当前位置:文档之家› 电磁场与电磁波思考题

电磁场与电磁波思考题

电磁场与电磁波思考题
电磁场与电磁波思考题

思考与练习一

1.证明矢量3?2??z y x e e e

?+=A 和z y x e e e ???++=B 相互垂直。 2. 已知矢量 1.55.8z y e ?e ?+=A 和4936z y e ?.e ?+?=B ,求两矢量的夹角。

3. 如果0=++z z y y x x B A B A B A ,证明矢量A 和B 处处垂直。

4. 导出正交曲线坐标系中相邻两点弧长的一般表达式。

5.根据算符?的与矢量性,推导下列公式:

()()()()B A B A A B A B B A ??+×?×+??+×?×=??)(

()()A A A A A 2????=×?×2

1 []H E E H H E ×???×??=×??

6.设u 是空间坐标z ,y ,x 的函数,证明:

u du df u f ?=?)(, ()du d u u A A ??=??, ()du d u u A A ×?=×?,()[]

0=×???z ,y ,x A 。 7.设222)()()(z z y y x x R ′?+′?+′?=′?=r r 为源点x ′到场点x 的距离,R 的方向规定为从源点指向场点。证明下列结果,

R R R R =?′?=?, 311R R R R

?=?′?=?,03=×?R R ,033=??′?=??R

R R R )0(≠R (最后一式在0=R 点不成立)

。 8. 求[])sin(0r k E ???及[])sin(0r k E ?×?,其中0E a ,为常矢量。

9. 应用高斯定理证明 ∫∫×=×?v s

d dV f s f ,应用斯克斯(Stokes )定理证明∫∫=?×s L

dl dS ??。 10.证明Gauss 积分公式[]∫∫∫∫∫?+???=??s V

dv d ψφψφψφ2s 。

11.导出在任意正交曲线坐标系中()321q ,q ,q F ??、()[]321q ,q ,q F ???、()3212q ,q ,q f ?的表达式。

12. 从梯度、散度和旋度的定义出发,简述它们的意义,比较它们的差别,导出它们在正交曲线坐标系中的表达式。

1. 证明均匀线电荷密度圆环在圆环平面内任意点的电场强度为零。求圆环平面外任意点的电场的表达式。

2. 有一内外半径分别为1r 和2r 的空心介质球,介电常数为ε,使介质内均匀带静止自由电荷密度为f ρ,求空间电场及极化体电荷和极化面电荷分布。

3. 已知一个电荷系统偶极矩定义为∫′′′=V

V d )t ,t r r P ()(ρ,利用电荷守恒定律证明P 的变化率为∫′′=V V d t ,dt d )(r J P 。

4. 内外半径分别为1r 和2r 的无穷长中空导体圆柱,沿轴向流有恒定均匀自由电流f J ,导体的磁导率为μ,求磁感应强度和磁化电流。

5. 证明均匀介质内极化电荷密度p ρ等于自由电荷密度f ρ的??

????εε01--倍。

6. 简述Maxwell 方程组各式所对应的实验定律,式中各项的物理意义。为什么说Maxwell 方程组预言了电磁场具有波动的运动形式。

7. 利用Maxwell 方程组,导出电荷守恒定律的表达式。

8. 何谓位移电流,说明位移电流的物理实质及意义,比较传导电流和位移电流之间的异同点。

9. 证明Maxwell 方程组的四个方程中只有两个是独立的,利用两个独立方程组导出电磁场的波动方程。

10. 利用电磁场与介质相互作用的机理,分析介质在电磁场中的性质,并根据介所表现出的质宏观特性进行分类。

11. 证明当两种绝缘介质的分界面上不带面自由电荷时,电场力线的曲折满足1

212tan tan εεθθ=,其中1ε和2ε分别为两种介质的介电常数,1θ和2θ分别为界面两侧电场线与法线的夹角。

12. 假设自然界存在磁荷,磁荷的运动形成磁流。又假设磁荷产生磁场同电荷产生电场满足同样的实验定律;磁流产生电场同电流产生磁场满足同样的实验定律。请导出在这一假设前提下的Maxwell 方程组表达式。

1. 利用电场Gauss 定律分别求电荷面密度为s ρ的无穷大导体板和半无穷大导体在上半空间导体平面附近产生的电场,比较所得到结果的差别。你能从这一差别中得到什么结论。

(a) 无穷大导体薄板 (b)半无穷大导体

2. 求如图所示的一同轴线如图所示,内外导体的半径分别为a 和b ,将其与电压为V 电源相连接,内导体上的电流强度为I 。求同轴线内电场和磁场的分布,计算穿过两导体间常数=φ平面单位长度上的磁通量。

3. 证明在无电荷分布的区域,电位既不能达到极大值,也不能达到极小值。

4. 平行板电容器内有两层介质,厚度分别为l 1和l 2,介电常数为1ε和2ε,今在两板极接入电动势ε为的电池,求

(1)电容器两板上的自由电荷面密度f ω;

(2)介质分界面上的自由电荷面密度f ω。

若介质是漏电的,电导率分别为1σ和2σ,当电流达到恒定时,上述两个结果如何?

5. 电位函数在理想导体边界上有两种表述形式:(1)(常数)0

φφ=;(2)

s n

ρφε=???。指出这两个边界条件所对应的物理模型和导体所处的状态。 6. 一长为l 的圆筒形电容器,内外半径分别为a 和b ,两导体之间充满了介电常数为ε的介质。

(1)当电容器带电荷量Q 时,忽略边缘效应,求电容器内电场的分布;

(2)求电容器的电容;

(3)假设将电容器接到电压为V 电源上,并且电容器内介质被部分的拉出电容器,忽略边缘效应,求介质受到的作用力的大小和方向。

7. 比较恒定电流的电场与静电场的异同点,证明当两种导电介质内流有恒定电流时,分界面上电场力线的曲折满足

1

212tan tan σσθθ=,其中1σ和2σ分别为两种介质的电导率。

8. 面偶极层为带等量正负面电荷密度σ±而靠得很近的两个面所形成面偶极层,定义为:l P σσ0lim →∞→=l 。证明下述结果:(1)在面电荷两侧,电位法向微商有跃变,而电位是连续的。(2)在面偶极层两侧,电位有跃变P ?=

?n

?0121εφφ。而电位法向微商是连续的。 9. 证明在试用A 表示一个沿z 方向的均匀恒定磁场B 0,写出A 的两种不同表示式,证明二者之差为无旋矢量场。

10. 证明两载有恒定电流的闭合线圈之间的相互作用力的大小相等,方向相反(但两个电流元之间的相互作用力一般并不服从牛顿第三定律)。

11. 已知某个磁场的磁矢势2

0B e ?ρφ=A ,其中B 0是常数。证明该磁场是均匀的。

12. 在什么样的情况下,可以用磁标位描述磁场,磁标位满足什么样的方程和边界条件。

13. 电阻、电容和电感是电路理论中基本元件,它们反应的是什么特性参数,表达了导电介质和导体系统的什么性质。

14. 总结静电场、恒定电流电场和恒定电流磁场的基本性质,分析它们性质的异同点。思考为什么静态电磁场(包括静电场、恒定电流电场和恒定电流磁场)满足同样类型的数学物理方程。

思考与练习四

1. 设有无穷长的线电流I 沿z 轴流动,在Z<0的空间内充满磁导率为μ的均匀介质,Z>0的区域为真空,试用唯一性定理求磁感应强度B ,然后求出磁化电流分布。

2. 总结分离变量方法的基本步骤,讨论分离变量方法应用的前提,分析分离变量方法的基本思想,概括分离变量方法的实质,归纳常用的三个坐标系中分离变量方法的基本方程。

3. 在均匀外电场中置入半径为a 的导体球,用分离变量法求导体球上电势0Φ和导体球带总电荷Q 两种情况下的电位函数(设未置入导体球前坐标原点的电位为0?)。

4. 在很大的电解槽中充满电导率为2σ的液体,使其中流有均匀的电流0f J ,今在液体中置入一个电导率为1σ的小球,求稳恒时电流分布和面电荷分布,讨论21σσ>>及12σσ>>两种情况的电流分布的特点。

5. 在接地的导体平面上有一半径为a 的半球凸部(如图),半球的球心在导体平面上,点电荷Q 位于系统的对称轴上,并与平面相距为)(a b b >,试用镜象法求空间电位。

V 0

V =0

第6题图 第7题图

6. 如图所示,求解两同轴圆锥面之间区域内电场分布。已知外圆锥面的电位为零,内圆锥面的电位为V 0。在两圆锥的顶点绝缘。

7. 一块极化介质的极化矢量为()r p ′,根据电偶极子静电位的公式,极化介质所产生的电位为()V d r

V ′?′=∫3041

r r p πε?,另外,根据极化电荷公式()r P ′??′?=P ρ及P ?=n

?p σ,极化介质所产生的电势又可表为

()()∫∫′?′+′′??′?=s V r

d V d r 0044πεπε?S r P r P 证明以上两式是等同的。

8. 简述Green 函数方法的基本思想,证明静电场的电位可以表示为:

()()()()

()s d n ,g n ,g dV ,g s v ′??

????′?′??′??′+′′=∫∫∫r r r r r r r r φφερφ0 上述公式中()r r ′,g 为Green 函数。分析上式右边三项来自何种物理量的贡献。如何理解这三种物理量对静电场的贡献是一致的。

9. 简述镜象法的基本原理,归纳镜象法的基本原则,思虑镜象法的应用条件。用镜象法求接地导体圆柱壳(半径为R )内线电荷源在圆柱内部空间的电位。设线电荷密度为f ρ,位于圆柱空间内()R a a <。

10.接地的空心导体的内外半径为1R 和2R ,在球内离球心为)(1R a a <处置一点电荷Q ,用镜象法求电势,导体球上的感应电荷有多少?分布在内表面还是在外表?

12. 一无穷大接地导体平面外有一电偶极矩P ,P 到导体平面的距离为a ,与导体平面法线方向的夹角为θ,如图所示。求电偶极矩P 所受到的作用力。

13. 有一个内外半径为1R 和2R 的空心球,位于均匀外磁场0H 内,球的磁导率为μ,求空腔内的场B ,讨论0μμ>>时的磁屏蔽作用。

14. 将解析函数的性质与静电场性质进行比较,分析解析函数表示静电场的可能性。应用解析函数方法求无穷长导体条横截面积内电位的分布。已知导体条的电位为V 0。

x

思考与练习五

1. 若把麦克斯韦方程组的所有矢量都分解为无旋(纵场)和无散(横场)两部分,导出E 和B 的这两部分在真空中所满足的方程式,并证明电场的无旋部分对应于库仑场。

2. 利用Maxwell 方程组导出线性均匀各向同性介质中电磁波方程,求出电磁波在介质中传播的速度表达式。简述所得结果与经典物理学之间的矛盾。

3. 从Coulomb 规范导出Lorentz 规范的变换关系,并且证明它们之间的变换关系满足规范变换不变性。

4. 试分析产生势函数[]φ,A 非唯一性的原因,何谓势函数[]φ,A 的规范和规范变换。为什么在规范变换下电磁场和方程保持不变性。

5. 设真空中矢势()t ,r A 可用复数傅里叶展开为

()()()[]

∑??+?=k *

k k j t j t t ,r k a r k a r A )exp

()exp ( 其中*

k a 是的复共轭。

(1)证明展开系数k a 满足谐振子方程02222=+)t (c k dt

)t (d k k a a (2)当选取规范0=??A ,0=?时,证明0=?k a k

(3) 把E 和B 用k a 和表?k a 示出来。

6. 推迟势是D’Alembert 方程解的一部分,

导出D’Alembert 方程的全部解,说明舍弃另外一部分的原因。分析并理解推迟势的物理意义,

7. 在静态电磁场中,电场和磁场的能量可以表示为

()()∫∫∫=V e dV W r r ρφ21, ()()dV W V

m r J r A ?=∫∫∫21 即静态电磁场的能量由电荷和电流与势函数确定,而时变电磁场的能量则不能由电荷和电流与势函数确定,分析产生这一差别的原因。

8. 说明Poynting 矢量()t ,r S 的物理意义。以同轴传输线为例,分析并证明电磁场的能量是通过场传输的。

9. 由于初始条件描述困难,一般时变电磁场波动方程很难直接求解。我们通过Fourier 变换,将一般时变电磁场问题转变为时谐电磁场问题的求解。然而实际应用中,电磁场的初始状态总是存在的,请思考如何处理初始条件及其影响。

10. 从电磁场与介质相互作用的机理,分析为什么不同频率的谐变电磁场中介质的电磁特性参数()()ωμωε、有不同的数值。

11. 证明平面电磁波

()()()()r E k r H r k E r E ×=?=k

j με,-exp 0

中波矢量k 的方向与能流密度矢量方向,()()r H r E ,满足谐变波动方程 ()()()()?????=+?=+?0

02222r H r H r E r E k k 12. 何谓电磁波的极化。证明任意线极化平面波可分解为两个振幅相等、旋转相反的圆极化平面波的叠加。

13. 有两个频率和振幅都相等的单色平面波沿z 轴传播,一个波沿x 轴方向偏振,另一个沿y 方向偏振,但相位比前者超前2

π,求合成波的偏振。 14. 在均匀无源的空间区域内,如果已知谐变电磁场中的矢量()r A ,证明其电磁场强度与()r A 的关系是:

()()0

02εωμj k A A r E ???+= 其中002εμω=k 。

思考与练习六

1. 简述天线辐射电磁波的机理,分析影响天线辐射能力的主要因素, 说明这些因素是如何影响天线对电磁波的辐射的。

2. 比较和总结电偶极子和磁偶极子天线的辐射特性,比较同样长度的导线制作成电偶极子和磁偶极子天线对同一频率电磁波的辐射能力,分析并说明为什

么的电偶极子比磁偶极子天线辐射能力强。

3. 理论和实验都证明特性对电磁波的辐射具有方向性,在天线的特性参数中那些是描述天线辐射电磁波的方向特性的。说明产生天线辐射电磁波的方向特性的原因。

4. 求相距为一个波长的两电偶极子天线在自由空间辐射的电磁场的分布。已知两电偶极子天线上的电流强度和初相位完全相同。从该例中,你能够得到同类型多元天线辐射的什么特性。

5. 设有一球对称分布的电荷,沿径向以频率ω作简谐振动,求辐射场,并对结果给以物理解释。

6. 设有电偶极子天线和磁偶极子天线,它们在空间辐射电磁波能流密度相同。请问用这两个天线如何实现圆极化电磁波的辐射。

7. 为测试天线的性能,将天线放置在如图所示的地表面上(可视为接地的理想导体平面),请问此时测量的结果与真空中电偶极子天线的辐射特性有何不同?在测试过程中,由于不小心,将垂直地表面的天线倒放在地面上,结果导致发射机毁坏,并请解释导致发射机毁坏的原因。

第7题图 第10题图 8. 时变电磁场的镜象法与静态电磁场镜象法在形式上完全相同,分析它们具有相同形式的原因。归纳时变电磁场镜象法的基本结果。

9. 何谓天线的阻抗,天线阻抗与那些因素有关。当天线用作发射时,如果天线的阻抗与发射机的内阻抗不匹配,严重时将导致什么结果,为什么?

10. 应用等效原理,求导体平面上如图所示的圆环缝隙在上半径空间的辐射场。圆环缝隙的内外半径分别为a 和b 。

11. 利用相控阵天线可以得到很窄的电磁波辐射波束,简述相控阵天线的基本原理,导出在天线阵长度λ>>L (波长)时,相控阵天线波束宽度的近似表达式。将相控阵天线与光栅衍射特性进行比较,讨论两者之间的相同点。

12. 简述雷达的基本工作原理,画出雷达原理框图,说明雷达各主要组成部分的作用和功能。

思考与练习七

1.什么是介质的波阻抗,它是由介质中的电磁波确定,还是由介质本身确定,为什么?电磁波在波阻抗不匹配的界面上要产生反射,而在波阻抗匹配的界面不产生反射,将它与电路理论中的阻抗匹配相比较,体会波阻抗的含义。

2. 等效阻抗的意义是什么?设Z ﹥0为介电常数2ε的介质空间,在此介质前为一介质薄片,厚度为D ,介电常数为1ε。平面波自自由空间垂直入射到介质薄片,如图所示。求证当201εεε=, 4

1λ=D 时(1λ为电磁波在介质薄片中的波长),电磁波无反射而全部透射。

Z

3. 平面电磁波以°=45θ从真空入射到2=r ε的介质,电场强度垂直于入射面,求反射系数和折射系数。

4. 何谓全反射现象。有一可见平面光波由水入射到空气,入射角为°60,证明这时将发生全反射,并求折射波沿表面传播的相速度和透入空气的深度。设光波在空气中的波长为cm 501028.6?×=λ,水的折射率为33.1=n 。

5. 证明在导电介质体内不存在自由电荷分布。

6. 何谓复介电常数、复波数,其实部和虚部的物理意义是什么。

7. 在设计对潜艇通信时,必须考虑海水是一种良导体。为了使通信距离足够远,请就下面两个问题给出你的设计方案。①有两种不同频率ω1和ω2的发射机和接受机,且ω1>ω2,请问选择那种频率的通信设备?为什么?②有两种

不同接受特性的天线可供选择,其中天线1对电场敏感,天线2对磁场敏感,选择那种天线作为通信的接受天线?为什么?

8. 平面电磁波由真空倾斜入射到导电介质表面上,入射角为1θ,求导电介质中电磁波的相速度和衰减长度,若导电介质为金属,结果如何?

9. 平面电磁波垂直射到金属表面上,试证明透入金属内部的电磁波能量全部变为焦耳热。

10. 导出电磁波传播的相速度和群速度,它们各代表什么物理意义。考虑两列振幅相同、偏振方向相同、频率分别为ωωd +和ωωd ?的线偏振平面波,它们都沿z 轴方向传播。

(1) 求合成波,证明波的振幅不是常数,而是一个波;

(2) 求合成波的相位传播速度和振幅传播速度。

11. 频率为ω的电磁波在各向异性介质中传播时,若E ,D ,B ,H 仍按()[]t j ω??r k -exp 变化,但D 不再与E 平行, 证明

(1) 0=?=?=?=?E B D B D k B k ,但一般0≠?E k 。 (2) ()[]k E k E D ??=221k μ

ω。 (3) 能流S 与波矢k 一般不在同一方向上。

12. 总结和归纳波动的基本现象的基本描述量和基本的特征。

思考与练习八

1. 分析不同频率电磁波传播的特点,总结不同频段电磁波应用的主要领域,说明这些电磁波在这些领域应用的基本原理。

2.简述为什么双导线不能用于电视信号的传输。

3. 为了实现电磁波沿导波系统的传输,简述导波系统须满足的基本要求,分析这些要求是电磁波的那些特性所导致的。

4. 何谓截止频率概念,TEM 模式的传输系统是否存在截止频率。如果TEM 模式传输系统不存在截止频率,理论上可以传输如何频率的电磁波,实际上是否可行。分析所得结果的原因。

5. 无限长的矩形波导管,在0=z 处被一块垂直地插入的理想导体平板完全封闭,求在?∞=z 到0=z 这段管内可能存在的波模。

6. 电磁波)()()(t z k j z e y ,x t ,z ,y ,x ω?=-E E 在波导管中沿z 轴传播,试使用H E 0ωμj ?=×?及E H 0ωεj =×?证明电磁场所有分量都可用)(y ,x E z 及)(y ,x H z 这两个分量表示。

7. 写出矩形波导管内磁场H 满足的方程及边界条件。

8. 论证矩形波导管内不存在0m TM 或n TM 0波。

9. 频率为Hz 91030×的波,在cm cm 4.07.0×的矩形波导管中能以什么波模传播?在cm cm 6.07.0×的矩形波导管中能以什么波模传播?

10.定性说明光纤或介质波导传输电磁波的原理。

11.为什么不同频率的电磁波的导波系统有如此大的差别?分析产生这些差别的物理原因。从双导线、同轴线、金属波导、介质波导的发明出发,体会这些系统设计的基本思想和原理。

哈工大电磁场与电磁波实验报告

电磁场与电磁波实验报告 班级: 学号: 姓名: 同组人:

实验一电磁波的反射实验 1.实验目的: 任何波动现象(无论是机械波、光波、无线电波),在波前进的过程中如遇到障碍物,波就要发生反射。本实验就是要研究微波在金属平板上发生反射时所遵守的波的反射定律。 2.实验原理: 电磁波从某一入射角i射到两种不同介质的分界面上时,其反射波总是按照反射角等于入射角的规律反射回来。 如图(1-2)所示,微波由发射喇叭发出,以入射角i设到金属板M M',在反射方向的位置上,置一接收喇叭B,只有当B处在反射角i'约等于入射角i时,接收到的微波功率最大,这就证明了反射定律的正确性。 3.实验仪器: 本实验仪器包括三厘米固态信号发生器,微波分度计,反射金属铝制平板,微安表头。 4.实验步骤: 1)将发射喇叭的衰减器沿顺时针方向旋转,使它处于最大衰减位置; 2)打开信号源的开关,工作状态置于“等幅”旋转衰减器看微安表是否有显示,若有显示,则有微波发射; 3)将金属反射板置于分度计的水平台上,开始它的平面是与两喇叭的平面平行。 4)旋转分度计上的小平台,使金属反射板的法线方向与发射喇叭成任意角度i,然后将接收喇叭转到反射角等于入射角的位置,缓慢的调节衰减器,使微 μ)。 安表显示有足够大的示数(50A

5)熟悉入射角与反射角的读取方法,然后分别以入射角等于30、40、50、60、70度,测得相应的反射角的大小。 6)在反射板的另一侧,测出相应的反射角。 5.数据的记录预处理 记下相应的反射角,并取平均值,平均值为最后的结果。 5.实验结论:?的平均值与入射角0?大致相等,入射角等于反射角,验证了波的反射定律的成立。 6.问题讨论: 1.为什么要在反射板的左右两侧进行测量然后用其相应的反射角来求平均值? 答:主要是为了消除离轴误差,圆盘上有360°的刻度,且外部包围圆盘的基座上相隔180°的两处有两个游标。,不可能使圆盘和基座严格同轴。 在两者略有不同轴的情况下,只读取一个游标的读数,应该引入离轴误差加以考虑——不同轴的时候,读取的角度差不完全等于实际角度差,圆盘半径偏小

电磁场与电磁波课程习题集(1)8.2 习题集(1)

《电磁场与电磁波》测验试卷﹙一﹚ 一、 填空题(每题8分,共40分) 1、在国际单位制中,电场强度的单位是________;电通量密度的单位是___________;磁场强度的单 位是____________;磁感应强度的单位是___________;真空中介电常数的单位是____________。 2、静电场→E 和电位Ψ的关系是→E =_____________。→ E 的方向是从电位_______处指向电位______处。 3、位移电流与传导电流不同,它与电荷___________无关。只要电场随__________变化,就会有位移电流;而且频率越高,位移电流密度___________。位移电流存在于____________和一切___________中。 4、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =________;而磁场→ B 的法向分量B 1n -B 2n =_________;电流密度→ J 的法向分量J 1n -J 2n =___________。 5、沿Z 轴传播的平面电磁波的复数表示式为:_____________________=→ E , ____________________=→ H 。 二、计算题(题,共60分) 1、(15分)在真空中,有一均 匀带电的长度为L 的细杆, 其电荷线密度为τ。 求在其横坐标延长线上距 杆端为d 的一点P 处的电 场强度E P 。 2、(10分)已知某同轴电容器的内导体半径为a ,外导体的内半径为c , 在a ﹤r ﹤b (b ﹤c)部分填充电容率为ε的电介质,求其单位长度上的电容。 3、(10分)一根长直螺线管,其长度L =1.0米,截面积S =10厘米2,匝数N 1=1000匝。在其中段密绕一个匝数N 2=20匝的短线圈,请计算这两个线圈的互感M 。 4、(10分)某回路由两个半径分别为R 和r 的 半圆形导体与两段直导体组成,其中通有电流I 。 求中心点O 处的磁感应强度→ B 。 5、电场强度为)2106(7.378 Z t COS E Y a ππ+?=→ → 伏/米的电磁波在自由空间传播。问:该波是不 是均匀平面波?并请说明其传播方向。 求:(1)波阻抗; (2)相位常数; (3)波长; (4)相速; (5)→ H 的大小和方向; (6)坡印廷矢量。 《电磁场与电磁波》测验试卷﹙二﹚ (一)、问答题(共50分) 1、(10分)请写出时变电磁场麦克斯韦方程组的积分形式和微分形式,并写出其辅助方程。 2、(10分)在两种媒质的交界面上,当自由电荷面密度为ρs 、面电流密度为J s 时,请写出→ →→→H B D ,,,E 的边界条件的矢量表达式。 3、(10分)什么叫TEM 波,TE 波,TM 波,TE 10波? 4、(10分)什么叫辐射电阻?偶极子天线的辐射电阻与哪些因素有关? 5、什么是滞后位?请简述其意义。 (二)、计算题(共60分) 1、(10分)在真空里,电偶极子电场中的任意点M (r 、θ、φ)的电位为2 cos 41r P θ πε= Φ(式中,P 为电偶极矩,l q P =), 而 → →→?Φ?+?Φ?+?Φ?=Φ000sin 11φφ θθθr r r r 。 试求M 点的电场强度→ E 。 2、(15分)半径为R 的无限长圆柱体均匀带电,电荷 体密度为ρ。请以其轴线为参考电位点, 求该圆柱体内外电位的分布。 3、(10分)一个位于Z 轴上的直线电流I =3安培,在其旁 边放置一个矩形导线框,a =5米,b =8米,h =5米。 最初,导线框截面的法线与I 垂直(如图),然后将该 截面旋转900,保持a 、b 不变,让其法线与I 平行。 求:①两种情况下,载流导线与矩形线框的互感系数M 。 ②设线框中有I ′=4安培的电流,求两者间的互感磁能。 4、(10分)P 为介质(2)中离介质边界极近的一点。 已知电介质外的真空中电场强度为→ 1E ,其方向与 电介质分界面的夹角为θ。在电介质界面无自由电 荷存在。求:①P 点电场强度→ 2E 的大小和方向;

最新电磁场与电磁波复习题(含答案)

电磁场与电磁波复习题 一、填空题 1、矢量的通量物理含义是矢量穿过曲面的矢量线总数,散度的物理意义矢量场中任 意一点处通量对体积的变化率。散度与通量的关系是矢量场中任意一点处通量对体积的变化率。 2、 散度在直角坐标系的表达式 z A y A x A z y x A A ??????++ = ??=ρ ρdiv ; 散度在圆柱坐标系下的表达 ; 3、矢量函数的环量定义矢量A 沿空间有向闭合曲线C 的线积分, 旋度的定义 过点P 作一微小曲面S,它的边界曲线记为L,面的法线方与曲线绕向成右 手螺旋法则。当S 点P 时,存在极限环量密度。二者的关系 n dS dC e A ρρ?=rot ; 旋度的物理意义点P 的旋度的大小是该点环量密度的最大值;点P 的旋度的方向是该 点最 大环量密度的方向。 4.矢量的旋度在直角坐标系下的表达式 。 5、梯度的物理意义标量场的梯度是一个矢量,是空间坐标点的函数。梯度的大小为该点 标量函数 ?的最大变化率,即该点最 大方向导数;梯度的方向为该点最大方向导数的 方向,即与等值线(面)相垂直的方向,它指向函数的增加方向等值面、方向导数与 梯度的关系是梯度的大小为该点标量函数 ?的最大变化率,即该点最 大方向导数; 梯度的方向为该点最大方向导数的方向,即与等值线(面)相垂直的方向,它指向函数 的增加方向.; 6、用方向余弦cos ,cos ,cos αβγ写出直角坐标系中单位矢量l e r 的表达 式 ;

7、直角坐标系下方向导数 u ?的数学表达式是 ,梯度的表达式 8、亥姆霍兹定理的表述在有限区域内,矢量场由它的散度、旋度及边界条件唯一地确定,说明的问题是矢量场的散度应满足的关系及旋度应满足的关系决定了矢量场的基本性质。 9、麦克斯韦方程组的积分形式分别为 ()s l s s l s D dS Q B E dl dS t B dS D H dl J dS t ?=??=-??=?=+????????r r r r r r r r g r r r r r g ???? 其物理描述分别为 10、麦克斯韦方程组的微分形式分别为 2 0E /E /t B 0 B //t B c J E ρεε??=??=-????=??=+??r r r r r r r 其物理意义分别为 11、时谐场是激励源按照单一频率随时间作正弦变化时所激发的也随时间按照正弦变化的 场, 一般采用时谐场来分析时变电磁场的一般规律,是因为任何时变周期函数都可以用正弦函数表示的傅里叶级数来表示;在线性条件下,可以使用叠加原理。 12、坡印廷矢量的数学表达式 2 0S c E B E H ε=?=?r r r r r ,其物理意义表示了单 位面积的瞬时功率流或功率密度。功率流的方向与电场和磁场的方向垂直。表达式 ()s E H dS ??r r r g ?的物理意义穿过包围体积v 的封闭面S 的功率。 13、电介质的极化是指在外电场作用下,电介质中出现有序排列电偶极子以及表面上出

浙江大学-电磁场与电磁波实验(第二次).doc

本科实验报告 课程名称:电磁场与微波实验 姓名:wzh 学院:信息与电子工程学院 专业:信息工程 学号:xxxxxxxx 指导教师:王子立 选课时间:星期二9-10节 2017年 6月 17日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h 实验报告 课程名称:电磁场与微波实验指导老师:王子立成绩:__________________ 实验名称: CST仿真、喇叭天线辐射特性测量实验类型:仿真和测量 同组学生姓名: 矩形波导馈电角锥喇叭天线CST仿真 一、实验目的和要求 1. 了解矩形波导馈电角锥喇叭天线理论分析与增益理论值基本原理。 2.熟悉 CST 软件的基本使用方法。 3.利用 CST 软件进行矩形波导馈电角锥喇叭天线设计和仿真。 二、实验内容和原理 1. 喇叭天线概述 喇叭天线是一种应用广泛的微波天线,其优点是结构简单、频带宽、功率容量大、调整与使用方便。合理的选择喇叭尺寸,可以取得良好的辐射特性:相当尖锐的主瓣,较小副瓣和较高的增益。因此喇叭天线在军事和民用上应用都非常广泛,是一种常见的测试用天线。喇叭天线的基本形式是把矩形波导和圆波导的开口面逐渐扩展而形成的,由于是波导开口面的逐渐扩大,改善了波导与自由空间的匹配,使得波导中的反射系数小,即波导中传输的绝大部分能量由喇叭辐射出去,反

电磁场与电磁波试题及答案

电磁场与电磁波试题及答案

1.麦克斯韦的物理意义:根据亥姆霍兹定理,矢量场的旋度和散度都表示矢量场的源。麦克斯韦方程表明了电磁场和它们的源之间的全部关系:除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。 1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。 2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t t ρ????=+ ??=-??=??=??,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁 场也是电场的源。 1.简述集总参数电路和分布参数电路的区别: 2.答:总参数电路和分布参数电路的区别主要有二:(1)集总参数电路上传输的信号的波长远大于传输线的几何尺寸;而分布参数电路上传输的信号的波长和传输线的几何尺寸可以比拟。(2)集总参数电路的传输线上各点电压(或电流)的大小与相位可近似认为相同,无分布参数效应;而分布参数电路的传输线上各点电压(或电流)的大小与相位均不相同,呈现出电路参数的分布效应。 1.写出求解静电场边值问题常用的三类边界条件。 2.答:实际边值问题的边界条件可以分为三类:第一类是整个边界上的电位已知,称为“狄利克莱”边界条件;第二类是已知边界上的电位法向导数,称为“诺依曼”边界条件;第三类是一部分边界上电位已知,而另一部分上的电位法向导数已知,称为混合边界条件。 1.简述色散效应和趋肤效应。 2.答:在导电媒质中,电磁波的传播速度(相速)随频率改变的现象,称为色散效应。在良导体中电磁波只存在于导体表面的现象称为趋肤效应。 1.在无界的理想媒质中传播的均匀平面波有何特性?在导电媒质中传播的均匀平面波有何特性? 2. 在无界的理想媒质中传播的均匀平面波的特点如下:电场、磁场的振幅不随传播距离增加而衰减,幅度相差一个实数因子η(理想媒质的本征阻抗);时间相位相同;在空间相互垂直,与传播方向呈右手螺旋关系,为TEM 波。 在导电媒质中传播的均匀平面波的特点如下:电磁场的振幅随传播距离增加而呈指数规律衰减;电、磁场不同相,电场相位超前于磁场相位;在空间相互垂直,与传播方向呈右手螺旋关系,为色散的TEM 啵。 1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。 2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。 (或矢量式2n D σ=、20n E ?=、 2s n H J ?=、20n B =) 1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。 2. 答矢量位,0B A A =????=;动态矢量位A E t ??=-?- ?或A E t ??+=-??。库仑规范与洛仑兹规范的作用都 是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。 1. 简述穿过闭合曲面的通量及其物理定义 2. s A ds φ=??? 是矢量A 穿过闭合曲面S 的通量或发散量。若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。 1. 证明位置矢量 x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。 2. 证明在直角坐标系里计算 ,则有 ()()x y z x y z r r e e e e x e y e z x y z ? ? ?????=++?++ ?????? 3x y z x y z ???= ++=??? 若在球坐标系里计算,则 23 22 11()()()3r r r r r r r r r ????= ==??由此说明了矢量场的散度与坐标的选择无关。

电磁场与电磁波波试卷3套含答案

《电磁场与电磁波》试卷1 一. 填空题(每空2分,共40分) 1.矢量场的环流量有两种特性:一是环流量为0,表明这个矢量场 无漩涡流动 。另一个是环流量不为0,表明矢量场的 流体沿着闭合回做漩涡流动 。 2.带电导体内静电场值为 0 ,从电位的角度来说,导体是一个 等电位体 ,电荷分布在导体的 表面 。 3.分离变量法是一种重要的求解微分方程的方法,这种方法要求待求的偏微分方程的解可以表示为 3个 函数的乘积,而且每个函数仅是 一个 坐标的函数,这样可以把偏微分方程化为 常微分方程 来求解。 4.求解边值问题时的边界条件分为3类,第一类为 整个边界上的电位函数为已知 ,这种条件成为狄利克莱条件。第二类为已知 整个边界上的电位法向导数 ,成为诺伊曼条件。第三类条件为 部分边界上的电位为已知,另一部分边界上电位法向导数已知 ,称为混合边界条件。在每种边界条件下,方程的解是 唯一的 。 5.无界的介质空间中场的基本变量B 和H 是 连续可导的 ,当遇到不同介质的分 界面时,B 和H 经过分解面时要发生 突变 ,用公式表示就是 12()0n B B ?-=,12()s n H H J ?-=。 6.亥姆霍兹定理可以对Maxwell 方程做一个简单的解释:矢量场的 旋度 ,和 散度 都表示矢量场的源,Maxwell 方程表明了 电磁场 和它们的 源 之间的关系。 二.简述和计算题(60分) 1.简述均匀导波系统上传播的电磁波的模式。(10分) 答:(1)在电磁波传播方向上没有电场和磁场分量,即电场和磁场完全在横平面内,这种模式的电磁波称为横电磁波,简称TEM 波。 (2)在电磁波传播方向上有电场和但没有磁场分量,即磁场在横平面内,这种模式的电磁波称为横磁波,简称TM 波。因为它只有纵向电场分量,又成为电波或E 波。 (3)在电磁波传播方向上有磁场但没有电场分量,即电场在横平面内,这种模式的电磁波称为横电波,简称TE 波。因为它只有纵向磁场分量,又成为磁波或M 波。 从Maxwell 方程和边界条件求解得到的场型分布都可以用一个或几个上述模式的适当幅相组合来表征。 2.写出时变电磁场的几种场参量的边界条件。(12分) 解:H 的边界条件 12()s n H H J ?-= E 的边界条件

电磁场与电磁波点电荷模拟实验报告

重庆大学 电磁场与电磁波课程实践报告 题目:点电荷电场模拟实验 日期:2013 年12 月7 日 N=28

《电磁场与电磁波》课程实践 点电荷电场模拟实验 1.实验背景 电磁场与电磁波课程内容理论性强,概念抽象,较难理解。在电磁场教学中,各种点电荷的电场线成平面分布,等势面通常用等势线来表示。MATLAB 是一种广泛应用于工程、科研等计算和数值分析领域的高级计算机语言,以矩阵作为数据操作的基本单位,提供十分丰富的数值计算函数、符号计算功能和强大的绘图能力。为了更好地理解电场强度的概念,更直观更形象地理解电力线和等势线的物理意义,本实验将应用MATLAB 对点电荷的电场线和等势线进行模拟实验。 2.实验目的 应用MATLAB 模拟点电荷的电场线和等势线 3.实验原理 根据电磁场理论,若电荷在空间激发的电势分布为V ,则电场强度等于电势梯度的负值,即: E V =-? 真空中若以无穷远为电势零点,则在两个点电荷的电场中,空间的电势分布为: 1 212010244q q V V V R R πεπε=+=+ 本实验中,为便于数值计算,电势可取为

1212 q q V R R =+ 4.实验内容 应用MATLAB 计算并绘出以下电场线和等势线,其中q 1位于(-1,0,0),q 2位于(1,0,0),n 为个人在班级里的序号: (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); (2) 两个不等量异号电荷的电场线和等势线(q 2:q 1 = 1 + n /2,q 2为负电荷); (3) 两个等量同号电荷的电场线和等势线; (4) 两个不等量同号电荷的电场线和等势线(q 2:q 1 = 1 + n /2); (5) 三个电荷,q 1、q 2为(1)中的电偶极子,q 3为位于(0,0,0)的单位正电荷。、 n=28 (1) 电偶极子的电场线和等势线(等量异号点电荷对q 2:q 1 = 1,q 2为负电荷); 程序1: clear all q=1; xm=2.5; ym=2; x=linspace(-xm,xm); y=linspace(-ym,ym); [X,Y]=meshgrid(x,y); R1=sqrt((X+1).^2+Y.^2); R2=sqrt((X-1).^2+Y.^2); U=1./R1-q./R2; u=-4:0.5:4; figure contour(X,Y,U,u,'--'); hold on plot(-1,0,'o','MarkerSize',12); plot(1,0,'o','MarkerSize',12); [Ex,Ey]=gradient(-U,x(2)-x(1),y(2)-y(1));

电磁场与电磁波习题及答案

. 1 麦克斯韦方程组的微分形式 是:.D H J t ???=+?u v u u v u v ,B E t ???=-?u v u v ,0B ?=u v g ,D ρ?=u v g 2静电场的基本方程积分形式为: 0C E dl =? u v u u v g ? S D ds ρ =?u v u u v g ? 3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为: 3.00n S n n n S e e e e J ρ??=??=???=???=?D B E H r r r r r r r r r 4线性且各向同性媒质的本构关系方程是: 4.D E ε=u v u v ,B H μ=u v u u v ,J E σ=u v u v 5电流连续性方程的微分形式为: 5. J t ρ??=- ?r g 6电位满足的泊松方程为 2ρ?ε?=- ; 在两种完纯介质分界面上电位满足的边界 。 12??= 1212n n εεεε??=?? 7应用镜像法和其它间接方法解静态场边值问题的理 论依据是: 唯一性定理。 8.电场强度E ?的单位是V/m ,电位移D ? 的单位是C/m2 。 9.静电场的两个基本方程的微分形式为 0E ??= ρ?=g D ; 10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用 1.在分析恒定磁场时,引入矢量磁位A u v ,并令 B A =??u v u v 的依据是( 0B ?=u v g ) 2. “某处的电位0=?,则该处的电场强度0=E ? ” 的说法是(错误的 )。 3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( )ln( 1 a a D C -= πε )。 4. 点电荷产生的电场强度随距离变化的规律为(1/r2 )。 5. N 个导体组成的系统的能量∑==N i i i q W 1 21φ,其中i φ是(除i 个导体外的其他导体)产生的电位。 6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 ) 7. 应用高斯定理求解静电场要求电场具有(对称性)分布。 8. 如果某一点的电场强度为零,则该点电位的(不一定为零 )。 8. 真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为(1/r2 )。 10. 半径为a 的球形电荷分布产生的电场的能量储存于 (整个空间 )。 三、海水的电导率为4S/m ,相对介电常数为81,求频率为1MHz 时,位幅与导幅比值? 三、解:设电场随时间作正弦变化,表示为: cos x m E e E t ω=r r 则位移电流密度为:0sin d x r m D J e E t t ωεεω?==-?r r r 其振幅值为:3 04510.dm r m m J E E ωεε-==? 传导电流的振幅值为:4cm m m J E E σ== 因此: 3112510.dm cm J J -=? 四、自由空间中,有一半径为a 、带电荷量q 的导体球。试求:(1)空间的电场强度分布;(2)导体球的电容。(15分) 四、解:由高斯定理 D S u u v u u v g ?S d q =?得2 4q D r π= 24D e e u u v v v r r q D r π== 空间的电场分布2 04D E e u u v u u v v r q r επε== 导体球的电位 2 0044E l E r e r u u v u u v v u u v g g g r a a a q q U d d d r a πεπε∞∞∞====??? 导体球的电容04q C a U πε==

电磁场与电磁波试题及答案

1.麦克斯韦的物理意义:根据亥姆霍兹定理,矢量场的旋度和散度都表示矢量场的源。麦克斯韦方程表明了电磁场和它们的源之间的全部关系:除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。 1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。 2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t t ρ????=+ ??=-??=??=??,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁 场也是电场的源。 1.简述集总参数电路和分布参数电路的区别: 2.答:总参数电路和分布参数电路的区别主要有二:(1)集总参数电路上传输的信号的波长远大于传输线的几何尺寸;而分布参数电路上传输的信号的波长和传输线的几何尺寸可以比拟。(2)集总参数电路的传输线上各点电压(或电流)的大小与相位可近似认为相同,无分布参数效应;而分布参数电路的传输线上各点电压(或电流)的大小与相位均不相同,呈现出电路参数的分布效应。 1.写出求解静电场边值问题常用的三类边界条件。 2.答:实际边值问题的边界条件可以分为三类:第一类是整个边界上的电位已知,称为“狄利克莱”边界条件;第二类是已知边界上的电位法向导数,称为“诺依曼”边界条件;第三类是一部分边界上电位已知,而另一部分上的电位法向导数已知,称为混合边界条件。 1.简述色散效应和趋肤效应。 2.答:在导电媒质中,电磁波的传播速度(相速)随频率改变的现象,称为色散效应。在良导体中电磁波只存在于导体表面的现象称为趋肤效应。 1.在无界的理想媒质中传播的均匀平面波有何特性?在导电媒质中传播的均匀平面波有何特性? 2. 在无界的理想媒质中传播的均匀平面波的特点如下:电场、磁场的振幅不随传播距离增加而衰减,幅度相差一个实数因子η(理想媒质的本征阻抗);时间相位相同;在空间相互垂直,与传播方向呈右手螺旋关系,为TEM 波。 在导电媒质中传播的均匀平面波的特点如下:电磁场的振幅随传播距离增加而呈指数规律衰减;电、磁场不同相,电场相位超前于磁场相位;在空间相互垂直,与传播方向呈右手螺旋关系,为色散的TEM 啵。 1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。 2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。 (或矢量式2n D σ=、20n E ?=、 2s n H J ?=、20n B =) 1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。 2. 答矢量位,0B A A =????=;动态矢量位A E t ??=-?- ?或A E t ??+=-??。库仑规范与洛仑兹规范的作用都 是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。 1. 简述穿过闭合曲面的通量及其物理定义 2. s A ds φ=??? 是矢量A 穿过闭合曲面S 的通量或发散量。若Ф> 0,流出S 面的通量大于流入的通量,即通 量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。 1. 证明位置矢量 x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。 2. 证明在直角坐标系里计算 ,则有 ()()x y z x y z r r e e e e x e y e z x y z ? ? ?????=++?++ ?????? 3x y z x y z ???= ++=??? 若在球坐标系里计算,则 23 22 11()()()3r r r r r r r r r ????===??由此说明了矢量场的散度与坐标的选择无关。 1. 在直角坐标系证明0A ????= 2.

电磁场与电磁波实验实验六布拉格衍射实验

邮电大学 电磁场与微波测量实验报告

实验六布拉格衍射实验 一、实验目的 1、观察微波通过晶体模型的衍射现象。 2、验证电磁波的布拉格方程。 二、实验设备与仪器 DH926B型微波分光仪,喇叭天线,DH1121B型三厘米固态信号源,计算机 三、实验原理 1、晶体结构与密勒指数 固体物质可分成晶体和非晶体两类。任何的真实晶体,都具有自然外形和各向异性的性质,这和晶体的离子、原子或分子在空间按一定的几何规律排列密切相关。 晶体的离子、原子或分子占据着点阵的结构,两相邻结点的距离叫晶体的晶 10m,与X射线的波长数量级相当。因此,格常数。晶体格点距离的数量级是-8 对X射线来说,晶体实际上是起着衍射光栅的作用,因此可以利用X射线在晶体点阵上的衍射现象来研究晶体点阵的间距和相互位置的排列,以达到对晶体结构的了解。 图4.1 立方晶格最简单的晶格是立方体结构。 如图6.1这种晶格只要用一个边长为a的正立方体沿3个直角坐标轴方向重复即可得到整个空间点阵,a就称做点阵常数。通过任一格点,可以画出全同的晶面和某一晶面平行,构成一组晶面,所有的格点都在一族平行的晶面上而无遗漏。这样一族晶面不仅平行,而且等距,各晶面上格点分布情况相同。

为了区分晶体中无限多族的平行晶面的方位,人们采用密勒指数标记法。先找出晶面在x、y、z3个坐标轴上以点阵常量为单位的截距值,再取3截距值的倒数比化为最小整数比(h∶k∶l),这个晶面的密勒指数就是(hkl)。当然与该面平行的平面密勒指数也是(hkl)。利用密勒指数可以很方便地求出一族平行晶面的间距。对于立方晶格,密勒指数为(hkl)的晶面族,其面 间距 hkl d可按下式计算:2 2 2l k h a d hkl + + = 图6.2立方晶格在x—y平面上的投影 如图6.2,实线表示(100)面与x—y平面的交线,虚线与点画线分别表示(110)面和(120)面与x—y平面的交线。由图不难看出 2、微波布拉格衍射 根据用X射线在晶体原子平面族的反射来解释X射线衍射效应的理论,如有一单色平行于X射线束以掠射角θ入射于晶格点阵中的某平面族,例如图4.2所示之(100)晶面族产生反射,相邻平面间的波程差为 θ sin 2 100 d QR PQ= +(6.1) 式(6.1)中 100 d是(100)平面族的面间距。若程差是波长的整数倍,则二反射波有相长干涉,即因满足

电磁场与电磁波第一章复习题练习答案

电子信息学院电磁场与电磁波第一章复习题练习 姓名 学号 班级 分数 1-7题,每题5分;8-15题,每题5分,16题10分,17题15分。 8: 解:不总等于,讨论合理即可 9. 已知直角坐标系中的点P 1(-3,1,4)和P 2(2,-2,3): (1) 在直角坐标系中写出点P 1、P 2的位置矢量r 1和r 2; (2) 求点P 1到P 2的距离矢量的大小和方向; (3) 求矢量r 1在r 2的投影; 解:(1)r1=-3a x +a y +4a z ; r2=2a x -2a y +3a z (2)R=5a x -3a y -a z (3) [(r1?r2)/ │r2│] =(17)? 10.用球坐标表示的场E =a r 25/r 2,求: (1) 在直角坐标系中的点(-3,4,-5)处的|E |和E z ; (2) E 与矢量B =2a x -2a y +a z 之间的夹角。 解:(1)0.5;2?/4; (2)153.6 11.试计算∮s r ·d S 的值,式中的闭合曲面S 是以原点为顶点的单位立方体,r 为 空间任一点的位置矢量。 解:学习指导书第13页 12.从P (0,0,0)到Q (1,1,0)计算∫c A ·d l ,其中矢量场A 的表达式为 A =a x 4x-a y 14y 2.曲线C 沿下列路径: (1) x=t ,y=t 2; (2) 从(0,0,0)沿x 轴到(1,0,0),再沿x=1到(1,1,0); (3) 此矢量场为保守场吗? 解:学习指导书第14页 13.求矢量场A =a x yz+a y xz+a z xy 的旋度。 A ??=x a (x -x )+y a (y -y )+z a (z -z )=0 14.求标量场u=4x 2y+y 2z-4xz 的梯度。 u ?=x a u x ??+y a u y ??+z a u z ??=x a (8xy-4z)+y a (42x +2yz)+z a (2y -4x)

电磁场与电磁波试题集

《电磁场与电磁波》试题1 填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的导磁率为μ ,则磁感应强度B 和磁场H 满足的方程 为: 。 2.设线性各向同性的均匀媒质中, 02=?φ称为 方程。 3.时变电磁场中,数学表达式H E S ?=称为 。 4.在理想导体的表面, 的切向分量等于零。 5.矢量场 )(r A 穿过闭合曲面S 的通量的表达式为: 。 6.电磁波从一种媒质入射到理想 表面时,电磁波将发生全反射。 7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 。 8.如果两个不等于零的矢量的 等于零,则此两个矢量必然相互垂直。 9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 关系。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 函数的旋度来表 示。 二、简述题 (每小题5分,共20分) 11.已知麦克斯韦第二方程为 t B E ??-=?? ,试说明其物理意义,并写出方程的积分形式。 12.试简述唯一性定理,并说明其意义。 13.什么是群速?试写出群速与相速之间的关系式。 14.写出位移电流的表达式,它的提出有何意义? 三、计算题 (每小题10分,共30分) 15.按要求完成下列题目 (1)判断矢量函数y x e xz e y B ??2+-= 是否是某区域的磁通量密度? (2)如果是,求相应的电流分布。 16.矢量z y x e e e A ?3??2-+= ,z y x e e e B ??3?5--= ,求 (1)B A + (2)B A ? 17.在无源的自由空间中,电场强度复矢量的表达式为 (1) 试写出其时间表达式; (2) 说明电磁波的传播方向; 四、应用题 (每小题10分,共30分) 18.均匀带电导体球,半径为a ,带电量为Q 。试求 (1) 球内任一点的电场强度 (2) 球外任一点的电位移矢量。

电磁场与电磁波试卷(1)

2009——2010学年第一学期期末考试 ?电磁场与微波技术?试卷A 一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。每小题2分,共20分) 1. 静电场是( ) A. 无散场 B. 旋涡场 C.无旋场 D. 既是有散场又是旋涡场 2. 已知(23)()(22)x y z D x y e x y e y x e =-+-+- ,如已知电介质的介电常数为0ε,则自由电荷密度ρ为( ) A. B. 1/ C. 1 D. 0 3. 磁场的标量位函数的单位是( ) A. V/m B. A C. A/m D. Wb 4. 导体在静电平衡下,其内部电场强度( ) A.为零 B.为常数 C.不为零 D.不确定 5. 磁介质在外部磁场作用下,磁化介质出现( ) A. 自由电流 B. 磁化电流 C. 传导电流 D. 磁偶极子 6. 磁感应强度与磁场强度的一般关系为( ) A.H B μ= B.0H B μ= C.B H μ= D.0B H μ= 7. 极化强度与电场强度成正比的电介质称为( )介质。 A.各向同性 B. 均匀 C.线性 D.可极化 8. 均匀导电媒质的电导率不随( )变化。 A.电流密度 B.空间位置 C.时间 D.温度 9. 磁场能量密度等于( ) A. E D B. B H C. 21E D D. 2 1B H 10. 镜像法中的镜像电荷是( )的等效电荷。 A.感应电荷 B.原电荷 C. 原电荷和感应电荷 D. 不确定 二、填空题(每空2分,共20分) 1. 电场强度可表示为_______的负梯度。 2. 体分布电荷在场点r 处产生的电位为_______。 0ε0ε

电磁场与电磁波实验报告电磁波反射和折射实验

电磁场与微波测量实验报告 学院: 班级: 组员: 撰写人: 学号: 序号:

实验一电磁波反射和折射实验 一、实验目的 1、熟悉S426型分光仪的使用方法 2、掌握分光仪验证电磁波反射定律的方法 3、掌握分光仪验证电磁波折射定律的方法 二、实验设备与仪器 S426型分光仪 三、实验原理 电磁波在传播过程中如遇到障碍物,必定要发生反射,本处以一块大的金属板作为障碍物来研究当电磁波以某一入射角投射到此金属板上所遵循的反射定律,即反射线在入射线和通过入射点的法线所决定的平面上,反射线和入射线分居在法线两侧,反射角等于入射角。 四、实验内容与步骤 1、熟悉分光仪的结构和调整方法。 2、连接仪器,调整系统。 仪器连接时,两喇叭口面应相互正对,它们各自的轴线应在一条直线上,指示 两喇叭的位置的指针分别指于工作平台的90刻度处,将支座放在工作平台上, 并利用平台上的定位销和刻线对正支座,拉起平台上的四个压紧螺钉旋转一个 角度后放下,即可压紧支座。 3、测量入射角和反射角 反射金属板放到支座上时,应使金属板平面与支座下面的小圆盘上的某一对刻 线一致。而把带支座的金属反射板放到小平台上时,应使圆盘上的这对与金属 板平面一致的刻线与小平台上相应90度的一对刻线一致。这是小平台上的0刻 度就与金属板的法线方向一致。 转动小平台,使固定臂指针指在某一角度处,这角度读书就是入射角, 五、实验结果及分析 记录实验测得数据,验证电磁波的反射定律 表格分析: (1)、从总体上看,入射角与反射角相差较小,可以近似认为相等,验证了电磁波的反射定律。 (2)、由于仪器产生的系统误差无法避免,并且在测量的时候产生的随机误差,所以入射角

电磁场与电磁波习题及答案

1麦克斯韦方程组的微分形式 是:.D H J t ???=+?,B E t ???=-?,0B ?=,D ρ?= 2静电场的基本方程积分形式为: C E dl =? S D d s ρ =? 3理想导体(设为媒质2)与空气(设为媒质1)分界面上,电磁场的边界条件为:4线性且各向同性媒质的本构关系方程是:5电流连续性方程的微分形式为:。 6电位满足的泊松方程为 ; 在两种完纯介质分界面上电位满足的边界 。7应用镜像法和其它间接方法解静 态场边值问题的理论依据是。8.电场强度E 的单位是, 电位移D 的单位是 。9.静电场的两个基本方程的微分 形式为 0E ??= ρ?=D ;10.一个直流电流回路除受到另一个直流电流回路的库仑力作用外还将受到安培力作用 3.00n S n n n S e e e e J ρ??=? ?=?? ?=?? ?=?D B E H 4.D E ε=,B H μ=,J E σ= 5. J t ρ??=-? 6.2ρ?ε?=- 12??= 1212n n εεεε??=?? 7.唯一性定理 8.V/m C/m2 1.在分析恒定磁场时,引入矢量磁位A ,并令 B A =??的依据是(c.0B ?= ) 2. “某处的电位0=?,则该处的电场强度0=E ”的说法是(错误的 )。 3. 自由空间中的平行双线传输线,导线半径为a , 线间距为D ,则传输线单位长度的电容为( ) l n (0 1 a a D C -= πε )。 4. 点电荷产生的电场强度随距离变化的规律为( 1/r2 )。 5. N 个导体组成的系统的能量∑==N i i i q W 1 21φ,其中i φ是(除i 个导体外的其他导体)产生的电位。 6.为了描述电荷分布在空间流动的状态,定义体积电流密度J ,其国际单位为(a/m2 ) 7. 应用高斯定理求解静电场要求电场具有(对称性)分布。 8. 如果某一点的电场强度为零,则该点电位的(不一 定为零 )。 8. 真空中一个电流元在某点产生的磁感应强度dB 随该点到电流元距离变化的规律为(1/r2 )。 10. 半径为a 的球形电荷分布产生的电场的能量储存于 (整个空间 )。 三、海水的电导率为4S/m ,相对介电常数为81,求频率为1MHz 时,位幅与导幅比值? 三、解:设电场随时间作正弦变化,表示为: cos x m E e E t ω= 则位移电流密度为:0sin d x r m D J e E t t ωεεω?= =-? 其振幅值为: 304510.dm r m m J E E ωεε-==? 传导电流的振幅值为:4cm m m J E E σ== 因此: 3112510.dm cm J J -=? 四、自由空间中,有一半径为a 、带电荷量q 的导体球。试求:(1)空间的电场强度分布;(2)导体球的电容。(15分) 四、解:由高斯定理 D S S d q =?得2 4q D r π= 24D e e r r q D r π== 空间的电场分布2 04D E e r q r επε== 导体球的电位 2 0044E l E r e r r a a a q q U d d d r a πεπε∞ ∞ ∞ ==== ??? 导体球的电容04q C a U πε= = 五、两块无限大接地导体板分别置于x=0和x=a 处,其间在x=x0处有一面密度为σ2C/m 的均匀电荷分布,如图所示。求两导体板间的电场和电位。(20分) 解:()2 102d 00;d x x x ?=<<()22 02d 0 d x x a x ?=<< 得: ()()11100;x C x D x x ?=+<< ()( )222 0x C x D x x a ?=+< < ()()()()()()()(122112102000,0;, x x x x a x x x x ???????????===-???? 和满足得边界条件为

电磁场与电磁波试题及答案

《电磁场与电磁波》试题2 一、填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的介电常数为ε,则电位移矢量D ?和电场E ? 满足的 方程为: 。 2.设线性各向同性的均匀媒质中电位为φ,媒质的介电常数为ε,电荷体密度为V ρ,电位 所满足的方程为 。 3.时变电磁场中,坡印廷矢量的数学表达式为 。 4.在理想导体的表面,电场强度的 分量等于零。 5.表达式()S d r A S ? ????称为矢量场)(r A ? ?穿过闭合曲面S 的 。 6.电磁波从一种媒质入射到理想导体表面时,电磁波将发生 。 7.静电场是保守场,故电场强度沿任一条闭合路径的积分等于 。 8.如果两个不等于零的矢量的点积等于零,则此两个矢量必然相互 。 9.对横电磁波而言,在波的传播方向上电场、磁场分量为 。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是 场,因此,它可用磁矢位函数的旋度来表示。 二、简述题 (每小题5分,共20分) 11.试简述磁通连续性原理,并写出其数学表达式。 12.简述亥姆霍兹定理,并说明其意义。 13.已知麦克斯韦第二方程为S d t B l d E S C ???????-=???,试说明其物理意义,并写出方程的微 分形式。 14.什么是电磁波的极化?极化分为哪三种? 三、计算题 (每小题10分,共30分) 15.矢量函数 z x e yz e yx A ??2+-=? ,试求 (1)A ? ?? (2)A ? ?? 16.矢量 z x e e A ?2?2-=? , y x e e B ??-=? ,求 (1)B A ? ?- (2)求出两矢量的夹角

相关主题
文本预览
相关文档 最新文档