当前位置:文档之家› 稀土掺杂氟化物纳米材料的上转换发光特征及其生物应用

稀土掺杂氟化物纳米材料的上转换发光特征及其生物应用

稀土掺杂氟化物纳米材料的上转换发光特征及其生物应用
稀土掺杂氟化物纳米材料的上转换发光特征及其生物应用

收稿日期:2009205204 修回日期:2009207214基金项目:国家重点基础研究973计划(No.2007CB936000);国家杰出青年基金(No.20725518);国家自然科学基金

重大研究计划(No.90713019);山东省科技发展计划项目(No.2008GG30003012);教育部博士点基金(No.

20060445002)

*通讯作者:唐 波,男,博士,教授,研究方向:分子与纳米探针,农药、医药中间体清洁生产.

第26卷第3期Vol.26 No.3分析科学学报

JOURNAL OF ANALYTICAL SCIENCE 2010年6月June 2010

DOI 编码:10.3969/j.issn.100626144.2010.03.024

稀土掺杂氟化物纳米材料的上转换发光特征及其生物应用

张瑞锐,高 源,唐 波*

(山东师范大学化学化工与材料科学学院;教育部分子与纳米探针重点实验室;农药、医药

中间体清洁生产教育部工程研究中心,山东济南250014)

摘 要:稀土掺杂氟化物纳米材料由于具有低的声子能,可以获得较高的上转换发光效

率,使其在太阳能电池、生物医学、光电子学、信息等领域有着广泛而重要的应用前景。

本文就当前稀土氟化物上转换纳米材料的改性、光性能研究,以及在生物检测,生物成

像标记,免疫分析,疾病治疗方面的最新研究进展做一综述,并对上转换纳米颗粒在生

物应用过程中存在的主要问题进行了讨论。引用文献50篇。

关键词:上转换;荧光;生物分析;标记;免疫分析;疾病治疗

中图分类号:O657.39 文献标识码:A 文章编号:100626144(2010)0320353205

1 引言

发光材料的纳米化促进了催化、生物医学、光电子学、信息存储等领域的巨大发展[124]。上转换发光是基于双光子或多光子过程,发光中心相继吸收两个或者多个光子,经过无辐射弛豫达到发光能级,从而跃迁至基态产生短波长光子,即将低频率激发光转换成高频率发射光。上转换发光纳米材料(Upconver 2sion Nanoparticles,UCNP)独特的光学性能使其成为材料科学及相关领域的前沿热点[528]。近年来,不同形貌的稀土上转换纳米颗粒相继被报道,其性能也随之优化提高,应用非常广泛[9211]。

稀土掺杂氟化物纳米材料具有较低的声子能[12214],可以降低非辐射跃迁提高发光强度,在氧化物、硫化物、磷化物等众多基质中脱颖而出,被广泛应用在生物标记,医学成像,分析检测,疾病治疗等各个领域[15,31,38241,44250]。本文对当前稀土掺杂氟化物纳米材料的上转换光学性能及其在生物领域的应用做一综述。

2 稀土氟化物纳米颗粒的上转换光学性能

影响稀土氟化物纳米材料发光性能的因素主要是基质材料、敏化剂和激活剂。目前氟化物基质材料研究的主要是XLnF 4和LnF 3,其中最为常见的是NaYF 4和LaF 3,声子能均小于400cm -1,有利于提供合适的晶体场,降低无辐射跃迁的几率,同时激活剂容易进行掺杂[13214]。稀土离子在氟化物中具有较长

的寿命,形成更多的亚稳能级,产生丰富的能级跃迁[12,15]。掺杂离子对上转换的发光扮演着极为关键的

角色,当前研究主要集中在Er 3+[16220]、T m 3+[17220]、H o 3+[19222]掺杂。稀土Yb 3+的激发光波长是980nm,吸收截面大,是最为常用且有效的上转换敏化剂

[16222]。当Yb 3+和其它稀土离子共掺杂到材料中,激发Yb 3+离子,能量传递引起光子叠加效应使得上转换发光效率大大提高

[5]。稀土掺杂氟化物纳米材料的上

转换发光机理见图1。353

第3期张瑞锐等:稀土掺杂氟化物纳米材料的上转换发光特征及其生物应用第26

图1 Yb 3+,Er 3+/Tm 3+掺杂纳米材料上转换发光机理[23]Fig.1 Schema tic illustr ation of v a rious upcon 2ver sion mechanisms occur r ing in Yb 3+,Er 3+/Tm 3+co 2doped Nanoma ter ials [23]水热/溶剂热、热分解都可以得到单分散纳米级的上转换

稀土氟化物,但是通过对纳米颗粒的修饰来提高其上转换荧

光效率仍是研究的热点。

2.1 核壳结构提高上转换发光效率

稀土纳米颗粒的发光不具有量子尺寸效应,相对于尺寸

较大的化合物,纳米微粒具有更大的比表面积,因此处于表面

的激活离子比例也高于相应的体相材料。由于纳米颗粒的边

界阻断作用,能量的共振传递也只发生在单个微粒内部,所以

高的猝灭浓度使其性能降低。在稀土纳米颗粒外部包覆同质

稀土层、二氧化硅以及聚合物是有效提高上转换发光效率以

及量子产率的方法,同时多层结构还可以丰富发光色彩。

2.1.1 同质壳 由于低声子能稀土壳的存在可以减少能量

转移,降低稀土离子的自猝灭,因此在稀土纳米颗粒外部包覆

同质的材料可以在很大程度上提高发光效率。Yi 等人在掺

杂Yb 3+、Er 3+的NaYF 4纳米颗粒外包覆了未掺杂的NaYF 4

和聚丙烯酸(PAA)后,荧光效率提高7.4倍;NaYF 4B Yb,Tm@NaYF 4@PAA 比单纯的NaYF 4B Yb,T m 纳米颗粒的荧光增强29.6倍[24]。包覆KYF 4的KYF 4B Yb,Er 纳米颗粒的发光效率可以提高25倍[25]。不同合成方法制备的核壳纳米颗粒的荧光增强程度是不一样的,Mai 制备的A 2NaYF 4B Yb,Er@A 2NaYF 4的上转换荧光效率增强一倍,而B 2NaYF 4B Yb,Er@A 2NaYF 4的荧光只增加1/2[26]。

2.1.2 异质壳 稀土上转换纳米颗粒包覆异质壳主要是为了获取水溶性、稳定性和分散性更好的材料,同时还可以使其表面富有功能基团。当有机配体是高能的C )H 或者C )C,振动就会对镧系离子的发光造成严重猝灭[27]。不同有机配体对稀土纳米颗粒的下转换发光略有影响[28229],但对上转换发光的影响尚未有报道。异质材料对上转换氟化物纳米颗粒的包覆主要是二氧化硅[11,30233]、聚乙烯吡咯烷酮[34235]、聚丙烯酸[36]、聚乙烯亚胺[37]、聚丙烯胺

[38239]、聚赖氨酸[40]、聚乙二醇衍生物[41]等等,包覆后上转换荧光有小

幅度增强或者没有明显变化。

2.2 上转换多色发光

Wang 等[18]将Yb 、Er 、T m 同时掺杂到N aYF 4纳米颗粒中,在单一波长980nm 的激发下可以得到多色荧光材料。通过调节掺杂离子的浓度和种类,可以精确控制激发强度平衡,从而实现从近红外到可见的复合多色光(图2)。此外,在B 2NaYF 4B Yb,T m 外面包覆B 2NaYF 4B Yb,Er 结构的纳米颗粒也可以获得从近红外到可见的上转换发光。这种三明治结构的B 2NaYF 4B Yb,Tm@B 2NaYF 4B Yb,Er @B 2NaYF 4B Yb,Tm 不仅光谱丰富,而且与单纯的B 2NaYF 4B Yb,T m 以及B 2NaYF 4B Yb,Er 相比,其量子产率和荧光效率都有所提高[42]。

2.3 多激发模式发光

Li 等[43]将油酸配位的LaF 3B Ce,T b 和NaYF 4B Yb,Er 两种纳米颗粒置于十二烷基硫酸钠微乳液中,经过烷链自组装制备具有上转换和下转换双功能的纳米微球,尺寸大约62nm,在254、396、980nm 激发下可以得到不同发射的荧光,但是颗粒的稳定性还有待研究。H u 等[32]通过二氧化硅包覆上转换纳米颗粒,同时在二氧化硅纳米颗粒中掺杂异硫氰酸荧光素(FIT C),分别可以在980nm 波长下激发上转换纳米颗粒,488nm 下激发FIT C,获得上转换和下转换双模式的纳米颗粒,尺寸仅20~22nm,而且二氧化硅提高了生物相容性和稳定性,更适合生物应用。3 稀土掺杂上转换氟化物纳米材料的生物应用

3.1 稀土掺杂上转换氟化物纳米颗粒在生物分子检测中的应用

Wang 等[38]利用静电吸引层层组装的方法在NaYF 4B Yb 3+,Er 3+外部引入氨基,从而能够和生物素相连,随后体系中再加入同生物素相连的金纳米颗粒,当抗生物素蛋白存在的时候会连接两种纳米颗粒,从而发生能量转移,此时金会吸收稀土上转换纳米材料的荧光,通过荧光猝灭的程度实现抗生物素蛋白的检354

第3期分析科学学报第26卷测(图3),检测范围为0.5~370mol/L

图2 掺杂不同含量的Yb,Er ,Tm 的NaYF 4纳米

颗粒在980nm 波长激发下的照片[18]

Fig.2 P hotogr aphs wer e taken by excited NaYF 4:

Yb,Er ,Tm (with differ ent amount Ln)samples at

980nm with a 600mW diode laser [18]图3 基于能量转移生物素修饰的上转换纳米颗粒和金纳米颗粒检测抗生素蛋白的示意图[38]Fig.3 Scheme of the FRET system,with phosphor 2biotin nanopar ticles as ener gy donors and Au 2biotin na nopar ticles as ener gy acceptor s,in the analysis of

avidin [38]

氨基修饰的上转换纳米颗粒不仅可以和蛋白偶联,还可以和DNA 、小分子相连。Wang 等

[39]将上转换纳米颗粒结合磁场生物分离技术用于微量DNA 的检测。Chen 等[44]非常巧妙的利用Lemieux 2von Rudloff

试剂直接氧化合成过程中引入的油酸配体,得到羧基修饰的上转换纳米颗粒,用于定量检测靶向DNA 。

Liu 等[45]将Fe 3O 4和NaYF 4B Yb,Er 纳米颗粒包覆在二氧化硅微球内,制备的发光磁性多功能复合纳米颗粒,在生物分离、检测、标记成像及药物输送方面有着潜在的应用价值。

3.2 稀土掺杂上转换氟化物纳米在免疫分析中的应用

2001年,Niedbala 课题组报道了上转换纳米颗粒应用于免疫层析实验[46]。研究者将上转换材料同生物分子相连后,采用免疫层析技术对抗原进行检测取得了理想的结果。由于层析所用的底板在红外光照射下不发光,所以观测到的信号必然来自上转换纳米颗粒,因此上转换纳米材料用于免疫层析技术更加提高了这种方法的可靠性。400nm 的UCNP 与Cy5相比,目标物浓度和发光强度的线性关系提高两个数量级。此外,研究者将胶体金和上转换纳米颗粒同时应用于H PV 16的检测,结果表明U CNP 实验的检测限低于胶体金的100倍[47]。但需要说明的是,控制上转换纳米颗粒的尺寸是扩展其在免疫层析技术应用的关键因素。

3.3 稀土掺杂上转换氟化物纳米颗粒在生物标记中的应用

稀土上转换氟化物纳米颗粒在生物标记中的应用成为当前纳米标记的热点。最初的活体实验是Lim 等[40]

用线虫吞噬稀土上转换氧化物纳米颗粒。

图4 UCNP @SiO2(FITC)2FA 结构及其在癌细胞标记的潜在应用示意图[31]Fig.4 Schematic illustr ation of the synthesis of UCNP@SiO2(FI TC)2FA nanocomposites [31]H u 等[41]制备了氨基修饰的掺杂FIT C 的上转换二氧化

硅纳米颗粒,又将能与癌细胞特异性结合的叶酸共价键连接

在纳米颗粒外面。这种纳米颗粒可以双模式上转换下转换发

光,同时实现对癌细胞的标记,用于流式细胞仪进行分选

[31](图4)。Chatterjee 等[48]将叶酸修饰到聚乙烯亚胺包覆的

NaYF 4B Yb,Er 纳米颗粒上,进行了一系列的细胞以及白鼠活

体实验。研究表明此纳米颗粒在磷酸盐缓冲溶液中非常稳

定,同时对骨髓干细胞没有毒性,抗漂白性好。将其应用于人

卵巢癌细胞和结肠癌细胞细胞标记,修饰后的纳米颗粒和细

胞表面具有较高的亲和力。小白鼠实验中,将U CN P 和量子

点同时应用于皮下组织成像,在紫外光照射下腹部皮下组织的量子点没有光信号,而在980nm 的激发下,可以清楚看到

UCNP 的发射光,证实了U CN P 在生物活体标记中的潜在价值。

3.4 稀土掺杂上转换氟化物纳米在光动力治疗中的应用

Zhang 等[49]第一次将稀土上转换纳米颗粒作为光敏剂的能量供体,包覆二氧化硅的同时掺杂部花青,实现UCNP 和部花青的能量转移产生单线态氧。Chatterjee 等[50]

将约50nm 大小的共价连接叶酸、非共价吸附酞菁锌的聚乙烯亚胺包覆的N aYF 4B Yb,Er 纳米颗粒,应用于活体实验。酞箐锌的吸收波长355

第3期张瑞锐等:稀土掺杂氟化物纳米材料的上转换发光特征及其生物应用第26卷

和NaYF4:Yb,Er的670nm处的发射有重叠,发生能量转移,当用980nm的激发上转换纳米颗粒时,光敏剂会产生单线态氧。作者将这种多功能的纳米颗粒应用于活体实验,证明了此种纳米颗粒不仅细胞毒性小,而且可以靶向识别癌细胞,并且可以有效的杀死肿瘤细胞,癌细胞杀死率高达80%。

4结论与展望

综上所述,由于上转换纳米颗粒激发波长在近红外区(980nm),掺杂离子不同可以调节发射波长,以及生物毒性小等特征使得上转换纳米颗粒在生物标记、生物检测、生物成像、疾病治疗以及信息存储等领域有着广阔的应用前景。而氟化物上转换纳米材料凭借其声子能低、上转换效率高等鲜明的特点使其优势更加显著。与量子点相比,上转换纳米颗粒的研究无论是在合成还是修饰都处于起步阶段,但已经取得了令人鼓舞的研究成果,引起人们的广泛关注。

然而目前在上转换纳米材料的生物应用过程中,上转换的合成和修饰方面还存在一些困难。由于稀土元素分子量大、易团聚沉淀,使其在生物应用方面存在缺憾。虽然人们已经注意到了这方面的问题,并且逐步改进合成方法,但是如何制备尺寸较小且均匀、发光性能优异的上转换纳米颗粒仍有很大的发展空间。另外利用生物无毒材料,生物高分子或者聚合物,二氧化硅等等来包覆稀土纳米颗粒也是很好的解决稳定性和生物相容性的可行途径,值得深入研究。

参考文献:

[1]Choudhary T V,Goodman D W.Topics Catal.[J],2001,21:25.

[2]Rosi N L,Mir kin C A.Chem.Rev.[J],2005,105:1547.

[3]L th H.Appl.Surf.Sci.[J],1998,1302132:855.

[4]Lee E2H,Park K.Mat er.Sci.Eng.B[J],2000,74:1.

[5]Auzel F.Chem.Rev.[J],2004,104:139.

[6]Zhou Z,Hu H,Yang H,H uang K,Yu M,Li F,H uang https://www.doczj.com/doc/4118850748.html,mun.[J],2008,4786.

[7]Downing E,Hesselink L,Ralston J,Macfarlane R.Science[J],1996,273:1185.

[8]Gamelin D R,G del H U,Acc.Chem.R es.[J],2000,33:235.

[9]Zhang F,Wan Y,Shi Y,Tu B,Zhao D.Chem.Mater.[J],2008,20:3778.

[10]Zhang F,Wan Y,Yu T,Zhang F,Shi Y,Xie S,Li Y,Xu L,Tu B,Zhao D.Angew.Chem.I nt.Ed.[J],2007,46:7976.

[11]Wang L,Li Y,Chem.Mater.[J],2007,19:727.

[12]Ivanova S,Pell F,T kachuk A,Joubert M2F,Guyot Y,Gapontzev V P.J.Lumin.[J],2008,128:914.

[13]Suyver J F,Grimm J,van Veen M K,Biner D,kr?mer K W,G del H U.J.Lum in.[J],2006,117:1.

[14]Moos H W.J.Lumin.[J],1970,122:106.

[15]Vetrone F,Capobianco J A.I nt.J.Nanotechnol.[J],2008,5:1306.

[16]Mai H,Zhang Y,Sun L,Yan C.J.Phys.Chem.C[J],2007,111:13730.

[17]Yi G S,Chow G M.Adv.F unct.Mat er.[J],2006,16:2324.

[18]Wang F,Liu X.J.Am.Chem.Soc.[J],2008,130:5642.

[19]Shan J.Qin X,Yao N,Ju Y.Nanotechnology[J],2007,18:445607.

[20]Yi G S,Chow G M.J.Mater.Chem.[J],2005,15:4460.

[21]Zhou Z,H u H,Yang H,Yi T,Huang K,Yu M,Li F,H uang https://www.doczj.com/doc/4118850748.html,mun.[J],2008,4786.

[22]Wang X,Bu Y,Xiao S,Yang X,Ding J W.Appl.Phys.B[J],2008,93:801.

[23]Boyer J C,Cuccia L A,Capobianco J A.Nano Lett.[J],2007,7:847.

[24]Yi G S,Chow G M.Chem.Mater.[J],2007,19:341.

[25]Sch?fer H,Ptacek P,Zerzouf O,Haase M.Adv.Funct.Mater.[J],2008,18:2913.

[26]Mai H X,Zhang Y W,Sun L D,Yan C H.J.P hys.Chem.C[J],2007,111:13721.

[27]H eer S,Kêmpe K,G del H U,H aase M.Adv.Mater.[J],2004,16:2102.

[28]Char bonni re L J,Rehspr inger J J,Ziessel R,Zimmermann Y.New J.Chem.[J],2008,32:1055.

[29]Zhang J,Shade C M,Chengelis D A,Petoud S.J.Am.Chem.Soc.[J],2007,129:14834.

[30]Li Z,Zhang Y,Jiang S.Adv.M ater.[J],2008,20:4765.

[31]H u H,xiong L,Zhou J,Li F,Cao F,H uang C.Chem.Eur.J.[J],2009,15:3577.

356

第3期分析科学学报第26卷

[32]Sivakumar S,Diamente P R,van Veggel F C J M.Chem.Eur.J.[J],2006,12:5878.

[33]Yi G,Lu H,Zhao S,Ge Y,Yang W,Chen D,Guo L.Nano Lett.[J],2004,4:2191.

[34]Li Z,Zhang Y.Angew.Chem.Int.Ed.[J],2006,45:7732.

[35]Li Z,Zhang Y,Jiang S.Adv.M ater.[J],2008,20:4765.

[36]Rantanen T,J?rvenp??M L,Vuojola J,Kuningas K,Soukka T.Angew.Chem.Int.Ed.[J],2008,47:3811.

[37]Wang F,Chatterjee D K,Li Z,Zhang Y,Fan X,Wang M.Nanotechnology[J],2006,17:5786.

[38]Wang L,Yan R,Huo Z,Wang L,Zeng J,Bao J,Wang X,Peng Q,Li Y.Angew.Chem.Int.Ed.[J],2005,44:6054.

[39]Wang L,Li https://www.doczj.com/doc/4118850748.html,mun.[J],2006,2557.

[40]Lim S F,Riehn R,R yu W S,Khanar ian N,Tung C,Tank D,Austin R H.Nano Lett.[J],2006,6:169.

[41]H u H,Yu M,Li F,Chen Z,Gao X,Xiong L,Huang C.Chem.Mater.[J],2008,20:7003.

[42]Qian H,Zhang https://www.doczj.com/doc/4118850748.html,ngmuir[J],2008,24:12123.

[43]Li P,Peng Q,Li Y.Adv.Mater.[J],2009,21:1.

[44]Chen Z,Chen H,Hu H,Yu M,Li F,Zhang Q,Zhou Z,Yi T,Huang C.J.Am.Chem.Soc.[J],2008,130:3023.

[45]Liu Z,Yi G,Zhang H,Ding J,Zhang Y,Xue https://www.doczj.com/doc/4118850748.html,mun.[J],2008,694.

[46]Rijke F,Zijlmans H,Li S,Vail T,Raap A K,Niedbala R S,T anke H J.Nat.Biotech.[J],2001,19:273.

[47]Corstjens P,Zuiderwijk M,Br ink A,Li S,F eindt H,Niedba la R S,T anke H.Clin.Chem.[J],2001,47:1885.

[48]Chatt erjee D K,R ufaihah A J,Zhang Y.Biomater ials[J],2008,29:937.

[49]Zhang P,Steelant W,Kumar M,Scholfield M.J.Am.Chem.Soc.[J],2007,129:4526.

[50]Chatt erjee D K,Zhang Y.Nanomedicine[J],2008,3:73.

Lanthanide2doped Fluoride Nanoparticles:Up2conversion Luminesence and Biological Applications

ZH ANG Rui2rui,GAO Yuan,T ANG Bo*

(College of Che mistry,Che mical Engineering and Materials Sc ie nc e,Key Laborator y of Molecular and Nano Pr obes,Ministry of Education,Engineering Resear ch Cente r of Pesticide and Medicine Inte rmediate Clean Produc tion,Ministry of Education,Shandong N ormal U niversity,J inan250014)

Abstr act:Lanthanide2doped fluoride nanoparticles have low phonon energies,which leads to a great contribution to the luminescence intensity,and thus have huge promise in solar cells,biomedicine, optoelectronics,and telecommunications,etc..The preparation,properties enhanced of lanthanide2 doped fluoride nanoparticls and their application in life sciences are intrigued many scientists.Recent resear ch progress in the application of lanthanide2doped fluoride nanoparticles in bioanalysis,label and image,immunological assay,and therapy ar e reviewed,and some pr oblems associated with it are also described in this paper with50references.

Keywor ds:Up2conver sion;Fluorescence;Bioanalysis;Label and Image;Immunological assay;Ther apy

357

稀土发光材料的研究和应用.

稀土发光材料的研究和应用 摘要:介绍了稀土发光材料的发光特性与发光机理。综述了我国在稀土发光材料的化学合成方法。总结了稀土发光材料的应用。最后对我国存在问题和发展前景进行了叙述。关键字:稀土发光材料;发光特性;发光机理;合成;应用;问题和展望。 Abstract:Introduces the luminescence properties of rare earth luminescent material and luminescence mechanism. Rare-earth luminescence materials in China, the paper summarized the chemical synthesis method. The application of rare earth luminescence materials is summarized. Finally, the existing problems and development prospect of the narrative in our country. Keywords:Rare earth luminescent material; Luminescence properties; Light-emitting mechanism; Synthesis; Application; Problems and its prospect. 化学元素周期表中镧系元素———镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素称为稀土元素。稀土化合物包含至少一种稀土元素的化合物。它是一种重要的战略资源,特别是高新技术工业的重要原料,如军事装备方面一些精确打击武器、一些汽车零部件和高科技产品,都依赖用稀土金属制造的组件。据了解,中国是唯一能有效提供全部17种稀土金属的国家,且储量远远超过世界其他国家的总和,是名副其实的“稀土大国”。由于稀土元素的离子具有特别的电子层结构和丰富的能级数量,使它成为了一个巨大的发光材料宝库。在人类开发的各种发光材料中,稀土元素发挥着重要作用,稀土发光几乎覆盖了整个固体发光的范畴。稀土发光材料具有发光谱带窄,色纯度高,色彩鲜艳;光吸收能力强,转换效率高;发射波长分布区域宽;荧光寿命从纳秒跨越到毫秒达6个数量级;物理和化学性质稳定,耐高温,可承受大功率电子束、高能辐射和强紫外光的作用等。目前稀土材料已广泛用于照明、显示、信息、显像、医学放射学图像和辐射场的探测等领域,并形成很大的工业生产和消费市场规模;同时也正在向着其他新型技术领域扩展,成为人类生活中不可缺少的重要组成部分。本文将介绍掺稀土离子发光材料的发光机理、节能灯、白光LED用荧光粉、PDP显示用荧光粉,以及对在上转换发光、生物荧光标记和下转换提升太阳能效率等方面的应用前景进行总结和展望。

稀土配合物发光的类型概述

稀土配合物发光的类型概述 稀土配位化合物的研究是稀土化学中最活跃的前沿领域之一。稀土发光配合物是一类具有独特性能的发光材料。 发光现象 当某种物质受到诸如光的照射、外加电场或电子束轰击等的激发后,只要该物质不会因此而发生化学变化,它总要回复到原来的平衡状态。在这个过程中,一部分能量会通过光或热的形式释放出来。如果这部分能量是以可见光或近可见光的电磁波形式发射出来的,就称为发光现象。这种能量的发射过程具有一定的持续时间。 对于发光现象的研究,从对它的光谱的研究(斯托克斯定则,1852年)开始,直到“发光”这一概念的提出(C H.魏德曼,1888年),人们只注意到了发光同热辐射之间的区别。1936年,CH.瓦维洛夫引入了发光期间这一概念(即余辉),并以此作为发元现象的另一个王要的判据,至此发光才有了确切的定义。 发光现象的两个主要的特征是:任何物体在一定温度下都有热辐射,发光是物体吸收外来能量后所发出的总辐射中超出热辐射的部分。当外界激发源对物体的作用停止后,发光现象还会持续一定的时间,称为余辉。 历史上人们曾以发光持续时间的长短把发光分为两个过程:把物质在受激发时的发光称为荧光,而把激发停止后的发光称为磷光。一般常以持续时间10-8s为分界,持续时间短于10—8s的发光被称为荧光,而把持续时间长于10—8s的发光称为磷光。现在,除了习惯上还保留和沿用这两个名词外,已不再用荧光和磷光来区分发光过程。因为任何形式的发光都以余辉的形式来显现其衰减过程,而衰减时间可以极短(<10—8s),也可能很长(十几小时或更长)。发光现象有着持续时间的事实,说明物质在接受激发能量和产生发光的过程中,存在着一系列的中间状态。 发光类型 1.对于各种发光现象,可按其被激发的方式进行分类:光致发光、电致发光、阴极射线发 光、x射线及高能粒子发光、化学发光和生物发光等。 (1)光致发光。光致发光是用光激发发光体引起的发光现象。它大致经过吸收、能量传递及光发射三个阶段。光的吸收及发射都发生于能级之间的跃迁,都经过激发态。而能量传递则是由于激发态的运动。 (2)电致发光。可将电能直接转换成光能的现象是电致发光(eIectroIuminescence)。过去又因这是在电场作用下产生的发光,还曾使用过“场致发光”的术语。 (3)阴极射线发光。发光物质在电子束激发下所产生的发光,被称做阴极射线发光(cathodeluminescenee)。通常电子束激发时,电子所具有的能量是很大的,都在几千电子伏以上,甚至达几万电子伏。和光致发光的情况相比,这个能量是巨大的。因此,阴极射线发光的激发过程和光致发光不一样,这是一个很复杂的过程。在光致发光的过程中,一个激发光于被发光物质吸收后,通常最多只能产生一个发光辐射的光子。但是,单从能量的观点来

稀土发光材料的研究现状与应用(综述)

稀土发光材料的研究现状与应用 材化092 班…指导老师:…. (陕西科技大学材料科学与工程学院陕西西安710021) 摘要稀土元素包括元素周期表中的镧系元素(Ln)和钪(Sc)、钇(Y),共17个元素。由于稀土离子的4f电子在不同能级之间的跃迁产生的丰富的吸收和发射光谱,使其在发光材料中具有广泛的应用。稀土元素的特殊原子结构导致它们具有优异的发光特性,用于制造发光材料、电光源材料和激光材料,其合成的发光材料充分应用在照明、显示、医学、军事、安全保卫等领域中。稀土元素在我国的储量丰富,约占全世界的40%。本文综述了稀土发光材料的发光机理、发光特性、化学合成方法、主要应用领域以及稀土矿藏的开采方面存在的问题,并预测了今后深入研究的方向。 关键词稀土,发光材料, 应用 Current Research and Applications of rare earth luminescent materials Abstract Rare earth elements, including the lanthanides (Ln) and scandium (Sc) , yttrium (Y)of the periodic table, a total of 17 elements. a plenty of absorption and emission spectra in the light-emitting materials produced by the 4f electrons of rare earth ions transiting between different energy levels lead to a wide range of applications of rare earth luminescent materials. Special atomic structure of rare earth elements lead to their excellent luminescence properties, which is used in the manufacture of luminescent materials, the electric light materials and laser materials, 1 / 8

稀土发光材料的发光机理及其应用

万方数据

万方数据

万方数据

万方数据

万方数据

稀土发光材料的发光机理及其应用 作者:谢国亚, 张友, XIE Guoya, ZHANG You 作者单位:谢国亚,XIE Guoya(重庆邮电大学移通学院,重庆,401520), 张友,ZHANG You(重庆邮电大学数理学院,重庆,400065) 刊名: 压电与声光 英文刊名:Piezoelectrics & Acoustooptics 年,卷(期):2012,34(1) 被引用次数:2次 参考文献(19条) 1.周贤菊;赵亮;罗斌过渡金属敏化稀土化合物近红外发光性能研究进展[期刊论文]-重庆邮电大学学报(自然科学版) 2007(06) 2.段昌奎;王广川稀土光谱参量的第一性原理研究[期刊论文]-重庆邮电大学学报(自然科学版) 2011(01) 3.周世杰;张喜燕;姜峰轻稀土掺杂对TbFeCo材料磁光性能的影响[期刊论文]-重庆工学院学报 2004(05) 4.CARNALL W T;GOODMAN G;RAJNAK K A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3 1989(07) 5.LIU Guokui;BERNARD J Spectroscopic properties of rare earths in optical materials 2005 6.DUAN Changkui;TANNER P A What use are crystal field parameters? A chemist's viewpoint[外文期刊] 2010(19) 7.蒋大鹏;赵成久;侯凤勤白光发光二极管的制备技术及主要特性[期刊论文]-发光学报 2003(04) 8.黄京根节能灯用稀土三基色荧光粉 1990(05) 9.VERSTEGEN J M P J A survey of a group of phosphors,based on hexagonal aluminate and gallate host lattices 1974(12) 10.PAN Yuexiao;WU Mingmei;SU Qiang Tailored photoluminescence of YAG:Ce phosphor through various methods 2004(05) 11.KIM J S;JEON P E;CHOI J C Warm-whitelight emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+,Mn2+ phosphor[外文期刊] 2004(15) 12.苏锵;梁宏斌;王静稀土发光材料的进展与新兴技术产业[期刊论文]-稀土信息 2010(09) 13.SIVAKUMAR S;BOYER J C;BOVERO E Upconversion of 980 nm light into white light from SolGel derived thin film made with new combinations of LaF3:Ln3+ nanoparticles[外文期刊] 2009(16) 14.WANG Jiwei;TANNER P A Upconversion for white light generation by a single compound[外文期刊] 2010(03) 15.QUIRINO W G;LEGNANI C;CREMONA M White OLED using β-diketones rare earth binuclear complex as emitting layer[外文期刊] 2006(1/2) 16.BUNZLI J C G;PIGUET C Taking advantage of luminescent lanthanide ions 2005 17.WANG Leyu;LI Yadong Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals[外文期刊] 2007(04) 18.LINDA A;BRYAN V E;MICHAEL F Downcoversion for solar cell in YF3:Pr3+,Yb3+ 2010(05) 19.TENG Yu;ZHOU Jiajia;LIU Jianrong Efficient broadband near-infrared quantum cutting for solar cells 2010(09) 引证文献(2条) 1.杨志平.梁晓双.赵引红.侯春彩.王灿.董宏岩橙红色荧光粉Ca3Y2(Si3O9)2:Eu3+的制备及发光性能[期刊论文]-硅酸盐学报 2013(12) 2.严回.孙晓刚.王栋.吕萍.郑长征C24H16N7O9Sm 的晶体合成、结构与性质研究[期刊论文]-江苏师范大学学报(自然科学版) 2013(3) 本文链接:https://www.doczj.com/doc/4118850748.html,/Periodical_ydysg201201028.aspx

稀土发光

关于稀土发光材料的认识(孙三大) 绪论 稀土元素由于具有未充满的4f电子壳层和4f电子被外层的5s,5p电子屏蔽的特性,使稀土元素具有极复杂的类线性光谱。吸收光谱使稀土离子大多有色,发射光谱使许多稀土化合物产生荧光和激光。镧系原子的组态为1S22S22P63S23P63d104S24P64d105S25P6(4f n6S2或4f n-15d6S2),其中n=1-15,La,Ce,Gd,Lu为4f n-15d6S2(镧系稀土元素电子层结构的特点是电子在外数第三层的4f轨道上填充,4f轨道的角量子数l=3,磁量子数m可取0、±1、±2、±3等7个值,故4f亚层具有7个轨道。根据Pauli不相容原理,在同一原子中不存在4个量子数完全相同的两个电子,即一个原子轨道上只能容纳自旋相反的两个电子,4f 亚层只能容纳14个电子,从La到Lu,4f电子依次从0增加到14),其余的元素4f n6S2[1-3]。 大部分无机固体致发光材料遵守斯托克斯定律,即发射光的光谱能量低于激发光的光谱能量,这样发光的现象叫做下转换发光。对于下转换发光由外界光源直接作用于稀土离子。1)使稀土离子中的电子由基态跃迁到激发态,完成高能级电子的排布,如图(1)所示,2)由某基团或离子等吸收高能光子后通过非福射他豫将能量传递给较低能级的稀土离子,使稀土离子中的电子由基态跃迁到激发态,如图(2)所示;另外,在1966年,在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb3+离子时,Er3+、Ho3+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。这一小部分光致发光材料违背了斯托克斯定律,即上转换发光,它通过吸收低光子能量的长波福射转换为高光子能量的短波福射。稀土离子可以通过激发态吸收或能量传递过程被激发至高能级而发射上转换发光,如图(3)所示。 Gound state (1)(2)(3) 图中所示(1)和(2)为下转换发光过程,图(3)为上转换发光过程。 稀土上转换/下转换发光材料在众多领域具有巨大的应用价值,对其进行理论和实验的深入

稀土聚合物发光材料

稀土聚合物发光材料 李建宇 (北京工商大学化工学院 北京 100037) 摘 要 近年来稀土聚合物发光材料显现出广泛的应用前景,它主要包括两类材料:稀土配合物-聚合物发光材料和长余辉发光塑料。本文介绍掺杂型稀土配合物-聚合物材料用于有机电致发光和荧光塑料的研究状况;评述键合型稀土配合物-聚合物发光材料的几种合成方法;并对长余辉发光塑料作简要概述。 关键词 稀土 聚合物 复合材料 发光材料 由于稀土元素具有独特的电子层结构,稀土化合物表现出许多优异的光、电、磁功能,尤其是稀土元素具有一般元素所无法比拟的光谱学性质,稀土发光材料格外引人注目。稀土发光材料广泛应用于照明、显示和检测三大领域,形成了工业生产和消费市场规模,并正在向其他新兴技术领域拓展,因而稀土聚合物发光材料应运而生,目前它主要分为两类:稀土配合物-聚合物发光材料和长余辉发光塑料。 1 稀土配合物-聚合物发光材料 稀土配合物在发光与显示领域表现出独特的荧光性能,但是往往又因其自身固有的在材料性能方面的缺陷限制了它的应用。制成发光稀土配合物-聚合物复合材料,可以改善它的应用性能,拓宽它的应用范围。制备方法分为两种:掺杂法和键合法。前者实用、简便,但稀土配合物与高分子基质之间相容性差,不可避免地出现相分离和荧光猝灭等现象;后者克服了掺杂型材料中稀土配合物与高分子基质亲和性小、材料透明性和力学性能差等缺点,为获得宽稀土含量、高透光率的稀土高分子功能材料提供了可能,但制备工艺比较复杂。 111 掺杂型稀土配合物-聚合物发光材料 掺杂型稀土配合物-聚合物发光材料,即是直接将发光稀土配合物作为添加成分掺杂于高分子基质中,大多数稀土聚合物发光材料都是这样制备的,在许多领域得到应用。 11111 有机电致发光材料 有机电致发光(organic electroluminescence,OE L) 是目前国际上的一个研究热点,它具有高亮度、高效率,低压直流驱动,可与集成电路匹配,易实现彩色平板大面积显示等优点。人们预言,不久的将来,OE L 将取代无机电致发光和液晶显示的地位,使平板显示技术发生革命。稀土配合物的发射光谱谱带尖锐,半高宽度不超过10nm,色纯度高,这一独特优点是其他发光材料所无法比拟的,因而有可能用以制作高色纯度的彩色OE L显示器。然而,以小分子稀土配合物作为OE L器件的发光层材料存在一个显著缺陷:真空蒸镀成膜困难,器件制备工艺复杂,在成膜和使用过程中易出现结晶,使层间的接触变差,从而影响器件的发光性能和缩短器件的使用寿命。因此,经常将配合物与导电高分子(如聚乙烯咔唑,PVK)掺杂后采用旋涂的方法来制备发光层。为了保证掺杂均匀,须将稀土配合物和PVK共溶于易挥发的有机溶剂(如氯仿)。Zhang等以氯仿为溶剂,将Tb(AH BA)3 (AH BA为邻氨基24十六烷基苯甲酸)掺杂于PVK制备发光层,获得了良好的成膜性能和较为理想的发光亮度。董金凤等将红色荧光配合物Eu(TT A) m (TT A 为α2噻吩甲酰三氟丙酮)与PVK共混,制备单层器件,发光层成膜性能得到改善,器件的稳定性得到提 高。如果直接用Eu(TT A) m制成单层器件,则不能产生电致发光,这是由于配合物的成膜性能差,无法形成均匀致密的薄膜,施加电压后存在很大的漏电流。 陶栋梁等报道了将Tb(aspirin) 3 Phen(aspirin为乙酰水 11 2005年第5期 中国照明电器 CHI NA LIG HT&LIG HTI NG

稀土掺杂铝酸锶荧光材料的制备

目录 1 引言 (2) 1.1 稀土荧光材料的概述 (2) 1.2 稀土离子的发光颜色 (3) 1.3 荧光材料发光的主要原理 (3) 1.4稀土荧光材料的制备方法 (3) 1.4.1水热合成法 (3) 1.4.2高温固相反应法 (3) 1.4.3燃烧法 (3) 1.4.4共沉淀法 (3) 2 实验部分 (4) 2.1 实验仪器、药品 (4) 2.2 实验过程 (4) 2.2.1 溶液的配置 (4) 2.2.2 实验步骤 (4) 3 结果与讨论 (5) 3.1 水热合成制备稀土荧光材料 (5) 3.2燃烧法制备稀土荧光材料 (6) 4 实验结论 (8) 参考文献 (8) 致谢 (9)

稀土掺杂铝酸锶荧光材料的制备 陈晓娟指导老师:陈志胜 摘要目的:制备稀土掺杂铝酸锶荧光材料方法:采用水热合成与共沉淀法结 合法和燃烧法。水热合成与共沉淀结合法:硝酸铝和铝酸锶的混合溶液中加入不 同的两种或两种以上的稀土元素硝酸盐溶液,以氨水为沉淀剂调节溶液的pH值, 将产物沉淀后放入水热反应釜中140 ℃反应12 h,使反应充分并沉淀完全。燃烧 法:硝酸铝和硝酸锶的混合液加入不同的稀土元素的硝酸盐溶液,再加入适量的 助溶剂硼酸和尿素,在600 ℃的马弗炉中点燃3 ~ 5 min后,得到粉体。本实验 利用镧(La)、钕(Nd)、钐(Sm)、钇(Y)作为激活剂和辅助激活剂。结论:不同 稀土元素制备的荧光材料发光的颜色不同,焙烧温度对荧光材料发光有较大影响,不同方法制备的荧光材料发光有所不同。 关键词共沉淀法;燃烧法;稀土;荧光材料 1 引言 1.1 稀土荧光材料的概述 一种能吸收光的能量,并且吸收后可以将光能转化为光辐射的材料,这种材料称做荧光材料。无机固体荧光材料分为掺杂材料和纯材料两种。基质本身就可以发光的材料荧光材料叫做纯材料,但是此种纯材料在自然界存量稀少。掺杂稀土的荧光材料是生活中比较常见的,必需掺杂一些必须的“杂质”,掺杂的这些“杂质”会形成发光中心存在基质的晶格中,进而可使材料发光。稀土离子具有极其丰富的电子能级,尤其存在4f轨道的电子构型[2],该轨道可为不同能级的跃迁提供便利的条件,产生多种特征的发光能力。采用稀土及其化合物作为激活剂、基质、敏化剂、共激活剂与掺杂剂的荧光材料,一般都叫做稀土发光材料[2]。通常人们把发光材料分为一下几类见表1 表1 按激发方式分类发光材料 种类名称激发方式 电致发光光致发光X射线发光阴极射线发光放射线发光核化学发光生物发光摩擦发光气体放电或固体受电场作用 光的照射 X射线的照射 高能电子束的轰击 辐射的照射 化学反应 生物过程 机械压力 稀土荧光材料优点有:. 1)发光谱带较窄,发光颜色较纯。 2)吸收光能的力相对来说很强,对于光能的转换效率很高 3)发射波长分布区域宽 4)性质稳定,对于功率较大的高能辐射、电子束和都有极强的承受能力[3]。 正是由于稀土荧光材料具有以上优点,使得稀土荧光材料在生产、生活中应

稀土发光配合物

稀土发光配合物的研究进展 稀土元素是指周期表中IIIB族元素,包括原子序数57的镧至71的镥十五个镧系元素以及原子序数21的钪与39的钇共十七个元素。稀土具有独特的物理和化学性能,特别是具有特异的光、电、磁和催化性能,己在能源、信息、环保、农业和国防等各方面获得了重要的应用,因此,在国际上稀土被称为21世纪的新材料[1]。深入开展稀土化学研究对稀土资源的开发和利用有着重要意义[2]。各国纷纷投入大量的人力、物力和经费进行研究与开发,预期在近年内将不断出现新的稀土功能材料,并取得突破。我国具有世界上最丰富的稀土资源,并具有中国特有的以钇族稀土为主的离子吸附型矿[3]。目前,我国己成为国际上生产和出口稀土的大国,量大而价廉,具备了比其他国家更优越的物质条件来从事稀土的研究和开发应用。稀土元素的特异性能来自于它们具有的特异电子构型[4-6]。从镧到镥随着原子序数从57到71的增大,在内层的4f轨道中逐一填充电子。这些4f轨道被外层完全充满的5s5p电子所屏蔽,故受外界的电场、磁场和配位场等影响较小。稀土离子的定域化和4f电子的不完全填充都将反映在稀土化合物的性质中。 稀土发光材料具有许多优点:吸收能量的能力强,转换效率高;可发射从紫外光到红外光的光谱,特别是在可见光区有很强的发射能力;荧光寿命从纳秒到毫秒,跨越6个数量级;它们的物理化学性能稳定,能承受大功率的电子束、高能射线和强紫外光子的作用等。今天,稀土发光材料已广泛应用于显示现像、新光源、X射线增感屏、核物理核辐射长的探测和记录、医学放射学图像的各种摄像技术中,并向其他高科技领域扩展。 另外稀土有机配合物发光是无机发光与有机发光、生物发光研究的交叉科学,有着重要的理论意义和应用研究价值[1]。这类配合物越来越被广泛地应用于工业、农业、医药学及其他高技术产业,而这些应用研究又促进了有机化学及生命科学研究。我国稀土资源丰富、分布广泛。为了使其在国民经济中得到更广泛的应用,深入开展稀土有机配合物发光的研究就显得很重要了。 稀土有机配合物是众多金属有机配合物的重要的一大类,配合物(又叫络合物)是指由配位键结合的化合物。稀土有机配合物发光体中的金属称之为中心金属离子很类似于无机发光体中的激活剂离子。有机部分称之为配体,与发光有关的稀土有机配合物有以下划分方法[1]: (1)从有机配体种类上划分,可有二元及多元配合物; (2)从中心稀土离子数目上划分,可有单核、双核及多核配合物;

稀土发光材料的特点及应用介绍

稀土发光材料的特点及应用介绍 专业:有机化学姓名:杨娟学号:201002121343 发光是物体把吸收的能量转化为光辐射的过程。当物质受到诸如光照、外加电场或电子束轰击等的激发后,吸收外界能量,处于激发状态,它在跃迁回到基态的过程中,吸收的能量会通过光或热的形式释放出来。如果这部分能量是以光的电磁波形式辐射出来,即为发光。 所谓的稀土元素,是指镧系元素加上同属IIIB族的钪Sc和钇Y,共17种元素。这些元素具有电子结构相同,而内层4f电子能级相近的电子层构型、电价高、半径大、极化力强、化学性质活泼及能水解等性质,故其应用十分广泛。 1稀土发光材料的发光特性 稀土是一个巨大的发光材料宝库,稀土元素无论被用作发光(荧光)材料的基质成分,还是被用作激活剂,共激活剂,敏化剂或掺杂剂,所制成的发光材料,一般统称为稀土发光材料或稀土荧光材料。 物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光,另一类是物体受激发吸收能量而跃迁至激发态(非稳定态)在返回到基态的过程中,以光的形式放出能量。 因为稀土元素原子的电子构型中存在4f轨道,当4f电子从高的能级以辐射驰骋的方式跃迁至低能级时就发出不同波长的光。稀土元素原子具有丰富的电子能级,为多种能级跃迁创造了条件,从而获得多种发光性能。 稀土发光材料优点是发光谱带窄,色纯度高色,彩鲜艳;吸收激发能量的能力强,转换效率高;发射光谱范围宽,从紫外到红外;荧光寿命从纳秒跨越到毫秒6个数量级,磷光最长达十多个小时;材料的物理化学性能稳定,能承受大功率的电子束,高能射线和强紫外光的作用等。今天,稀土发光材料已广泛应用于显示显像,新光源,X射线增感屏,核物理探测等领域,并向其它高技术领域扩展。 2稀土发光材料的合成方法 稀土发光材料的合成方法包括水热合成法、高温固相合成法、微波合成法、溶胶——凝胶法、微波辐射法、燃烧合成法以及共沉淀法。 2. 1 水热合成法

发光稀土配合物mine

发光稀土配合物Eu(phen)2 (NO3)3 的制备 一、实验要求 (一)学习Ln(phen)2(NO3)3的制备原理和方法 (二)观察配合物的发光现象 (三)了解Eu(Ⅲ)配合物发光的基本原理 二、实验原理 (一)发光配合物Eu(phen)2·(NO3)3的制备原理 稀土离子为典型的硬酸,根据硬软酸碱理论硬-硬相亲原则,它们易跟含氧或氮等配位原子的硬碱配位体络合。 稀土配合物的合成可采用的方法有: 1、稀土盐(REX3)在溶剂(S)中与配体(L)直接反应或氧化物与酸直接反应: REX3+nL+mS——REX3.nL.mS REX3+nL——REX3.nL RE2O3+2H n L——2H n-3REL.+3H2O 2、交换反应:利用配位能力强的配体L’或螯合剂Ch’取代配位能力弱的L、X或螯合剂Ch。 REX3+M n L—REL-(n-3)+M n X n-3 REX3.nL +mL’—REX3.mL’+nL 也可利用稀土离子取代铵、碱金属或碱土金属离子。 MCh2-+RE3+――RECh+M+ 其中M+=Li+、Na+、K+、NH4+等。 3、模板反应:配体原料在与金属形成配合物的过程中形成配体。如,稀土酞菁配合物 的合成。 稀土的硝酸盐、硫氰酸盐、醋酸盐或氯化物与邻菲咯啉按方法1作用时,都可得到RE:phen=1:2的化合物。 本实验中,起始原料Eu2O3、Tb3O4与HNO3反应完全蒸干后得到Ln(NO3)3.nH2O(Ln=Eu、Tb,n=5或6)后,使其在乙醇溶剂中与配体phen直接反应,生成产物。反应方程式为:Ln(NO3)3·nH2O+2phen→Ln(phen)2·(NO3)3+nH2O 产物为白色,紫外灯下发出红色荧光。 (二)配合物Ln(phen)2·(NO3)3的发光机理 首先,配位体phen有效地以吸收紫外光的能量,电子从其基态跃迁到激发态(过程1);由于三价稀土离子Ln(Ⅲ)以配位键与phen相连,三价稀土离子的激发态与phen的激发态能量相匹配,处于激发态的phen通过非辐射跃迁的方式将能量传递给Ln(Ⅲ)离子激发态(过程2);最后电子从Ln(Ⅲ)离子激发态回到基态,将能量以光子的形式放出(过程3),这就是我们所能看到的发光。在整个过程中,配体phen能有效地吸收能量并有效地将能量传递给中心Ln(Ⅲ)离子,这对于增强Ln(Ⅲ)离子的发光是十分重要的,人们把发光配合物中配体的这种作用比喻为―天线效应‖。 三、实验仪器和试剂 1、仪器:分析天平、蒸发皿、烧杯(50ml、10ml)、恒温水浴锅、小漏斗、表面皿、玻璃

稀土配合物研究进展总结

稀土元素 稀土配合物研究进展稀土元素包括镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)这15种镧系元素以及与镧系元素密切相关的钪(Sc)和钇(Y),共17种元素。根据稀土元素物理化学性质的相似性和差异性,除钪之外划分为三组:La-Nd为轻稀土,Sm-Ho为中稀土,Er-Lu加上Y为 重稀土。稀土离子发光具有线性、不重叠的和可辨认的发射谱带,更特殊的是它们比有机荧光团和半导体荧光纳米晶体(NCS)的谱带宽度更窄。这是由于发射激发态和基态具有相同的fn电子结构,并且f轨道被外层的s和p层电子所屏蔽。同样的原因,稀土离子的发射波长不受环境影响,不像有机荧光团,它们会随溶液性质[3]或pH值而改变发射波长。镧系稀土离子在可见和紫外光谱范围内具有很小的吸收系数,故无机稀土发光材料的发光强度低。有些有机配体吸光系数比较高,与稀土离子配位后,配体分子(天线) 在靠近稀土离子的位置使其敏化,通过天线效应提高了稀土离子的发光强度,这种有机稀土发光材料成为人们研究的重点。羧酸是合成稀土配合物的一类常用配体。羧基可以多种方式与稀土离子络合,同时具有芳香环的羧酸类配体,它们在结构上具有刚性和稳定性,已被广泛用于稀土离子配位聚合物的研究稀土配合物的配位特性 稀土配合物的配位特性 配体中含有负电荷的氧原子时,一般可以形成较稳定的稀土配合物。N-酰化氨基酸 一般以阴离子形式通过羧基氧与稀土离子配位,而氨基中氮与酰基中氧都不参与配位[4]。对于稀土离子来说,H2O也是一种很强的配体,与稀土离子的络合能力比较强。在选择配体时,不能选择比水配位能力弱的配体,因为水会与配体竞争配位,因此要选择在极性比较弱的溶剂中反应。而含有羧基的配体与稀土离子配位后可以在水溶液中析出相应的稀土配合物,但是这种稀土配合物往往会含有配位水分子,而含配位水的稀土配合物的脱水是非常困难的[5]。 稀土配合物中稀土离子的配位数一般比较高,主要是由稀土离子较大的半径和以离 子型为主的键型特点决定的。当稀土离子与配体的相对大小合适的情况下,形成的稀土 配合物中的稀土离子一般都是八或者八以上配位的。配合物中稀土离子的价态一般为正三价,含有的正电荷较高,如果从电中性的角度看,为了满足电中性,稀土离子也容易形成较高配位数的比较稳定的稀土配合物。弱碱性的配位原子如含N原子的联吡啶和邻菲啰啉等中性配体,它们作为第二配体时,也可以与稀土离子配位[5]。。 稀土有机配合物在光伏器件中的应用

发光稀土配合物Ln(phen)2(NO3)3的制备

实验四发光稀土配合物Ln(phen)2 (NO3)3 (Ln = Eu、Tb)的制备 一、实验要求 (一)学习Ln(phen)2(NO3)3的制备原理和方法 (二)观察配合物的发光现象 (三)了解Eu、Tb(Ⅲ)配合物发光的基本原理 (四)利用荧光光谱考察稀土配合物的荧光性质 二、实验原理 稀土指位于周期表中B族的21号元素钪(S C)、39号元素钇(Y)和57号至71号镧系元素镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)和镥(Lu)共17种元素。常用符号RE表示。 我国盛产稀土元素,储量居世界之首。近年来,稀土的产量也位于世界前列。在我国,发展稀土的应用具有很大的资源优势。 在稀土化学中,稀土配位化合物占有非常重要的地位。本实验通过合成一种简单的稀土配合物并观察其发光现象,从而获得一些有关稀土配合物的制备及发光性质的初步知识。 (一)发光配合物Eu(phen)2·(NO3)3的制备原理 稀土离子为典型的硬酸,根据硬软酸碱理论中硬-硬相亲原则,它们易跟含氧或氮等配位原子的硬碱配位体络合。能与稀土离子形成配合物的典型配位体有H2O、acac-(乙酰丙酮负离子)、Ph3PO(三苯基氧化膦)、DMSO(二甲亚砜)、EDTA(乙二胺四乙酸),dipy(2,2’–联吡啶)、phen(1,10-邻菲咯啉)以及阴离子配位体如F-、Cl-、Br-、NCS-、NO3-等。 在RE(Ⅲ)-氮的配合物中,胺能跟据RE(Ⅲ)形成稳定的配合物,常见的为多胺配合物。典型的多胺配位体有二配位基的2,2’-联吡啶、1,10-邻菲咯啉、和三配位基的三联吡啶等。由这些配位体形成的配合物实例有[La(bipy)2(NO3)3](十配位)、[Ln(terpy)3](ClO4)3(九配位)、[Ln(phen)4](ClO4)3(八配位)等。 稀土配合物的合成可采用的方法有: 1、稀土盐(REX3)在溶剂(S)中与配体(L)直接反应或氧化物与酸直接反应:REX3+nL+mS——REX3.nL.mS REX3+nL——REX3.nL RE2O3+2H n L——2H n-3REL.+3H2O 2、交换反应:利用配位能力强的配体L’或螯合剂Ch’取代配位能力弱的L、X或螯合剂Ch。 REX3+M n L—REL-(n-3)+M n X n-3 REX3.nL +mL’—REX3.mL’+nL 也可利用稀土离子取代铵、碱金属或碱土金属离子。 MCh2-+RE3+――RECh+M+ 其中M+=Li+、Na+、K+、NH4+等。 3、模板反应:配体原料在与金属形成配合物的过程中形成配体。 如,稀土酞菁配合物的合成。 稀土的硝酸盐、硫氰酸盐、醋酸盐或氯化物与邻菲咯啉按方法1作用时,都可得到RE:phen=1:2的化合物。 本实验中,起始原料Eu2O3、Tb3O4与HNO3反应完全蒸干后得到Ln(NO3)3.nH2O(Ln=Eu、Tb,n=5或6)后,使其在乙醇溶剂中与配体phen直接反应,生成产物。反应方程式为:

上转换发光材料

上转换发光材料 上转换发光的概念: 上转换发光是在长波长光激发下,可持续发射波长比激发波长短的光。本质上是一种反-斯托克斯(Anti-Stokes)发光,即辐射的能量大于所吸收的能量。斯托克斯定律认为材料只能受到高能量的光激发,发出低能量的光,换句话说,就是波长短的频率高的激发出波长长的频率低的光。比如紫外线激发发出可见光,或者蓝光激发出黄色光,或者可见光激发出红外线。但是后来人们发现,其实有些材料可以实现与上述定律正好相反的发光效果,于是我们称其为反斯托克斯发光,又称上转换发光。 上转换发光技术的发展: 早在1959年就出现了上转换发光的报道,Bloembergc在Physical Review Letter上发表的一篇文章提出,用960nm的红外光激发多晶ZnS,观察到了525nm绿色发光。1966年Auzcl在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb离子时,Er3+、Ho3+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。整个60-70年代,以Auzal 为代表,系统地对掺杂稀土离子的上转换特性及其机制进行了深入的研究,提出掺杂稀土离子形成亚稳激发态是产生上转换功能的前提。迄今为止,上转换材料主要是掺杂稀土元素的固体化合物,利用稀土元素的亚稳态能级特性,可以吸收多个低能量的长波辐射,从而可使人眼看不见的红外光变成可见光。 80年代后期,利用稀土离子的上转换效应,覆盖红绿蓝所有可见光波长范围都获得了连续室温运转和较高效率、较高输出功率的上转换激光输出。1994年Stanford大学和IBM公司合作研究了上转换应用的新生长点——双频上转换立体三维显示,并被评为1996年物理学最新成就之一。2000年Chen 等对比研究了Er/Yb:FOG氟氧玻璃和Er/Yb:FOV钒盐陶瓷的上转换特性,发现后者的上转换强度是前者的l0倍,前者发光存在特征饱和现象,提出了上转换发光机制为扩散.转移的新观点。近几年,人们对上转换材料的组成与其上转换特性的对应关系作了系统的研究,得到了一些优质的上转换材料。 上转换发光的机理:

稀土配合物发光材料的制备

2009届应用化工技术专业毕业设计(论文) 题目:稀土配合物发光材料的制备班级:化工0 9 0 2 姓名:汤孟波 学号: 200900232028 指导老师:邢静 完成时间: 2012 年 6 月

前言 由于稀土离子具有特殊的4f电子组态能级、4f5d能级及电荷转移带结构,使稀土发光材料已经成为信息显示、绿色照明工程光电子等领域的支柱材料。稀土发光材料可分为光致发光(以紫外光或可见光激发)、阴级射线发光(以电子束激发)、X射线发光(以X射线激发)以及电致发光(以电场激发)材料等。与非稀土荧光材料相比,稀土荧光材料其发光效率及光色等性能都更胜一筹。近年来,稀土发光材料的应用得到了迅猛发展,被广泛用于终端显示、光电子器件及激光技术领域。基于稀土离子4f电子跃迁的电子学、光学等充满前景的独特性质与纳米材料特性相结合,使具有表面特性和量子尺寸效应的稀土纳米复合发光材料是很有前景的一类功能材料[1]。本文将以氧化钇稀土制备为例,介绍稀土发光材料的制备过程。 摘要 稀土发光材料在照明、阴极射线光管和场发射等领域已得到广泛的应用;在节能灯、三基色、荧光粉、发光二极管灯、平面无汞荧光灯节能照明领域拥有无限广阔前景。文章重点论述了稀土——氧化钇用离子交换法和萃取法的制备和其各自特点与稀土的应用。 关键字:稀土氧化钇萃取离子交换

目录 第一章氧化钇的生产方法 1.1萃取法 (3) 1.1.1萃取法的工艺体系分类 (3) 1.1.2萃取法的工艺流程图 (5) 1.1.3有机相准备 (5) 1.1.4除杂 (7) 1.1.5萃取 (7) 1.1.6二步萃取 (8) 1.2离子交换法 (8) 1.2.1准备 (9) 1.2.2交换 (10) 1.2.3淋洗 (10) 1.2.4沉淀 (11) 1.2.5树脂再生 (11) 第二章产品质量标准 2.1产品质量标准(参考标准) (12) 第三章氧化钇的应用 3.2氧化钇的应用 (13) 参考文献 (15)

稀土发光材料的合成方法

稀土发光材料的合成方法 130604 3113001530 吴文高 摘要: 综述了目前国内外稀土发光材料的几种合成方法,包括传统的高温固相反应法、几种软化学法(溶胶-凝胶法、低温燃烧法、水热合成法、缓冲溶液沉淀法)和物理合成法(微波辐射合成法, CO2激光加热气相沉积合成法)。总结了每种合成方法的优缺点,并对稀土发光材料新的合成方法进行了展望。 关键词: 稀土;发光材料;合成方法 Abstract: T his paper summarized several of rare earth luminescent materials synthetic methods used presently at home and abroad. The synthetic methods included high temperature solid method, sol-gel process, combustion synthesis, hydro thermal synthesis, microwave radiation method and soon. The advantages and shortcoming s of every method were discussed. The synthetic methods o f rare earth luminescent materials we re prospected. Key words : rare earth; luminescent mate rials; synthetic methods 自从20世纪70年代灯用稀土荧光粉商品化以来,发光材料的研究进入了一个新的阶段。由于稀土发光材料具有许多优良的性能和广泛的用途,目前已成为发光材料研究的一个热点。新的稀土发光材料不断涌现,随之也出现了一些新的合成方法,以进一步提高发光材料的性能。本文系统综述了稀土发光材料的各种合成方法,总结出了每一种方法的优缺点,并对今后的发展做一展望。 一,高温固相反应法 高温固相反应法是发光材料的一种传统的合成方法。固相反应通常取决于材料的晶体结构及其缺陷结构,而不仅是成分的固有反应性。在固态材料中发生的每一种传质现象和反应过

稀土发光材料及其应用(精)

稀土发光材料及其应用 1、概述稀土离子的发光特性,主要取决于稀土离子4f壳层电子的性质。随着稀土离子4f壳层电子数量的变化,表现出不同的跃迁形式和极其丰富的能级跃迁。研究表明,稀土离子的4fN电子组态中,有1639个能级,能级之间的可跃迁数目高达199177个,可观察到的谱线达30000多条,如果再涉及到4f—5d的能级跃迁,则数目更多。因而,稀土离子可以吸收或发射从紫外到红外区的各种波长的光,形成多种多样的发光材料。由于稀土离子特有的发光特性,为其作为高效发光材料奠定了基础,并在发光学和发光材料的发展过程中起着里程碑的作用。如1964年Y2O3∶Eu和Y2O3S∶Eu等彩电红粉的出现,使彩电的亮度提高到一个新的水平;20世纪70年代出现的红外变可见上转换发光材料,从理论上提出反Stokes效应;1974年报道的稀土三基色荧光粉为新一代荧光灯奠定了基础。近30年来,稀土发光材料正在逐渐取代非稀土发光材料,已经在光致发光、电致发光、阴极射线发光和X射线发光材料方面获得重要而广泛的应用,稀土发光材料的研究也成为发光材料的研究重点和前沿,国内外的竞争非常激烈。 2、国内本 行业的发展现状及未来发展趋势(1)阴极射线发光材料主要应用于电视机、计算机、示波器、雷达等各种荧光屏和显示器,其中在彩色阴极射线管(CRT)的发展最快,在彩色电视的发展过程中,稀土荧光粉起到了里程碑的作用。在20世纪60年代中期,成功地合成了YVO4∶Eu、Y2O3∶Eu和Y2O3S∶Eu等稀土红色荧光粉,突破了红粉亮度上不去的障碍,使彩电的亮度提高到一个新的水平。目前,国内普通彩电中使用的蓝粉和绿粉仍然是硫化锌系列荧光粉,但由于硫化锌型绿粉的光衰比蓝粉和红粉的大,需要增加电视机的色彩调节,因此需要开发新的绿色荧光粉。近几年随着国外新型稀土蓝色荧光粉和绿色荧光粉的开发成功,正在取代传统的荧光粉,使高清晰度大屏幕彩电开始大批量投放市场,进入平常百姓家庭。对于彩色电视飞点扫描管、束电子引示管、扫描电子显微镜探测镜等所需的超短余辉荧光粉(τ≤μs),目前都是Ce3+激活的,其寿命非常短,一般在30~100ns。(2)电致发光材料固体平板显示技术是显示技术领域的主要发展趋势之一,液晶显示、电致发光显示、等离子体显示是三种主要的平板显示技术。电致发光平板化微机终端显示器用于便携式微机,已经在美国、日本、芬兰有商品生产,预计在今后将迅速发展,与阴极射线发光分庭抗争。目前已商品生产的电致发光材料是ZnS∶Mn。为实现彩色电致发光平板显示,国内外许多实验室正在大力研究掺杂稀土的薄膜材料。(3)X射线发光材料以稀土荧光粉为主的新的X射线增感屏作为X射线发光材料已日益受到人们的重视,并得到不断的发展,近年来新发现的几种荧光粉,不仅具有与CaWO4同样的照

相关主题
文本预览
相关文档 最新文档