当前位置:文档之家› 涡流冷壁推力室传热模型分析计算

涡流冷壁推力室传热模型分析计算

涡流冷壁推力室传热模型分析计算
涡流冷壁推力室传热模型分析计算

第4章 螺旋桨模型的敞水试验

274 第四章 螺旋桨模型的敞水试验 螺旋桨模型单独地在均匀水流中的试验称为敞水试验,试验可以在船模试验池、循环水槽或空泡水筒中进行。它是检验和分析螺旋桨性能较为简便的方法。螺旋桨模型试验对于研究它的水动力性能有重要的作用,除为螺旋桨设计提供丰富的资料外,对理论的发展也提供可靠的基础。 螺旋桨模型敞水试验的目的及其作用大致是: ① 进行系列试验,将所得结果分析整理后绘制成专门图谱,供设计使用。现时各类螺旋桨的设计图谱都是根据系列试验结果绘制而成的。 ② 根据系列试验的结果,可以系统地分析螺旋桨各种几何要素对性能的影响,以供设计时正确选择各种参数,并为改善螺旋桨性能指出方向。 ③ 校核和验证理论方法必不可少的手段。 ④ 为配合自航试验而进行同一螺旋桨模型的敞水试验,以分析推进效率成分,比较各种设计方案的优劣,便于选择最佳的螺旋桨。 螺旋桨模型试验的重要性如上所述,但模型和实际螺旋桨形状相似而大小不同,应该在怎样的条件下才能将模型试验的结果应用于实际螺旋桨,这是首先需要解决的问题。为此,我们在下面将分别研究螺旋桨的相似理论以及尺度作用的影响。 § 4-1 敞水试验的相似条件 从“流体力学”及“船舶阻力”课程中已知,在流体中运动的模型与实物要达到力学上的全相似,必须满足几何相似、运动相似及动力相似。 研究螺旋桨相似理论的方法甚多,所得到的结果基本上是一致的。下面将用量纲分析法进行讨论,也就是用因次分析法则求出螺旋桨作用力的大致规律,然后研究所得公式中各项的物理意义。可以设想,一定几何形状的螺旋桨在敞水中运转时产生的水动力(推力或转矩)与直径D (代表螺旋桨的大小)、转速n 、进速V A 、水的密度ρ、水的运动粘性系数ν及重力加速度g 有关。换言之,我们可用下列函数来表示推力T 和各因素之间的关系,即 T = f 1(D ,n ,V A ,ρ,ν,g ), 为了便于用因次分析法确定此函数的性质,将上式写作: T = k D a n b c A V ρ d ν e g f (4-1) 式中k 为比例常数,a 、b 、c 、d 、e 、f 均为未知指数。 将(4-1)式中各变量均以基本量(即质量M 、长度L 、时间T )来表示,则得: 2T ML =f 2e 2 d 3c b a 1?? ? ????? ????? ????? ????? ??T L T L L M T L T kL

液压缸计算

液压缸设计计算说明 系统压力为1p =25 MPa 本系统中有顶弯缸、拉伸缸以及压弯缸。以下为这三种液压缸的设计计算。 一、 顶弯缸 1 基本参数的确定 (1)按推力F 计算缸筒内径D 根据公式 3.5710D -=? ① 其中,推力F=120KN 系统压力1p =25 MPa 带入①式,计算得D= 78.2mm ,圆整为D = 80 mm (2)活塞杆直径d 的确定 确定活塞杆直径d 时,通常应先满足液压缸速度或速比的要求,然后再校核其结构强度和稳定性。若速比为?,则 d = ② 取?=1.6,带入②式,计算得d =48.9mm ,圆整为d =50mm 8050 D d ?===1.6 (3)最小导向长度H 的确定 对一般的液压缸,最小导向长度H 应满足 202 L D H ≥+ ③ 其中,L 为液压缸行程,L=500mm

带入③式,计算得H=65mm (4)活塞宽度B 的确定 活塞宽度一般取(0.6~1.0)B D = ④ 得B=48mm~80mm ,取B=60mm (5)导向套滑动面长度A 的确定 在D <80mm 时,取(0.6~1.0)A D = ⑤ D >80mm 时,取(0.6~1.0)A d = ⑥ 根据⑤式,得A=48mm~80mm ,取A=50mm (6)隔套长度C 的确定 根据公式2 A B C H +=- ⑦ 代入数据,解得C=10mm 2 结构强度计算与稳定校核 (1)缸筒外径 缸筒内径确定后,有强度条件确定壁厚δ,然后求出缸筒外径D 1 假设此液压缸为厚壁缸筒,则壁厚1]2D δ= ⑧ 液压缸筒材料选用45号钢。其抗拉强度为σb =600MPa 其中许用应力[]b n σσ=,n 为安全系数,取n=5 将数据带入⑧式,计算得δ=8.76mm 故液压缸筒外径为D 1=D+2δ=97.52mm ,圆整后有 D 1=100mm ,缸筒壁厚δ=10mm (2)液压缸的稳定性和活塞杆强度验算 按速比要求初步确定活塞杆直径后,还必须满足液压缸的稳定性及其

螺旋桨计算公式

直升机螺旋桨升力计算公式 直升机螺旋桨升力计算公式 一般直升机的旋翼系统是由主旋翼.尾旋翼和稳定陀螺仪组成,如国产直-8,直-9。也有共轴反旋直升机,主旋翼是上下两层反转螺旋桨,无尾翼,如俄罗斯的卡-28。 1.现在的直升机螺旋桨(叫旋翼)的桨叶是由碳纤维和玻璃钢纤维与复合材料制造而成。 有一定的弹性,不转时,桨叶略有下垂弯曲。当螺旋桨旋转时,由于离心力的原理,桨叶会被拉直。打个比方,我们看杂技“水流星”吧,两只水碗栓在一根绳子两端,放着不动时,绳子是支持不了水碗的,当旋转起来后,我们看到水碗和绳子象直线一样, 空中飞舞。 2.直升机的主螺旋桨是怎么支撑飞机的重量?这个问题就是直升机的飞行原理:(以一般直升机为例)直升机能在空中进行各种姿态的飞行,都是由主旋翼(你讲的螺旋桨) 旋转产生的升力并操纵其大小和方向来实现的。升力大于重量时,就上升,反之,就下降。 平衡时,就悬停在空中。直升机的升力大小,不但决定于旋翼的转速, 而且决定于旋翼的安装角(又称桨叶角)。升力随着转速.桨叶角的增大而增大; 随着转速.桨叶角的减小而减小。直升机在飞行时,桨叶在转每一圈的过程中, 桨叶角都是不同的;而且,每片桨叶的桨叶角也是不同的。这才使直升机能够前. 后仰, 左.右倾,完成各种姿态。直升机尾旋翼的转速和桨叶角的变化同主旋翼原理相同,控制直升机的左转弯.右转弯和直飞。不管天空有风无风,直升机要稳定飞行, 不变航向,也要靠稳定陀螺仪控制尾旋翼来完成。总之,直升机旋翼系统非常复杂,我只讲直升机空中姿态变化与旋翼的关系。 1,直接影响螺旋桨性能的主要参数有: a.直径D——相接于螺旋桨叶尖的圆的直径。通常,直径越大,效率越高, 但直径往往受到吃水和输出转速等的限制; b.桨叶数N; c.转速n——每分钟螺旋桨的转数; d.螺距P——螺旋桨旋转一周前进的距离,指理论螺距; e.滑失率——螺旋桨旋转一周,船实际前进的距离与螺距之差值与螺距之比; f.螺距比——螺距与直径的比(P/D),一般在0.6~1.5之间;一般地说来,高速轻载船选取的值比较大,低速重载的船选取的值比较小; g.盘面比——各桨叶在前进方向上的投影面积之和与直径为D的圆面积之比。通常,高转速的螺旋桨所取的比值小,低速、大推力的螺旋桨所取的比值大。例如,拖轮的螺旋桨盘面比大于1.2甚至更大的情况也不少见; 机翼升力计算公式 升力L=1/2 *空气密度*速度的平方*机翼面积*机翼升力系数(N) 机翼升力系数曲线如下注解:在小迎角时曲线斜率是常数。

螺旋桨推力计算模型

螺旋桨推力计算模型 根据船舶原理知:42D n K T T ρ=(T K 为螺旋桨的淌水特性) 通过资料查得:T K 为进速系数J 的二次多项式,但无具体的公式表示,只能通过图谱查得,同时t K K T T -=10 (0T K 为淌水桨在相同的转速情况下以速度为V A 运动时的推力、进速系数nD W U nD V J P A p )1(-==) 估算推力减额分数的近似公式: 1. 汉克歇尔公式: 2. 对于单螺旋桨标准型商船(C B =~) t=对于单螺旋桨渔船: t=对于双螺旋桨标准型商船(C B =~) t=商赫公式 对于单桨船 t=KW 式中:K 为系数 K=~ 适用于装有流线型舵或反映舵者 K=~ 适用于装有方形舵柱之双板舵者 K=~ 适用于装单板舵者 对于双螺旋桨船采用轴包架者:t=+ 对于双螺旋桨船采用轴支架者:t=+ 3. 哥铁保公式 对于单螺旋桨标准型商船(C B =~) P B WP B C C C C t ??? ? ??+-=5.13.257.1 对于双螺旋桨标准型商船(C B =~) B WP B C C C t 5.13 .267.1+-= 4. 霍尔特洛泼公式 对于单螺旋桨船 stern P C BT D C BC B L t 0015.0)/(1418.0000524.00585.1)/(001979.02101+--+-=

式中:10C 的定义如下: 当L/B> L B C /10= 当L/B< )134615385.0//(003328402.025.010--=L B C 对于双螺旋桨船: BT D C t B /1885.0325.0-= 估算伴流分数的近似公式 1. 泰洛公式(适用于海上运输船舶) 对于单螺旋桨船 05.05.0-=B C ω 对于双螺旋桨船 20.055.0-=B C ω 式中C B 为船舶的方形系数。 2. 汉克歇尔公式: 对于单螺旋桨标准型商船(C B =~) 18.070.0-=p C ω 对于单螺旋桨渔船: 28.077.0-=p C ω 对于双螺旋桨标准型商船(C B =~) 3.07.0-=p C ω 式中C p 为船舶的纵向棱形系数。 3. 巴浦米尔公式 ωω?-?=D C x B 3165.0 式中: C B 为船舶的方形系数; ?为船的排水量(3m ); D 为螺旋桨直径(m ); x 为指数,x=1时适用于中线处的螺旋桨,x=2是适用于侧螺旋桨 ω?为伴流系数修正值,与傅氏数gL V F r = 有关,可据下式决定: 当2.0?r F 时, ()2.01.0-=?r F ω

油缸压力计算公式

油缸压力计算公式 油缸工作时候的压力是由负载决定的,物理学力的压力等于力除以作用面积(即P=F/S) 如果要计算油缸的输出力,可按一下公式计算: 设活塞(也就是缸筒)的半径为R (单位mm) 活塞杆的半径为r (单位mm) 工作时的压力位P (单位MPa) 则 100吨油缸,系统压力16Mpa,请帮我计算下选用的油缸活塞的直径是多少?怎么计算的? 理论值为:282mm 16Mpa=160kgf/cm2 100T=100000kg 100000/160=625cm 液压油缸行程所需时间计算公式 当活塞杆伸出时,时间为(15××缸径的平方×油缸行程)÷流量 当活塞杆缩回时,时间为[15××(缸径的平方-杆径的平方)×油缸行程]÷流量 缸径单位为m 杆径单位为m 行程单位为m 流量单位为L/min 套筒式液压油缸的行程是怎么计算的,以及其工作原理 形成计算很简单: 油缸总长,减去两端盖占用长度,减去活塞长度,即为有效形成,一般两端还会设置缓冲防撞机构或回路。工作原理: 1、端盖进油式:油缸的两端盖接有管路一端通油活塞及活塞杆向令一个方向运行;结构紧凑适合小型油缸 2、活塞杆内通油式:活塞杆为中空,内通油,活塞与活塞杆链接部位有通油孔,通油后活塞及活塞杆想另一方向运行;适合大型油缸。 3、缸体直入式:大吨位单作用油缸,一端无端盖(端盖与缸体焊接一体),直接对腔体供油,向令一方向做功,另一端端盖进油回程或弹簧等储能元件回程。 大致如此几种 我有一台液压油缸柱塞直径40毫米缸体外径150毫米高度400毫米请专业人士告诉我它的吨位最好能告诉我计算公式谢谢 油泵压力10MPA 一台液压机械的压力(吨位)是与柱塞直径和供油压力有关。 其工作压力(吨位)的计算: 柱塞的受力面积×供油压力=工作压力(吨位) 柱塞的受力面积单位:mm2 供油压力单位:N/mm2 工作压力(吨位)单位:N 1000Kgf=1Tf(吨力) 油缸15到25吨的力要多大的钢径 油缸的吨位和缸径的大小还有系统提供的压力有关。 例如油缸内径是100mm, 系统提供的压力是16MPA 50吨液压油缸内外径是多少 则:

模型飞机螺旋桨原理与拉力计算

模型飞机螺旋桨原理与拉力计算 一、工作原理 可以把螺旋桨看成是一个一面旋转一面前进的机翼进行讨论。流经桨叶各剖面的气流由沿旋转轴方向的前进速度和旋转产生的切线速度合成。在螺旋桨半径r1和r2(r1<r2)两处各取极小一段,讨论桨叶上的气流情况。V—轴向速度;n —螺旋桨转速;φ—气流角,即气流与螺旋桨旋转平面夹角;α—桨叶剖面迎角;β—桨叶角,即桨叶剖面弦线与旋转平面夹角。显而易见β=α+φ。 空气流过桨叶各小段时产生气动力,阻力ΔD和升力ΔL,见图1—1—19,合成后总空气动力为ΔR。ΔR沿飞行方向的分力为拉力ΔT,与旋螺桨旋转方向相反的力ΔP 阻止螺旋桨转动。将整个桨叶上各小段的拉力和阻止旋转的力相加,形成该螺旋桨的拉力和阻止螺旋桨转动的力矩。 从以上两图还可以看到。必须使螺旋桨各剖面在升阻比较大的迎角工作,才能获得较大的拉力,较小的阻力矩,也就是效率较高。螺旋桨工作时。轴向速度不随半径变化,而切线速度随半径变化。因此在接近桨尖,半径较大处气流角较小,对应桨叶角也应较小。而在接近桨根,半径较小处气流角较大,对应桨叶角也应较大。螺旋桨的桨叶角从桨尖到桨根应按一定规律逐渐加大。所以说螺旋桨是一个扭转了的机翼更为确切。 从图中还可以看到,气流角实际上反映前进速度和切线速度的比值。对某个螺旋桨的某个剖面,剖面迎角随该比值变化而变化。迎角变化,拉力和阻力矩也随之变化。用进矩比“J”反映桨尖处气流角,J=V/nD。式中D—螺旋桨直径。理论和试验证明:螺旋桨的拉力(T),克服螺旋桨阻力矩所需的功率(P)和效率(η)可用下列公式计算: T=Ctρn2D4 P=Cpρn3D5 η=J·Ct/Cp 式中:Ct—拉力系数;Cp—功率系数;ρ—空气密度;n—螺旋桨转速;D—螺旋桨直径。其中Ct和Cp取决于螺旋桨的几何参数,对每个螺旋桨其值随J变化。图1—1—21称为螺旋桨的特性曲线,它可通过理论计算或试验获得。特性曲线给出该螺旋桨拉力系数、功率系数和效率随前进比变化关系。是设计选择螺旋桨和计算飞机性能的主要依据之一。 从图形和计算公式都可以看到,当前进比较小时,螺旋桨效率很低。对飞行速度较低而发动机转速较高的轻型飞机极为不利。例如:飞行速度为72千米/小时,发动转速为6500转/分时,η≈32%。因此超轻型飞机必须使用减速器,降低螺旋桨的转速,提高进距比,提高螺旋桨的效率。 二、几何参数

如何确定模型发动机螺旋桨基本参数(精)

。 , , ——摘自 2005年第三期航空模型 如何确定模型发动机螺旋桨基本参数 刘文智 近来, 市售的模型发动机的螺旋桨以及相应的各种发动机日益增多, 使爱好者选择的地域不断扩大, 枝致使自制螺旋桨者越来越少。对于某种发动机所适用的螺旋桨, 常用其直径和螺距来表示。例如:在 25级运动机上, 将直经 254mm , 桨距 127mm 的螺旋桨表示为 D254×H127。使用市售商品螺旋桨,可按发动机的说明书来选择;若自制螺旋桨,对于 D254×H127这样一组数据, 其直径可知为 254mm ; 而桨叶角侧可用“桨叶角与桨距直径比的关系曲线图”得到。 为弄清上述关系,就需先了解一下螺旋桨的相关结构。螺旋桨的旋转平面称为旋转面; 桨叶叶各刨面的旋线与桨的旋转面之间的夹叫交,称为桨叶角。为了产生(拉力,螺旋桨桨叶的各个剖面被做成型翼座; 各翼型(弦线与旋转面之间的夹角就是浆叶角。飞行中螺旋桨旋转时,其桨叶的各个剖面与飞机一同做前进运动,这是螺旋桨叶做前进和旋转的合成运动,使螺旋桨前进。 桨叶旋转一周, 各剖面前进方向所通过的距离相同; 但螺旋桨桨叶个剖面的旋转运动距离相同; 叶尖最大, 向叶根逐渐变小; 从而使螺旋桨降叶各剖面的合成运动的距离和方向也不相同。为更好发挥螺旋桨工作效率, 其桨叶各剖面弦线须与其合成运动方向一致, 这就使螺旋桨桨叶成扭曲壮使桨叶角随半径而变化。如图所示75%、 50、%、 25%桨叶处的桨叶数值。在螺旋桨的根步(25%以内 ,由于发动机和机身的影响,拉力损失很大;在叶尖部分,由于“翼尖涡流”而产生的诱导阻力,也造成较大的拉力损失。 根据飞模型飞机的经验, 把发动机装在机身后, 可提高螺旋桨的工作效率; 这是因为螺旋桨后面无障碍物,从而推力损失减小了。这种布局,可使模型飞机的速度提高 10%左右。螺旋桨产生推(拉力效率最佳处,位于桨叶的 75%处附近。所以,螺旋桨的桨距就选用 75%R 出的桨距来代表;称其为名义桨距。

液压缸计算公式

液压缸计算公式 1、液压缸内径和活塞杆直径的确定 液压缸的材料选为Q235无缝钢管,活塞杆的材料选为Q235 液压缸内径: 4,F4== D,3.14,,p F:负载力 (N) 2A:无杆腔面积 () mm P:供油压力 (MPa) D:缸筒内径 (mm) :缸筒外径 (mm) D1 2、缸筒壁厚计算 π×,??ηδσψμ 1)当δ/D?0.08时 pDmax,,(mm) 02,p 2)当δ/D=0.08~0.3时 pDmax,,(mm) 02.3,-3ppmax 3)当δ/D?0.3时 ,,,,0.4pDpmax,,,,(mm) 0,,2,1.3p,pmax,, ,b,, pn δ:缸筒壁厚(mm) ,:缸筒材料强度要求的最小值(mm) 0 :缸筒内最高工作压力(MPa) pmax :缸筒材料的许用应力(MPa) ,p :缸筒材料的抗拉强度(MPa) ,b :缸筒材料屈服点(MPa) ,s

n:安全系数 3 缸筒壁厚验算 22,(D,D)s1(MPa) PN,0.352D1 D1P,2.3,lg rLsD PN:额定压力 :缸筒发生完全塑性变形的压力(MPa) PrL :缸筒耐压试验压力(MPa) Pr E:缸筒材料弹性模量(MPa) :缸筒材料泊松比 =0.3 , 同时额定压力也应该与完全塑性变形压力有一定的比例范围,以避免 塑性变形的发生,即: ,,(MPa) PN,0.35~0.42PrL 4 缸筒径向变形量 22,,DPDD,1r,,D,,,,(mm) 22,,EDD,1,,变形量?D不应超过密封圈允许范围5 缸筒爆破压力 D1PE,2.3,lg(MPa) bD 6 缸筒底部厚度 Pmax,(mm) ,0.433D12,P :计算厚度处直径(mm) D2 7 缸筒头部法兰厚度 4Fbh,(mm) ,(r,d),aLP F:法兰在缸筒最大内压下所承受轴向力(N) b:连接螺钉孔的中心到法兰内圆的距离(mm) :法兰外圆的半径(mm) ra

航速及螺旋桨计算书设绘通则

航速及螺旋桨计算书设绘通则

1 主题内容与适用范围 1.1主题内容 航速及螺旋桨计算书是计算船舶在要求吃水状态下的阻力、航速、螺旋桨几何要素、螺旋桨的强度校核、空泡校核、系柱推力和转速、重量、惯量及螺旋桨特性等。为绘制螺旋桨图和进行轴系扭振计算提供依据。 1.2适用范围 应用MAU型或楚思德B型螺旋桨设计图谱设计常规螺旋桨并计算航速。 2 引用标准及设绘依据图纸 2.1引用标准 下列标准所包含的条文,通过在本标准中引用而构成本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 a) GB4954-84 船舶设计常用文字符号 2.2 编制依据图纸 a)技术规格书或设计任务书; b)总布置图; c)静水力曲线图或表; d)阻力估算方法或船模试验报告; e)螺旋桨设计图谱; f)主机主要参数及特性曲线; g)减速齿轮箱主要参数。 3 基本要求 提供完整的航速及螺旋桨计算书。 4 内容要点 4.1 计算说明 说明应用上海船舶研究设计院电子计算机程序SC88-CR158计算或应用何种螺旋桨设计图谱直接计算。 4.2 主要参数 4.2.1 船舶数据:主尺度(见表1)、船型系数(见表2)。

船舶主尺度表1 船型系数表2 4.2.2 主机参数:型号X台数、额定功率、额定转速、转向(见表3)。 主机参数表3 4.2.3 减速齿轮箱参数:型号、台数、减速比(见表4)。

减速齿轮箱参数表4 4.2.4 螺旋桨设计要求:主机功率、螺旋桨设计转速、螺旋桨只数、螺旋桨浸深、螺旋桨旋向、桨叶形式和叶片数、桨毂形状和尺度(见表5)。 螺旋桨设计要求表5 4.3 计算阻力、有效功率曲线 根据阻力计算公式及图谱计算实船阻力或按船模试验报告换算实船阻力,绘制有效功率曲线。 4.4 推进因子及螺旋桨收到功率 根据船型特点、主机和齿轮箱参数、船模试验或应用经验公式确定轴系传递效率、螺旋桨收到功率、伴流分数、推力减额分数、相对旋转效率、船身效率。 4.5 航速计算 应用螺旋桨设计图谱计算。 4.6 螺旋桨空泡校核 应用伯努利及各种定理推导出校验空泡的衡准数,若不产生空泡的条件可直接应用勃力尔空泡图。 上述计算中应用的符号及单位,见表6。

液压油缸设计计算公式

液压油缸的主要设计技术参数 一、液压油缸的主要技术参数: 1.油缸直径;油缸缸径,内径尺寸。 2. 进出口直径及螺纹参数 3.活塞杆直径; 4.油缸压力;油缸工作压力,计算的时候经常是用试验压力,低于16MPa乘以1.5,高于16乘以1.25 5.油缸行程; 6.是否有缓冲;根据工况情况定,活塞杆伸出收缩如果冲击大一般都要缓冲的。 7.油缸的安装方式; 达到要求性能的油缸即为好,频繁出现故障的油缸即为坏。应该说是合格与不合格吧?好和合格还是有区别的。 二、液压油缸结构性能参数包括:1.液压缸的直径;2.活塞杆的直径;3.速度及速比;4.工作压力等。 液压缸产品种类很多,衡量一个油缸的性能好坏主要出厂前做的各项试验指标,油缸的工作性能主要表现在以下几个方面: 1.最低启动压力:是指液压缸在无负载状态下的

最低工作压力,它是反映液压缸零件制造和装配 精度以及密封摩擦力大小的综合指标; 2.最低稳定速度:是指液压缸在满负荷运动时没 有爬行现象的最低运动速度,它没有统一指标, 承担不同工作的液压缸,对最低稳定速度要求也 不相同。 3.内部泄漏:液压缸内部泄漏会降低容积效率, 加剧油液的温升,影响液压缸的定位精度,使液 压缸不能准确地、稳定地停在缸的某一位置,也 因此它是液压缸的主要指标之。 液压油缸常用计算公式 液压油缸常用计算公式 项目公式符号意义 液压油缸面积(cm 2 ) A =πD 2 /4 D :液压缸有效活塞直径(cm) 液压油缸速度(m/min) V = Q / A Q :流量(l / min) 液压油缸需要的流量(l/min) Q=V×A/10=A×S/10t V :速度(m/min) S :液压缸行程(m) t :时间(min) 液压油缸出力(kgf) F = p × A F = (p × A) -(p×A) ( 有背压存在时) p :压力(kgf /cm 2 ) 泵或马达流量(l/min) Q = q × n / 1000 q :泵或马达的几何排量(cc/rev) n :转速(rpm ) 泵或马达转速(rpm) n = Q / q ×1000 Q :流量(l / min) 泵或马达扭矩(N.m) T = q × p / 20π 液压所需功率(kw) P = Q × p / 612 管内流速(m/s) v = Q ×21.22 / d 2 d :管内径(mm) 管内压力降(kgf/cm 2 ) △ P=0.000698×USLQ/d 4 U :油的黏度(cst) S :油的比重

螺旋桨拉力计算

机翼升力计算公式 升力L=1/2 *空气密度*速度的平方*机翼面积*机翼升力系数(N) 机翼升力系数曲线如下注解:在小迎角时曲线斜率是常数。 在标识的1位置是抖振点,2位置是自动上仰点, 3位置是反横操纵和方向发散点,4位置是失速点。对称机翼在0角时升力系数=0(由图)非对称一在机身水平时升力系数大于0,因此机身水平时也有升力 滑翔比与升阻比 升阻比是飞机飞行速度不同的情况下升力与阻力的比值,跟飞行速度成曲线关系,一般升阻比最大的一点对应的速度就是飞机的有利速度和有利迎角。滑翔比是飞机下降单位距离所飞行的距离,滑翔比越大,飞机在离地面相同高度飞的距离越远,这是飞机固有的特性,一般不发生变化。 如果有两台飞行器,有着完全相同的气动外形,一台大量采用不锈钢材料的,另一台大量采用碳纤维材料,那么碳纤维材料的滑翔比肯定优于不锈钢材料的。这个在SU-27和歼11-B 身上就能体现出来,歼11-B应该拥有更大的滑翔比。 螺旋桨拉力计算公式(静态拉力估算)

你的飞行器完成了,需要的拉力与发动机都计算好了,但螺旋桨需要多大规格呢?下面我们就列一个估算公式解决这个问题 螺旋桨拉力计算公式:直径(米)×螺距(米)×浆宽度(米)×转速2(转/秒)×1大气压力(1标准大气压)×经验系数(0.25)=拉力(公斤)或者直径(厘米)×螺距(厘米)×浆宽度(厘米)×转速2(转/秒)×1大气压力(1标准大气压)×经验系数(0.00025)=拉力(克) 前提是通用比例的浆,精度较好,大气压为1标准大气压,如果高原地区,要考虑大气压力的降低,如西藏,压力在0.6-0.7。1000米以下基本可以取1。 例如:100×50的浆,最大宽度10左右,动力伞使用的,转速3000转/分,合50转/秒,计算可得: 100×50×10×502×1×0.00025=31.25公斤。 如果转速达到6000转/分,那么拉力等于: 100×50×10×1002×1×0.00025=125公斤 展弦比: 展弦比即机翼翼展和平均几何弦之比,常用以下公式表示: λ=l/b=l^2/S 这里l为机翼展长,b为几何弦长,S为机翼面积。因此它也可以表述成 翼展(机翼的长度)的平方除以机翼面积,如圆形机翼就是直径的平方除以圆面积,用以表现机翼相对的展张程度。 从空气动力学基础理论来说!展弦比越大,诱导阻力会越小,升阻比会提高。 但同时,较大的展弦比会降低飞机的机动能力,因为较大的展弦比会使诱导阻力减小,但同时使翼面切向阻力加大。飞机维持平飞时稳定性极好,但一旦需要机动,则翼载和阻力都很大。加速性和超音速性能都很差。 相反,随着后掠角的加大,展弦比会呈现一次函数线性衰减,此时诱导阻力增加,升阻比降低,但飞机在超音速飞行时的性能明显改善,机动性也提高。 所以,对于要求长航程,稳定飞行的飞机而言,需要大展弦比设计。而战斗机多采用小展弦比设计。例如:B-52轰炸机展弦比为6.5,U-2侦察机展弦比10.6,全球鹰无人机展弦比更是高达25;而小航程、高机动性飞机,如歼-8展弦比为2,Su-27展弦比为3.5,F-117展弦比为1.65。 低速飞机设计的关键一是加大升力面积二是减轻重量,通过降低翼载荷实现低速。加大翼展可获得大升力面积但从结构强度考虑将大大增加重量,而仅仅通过加大翼弦获得大升力面积

螺旋桨推力计算模型

螺旋桨推力计算模型 根据船舶原理知: T K T n2 D 4( K T为螺旋桨的淌水特性) 通过资料查得: K T为进速系数J的二次多项式,但无具体的公式表示,只能通过图谱查得,同时 K T K T0( K T0为淌水桨在相同的转速情况下以速度为V A运动时的推力、进速系数 1 t J p V A U(1 W P)) nD nD 估算推力减额分数的近似公式: 1.汉克歇尔公式: 对于单螺旋桨标准型商船(C B=0.54~0.84 )t=0.50Cp-0.12 对于单螺旋桨渔船:t=0.77Cp-0.30 对于双螺旋桨标准型商船(C B=0.54~0.84 )t=0.50Cp-0.18 2.商赫公式 对于单桨船t=KW 式中: K 为系数 K=0.50~0.70适用于装有流线型舵或反映舵者 K=0.70~0.90适用于装有方形舵柱之双板舵者 K=0.90~1.5适用于装单板舵者 对于双螺旋桨船采用轴包架者:t=0.25w+0.14 对于双螺旋桨船采用轴支架者:t=0.7w+0.06 3.哥铁保公式 对于单螺旋桨标准型商船(C B=0.6~0.85 )对于双螺旋桨标准型商船(C B=0.6~0.85 ) 4.霍尔特洛泼公式 对于单螺旋桨船 C B t 1.57 2.3 1.5C B C P C WP C B t 1.67 2.3 1.5C B C WP t 0.001979L /( B BC P1 ) 1.0585C100.000524 0.1418D 2 /( BT )0.0015C stern 式中: C10的定义如下: 当 L/B>5.2C 10 B / L 当 L/B<5.2C 100.250.003328402/(B / L 0.134615385) 对于双螺旋桨船:t C D /BT 0.325B0.1885

螺旋桨推力计算模型

螺旋桨推力计算模型 根据船舶原理知:4 2 D n K T T ρ=(T K 为螺旋桨的淌水特性) 通过资料查得:T K 为进速系数J 的二次多项式,但无具体的公式表示,只能通过图谱查得,同时t K K T T -= 10(0T K 为淌水桨在相同的转速情况下以速度为V A 运动时的推力、进速系数 nD W U nD V J P A p ) 1(-= = ) 估算推力减额分数的近似公式: 1. 汉克歇尔公式: 对于单螺旋桨标准型商船(C B =0.54~0.84) t=0.50Cp-0.12 对于单螺旋桨渔船: t=0.77Cp-0.30 对于双螺旋桨标准型商船(C B =0.54~0.84) t=0.50Cp-0.18 2. 商赫公式 对于单桨船 t=KW 式中:K 为系数 K=0.50~0.70 适用于装有流线型舵或反映舵者 K=0.70~0.90 适用于装有方形舵柱之双板舵者 K=0.90~1.5 适用于装单板舵者 对于双螺旋桨船采用轴包架者:t=0.25w+0.14 对于双螺旋桨船采用轴支架者:t=0.7w+0.06 3. 哥铁保公式 对于单螺旋桨标准型商船(C B =0.6~0.85) P B WP B C C C C t ??? ? ? ?+-=5.13.257.1 对于双螺旋桨标准型商船(C B =0.6~0.85) B WP B C C C t 5.13.267.1+-= 4. 霍尔特洛泼公式 对于单螺旋桨船 stern P C BT D C BC B L t 0015.0)/(1418.0000524.00585.1)/(001979.02101+--+-=式中:10C 的定义如下: 当L/B>5.2 L B C /10= 当L/B<5.2 )134615385.0//(003328402.025.010--=L B C 对于双螺旋桨船: BT D C t B / 1885.0325.0-=

油缸设计计算公式

液压油缸的主要技术参数 一、液压油缸的主要技术参数: 1.油缸直径;油缸缸径,内径尺寸。 2. 进出口直径及螺纹参数 3.活塞杆直径; 4.油缸压力;油缸工作压力,计算的时候经常是用试验压力,低于16MPa乘以,高于16乘以 5.油缸行程; 6.是否有缓冲;根据工况情况定,活塞杆伸出收缩如果冲击大一般都要缓冲的。 7.油缸的安装方式; 达到要求性能的油缸即为好,频繁出现故障的油缸即为坏。应该说是合格与不合格吧好和合格还是有区别的。 二、液压油缸结构性能参数包括:1.液压缸的直径;2.活塞杆的直径;3.速度及速比;4.工作压力等。 液压缸产品种类很多,衡量一个油缸的性能好坏主要出厂前做的各项试验指标,油缸的工作性能主要表现在以下几个方面: 1.最低启动压力:是指液压缸在无负载状态下的最低工作压力,它是反映液压缸零件制造和装配

非标液压、机电、试验、工控设备开发研制。 液压缸无杆腔面积A=*40*40/ (平方米)=(平方米) 泵的理论流量Q=排量*转速=32*1430/1000000 (立方米/分)=(立方米/ 分) 液压缸运动速度约为V=*Q/A= m/min 所用时间约为T=缸的行程/速度=L/V==8 (秒) 上面的计算是在系统正常工作状态时计算的,如果溢流阀的安全压力调得较低,负载过大,液压缸的速度就没有上面计算的大,时间T就会增大. 楼主应把系统工作状态说得更清楚一些.其实这是个很简单的问题:你先求出油缸的体积,会求吧,等于:4021238立方毫米;然后再求出泵的每分钟

流量,需按实际计算,效率取92%(国家标准),得出流量 为:32X1430X1000X92%=立方毫米;两数一除就得出时间:分钟,也就是秒,至于管道什么流速什么的东西根本不要考虑,影响比较少. 油缸主要尺寸的确定方法 1.油缸的主要尺寸 油缸的主要尺寸包括:缸筒内径、活塞缸直径、缸筒长度以及缸筒壁厚等。 2.主要尺寸的确定 (1)缸筒直径的确定 根据公式:F=P×A,由活塞所需要的推力F和工作压力P可求得活塞的有效面积A,进一步根据油缸的不同结构形式,计算缸筒的直径D。 (2)活塞杆尺寸的选取 活塞杆的直径d,按工作时的受力情况来确定。根据表4-2来确定。 (3)油缸长度的确定 油缸筒长度=活塞行程+活塞长度+活塞导向长度+活塞杆密封及导向 长度+其它长度。活塞长度=—1)D;活塞杆导向长度=(—)d。其它长度指一些特殊的需要长度,如:两端的缓冲装置长度等。某些单活塞杆油缸油时提出最小导向程度的要求,如: H≥L/20+D/2。 液压设计常用资料 时间:2010-8-27 14:17:02 径向密封沟槽尺寸 O形密封圈截面直径d 2 沟槽宽度b 气动动密封液压动密封 和 静密封 b b 1 b 2

船舶螺旋桨的设计与计算过程.

某沿海单桨散货船螺旋桨 设计计算说明书 刘磊磊 2008101320 2011年7月

某沿海单桨散货船螺旋桨设计计算说明书 1.已知船体的主要参数 船长 L = 118.00 米 型宽 B = 9.70 米 设计吃水 T = 7.20 米 排水量 △ = 5558.2 吨 方型系数 C B = 0.658 桨轴中心距基线高度 Zp = 3.00 米 由模型试验提供的船体有效马力曲线数据如下: 航速V (kn ) 13 14 15 16 有效马力PE (hp ) 2160 2420 3005 4045 2.主机参数 型号 6ESDZ58/100 柴油机 额定功率 Ps = 5400 hp 额定转速 N = 165 rpm 转向 右旋 传递效率 ηs=0.98 3.相关推进因子 伴流分数 w = 0.279 推力减额分数 t = 0.223 相对旋转效率 ηR = 1.0 船身效率 0777.111=--= w t H η 4.可以达到最大航速的计算 采用MAU 四叶桨图谱进行计算。 取功率储备10%,轴系效率ηs = 0.98 螺旋桨敞水收到马力: P D = 4762.8 hp

根据MAU4-40、MAU4-55、MAU4-70的Bp --δ图谱列表计算: 项 目 单位 数 值 假定航速V kn 13 14 15 16 V A =(1-w)V kn 9.373 10.094 10.815 11.536 Bp=NP D 0.5/V A 2.5 69.013042 69.01304 69.01304225 69.013042 25 Bp 268.96548 323.7116 384.6505072 451.99967 07 MAU 4-40 δ 75.6 72.10878 64.87977369 60.744 P/D 0.64 0.667321 0.685420561 0.720498 ηO 0.5583333 0.582781 0.605706806 0.62606 P TE =P D ·ηH ·ηO hp 2863.9907 2989.395 3106.994626 3211.4377 MAU 4-55 δ 74.629121 68.63576 63.56589147 59.341025 P/D 0.6860064 0.713099 0.740958466 0.7702236 ηO 0.5414217 0.567138 0.590941438 0.6111996 P TE =P D ·ηH ·ηO hp 2777.2419 2909.156 3031.255144 3135.1705 MAU 4-70 δ 73.772563 67.77185 63.03055556 58.68503 P/D 0.69254 0.723162 0.754280639 0.7861101 ηO 0.5210725 0.54571 0.565792779 0.5828644 P TE =P D ·ηH ·ηO hp 2672.8601 2799.238 2902.2542 2989.8239 据上表的计算结果可绘制PT E 、δ、P/D 及ηO 对V 的曲线,如下图所示。

液压缸尺寸计算

①、大腿缸的负载组成 1、工作载荷(活塞杆在抬腿过程中始终受压) 2、惯性载荷(由于所选用液压缸尺寸较小,即不计 重量,且执行元件运动速度变化较小,故不考虑惯性载 荷) 3、密封阻力,其中是作用于活塞上的 载荷,且,是外载荷,,其中是 液压缸的机械效率,取 综上可得:外载荷,密封阻力, 总载荷。 ②、初选系统工作压力 1、按载荷选定工作压力,取工作腔压力为 (由于总载荷为61988N大于50000N,故根据手册选 取工作压力为12MPa) 2、选择执行元件液压缸的背压力为(由于回 油路带有调速阀,且回油路的不太复杂,故根据手册 选取被压压力为1MPa) ③、液压缸主要结构尺寸的计算 1、在整个抬腿过程中活塞杆始终受压,故可得下式: 活塞杆受压时: ----------液压缸工作腔压力(Pa)

----------液压缸回油腔压力(Pa) ----------无杆腔活塞有效作用面积,,D为活塞直径(m)----------有杆腔活塞有效作用面积,,d为活塞杆直径(m) 选取d/D=(由于工作压力为12MPa大于5MPa,故根据手册选取d/D=) 综上可得:D=,根据手册可查得常用活塞杆直径,可取D=90mm,d=60mm。 校核活塞杆的强度,其中活塞杆的材料为45钢,故。 由于活塞杆在受负载的工作过程中仅收到压力作用,故仅校核其压缩强度即可。,故满足强度要求。 即d=60mm,则D=90mm。 由此计算得工作压力为: 根据所选取的活塞直径D=90mm,可根据手册选的液压缸的外径为108mm,即可得液压缸壁厚为。 校核液压缸缸壁的强度,其中液压缸的材料为45钢,故。 由于该缸处于低压系统,故先按薄壁筒计算,,其中工作压力,可取,则

液压常用计算公式

液压常用计算公式 1、齿轮泵流量(min /L ): 1000 Vn q o = ,1000 o Vn q η= 说明:V 为泵排量 (r ml /);n 为转速(min /r );o q 为理论流量(min /L );q 为实际流量(min /L ) 2、齿轮泵输入功率(kW ): 60000 2Tn P i π= 说明:T 为扭矩(m N .);n 为转速(min /r ) 3、齿轮泵输出功率(kW ): 612 60 ' q p pq P o = = 说明:p 为输出压力(a MP );' p 为输出压力(2 /cm kgf );q 为实际流量 (min /L ) 4、齿轮泵容积效率(%): 100V ?= o q q η 说明:q 为实际流量(min /L );o q 为理论流量(min /L ) 5、齿轮泵机械效率(%): 10021000?= Tn pq m πη 说明:p 为输出压力(a MP ); q 为实际流量(min /L );T 为扭矩(m N .); n 为转速(min /r ) 6、齿轮泵总效率(%):

m ηηη?=V 说明:V η为齿轮泵容积效率(%);m η为齿轮泵机械效率(%) 7、齿轮马达扭矩(m N .): π 2q P T t ??= ,m t T T η?= 说明:P ?为马达的输入压力与输出压力差 (a MP ); q 为马达排量(r ml /);t T 为马达的理论扭矩(m N .);T 为马达的实际输出扭矩(m N .);m η为马达的机械效率(%) 8、齿轮马达的转速(min /r ): V q Q n η?= 说明:Q 为马达的输入流量(min /ml ); q 为马达排量(r ml /); V η为 马达的容积效率(%) 9、齿轮马达的输出功率(kW ): 3 10 602?= nT P π 说明:n 为马达的实际转速(min /r ); T 为马达的实际输出扭矩(m N .) 10、液压缸面积(2 cm ): 4 2 D A π= 说明:D 为液压缸有效活塞直径(cm ) 11、液压缸速度(min m ): A Q V 10= 说明:Q 为流量(min L );A 为液压缸面积(2 cm ) 12、液压缸需要的流量(min L ):

螺旋桨设计计算书(2015)

MAU型螺旋桨设计计算书 1.船体的主要参数 船体总长L OA=150m 设计水线长L WL=144m 垂线间长L PP=141m 型宽B=22m 型深D=11m 设计吃水T=5.5m 方形系数C b=0.84 菱形系数C p=0.849 中剖面系数C m=0.69 排水量△=14000t 桨轴中心距基线距离Z P=2m 船体有效马力曲线数据如下: 2.主机参数 型号N/A(两台) 额定功率P S =1714hp 转速N=775r/min 齿轮箱的减速比i=5 桨轴处转速n=155 r/min 轴系传送效率ηS=0.97(中机型船)减速装置的效率ηG=0.97 旋向双桨外旋 3.推进因子的决定 伴流分数ω=0.248 推力减额分数t =0.196 相对旋转效率ηR=1.00 4.船身效率计算 ηH=(1-t)/(1-ω)=1.069

5.收到马力计算 储备功率取 10% 收到马力P D =0.9* P S*ηG *ηS*ηR= 0.9*1714*0.97*0.97*1=1451.43hp 6.假定设计航速有效马力计算 根据MAU4-40,MAU4-55,MAU4-70的Bp-δ图谱列下表计算。 据表中的计算结果可绘制P TE--Vs曲线,如下图1所示。从P TE--Vs曲线P E曲线交点处可获得: MAU4-40 Vs= 11.83Kn MAU4-55 Vs= 11.73Kn MAU4-70 Vs= 11.56Kn

7.初步确定桨的要素 8.空泡校核 根据柏利尔商船界限线计算 桨轴沉深 h s =T–Z P =3.5m 计算t=15°C,则Pv=174kgf/m2 取水温15度,Pa-大气压为:10330Kgf/m2 P 0-P v = P a –P v + h s γ= 13743.5kgf/m2

油缸推拉力及运动速度计算

液压装置往往通过液压油缸对外做功,在忽略 外渗漏、液体压缩性和摩擦力的前提下: 油缸产生的力等于供油压力与作用面积的乘积; 油缸的运动速度等于进入油缸腔的流量除于作 用面积。计算公式如下: 油缸推力: (1) 油缸拉力: (2) 伸出速度: (3) 缩回速度: (4) 式中: F 1——在无杆腔产生的力(推力), kgf F 2——在有杆腔产生的力(拉力), kgf A 、 B ——无杆腔、有杆腔面积,cm 2 D ——油缸内径,cm d ——活塞杆直径,cm V 1——活塞杆伸出速度,cm/min V 2——活塞杆缩回速度,cm/min Q 1——油缸无杆腔侧进油流量,cm 3/min Q 2——油缸有杆腔侧进油流量,cm 3/min 【举例】 (1)油缸内径D=100mm ,供无杆腔压力P 1=160kgf/cm 2,其油缸推力为: F 1=P 1×A=160×0.785×102 =12560 (kgf ) (2)油缸内径D=100mm ,杆径d=70mm ,供有杆腔压力P 1=160kgf/cm 2,其油缸拉力为: F 2=P 2×B= P 2×0.785(D 2-d 2)= 160×0.785(102-72)=6405.6 (kgf ) (3)油缸内径D=100mm ,进入无杆腔的流量为80升/分,其油缸的伸出速度为: V 1=Q 1/A= 80×103/(0.785×102)= 1019.1(cm/min )=17cm/S (4)同上,油缸活塞的缩回速度为: V 2=Q 1/B=80×103/〖0.785×(102-72)〗=1998.2(cm/min )= 33.3cm/S )(4 22222d D P B P F -?=?=π21114D P A P F π?=?=21114D Q A Q V ==)(422222d D Q B Q V -==

相关主题
文本预览
相关文档 最新文档