制信号。为了便于摄像头的应用,还要求该芯片能输出一些时序信号,如同步信号、行起始信号、场起始信号等。 3象素阵列工作原理 图像传感器一个直观的性能指标就是对图像的复现的能力。而象素阵列就是直接关系到这一指标的关键的功能模块。按照像素阵列单元结构的不同,可以将

有源像素CMOS图像传感器

有源像素CMOS 图像传感器 图1示出了有源像素CMO 图像传感器(Active Sensor , APS)的功能结构图 其中成像部分为光极管阵列(Photo Diode Array) 图l 肓澤曜CMOE 弗車锋暮E 慚功能结码團 四场效应管(4T)有源像素CMO 图像传感器的每个像素由光敏二极管、复位管 T 。、转移管T1、源跟随器T 。和行选通开关管T 。组成,如图2所示[9]。 转移管T1,被用来将光敏二极管连接至源跟随器 T3。,并通过复位管T2与 VDD 相连.T3的栅极与T1和T2之间的N+扩散区相连。与3T 结构的APS 相比,减 少了与T3的栅极相关的漏电流效应。源跟随器 T3的作用是实现对信号的放大和缓 冲,改善APS 的噪声问题。T4是用来将信号与列总线相连。其工作过程是:首先进 入“复位状态”,T2打开,对光敏二极管复位;然后进入“取样状态”,T2关闭, 光照射到光敏二极管上产生光生载流子,并通过源跟随器 T3放大输出;最后进入 “读出状态”,这时行选通管 T4打开,信号通过列 总线输出。 CIS 图像传感器 IMAM LIMF 」 iryht r TT READOUT SlUUCTUftf TT. |fOL( MKAJKi /T± PHQ-TVUIUW KEfPfR , AK.A'*?. 匚AM 和 COKFROl JNRHpAfE I CXI, 一 rnMFM^r FAME , puftr Wi 」代Met T1MIMG R?X1 巾 UVlJMJtf

接触式图像传感器( CIS(Contact Image Sensor) 是90 年代新型图像传感 器。与电荷耦合器件(CCD相比.CIS的优点主要有a无须外加光源、光学透镜等辅助机构b具有尺寸小、重量轻、结构紧凑及便于安装c采用R a 3光源.系统功耗低d采用陶瓷基底.有良好的温度特性。 目前.已有部分传真机及多功能打印机(MFP采用了CIS。世界著名的扫描仪制造商Microtek 公司于1998年底推出了世界上第1台超 薄型平台扫描仪Simscan C3 ,.首次使用CIS。近年来美军及北约的军用传真机及MFP中,相当一部分采用了CIS,近些年来.国外有数家公司致力CIS的研制、生产或相关技术的研究工作。然而.目前CIS技术还不如CCD成熟.CIS的分辨率还不很高. 应用情况还不够理想,但可以预见. 随着CIS 技术的发展.CIS 必将有广阔的应用前景。 CIS的结构组成与原理 图1中给出了CIS头截面剖视图2如图所示.CIS头由LED光源阵列、微自聚焦棒状透镜阵列、光电传感器的阵列、保护玻璃、铝质壳体及聚光棱镜等组成。CIS头的内部组成框图如图2所示.该CIS头物理分辨率为203DPI(8 point/mm),有效扫描宽度为216mm其传感器单元及棒状聚焦透镜一一对应地排成线阵,共有1728个传感单元,可分别检测1728个像素点,VLED和GLEE为内LED阵列的电源和地。SCLK为CIS的扫描控制时钟;SI为启动扫描控制信号,A0为CIS的模拟输出端,工作时CIS 头与扫描文稿直接接触,来自CIS头内LED 阵列的光源经聚光棱镜后照射在扫描文稿上,其反射光经棒状聚焦透镜后照射在CIS头内的光电检测单元上。反射光线的强弱随扫描文稿上被扫描处的黑/白程度 变化。

CMOS图像传感器的基本结构

CMOS图像传感器的基本结构 2.1.1CMOS图像传感器的框图 一个典型的CMOS图像传感器结构如图2.1所示。这个结构包括由有源像素传感器(APS)构成的像素阵列、垂直扫描电路、每一列像素共享的列读出 通道和列选择开关、模拟图像信号放大器、模数转换器和图像数据输出等。控制器控制各个图像信息获取部件,进行所需要的曝光-读出同步操作。控制数据由外部通过串行数据输入端口输入,并存储在控制数据存储器中。 图2.1CMOS图像传感器结构框图 CMOS图像传感器的像素为有源像素传感器APS,每个像素中有一个光电二极管作为基本的光电转换元件,如图2.1左上角的方框所示。在每个像素中还包括由若干个MOS晶体管有源器件组成的电路,把光子在光电二极管PN结 上激发的载流子电荷信号转换成电压信号,并由模拟开关控制光电二极管的曝光操作和信号输出。在大多数阵列设计中,像素几何形状采取正方形,像素在阵列 中正交排列。像素阵列示意在图 2.1框图的中央,水平排列的像素构成行

(Row),每行由M个像素组成,垂直方向的像素构成列(Column),整个阵列由M列和N行像素构成,阵列的总像素数为M×N。 像素阵列的主要操作就是曝光和读出,因为阵列中一般的曝光和读出是按行进行的,所以垂直扫描实际上就是实现按行操作阵列的曝光和读出。水平扫描操作实际上是当某一行执行读出时,顺序扫描读出这一行中的每个像素的信号,水平扫描是由列模拟开关依次开启来执行的。垂直和水平扫描系统就是用于按行和列顺序,控制和操作整个阵列的曝光和读出。 阵列中每一列的像素共享一个列读出通道,在有M列像素的阵列中有M个 完全相同的通道电路,对信号进行放大和模拟处理,以获取和改善一列像素的图像信号。经过列选择的图像信号通过可变增益的宽带模拟放大器,然后输入到高速模拟数字转换电路。模拟图像信号在模数转换电路上变换成数字图像数据,以串行或并行格式输出到集成电路芯片的引脚上。 整个像素阵列的曝光和读出过程,由一个控制器按事先设计的时序和输入的指令同步操作,操作时序由像素阵列的曝光和读出的方式和速率所决定。为了减 少芯片引脚的数量,操作指令和数据通常以串行方式如I2C格式输入,并存储在控制数据存储器中,作为每次曝光读出操作的依据。操作指令通过译码产生操作的控制信号,控制扫描电路和各个模拟开关的同步操作。 2.1.2CMOS图像传感器芯片的封装 CMOS图像传感器一般采用标准的集成电路芯片封装,只是在外壳的传感 器阵列上方,制作一个光学玻璃窗口,使被摄物体的光学图像经过透镜聚焦,成像在芯片的像素阵列平面上。在这里,透镜系统的光学中轴线,必须对准传感器 阵列平面的几何中心,并与成像平面精密垂直。图2.2的左边示意封装的剖面,封装外壳和玻璃窗口共同实现芯片的密封,芯片的焊盘由引线焊接到封装引脚实现电连接。图2.2右边是CMOS图像传感器集成电路芯片的俯视图,硅片安装 在封装外壳中,硅片上较亮的矩形面积是像素阵列,深色区域是由遮光材料覆盖的模拟和数字电路部分,周边是引脚焊盘。在数码照相机或电视视频摄像机中,CMOS图像传感器芯片被安装在透镜光学系统的后面,从窗口输入光学图像,从芯片引脚上输出图像数据信号。芯片与图像存储、处理和有关的控制电路一起安装在印制电路板上,形成可以独立操作和完成独立功能的整机。

CMOS图像传感器简介

CMOS图像传感器简介 ——机制班张波摘要:本文介绍了CMOS图像传感器的工作原理和性能指标,指出了CMOS图像传感器的技术问题和解决途径,综述了CMOS图像传感器的现状和发展趋势。 1.引言 CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)图像传感器是利用CMOS工艺制造的图像传感器,主要利用了半导体的光电效应,和电荷耦合器件(CCD)图像传感器的原理相同。 自从上世纪60年代末期,CMOS图像传感器与CCD图像传感器的研究几乎同时起步,但由于受当时工艺水平的限制,CMOS图像传感器图像质量差、分辨率低、噪声降不下来和光照灵敏度不够[1],因而没有得到重视和发展。而CCD器件因为有光照灵敏度高、噪音低、像素少等优点一直主宰着图像传感器市场[2]。由于集成电路设计技术和工艺水平的提高,CMOS图像传感器过去存在的缺点,现在都可以找到办法克服,而且它固有的优点更是CCD器件所无法比拟的,因而它再次成为研究的热点。 2.基本原理 CMOS型和CCD型固态图像传感器在光检测方面都利用了硅的光电效应原理,不同点在于像素光生电荷的读出方式。CMOS图像传感器工作原理如图1所示[3]。根据像素的不同结构,CMOS图像传感器可以分为无源像素被动式传感器(PPS)和有源像素主动式传感器(APS)。根据光生电荷的不同产生方式APS 又分为光敏二极管型、光栅型和对数响应型,现在又提出了DPS(digital pixel sensor)概念。 图1 CMOS图像传感器工作原理

(1)无源像素被动式传感器(PPS) PPS的像素结构包含一个光电二极管和一个场效应管开关V,其像素结构如图2所示,图3为信号时序图。当V选通时,光电二极管中由于光照产生的电荷传送到了列选择线,然后列选择线下端的积分放大器将该信号转化为电压输出,光电二极管中产生的电荷与光信号成一定的比例关系。无源像素具有单元结构简单、寻址简单、填充系数高、量子效率高等优点,但它灵敏度低、读出噪声大。因此PPS不利于向大型阵列发展,所以限制了应用,很快被APS代替。 图2 PPS像素结构图3 图像信号时序 (2)有源像素主动式传感器(APS) APS像素结构的基本电路如图4所示。从图上可以看出,场效应管V1构成光电二极管的负载,它的栅极接在复位信号线上,当复位脉冲出现时,V1导通,光电二极管被瞬时复位;而当复位脉冲消失后,V1截止,光电二极管开始积分光信号。图5为上述过程的时序图,其中,复位脉冲首先来到,V1导通,光电二极管复位;复位脉冲消失后,光电二极管进行积分;积分结束后,V3管导通,信号输出。 图4 APS像素结构图5 图像信号时序 (3)数字像素图像传感器(DPS) 上面提到的无源像素传感器和器和有源像素传感器的像素读出均为模拟信号,于是它们又通称为模拟像素传感器。近年来,美国斯坦福大学提出了一种新的CMOS图像传感器结构一数字像素传感器(DPS),在像素单元里集成了ADC (Analog-to-Digital Convertor)和存储单元[4]。由于这种结构的像素单元读出为

CMOS图像传感器基本原理与应用简介

CMOS图像传感器原理与应用简介 摘要:本文介绍了CMOS图像传感器器件的原理、性能、优点、问题及应对措施,以及CMOS图像传感器的市场状况和一些应用领域。 Brief introduction of principle and applications of CMOS image sensor Abstract: This paper introduces the principle, performance, advantages also with the problems and solutions of CMOS image sensor. The market status and applications are also given in this essay. 北京航空航天大学李育琦1引言 图像传感器是将光信号转换为电信号的装置,在数字电视、可视通信市场中有着广泛的应用。60年代末期,美国贝尔实脸室发现电荷通过半导体势阱发生转移的现象,提出了固态成像这一新概念和一维CCD(Charge-Coupled Device电荷耦合器件)模型器件。到90年代初,CCD技术已比较成热,得到非常广泛的应用。但是随着CCD应用范围的扩大,其缺点逐渐暴露出来。首先,CCD技术芯片技术工艺复杂,不能与标准工艺兼容。其次,CCD技术芯片需要的电压功耗大,因此CCD技术芯片价格昂贵且使用不便。目前,最引人注目,最有发展潜力的是采用标准的CMOS(Complementary Metal Oxide Semiconductor 互补金属氧化物场效应管)技术来生产图像传感器,即CMOS图像传感器。CMOS图像传感器芯片采用了CMOS工艺,可将图像采集单元和信号处理单元集成到同一块芯片上。由于具有上述特点,它适合大规模批量生产,适用于要求小尺寸、低价格、摄像质量无过高要求的应用,如保安用小型、微型相机、手机、计算机网络视频会议系统、无线手持式视频会议系统、条形码扫描器、传真机、玩具、生物显微计数、某些车用摄像系统等大量商用领域。20世纪80年代,英国爱丁堡大学成功地制造出了世界上第一块单片CMOS图像传感器件。目前,CMOS图像传感器正在得到广泛的应用,具有很强地市场竞争力和广阔地发展前景。 2 CMOS图像传感器基本工作原理

CMOS图像传感器噪声综述

CMOS图像传感器及噪声研究综述 宗宗 摘要 目前,图像传感器市场主要有CMOS图像传感器和CCD图像传感器。CCD图像传感器由于其较高的填充因子FF(Fill Factor)和较低的固定模式躁声FPN(Fix Pattern Noise)已经得到广泛的应用,但因其存在着多电压,高功耗,低速度,难与CMOS集成等缺点,限制了它的应用,特别是在要求低电压低功耗的移动设备中应用。CMOS图像传感器上世纪60年代就已经出现,但因工艺和技术原因,存在严重的噪声问题,性能不够完善严重影响图像质量还被废弃。但自20世纪90年代以来进人世纪年代,由于对小型化、低功耗和低成本成像系统消费需要的增加, 芯片制造技术和信号处理技术的发展,为新一代低噪声、优质图像和高彩色还原度的CMOS传感器的开发铺平了道路, CMOS传感器的性能因此大大提高, CMOS图像传感器成为固体图像传感器的研究开发热点。 但在光线较暗条件下,CMOS图像传感器的噪声问题比较突出,这与器件和工艺本身关系较大。对于CMOS图像传感器噪声的研究有助于解决其不足,以保证其优势可以发挥,无论是对噪声的抑制,还是对器件工艺改进的引导都有较大意义。图像传感器市场比较大,对于兴起的CMOS图像传感器研发也是具有实际意义的。 本综述首先对目前CMOS图像传感器所用的技术和原理进行了研究介绍,然

后分别从CMOS本身晶体管和光电二极管噪声研究和当前技术结构所拥有的噪声进行了研究介绍,最后自己分析了减小噪声的大致方向。

一CMOS图像传感器主流结构 CMOS图像传感器的概念最早出现在20世纪60年代,但当时由于大规模集成电路工艺的限制未能进行研究。普遍意义上的CMOS图像传感器的研究是从80年代早期开始,而从实验室走向产品化则是在90年代早期。CMOS图像传感器的研发大致经历了3个阶段:CMOS无源像素传感器(CMOS—PPS。Passive Pixel Sensor)阶段、CMOS有源像素传感器(CMOS—APS,Active Pixel Sensor)阶段和CMOS数字 像素传感器(CMOS—DPS,Digital Pixel Sensor)阶段。 图1 CMOS图像传感器像素结构 1.1 无源像素传感器 PPS像元结构简单、面积很小。所以在给定的单元尺寸下,可设计出最高的填充系数(FiFactor.FF 又称“孔径系数”,即像元中有效光敏单元面积与像元总面积之比);在给定的设计填充系数下,单元尺寸可设计的最小。并且,由于填充系数高和没有类似许多CCD中的多晶硅层叠,无源像素结构可获得较高的“量子效率”(即光生电子与入射光子数量之比),从而有利于提高器件的灵敏度。 但是这种结构存在着2个方面的不足:其一,各像元中开关管的导通阈值难以完全匹配,所以即使器件所接受的入射光线完全均匀一致,其输出信号仍会形

CMOS图像传感器调试问题汇总

摄像头问题及解决办法汇总 一、名词解释 1.白平衡 白平衡指的是传感器对在光线不断变化环境下的色彩准确重现的能力表示。大多数拍照系统具有自动白平衡的功能,从而能在光线条件变化下自动改变白平衡值。设计工程师寻找的图像传感器应该配备了一个很好的自动白平衡(AWB)控制,从而提供正确的色彩重现。 2.动态范围 动态范围测量了图像传感器在同一张照片中同时捕获光明和黑暗物体的能力,通常定义为最亮信号与最暗信号(噪声门槛级别)比值的对数,通常用54dB来作为商业图像传感器的通用指标。具有较宽动态范围的图像传感器可以在明光环境下提供更好的性能(例如,使用较窄动态范围传感器在明光环境下拍出的照片会出现“水洗”或模糊的现象。) 3.工频干扰(Banding) Sensor在日光灯作为光源下获取图像数据时会产生flicker,其根本原因是照在不同pixel 上光能量不同产生的,所接受的光能量的不同也就是图像的亮度的不同。 由于CMOS sensor的曝光方式是一行一行的方式进行的,任何一个pixel的曝光时间是一样的,也就是同一行上的每个pixel的曝光开始点和曝光的时间都是一模一样的,所以同一行的所有点所接收到的能量是一样的,而在不同行之间虽然曝光时间都是一样的,但是曝光的开始点是不同的,所以不同行之间所接受到的能量是不一定相同的。 为了使不同行之间所接受的能量相同,就必须找一个特定的条件,使得每一行即使曝光开始点不同,但是所接受的光能量是相同的,这样就避开了flicker,这个特定的条件就是曝光时间必须是光能量周期的整数倍时间。 Banding由工频干扰引起,交流电光源都有光强的波动,在中国交流电频率是50Hz,光强的波动就是100Hz,周期10ms。如果camera曝光时间不是10ms的整数倍,那么在不同的感光面接收到的光能量一定不一样,体现在图像上就是有明暗条纹。 消除banding就得想办让曝光时间是10ms的整数倍!60Hz的交流电需要控制曝光时间为8.33ms的整数倍。 以50Hz为例说明,实现这个有两种办法: 1、设置曝光控制,强制为10ms整数倍变化,但是这样会浪费一部分曝光时间,导致曝光无法用满,在室内自然就会损失性能。 2、修改桢率,使每桢图像分到的时间是10ms的整数倍,则可以用满每桢曝光时间在,室内效果更好。修改桢率可以插入Dummy Line或者Dummy Pixel。这需要一点点计算,具体计算需要看sensor输出Timing。 例如把桢率设置为7.14fps,则每桢曝光时间是140ms。如果是15fps,则每桢曝光时间是66.66ms,如果强制曝光为10ms整数倍,最大即60ms,则有6.66ms无法参与曝光,损失性能。 具体调整桢率方法得和sensor的FAE沟通,每个sensor都可能不一样,不能一概而论。调整桢率还有个原则要注意,预览一般不能低于10fps,再低就很卡,常用14.3fps和12.5fps;抓拍不能低于5fps,否则用手就很难拍出清晰的照片,常用7.14fps。桢率是一个权衡折中

相关主题
文本预览
相关文档 最新文档