当前位置:文档之家› 回转窑托轮轴瓦发热原因浅析及相应防范措施

回转窑托轮轴瓦发热原因浅析及相应防范措施

回转窑托轮轴瓦发热原因浅析及相应防范措施
回转窑托轮轴瓦发热原因浅析及相应防范措施

回转窑托轮的调整

回转窑托轮的调整 回转窑托轮的调整(二) 2回转窑筒体轴向窜动的控制 由前所述,回转窑筒体因倾斜放置,在运转时发生沿轴向下窜是必然的。如果不加控制就会发生掉窑或窑体下炕的重大设备事故。这种事故确实在一些水泥厂中发生过,如抚顺水泥厂。但是,如果采取一定的措施,使回转窑筒体在运转时不发生窜动是完全可能的。可是这样做会导致托轮和轮带表面的磨损不均,表面母线出现凹凸现象,大小齿轮两侧很快出现台棱,有时由此会引发不应有的事故。因此必须对窑体的窜动进行控制。 2.1回转窑筒体轴向窜动控制的要求 为了保证回转窑筒体能够有规律地作上下往复窜动,控制的核心是窜动速度。由上文对Φ3.5 m×145 m回转窑筒体窜动的实例分析中可见:如果不加控制,其下窜速度是很大的,每分钟达3.8 mm。显然,这样大的窜动速度必然会加剧托轮、轮带和大小齿轮的磨损,有害无益。 长期的使用经验表明,回转窑筒体上下一个周期往复窜动时间,对传统窑型,即1 r/min左右的回转窑筒体控制在24 h左右就能有效地避免轮带和托轮表面以及大小齿轮磨损不均。这就是说,在保证托轮、轮带和大小齿轮沿宽度方向磨损均匀的前提下,窑体的窜动速度越少越好。经讨论认为:窑体上窜的时间为8 h,下窜时间为16 h较为恰当。在以前设计的回转窑,窑体往复窜动的距离为50 mm左右。因此,窑体的上窜速度为vs=50/8=6.25 mm/h,即窑体每转一转上窜为0.104 mm左右;窑体的下窜速度为vd=50/16=3.125 mm/h,即窑体每转一转下窜为0.05 mm左右。对于新型干法预分解窑,窑筒体转速n1=3~4 r/min,即是传统窑型的3~4倍。使用的时间还不算太长,这方面的经验还没有总结出来。不过从磨损速率保持相当来看,窑体上下往复一个周期的时间应该缩短,为传统窑型的1/3~1/4,即8~6 h,平均为7 h,上窜时间控制在2.5~3.0 h,下窜时间控制在4.5~5.0 h左右。这样上下窜动的速度也就同时增大了3~4倍。 窑体上下窜动的距离近来有减小的趋势发展。以前一般都设计在50 mm左右,而现在有设计为10~15 mm的。这样,托轮和小齿轮的宽度就都可以减小,不必像以前托轮比轮带、小齿轮比大齿圈起码宽50 mm以上。同时也会简化窑头和窑尾密封的结构,从而大大改善其密封效果,还会减轻托轮和小齿轮两侧出现凸肩、轮带和大齿圈两侧出现压延卷边的现象,从而可延长它们的使用寿命。 2.2回转窑筒体轴向窜动控制的方法 为防止回转窑筒体因轴向窜动不当而产生事故,在结构上设计了三种挡轮装置:不吃力挡轮或称信号挡轮、吃力挡轮和液压挡轮。前两种应用已久,至今也仍有应用,后一种出现较晚,比较先进,现在在较大的回转窑上普遍应用。 不吃力挡轮和吃力挡轮没有推动窑筒体沿轴向向上窜动的功能,只能当窑体轴向下窜一定位置时阻挡其下窜。因此,如果不采取措施,回转窑筒体通过轮带侧面与挡轮外锥面或外圆面的接触而受到挡轮的阻挡,不再轴向下窜。这样一来,窑体就会永远处在一个固定的轴向位置上回转。显然,这不是人们所期望的。况且不吃力挡轮还没有平衡窑体下窜力的能力,即使发出信号,也使操作者束手无策。为防止将这种挡轮顶坏,只有停窑。这就必须设法使窑体产生一个上窜的能够平衡下窜的作用力,当信号挡轮发出信号时,使上窜的作用力发挥作用,迫使窑体上窜。对于吃力挡轮,虽然能够平衡窑体的下窜力,

轴瓦发热原因分析

回转窑轴瓦发热分析 1、因为润滑油引起的拖轮轴瓦发热。拖轮轴瓦润滑油长时间不换或者不保养引起润滑油粘度降低或者油质乳化,油内含有粉尘杂质等原因都会引起轴瓦发热。 2、拖轮漏油及润滑装置脱落引起的轴瓦发热。因拖轮轴密封不好,漏油严重,使油位降低或者润滑油勺脱落引起轴瓦温度升高。 3、因循环水不畅、量少或内部循环水管渗水造成的轴瓦发热。循环水不畅或量少容易引起轴瓦发热,当拖轮内部循环水管老化产生漏水时,会破坏润滑油的粘度,使油质恶化轴瓦发热。 4、因瓦口间隙小引起的轴瓦温升。拖轮轴瓦长时间使用,瓦和轴的接触角度越来越大,同时瓦口与轴的接触间隙也越来越小,小到一定程度,润滑油不能进入轴瓦的底部进行润滑,引起轴瓦发热。 5、轮带与拖轮表面受力集中引起的轴瓦升温。拖轮与轮带在正常受力的情况下,其接触面光亮色泽程度应该是一致的,轮带上无明显的纵向明暗条纹。若出现明暗条纹,光亮的一侧则表明轴承座得轴瓦受力偏大,反之另一侧则偏小。若在轮带暗条纹处出现与拖轮脱离接触缝隙,其暗条纹面积较大时,则拖轮轴瓦将出现发热现象。 6、轮带与筒体垫板的间隙大引起的轴瓦升温。当轮带和筒体垫板磨损严重,轮带和垫板之间的间隙过大时,轮带的变形椭圆度加大,当轮带的椭圆度超过一定只时,就容易=引起拖轮轴瓦发热。同时,当轮带和筒体垫板的间隙过大时,轮带两端和拖轮的接触面发生变化,造成拖轮两边的轴瓦受力不均,也会导致发热。 7、液压挡轮的运行时间引起的轴瓦发热。当液压挡轮上行速度慢且不均匀,而下行速度偏快时,形成了向下的轴向推力,此推力也可使拖轮与瓦之间产生相对挫动和摩擦。当一个拖轮止推盘和轴瓦端部接触间隙小时,便会出现轴瓦发热现象。 8窑筒体表面径向温差大引起的轴瓦发热。窑筒体径向温差过大,超过100°C时,筒体会发生变形。当筒体的截面近似鸡蛋纵截面状时,则会引起拖轮轴瓦发热。

汽轮机轴瓦温度高的原因分析及处理

汽轮机轴瓦温度高的原因分析及处理 李守伦,张清宇 (焦作电厂,河南焦作 454159) [摘 要] 对几种典型轴瓦温度高的现象进行分析,并通过适当处理,清除了故障,使轴瓦温度恢复正常。[关键词] 汽轮机;轴瓦;轴瓦温度 [中图分类号]T K263.6 [文献标识码]B [文章编号]10023364(2003)03006202 汽轮机轴瓦温度是机组运行控制的重要参数之一。轴瓦温度高会严重威胁机组的安全运行,本文对几种典型轴瓦温度高的现象进行了分析,并介绍对其的处理方法及结果。 1 300MW 汽轮机2号轴瓦(东方汽轮 机厂) (1)河南省某厂2号机为东方汽轮机厂(东汽)生产的N300 16.7(170)/537/537 ó型(合缸)汽轮 机。机组大修后运行情况良好,在做甩负荷试验时,当转速降至1100r/min 时,2号轴瓦瓦温突然升高,由68e 急剧升至92e ,且随转速降低有升高趋势,后被迫停机。 该机2号轴瓦系带球面套的椭圆轴承,自动调整,双侧进油,为强迫液体润滑轴承。 停机后解体检查,发现该轴承下侧钨金磨损严重,顶轴油孔被钨金全部填塞,油囊已磨平,两侧油孔亦有钨金堆积现象,轴承顶隙增大0.20mm,其它检修尺寸无异常变化。查大修及运行记录,大修时中心调整在制造厂的标准内。启动时油膜压力:1号为4.2MPa,2号为3.8M Pa,3号为4.6M Pa 。冲转后油膜压力:1号为2.6MPa,2号为2.1MPa,3号为2.7MPa 。油膜压力均与中心调整值相吻合,无异常现象。但是,根据现场记录,随运行时间的增加,2号瓦的油膜压力随缸温的增加而逐渐增高,最高达到2.6M Pa 。 (2)东汽型机组2号瓦中心高差设计时预留(0.30~0.36)m m,预留中心高差时已考虑运行中的负荷分配情况。现场观察轴瓦钨金带有磨损痕迹而非烧毁痕迹,判断钨金为运行中磨损。由于停机时1100r/min 为顶轴油泵开启转速,而顶轴油孔被堵死,导致无法形成轴瓦油膜,造成大轴与轴瓦直接磨擦,引起瓦温迅速升高。根据机组运行中2号瓦油膜压力逐渐增高的趋势,判断2号瓦标高随机组运行渐入稳态而逐渐升高,由于预留中心高差不足,导致运行中磨损。 (3)由于3号瓦未磨损,2号瓦被磨损约0.20mm,故仅修刮2号瓦下瓦被磨损的钨金;开出顶轴油囊,疏通顶轴油孔;2号瓦结合面镗去0.20mm 后将轴瓦恢复,预留中心高差增大0.20mm,最终达到(0.50~0.56)mm 。 (4)处理后,机组运行情况良好,2号瓦温度一直在标准范围内,其间因锅炉原因再次停机时瓦温亦无变化。 2 200MW 汽轮机2号轴瓦(东方汽轮 机厂) (1)河南省某电厂6号机为东方汽轮机厂生产的N200 130/535/535型汽轮机。在2000年9月的大 修中进行了通流部分改造。因为更换新转子,致使2号轴瓦处间隙过大,便更换了2号轴承。该轴承为推力支持联合轴承,支持部分为三油楔形式,瓦枕和瓦为球面定位方式。大修后开机过程中,瓦温随转速升高而逐渐升高,当瓦温达到94e 时,被迫打闸停机,其间油膜压力无变化,振动亦保持在30L m 以下。停机后翻瓦检查,发现此瓦支持部分上瓦钨金磨损,下瓦无磨损痕迹,其余部分无异常。瓦各紧力、扬度无变化,顶 技术交流 q w 热力发电#2003(3)

回转窑托轮安装及调整注意事项

回转窑托轮安装及调整注意事项 【水泥人网】摘要: 5000t/d熟料线回转窑在试运行初期运行后经常出现托轮瓦发热问题,影响窑的稳定运行,严重的会导致瓦烧损、瓦拉翻、托轮轴磨损等事故。因此对托轮瓦在安装、试运行期间及运行中的检查、调整、监控和保驾非常重要。本文结合万吨线外方专家在现场调试的指导及对公司部分专业人员在现场调试处理托轮瓦等问题的经验进行了总结,供相关专业人员在实际工作中参考和运用。 一、托轮瓦的设计、安装基本情况 1、天津院、南京院所设计的各类窑型托轮及瓦的设计并不一样,推力板的位置差别较大,如2500T/D线窑托轮推力板在托轮轴外侧(同万吨线结构),见下图1;5000T/D线在托轮轴靠托轮侧,见下图2,在调整时,应了解上述托轮瓦推力面位置的不同,因为在调整瓦端面发热时,是要通过调整瓦与推力板之间相对位置而改变推力板与瓦间隙,从而消除二者摩擦发热。 2、POLYIUS供万吨线托轮结构 3、天津院5000吨线窑托轮结构

到目前为止万吨线回转窑运行正常,说明国外公司产品设计成熟、科学,在安装时,外方专家指导和监管有力;国产5000T/D线无论是天津院,还是南京院所产的窑,设计都很成熟,托轮及瓦的加工都能满足设计要求,在现场安装时对瓦的接触角、进出油楔口也基本能做到规范,当窑产量达到设计的110~115%时未出现因设计不合理而出现的问题,也说明上述设计、制造、安装等大的环节基本合理、科学。 但公司5000T/D线窑中在安装的一些细节上存在不足;在试运行期间窑的调整方法不当;在运行中工况波动时监控不到位,导致了托轮瓦发热事故频繁发生。 二、安装中存在的一些细节问题及处理方法 窑托轮瓦接触应控制在30°左右,进出油口油楔应符合要求,安装时要对托轮轴及瓦相关尺寸进行复查,对托轮瓦、球面瓦座铸造质量进行确认,但在实际工作中对进出口油楔刮研不合要求,托轮轴尺寸和加工精度是否合格很少检查或仅靠施工单位进行外观检查;对瓦用压板螺栓、油勺固定螺栓、淋油盘固定螺栓不按标准紧固和防松处理,上述螺栓在试运行后极易松动,因为油盘固定螺栓松动,瓦用压板螺栓松动均造成过瓦拉翻事故;托轮座内油勺与托轮座的相对尺寸应复检,防止托轮在窜动到极限时、油勺与托轮座内部相关部位发生摩擦而损坏油勺,造成大的隐患,少数公司已发现有油勺与托轮座摩擦的而导致油勺的损坏,

回转窑托轮瓦温升处理及发热原因

回转窑托轮瓦温升处理及发热原因 回转窑托轮瓦在工作中温升是一种常见的现象,引起的原因比较多,如果处理不及时,就可能造成严重的后果。 处理托轮瓦温升的工器具回转窑托轮瓦温升,有时来得很突然。要面对这种突发性的热工现象,临时找工器具是非常麻烦的,找的时间长了,可能会错过处理温升的最佳时期,造成严重的后果。所以回转窑的窑中岗位要准备好处理托轮瓦温升的一些专用工器具,并单独放置在窑中主减机稀油站润滑室内。所需专用工器具如下:①一桶与托轮瓦用油相符的润滑油,重量约170kg.现在托轮瓦润滑用油品种比较多,各厂家不尽相同。有的用中负荷齿轮油N460、N680,有的用美孚636,还有的用HF托轮油,但不论用哪种油,要准备好一桶与托轮瓦用油相符的润滑油。②两个干净的小空油桶,容量15kg.小油桶选择用0号锂基脂的空油桶。篦式冷却机干油泵用的0号锂基脂油桶,现场非常多,选择两个带盖的,用柴油清洗干净。③1个托轮瓦加完油的空油桶,容量170kg.④两个带嘴油桶,容量15kg.⑤12号铁丝5kg及1把钢丝钳。⑥内径Ф20mm的胶皮管5m.处理托轮瓦温升的预案突然出现托轮瓦温升现象,现场处理不要慌张,要按照一定的程序来应对,这就需要有事先准备好的预案。现场当班人员按照预案规定,来处理托轮瓦温升现象,就会有条不紊。处理托轮瓦温升的预案如下: 1.现场组织:①现场统一由当班班长组织。②班长迅速组织人员,快速采取降温措施。③班长要头脑冷静,保持与中控室联系。④注意现场人员安全第一。⑤如托轮瓦温升在短时间降不下来并有上升趋势,马上通知车间及设备管理人员。⑥车间及设备管理人员不论在什么时间,接到现场通知,要迅速赶到现场,指导托轮瓦降温工作。 2.降温措施:当回转窑运行中某一托轮瓦的运行温度,在短时间内升幅较快且还有上升趋势时,快速采取以下应急措施:①打开排水量②各挡轮带与托轮接触面加强润滑。③浇油,换油降温。④用测温枪测量轴面,看轴瓦的温度和表面油膜情况。如有突出发热点,且轴温在70℃以下,还有较完整的油膜,则继续浇淋新油,排出旧油。同时吹压缩空气或轴流风机降温。⑤如整个托轮温度较高,可向托轮下面的水槽内加水降温,水面浸托轮边缘100mm为宜。⑥如果是轴肩或止推圈相贴且温度高,可改变液压挡轮运行状态、方向;或停掉液压挡轮。⑦整个降温过程轮带与托轮的接触面要保持润滑,托轮表面均匀涂抹3号锂基脂。⑧托轮轴面淋注新油不能长时间停顿,要求冷却循环水量充足,不断地用压缩空气降温,水槽内注水并循环,直至轴面温度和油温都恢复正常。⑨降温过程中可维持窑速和喂料量。 当某一托轮轴面温度超过70℃,或轴面有干涩发热点,已丧失正常完整的油膜,或长时间降温轴瓦温度却有上升趋势时,应采取以下应急措施:①立即止料、降低窑速。 ②继续采取上述降温措施,并加大浇淋新油力度及循环水外排力度。③降温过程严禁停窑。④逐渐减少窑头喂煤量。问题严重时,停止窑头喂煤。⑤通知车间及设备管理人员快速赶到现场,及时查找引起托轮瓦温升的原因,进行降温处理。

水轮发电机组运行中轴瓦温度升高的原因分析

水轮发电机组运行中轴瓦温度升高的原因分析 毋生俊毋东霞河南省博爱县丹东电站(454463) 水轮发电机组在运行中,保持轴瓦温度在允许的范围以内,是电站安全运行的保证。一台机组在安装完成投入正常运行以后,轴瓦温度一般应无较大的变化。如果由于季节原因引起外界温度发生较大变化,轴瓦温度上升或下降几度,这是正常的。如在外界温度变化不大时,轴瓦温度上升3℃~5℃,就应当查找原因。引起轴瓦温度升高的原因较多,根据水电站多年来运行经验,大致有以下几个方面引起的: 1 由润滑油所引起的轴瓦温度升高 轴瓦在运行中,润滑油的作用是润滑,散热,当机组在旋转时,润滑油的在轴与轴瓦之间形成了一定厚度的油膜,使轴与瓦之间的摩擦由固体摩擦变为液体摩擦。由于液体摩擦的摩阻力比固体摩擦的摩阻力小几十倍到上百倍,这样轴与瓦的摩擦所产生的热量将大大减少。并且所生成的少部分热量又及时通过润滑油的循环带了出去。使轴瓦温度保持在允许的范围内,可见润滑油在轴瓦运行中所引起的关键作用,如果润滑油在运行中出了问题,轴瓦温度就要升高。 机组在运行中,使用的润滑油牌号必须相符。不同转速的机组,使用的油牌号不同。当用油牌号不对时,油的粘度就不一样,油膜形成的厚度也不一样,摩擦的阻力会增加,热量也要增多,轴瓦的温度就要升高。一般发电机组的生产厂家都对机组用油牌号作了规定。同时应当注意,不同牌号的油不得混合使用,否则,会使润滑油的粘度和其它指标发生变化,影响油的质量。润滑油的油质应定期检查,定期化验。有些电站,很长时间没有对润滑油的油质进行化验,油就可能劣化,油劣化后,油膜形成的不好,摩擦阻力增大,引起轴瓦温度上升。油在运行中,劣化的因素很多,比如润滑油长时间在偏高温度下运行,油与空气接触。在泵油过程中,油泡沫太多,润滑油就可能被氧化,而后生成一种油泥或油沉淀物,使润滑油变稠;有的电站,水轮机主轴密封漏水,水冷却器漏水,水份就会进入油中,油发生乳化,这样不但促进了油的氧化,而且还会增加油的酸价及腐蚀性;有的电站,机组轴瓦的绝缘不好或绝缘损坏,形成轴电流,轴电流也会使

回转窑托轮更换方案

窑三档北侧托轮更换方案 一、更换原因 2012年6月6日因6506故障窑止料,检查发现三档北边托轮面自窑头侧横向开裂长约600mm、宽约300mm、开裂深至散热孔,原因可能为托轮存在铸造缝隙,托轮淋水降温,托轮面残余水份与轮带接触时化为高温高压蒸汽。逐步渗入托轮铸造缝隙引起开裂;另因窑胴体变形,三档轮带与液压挡轮面接触面时大时小,轮带运行中轴向摆动较大,托轮面受到来自轮带的周期交变载荷,长期疲劳损伤引起开裂。 二、实施方案 1、待窑冷却不需转窑时,手动松辅传抱紧装置,防止窑胴体处于偏重状态,办理窑主、辅传停电手续; 2、拆除三档北侧托轮隔热棚,关闭并拆除冷却水管,油、瓦测温线,石墨块装置; 3、做标记在底座上分别做好轴承座的轴向、径向标记; 4、测量两轴中心距将三档两托轮轴两端的水平中心距进行测量并做记录,以便装配新托轮轴时进行复核; 5、顶窑将液压顶置于轮带的正下方,弧形支承架置于液压顶上部;顶窑前,在弧形支承架上放置一块木板,木板至少与弧形支承等宽等长,以防窑滑转及损伤;顶窑时,先将液压顶快速打至木板与轮带接触处,此时应放慢速度,仔细观察窑、木板、弧形支承架、液压顶的受力情况;窑顶起时,轮带与托轮

面的间隙为1-2毫米,能均匀透光即可;用枕木垫实窑轮带;在后续过程中,必须密切关注液压顶的压力保持状况,防止出现液压顶压力泄漏而使窑胴体下落。 6、拆除连接螺栓拆除轴承座与底座的连接螺栓并对应位置编号,妥善保管,防止损伤螺栓丝牙; 7、拆卸顶丝及顶丝座,割除托轮底座水槽迎面部分,用12#槽钢和10mm厚钢板在托轮底座迎面焊接制作宽1米的平台;8、拉出轴承座与托轮放出托轮润滑油,清理底座积灰及除锈,将两轴承座连同托轮同时匀速拉出,拉至底座边缘; 9、起吊托轮及轴承座拆除托轮轴密封和托轮上盖,拆除淋油盘和油勺,用65吨吊车将托轮及轴承垂直吊出,放至水泥地坪上: 10、清洗用轻柴油将两轴承座内腔及球面瓦清洗干净,并用面粉团粘吸一遍,完毕后用彩条布进行遮盖,彩条布四周应压实,防止灰尘进入; 11、衬瓦的刮研将衬瓦与轴进行配合刮研,衬瓦的接触斑点应均匀,沿母线全长等宽,并主要在中部区域连续分布。托轮瓦与托轮轴的接触角约为30°,因Ⅰ、Ⅲ档托轮轴直径为560mm,则接触弧长为147mm;托轮瓦进出油口侧间隙共分为4个阶段检查:塞尺0.65mm塞入150mm;0.45mm塞入200mm; 0.25mm塞入280mm;0.1mm塞入330mm;留有36mm作为平滑过渡段,侧隙不够时要再加以刮研,刮研时用红丹粉进行检验。 12、组装衬瓦刮研至符合要求后,安装到轴承座上,将托轮用65吨吊车吊至轴承座衬瓦上,吊装过程中应有专人指挥。托

汽轮机轴瓦温度高的原因分析及处理措施

汽轮机轴瓦温度高的原因分析及处理措施 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

汽轮机轴瓦回油温度高的原因分析及对策 ×××(××××××发电有限责任公司×××× 044602)摘要:本文着重分析了汽轮机组在运行中轴瓦温度升高的原因,轴瓦温度升高严重时会引起机组的振动,轴瓦的烧毁,威胁着机组的安全运行。针对造成轴瓦温度升高的原因提出了防范措施,供运行和检修部门参考。 关键词:汽轮机轴瓦温度 0前言:润滑油系统的作用是润滑轴承和减少轴承的摩擦损失,并且带走因摩擦产生的热量和由转子传过来的热量,并向调节系统和保护装置供油,保证其正常工作,以及向发电机密封瓦提供密封油等,润滑油系统的工作好坏对的正常运行有非常重要的意义。汽轮机转子与发电机转子在运行中,轴颈和轴瓦之间有一层润滑油膜。若油膜不稳定或油膜破坏,转子轴颈就可能和轴瓦发生干摩擦或半干摩擦,使轴瓦烧坏,使机组强烈振动。引起油膜不稳和破坏的因素很多,如润滑油的黏度,轴瓦间隙,轴瓦面积上受的压力等等。在运行中,如果油温发生变化,油的黏度也会跟着变化。当油温偏低时,油的黏度增大,轴承油膜增厚,汽轮机转子容易进入不稳定状态,使汽轮机的油膜破坏,产生油膜震荡,使机组发生振动。现把引起轴瓦温度升高的因素归纳如下: 1.轴瓦进油分配不均,个别轴瓦进油不畅所致。 此种情况下,首先检查轴瓦进油管道入口滤网,是否堵塞。观察回油量是否正常。必要时轴瓦解体全面检查。尤其是刚大修完的机组,根据以往发生的事件来看,多数情况下是由于检修人员的工作疏忽,不认真,在轴瓦回装时,没有仔细检查,清理轴承箱,拆机时油口的封堵忘记拿掉造成开机时轴承温度升高,甚至烧瓦事故。本

球磨机轴瓦发热原因分析及对策

球磨机轴瓦发热原因分析及对策 我们知道水泥球磨机有时候突然遇到中空轴瓦温度升高的情况,这时轴瓦的油膜已被破坏,轴颈和轴瓦直接接触,很容易发生撕脱粘附现象,这时候我们首先应紧急停止向磨内加料,同时设法开大窜水瓦的冷却水或者直接向中空轴上浇油渭油,尽量降低轴瓦温度后方可停磨。可以说,球磨机轴瓦温度过高是一件非常令人头疼的事情。而很多球磨机轴瓦发热多半因为选用了低端的润滑油,以致于球磨机轴瓦由于润滑不良而导致发热,今天我们就来讲解下水泥球磨机遇到的中空轴瓦发热的原因及对策。 1、由于润滑油变质导致的发热。 有的润滑油由于进入粉尘导致润滑油变质;有的因为串水变质;有的因为使用周期过长致使氧化失效。解决办法就是责任到人,保证润滑油不变质。 2、供油系统供油不足导致的发热。 供油量不足会引起轴瓦发热;同时由于进出口油温偏差小,会造成轴瓦热量积累导致其温度升高而发热。解决办法是:通过调整供油压力,清洁供油管路,改进冷却系统使其达到降温效果。另外也可使磨料温度控制,降低熟料温度,控制进料额度,适当加大磨内风速。 3、润滑油选择不合适引起的发热。 企业选择润滑油是一个大问题,作为一个水泥企业,有些很难做到根据设备运转负荷、运转温度、环境条件合理选用润滑油。一般来说选油要选用相对粘度小、粘度指数好、承载负荷高的润滑油。现在企业由于缺乏化验检测设备,不能完全做到准确选油、用油,轴瓦发热当然不可避免。 4、温度设置不当引起的发热烧瓦。 目前水泥行业球磨机轴瓦温度的设定基本都在60℃-70℃之间,这些数据一般都是球磨机制造厂家要求设定的不得超限的运转温度。但是铁霸润滑油专家认为温度的设定不仅要考虑轴瓦合金本身材质的耐温性,也应该充分考虑润滑油的承载能力,让其温度设置与润滑油承载能力匹配。之所以温度超过设定温度轴瓦容易被烧,是因为超过设限温度后,一般的齿轮油形成的油膜被破坏,摩擦力增大,金属之间产生“干磨”,从而产生局部高温烧伤、烧毁轴瓦。解决办法:选用具有抗极压、抗磨损、抗乳化、抗氧化性能的高品质的铁霸润滑油,可提高球磨机轴瓦的设定温度。

回转窑托轮的维护与调整

回转窑托轮的维护与调整 目前,回转窑在水泥熟料的煅烧过程中以其优质、稳定、高产,已经在我国水泥行业中得到广泛的推广和应用。随着我国水泥产量在全国各地区逐渐趋于均衡,各企业为了追求利益最大化,逐渐更加重视减低成本、提高设备运转率和可靠性。这其中回转窑由于在熟料煅烧过程中,因处于直接决定整个工厂产品质量和能源消耗的特殊地位,提高回转窑的运转率和可靠性成为水泥企业生产和设备管理的重中之重。这其中托轮运转状况的优劣又是重点之一。但是,由于各地区各企业的技术力量不平衡,回转窑的托轮问题,尤其是托轮轴承瓦高温问题一直困扰着一些水泥企业。以下仅介绍笔者的一些认识以供大家借鉴和探讨。 1 在回转窑维护和调整中,要对托轮和轮带进行一些必要的检查和测量 对托轮的检查和测量,无论对维护维修还是对安装工作都是非常重要的一环,是所有其他一切工作展开的基础。我们知道,在设计上托轮中心轴线和轮带中心轴线在回转窑纵向中心线垂直面上的位置关系,是正三角形关系。无论是安装回转窑托轮,还是维护他们,都必须以其实际尺寸来确定或校验他们之间的相互关系,以确保符合设计要求。 为此,维护调整时测量的尺寸应该包括:轮带外径,托轮的外径,托轮轴的外径,同时包括上述部位外表面的锥度,以及托轮底座的实际有效高度,另外还应测量托轮安装后托轮轴中心到回转窑中心的水平距离,以及轮外表面的平整性,和圆度。 2 运行中要确保托轮处于合理的位置,从而保证托轮不受到纵向外力 前面说过,要使托轮正常工作,需要两个托轮纵向中心线与轮带纵向中心线平行,且都垂直于回转窑的纵向中心线,同时在垂直于回转窑的纵向中心线的垂直面内两个托轮中心点与轮带中心点构成正三角形,相互夹角为60°,且其误差一般不超过2°(见图1),且各档托轮和轮带的上述三角形都要达到上述要求。只有保证夹角60°左右,驱动回转窑的动力载荷才最小,各托轮受力也最小,才能保证托轮的工作状况良好。只有在次状况下才能保证各托轮瓦受力合理,避免因托轮受到纵向力而使托轮瓦边与托轮轴挡圈不合理的摩擦,从而导致托轮瓦因积聚热量过多而最终刚度降低、拉伤变形而失效。同时,只有在此状况下,才能保证液压挡轮受力合理。

汽轮机轴瓦温度高的原因分析及处理措施

汽轮机轴瓦回油温度高的原因分析及对策 ×××(××××××发电有限责任公司×××× 044602)摘要:本文着重分析了汽轮机组在运行中轴瓦温度升高的原因,轴瓦温度升高严重时会引起机组的振动,轴瓦的烧毁,威胁着机组的安全运行。针对造成轴瓦温度升高的原因提出了防范措施,供运行和检修部门参考。 关键词:汽轮机轴瓦温度 0前言:汽轮机润滑油系统的作用是润滑轴承和减少轴承的摩擦损失,并且带走因摩 擦产生的热量和由转子传过来的热量,并向调节系统和保护装置供油,保证其正常工作,以及向发电机密封瓦提供密封油等,润滑油系统的工作好坏对汽轮机的正常运行有非常重要的意义。汽轮机转子与发电机转子在运行中,轴颈和轴瓦之间有一层润滑油膜。若油膜不稳定或油膜破坏,转子轴颈就可能和轴瓦发生干摩擦或半干摩擦,使轴瓦烧坏,使机组强烈振动。引起油膜不稳和破坏的因素很多,如润滑油的黏度,轴瓦间隙,轴瓦面积上受的压力等等。在运行中,如果油温发生变化,油的黏度也会跟着变化。当油温偏低时,油的黏度增大,轴承油膜增厚,汽轮机转子容易进入不稳定状态,使汽轮机的油膜破坏,产生油膜震荡,使机组发生振动。现把引起轴瓦温度升高的因素归纳如下: 1.轴瓦进油分配不均,个别轴瓦进油不畅所致。 此种情况下,首先检查轴瓦进油管道入口滤网,是否堵塞。观察回油量是否正常。必要时轴瓦解体全面检查。尤其是刚大修完的机组,根据以往发生的事件来看,多数情况下是由于检修人员的工作疏忽,不认真,在轴瓦回装时,没有仔细检查,清理轴承箱,拆机时油口的封堵忘记拿掉造成开机时轴承温度升高,甚至烧瓦事故。本人见过的这种事故就有三起。所有这种事故经验教训要引起我们的足够重视。若轴瓦经认真检查未发现问题,则可以适当加大轴瓦进油口节流孔板的孔径,增加进油量。 2.轴瓦工作不正常。检修时轴瓦间隙、紧力不合适,安装时不到位,造成轴瓦偏斜,致使运行中轴瓦油膜形成不好而发热。 某厂一台125MW机组在大修中发现#5轴瓦磨损严重,各部间隙严重超标,经补焊、车削后,由检修人员进修修刮、研磨处理。开机后#5瓦振动0.036mm,回油温度80度,立即打闸停机解体检查,用塞尺检查轴瓦侧隙,发现轴瓦偏斜。翻出下瓦,发现轴瓦接触角偏大,顶轴油囊磨损。分析原因为:此轴瓦为椭圆瓦,自位能力差,安装时轴瓦未放正,造成轴瓦偏斜,导致轴瓦接触不良,使轴瓦局部过载后发热,造成顶轴油囊磨损。轴瓦在按标准

回转窑托轮缺陷的修复

回转窑托轮缺陷的焊接修复 石广新 朝阳重型机器有限公司 回转窑是水泥生产企业的核心,是最重要的关键设备,托轮是回转窑最重要的组成部件之一,它承载者窑体、耐火材料、物料等的全部重量,其制造质量的好坏,直接影响着回转窑的利用率,进而影响水泥厂的产量和质量。我公司是专业生产水泥机械和冶金机械回转窑的设备厂家,下面就回转窑托轮缺陷的修复情况作一介绍。 各规格回转窑托轮结构大致相同,有空心和实心两种结构,材质大多为ZG340~640。 1在回转窑托轮制造过程中,由于各种原因,有时经常出现各种铸造缺陷如裂纹、夹渣、缩松、缩孔等,为了保证产品质量,降低制造成本,需要对缺陷处进行焊接修复处理。 2补焊方案的选择 焊接性分析 ZG340~640铸钢件的化学成分及机械性能见表1 表1 ZG340~640的化学成分及机械性能 化学成分(%) 力学性能 C Si Mn S P Ni Cr Cu Mo V σb/Mpa σs/Mpa δ5(%) ψ(%) A kv/J 0.60 0.50 0.90 0.04 0.04 0.30 0.35 0.30 0.2 0.05 640 340 10 18 10 该材料含碳量高,抗裂性差,用常规法焊接,在熔池及其周围由于温差极大及温度突变,极易产生裂纹,达不到质量要求。 补焊修复用材料 过渡层材料的选择 为了保证根部焊道热影响区的补焊质量,考虑焊缝金属与母材的强度、韧性与补焊层更好地结合,选用A302不锈钢焊条作为过渡层材料,此焊条具有良好的抗裂和抗氧化性能,可交直流两用,有良好的操作工艺性能。 补焊材料的选择 为了保证托轮的使用性能,焊接材料宜选择等强或弱强高韧性原则,焊补缺陷区的主体材料选用J507碱性低氢型焊条。该焊条直流反接,可进行全位置焊接,具有优良的焊接工艺性能,电弧稳定,飞溅少,易脱渣,其熔敷金属具有优良的力学性能和抗裂性能,抗低温冲击韧性好。 两种焊条的化学成分和力学性能见表2 表2 熔敷金属化学成分及力学性能 焊条化学成分(%)力学性能 C Mn Si S P Ni Cr Mo σb/Mpa δ5(%) A302 ≤0.15 0.25~0.5 ≤0.90 ≤0.03 ≤0.04 12~14 22~25 ≈0.75 ≥550 ≥25 J507 ≤0.12 ≤1.60 ≤0.75 ≤0.035 ≤0.04 ≥490 ≥22 3焊接修复工艺 3.1 焊前准备 焊接前用烘干箱对焊条预先烘干,J507焊条烘干350oC,保温2h,A302焊条烘干250oC,保温2h,烘干后放在100~150oC恒温箱中保温,随用随取。在使用时注意保持干燥。

轴瓦的常见故障及原因分析

电机常见故障及原因分析 今天与大家一起谈谈电机的常见故障及原因分析,切磋.切磋,有错的地方请予以纠正,有不清楚的地方,请找我了解。 一、轴瓦温度高:分为两种,一种是真正瓦温高,一种是测量上的问题,真正的瓦温高也分为两种,一种是轴瓦磨损,一种是用油牌号不对,或使用的油时间过长,油变质,新油买的是混合油,劣质油(市场假货)。 1、磨损主要是端面靠住了,也就是该轴颈的端面与轴瓦的端面紧靠了,转起来两者相摩擦,自然温度会搞,产生的原因是:电机转轴轴向受力,使得磁力中心线偏移。轴向受力又与安装有关,特别是联轴器的水平度,同轴度与安装图纸要求相差太大。 2、其次是连轴器加工精度太差,外圆大小不一,孔与孔很难对准,按装时尼龙棒硬打进去。 3、另一种就是缺油或不能形成油膜,将瓦底烧了,上瓦或下瓦巴金氏合金溶了,轻者修刮,重者换瓦。 4、测量上的问题,就是表计与实际温度差距大,如所测线路过长线电阻大,二根接线没有接补偿线等,这种情况可以在机旁测量测温元件电阻,换算成温度再与表计温度对比,就知道该差多少。 5、另外轴瓦温度一般要求设定在75℃跳闸报警,环境温度要求在40℃以下,轴瓦温度应随着环境温度的变化而变化,反之就有问题。 6、另外还有一个就是大家应该知道一个大概,就是轴瓦的顶部间隙应是轴径的千分之二,侧面间隙是顶部间隙一半,过大过小都容易造成发热。 二、电机电流大

1、超额定电流,有些用户所配的高压柜其互感器的变化与所配的电流表的变比不对,所反映的电流值肯定是不对的,有的高压柜的表计计量本身误差较大(大10几安)有的用户其电网进线由于线路长.线路压降大,起动电机后电压低.由于负荷一定电流就大,所谓电压低电流大就是这种情况。 2.另一种电流大是用户反映磨机负荷还未加满,电机的电流已到了额定电流,因此不敢再加了,认为电机有问题,要求速派人来处理,这种情况主要是配套厂家设计选择电机功率时往下一檔选,而非往上一檔选,因为这样可以节省采购成本,如所配电机功率需1500KW,就选用1400KW,不选用1600KW,1400KW与1600KW电机的采购价格就有区别,这就造成了电机额定电流到了,而负荷还没加满,为这事我们去过现场多次。有的用户(大多数)采取在转子回路加一台进相器,由于增加进相器其功率因子提高了,定子电流降下来了,认为又能加负荷,其进相器褪下时电流又超了,实际是超负荷了,结果是产量高了,电机出故障概率大了,我们知道电机功率的计算是:p=V I √ 3 cosφη,这是一个等式,当P(功率)不变,等式的右边改变一个数字,其中一个增大了,一个就要减小,一个减小,另外一个必然增大,以1600KW为例:用户投入进相器电流也保持109A这时的功率因子上升到了滞后0.95,因为用户一般不考虑功率因子,只看电流,通过计算这个等式的结果是1705KW,实际电机的负荷是1705KW,这种情况我们在外所遇到占90%,主机厂把我们电机留有的余量全部用尽,(因为到了这个时候磨机设计的装载量基本加完),特别是现在我们大Y1600的电机铁心由10檔缩小为9檔,其空载电流由41A左右上升到55A(6KV),那么我们的余量没有了,磨机厂再挖余量,电机就故障更多了与用户的矛盾也就更多,有的用户反映大Y电机温度高,公司设计处对老大Y设计其发热温升是当超载10%时,温升是56K,在额定状态下,温升是40K,也就是说,如超载温度上升特别快.高,当用户反映电机绕组温度高时(大Y)我们首先要了解其带负载的情况,电流情况,有没有带进相器,如果有超载这就是电机绕组温度高的原因。一般情况下大Y在正常负载其绕组温度不会超

回转窑托轮更换方案修订稿

回转窑托轮更换方案 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

窑三档北侧托轮更换方案 一、更换原因 2012年6月6日因6506故障窑止料,检查发现三档北边托轮面自窑头侧横向开裂长约600mm、宽约300mm、开裂深至散热孔,原因可能为托轮存在铸造缝隙,托轮淋水降温,托轮面残余水份与轮带接触时化为高温高压蒸汽。逐步渗入托轮铸造缝隙引起开裂;另因窑胴体变形,三档轮带与液压挡轮面接触面时大时小,轮带运行中轴向摆动较大,托轮面受到来自轮带的周期交变载荷,长期疲劳损伤引起开裂。 二、实施方案 1、待窑冷却不需转窑时,手动松辅传抱紧装置,防止窑胴体处于偏重状态,办理窑主、辅传停电手续; 2、拆除三档北侧托轮隔热棚,关闭并拆除冷却水管,油、瓦测温线,石墨块装置; 3、做标记在底座上分别做好轴承座的轴向、径向标记; 4、测量两轴中心距将三档两托轮轴两端的水平中心距进行测量并做记录,以便装配新托轮轴时进行复核; 5、顶窑将液压顶置于轮带的正下方,弧形支承架置于液压顶上部;顶窑前,在弧形支承架上放置一块木板,木板至少与弧形支承等宽等长,以防窑滑转及损伤;顶窑时,先将液压顶快速打至木板与轮带接触处,此时应放慢速度,仔细观察窑、木板、弧形支承架、液压顶的受力情况;窑顶起时,轮带与托轮

面的间隙为1-2毫米,能均匀透光即可;用枕木垫实窑轮带;在后续过程中,必须密切关注液压顶的压力保持状况,防止出现液压顶压力泄漏而使窑胴体下落。 6、拆除连接螺栓拆除轴承座与底座的连接螺栓并对应位置编号,妥善保管,防止损伤螺栓丝牙; 7、拆卸顶丝及顶丝座,割除托轮底座水槽迎面部分,用12#槽钢和10mm厚钢板在托轮底座迎面焊接制作宽1米的平台; 8、拉出轴承座与托轮放出托轮润滑油,清理底座积灰及除锈,将两轴承座连同托轮同时匀速拉出,拉至底座边缘;9、起吊托轮及轴承座拆除托轮轴密封和托轮上盖,拆除淋油盘和油勺,用65吨吊车将托轮及轴承垂直吊出,放至水泥地坪上: 10、清洗用轻柴油将两轴承座内腔及球面瓦清洗干净,并用面粉团粘吸一遍,完毕后用彩条布进行遮盖,彩条布四周应压实,防止灰尘进入; 11、衬瓦的刮研将衬瓦与轴进行配合刮研,衬瓦的接触斑点应均匀,沿母线全长等宽,并主要在中部区域连续分布。托轮瓦与托轮轴的接触角约为30°,因Ⅰ、Ⅲ档托轮轴直径为560mm,则接触弧长为147mm;托轮瓦进出油口侧间隙共分为4个阶段检查:塞尺塞入150mm;塞入200mm;塞入280mm;塞入330mm;留有36mm作为平滑过渡段,侧隙不够时要再加以刮研,刮研时用红丹粉进行检验。 12、组装衬瓦刮研至符合要求后,安装到轴承座上,将托轮用65吨吊车吊至轴承座衬瓦上,吊装过程中应有专人指挥。

从窑皮保护与托轮轴瓦发热说起

从窑皮保护与托轮轴瓦发热说起 作者:郑用琦单位:湖北省水泥工业协会[2005-5-19] 关键字:窑皮-托轮轴-发热 摘要: 回转窑设备是水泥企业生产过程中的心脏。从事过水泥生产的人们都知道它是水泥生产中关健的设备,常挂在嘴边“只要大窑转,就有千千万”的说法不无道理。托轮作为支撑着运动中回转窑的支点,承受着热负荷,物料负荷和窑自重三大载荷,故保护好托轮轴瓦,使它能正常安全运行显得尤为重要。 引起托轮轴瓦发热的因素很多方面,诸如设备设计的合理性,制造质量,安装质量,工艺操作水平和维护状况等等。然而工艺操作水平的影响不仅至关重要,而且是常常容易受到忽视的方面。笔者在这里与同行们要共同探讨分析的是因工艺操作不当所引起轴瓦发热的现象,以及在处理方法上所持的观点。 长期以来,操作者往往有只注重熟料产量和质量的习惯,而不太重视窑皮的保护和它的均匀性。并普遍认为掉点窑皮是正常的事,只要熟料质量不受影响而无关紧要。其实则恰恰相反,由于不关注窑皮的保护,会使窑皮在轴向或径向的,或二者并存的不均匀现象时有发生。由于窑皮的厚薄不均匀,使得窑筒体延轴向和径向发生不均匀的膨涨和收缩,从而破坏了窑中心线的直线度。尤其在处于烧成带附近窑头和中间两档轮带的筒体,出现这种状况更应值得关注和警惕,因为它将会直接导致托轮受力状态的变化,引起轴瓦发热。 由于配料成分的波动,预热器局部堵塞,来料不均,喷煤管位置不当等原因会很容易使窑皮出现不均匀的状况,这一观点对于大多数有经验的管理者都会认同。当出现这种情况若不及时处理,随着时间的延续,托轮轴与瓦之间的受力不均导致油隙变小,油膜破坏,轴瓦开始发热,轴和瓦处在无油的干磨擦状态中很快就会伤轴拉瓦,甚至发生一系列更严重事故。如浙江某水泥厂的一条新型干法回转窑曾发生过类似情况,并伴随着某种特定条件导致了一系列严重事故。事发前,窑头轮带处筒体窑皮长达近一周时间的严重脱落,一个工作日内挂上数次又脱落数次,筒体径向180°表面温差近200℃,用手持式激光测温仪和筒体扫描仪的检测结果一致,四个轴承座承受的载荷方式由均衡转为交变,筒体每旋转一周轮带与托轮表面呈现出大面积的非接触状态。窑的状态正处在危机之中,又由于窑皮长时间的大量脱落,使得篦冷机前段堆积了已快接触到窑口处大量灼红的熟料,导致了“堆雪人”即红河现象的事故发生。为了清除堆积在篦冷机上的熟料,操作者又再次失误,将运转的窑停下,打开篦冷机前端观察人孔门,人工清除堆积的熟料。此时,灼红的熟料所产生的高温气流被窑尾排风机直接拉到窑头段的筒体表面,与存积在筒体下面的高温熟料汇集一起使筒体下表面温度继续升高。由于已承受着重力负荷和热负荷状态下的筒体,又与长期窑皮脱落处在高温状态的集中作用,使筒体刚度下降,筒体在窑头托轮和轮带组成的支撑点处向下折弯。事后测量窑口处筒体径向跳动量为6cm~7cm之多,接踵而来的是:筒体的定向弯曲所产生的轴向和径向作用力使托轮表面出现数条规则的压痕;四个托轮座也出现不同程度无规则的振动,振动的剧烈程度随窑皮厚薄的变化而变化;轴表面也出现由于受力不均,所导致的轴瓦之间局部油膜被破坏后产生的压痕;支撑着四个托轮座的整个混凝土基础,随着窑体的转动也出现周期性规则的振动和晃动;轴瓦继而发热,并伴随着严重的拉伤,侥幸的是维护人员抢救及时方法得当尚未造成严重后果。随着生产的继续,以上现象并未减轻或消失,其原因为窑头段的筒体是处在一种悬臂梁式的支撑状态,不可能靠转动调整恢复。筒体过度的弯曲已是一种不可逆转的塑性变形。由此发展下去,各托轮轴瓦之间都将受到额外的偏心力,即轴向和

轴瓦的常见故障及原因分析

今天与大家一起谈谈电机的常见故障及原因分析,切磋.切磋,有错的地方请予以纠正,有不清楚的地方,请找我了解。 一、轴瓦温度高:分为两种,一种是真正瓦温高,一种是测量上的问题,真正的瓦温高也分为两种,一种是轴瓦磨损,一种是用油牌号不对,或使用的油时间过长,油变质,新油买的是混合油,劣质油(市场假货)。 1、磨损主要是端面靠住了,也就是该轴颈的端面与轴瓦的端面紧靠了,转起来两者相摩擦,自然温度会搞,产生的原因是:电机转轴轴向受力,使得磁力中心线偏移。轴向受力又与安装有关,特别是联轴器的水平度,同轴度与安装图纸要求相差太大。 2、其次是连轴器加工精度太差,外圆大小不一,孔与孔很难对准,按装时尼龙棒硬打进去。 3、另一种就是缺油或不能形成油膜,将瓦底烧了,上瓦或下瓦巴金氏合金溶了,轻者修刮,重者换瓦。 4、测量上的问题,就是表计与实际温度差距大,如所测线路过长线电阻大,二根接线没有接补偿线等,这种情况可以在机旁测量测温元件电阻,换算成温度再与表计温度对比,就知道该差多少。 5、另外轴瓦温度一般要求设定在75℃跳闸报警,环境温度要求在40℃以下,轴瓦温度应随着环境温度的变化而变化,反之就有问题。 6、另外还有一个就是大家应该知道一个大概,就是轴瓦的顶部间隙应是轴径的千分之二,侧面间隙是顶部间隙一半,过大过小都容易造成发热。 二、电机电流大 1、超额定电流,有些用户所配的高压柜其互感器的变化与所配的电流表的变比不对,

所反映的电流值肯定是不对的,有的高压柜的表计计量本身误差较大(大10几安)有的用户其电网进线由于线路长.线路压降大,起动电机后电压低.由于负荷一定电流就大,所谓电压低电流大就是这种情况。 2.另一种电流大是用户反映磨机负荷还未加满,电机的电流已到了额定电流,因此不敢再加了,认为电机有问题,要求速派人来处理,这种情况主要是配套厂家设计选择电机功率时往下一档选,而非往上一档选,因为这样可以节省采购成本,如所配电机功率需1500KW,就选用1400KW,不选用1600KW,1400KW与1600KW电机的采购价格就有区别,这就造成了电机额定电流到了,而负荷还没加满,为这事我们去过现场多次。有的用户(大多数)采取在转子回路加一台进相器,由于增加进相器其功率因子提高了,定子电流降下来了,认为又能加负荷,其进相器褪下时电流又超了,实际是超负荷了,结果是产量高了,电机出故障概率大了,我们知道电机功率的计算是:p=V I √ 3 cosφη,这是一个等式,当P(功率)不变,等式的右边改变一个数字,其中一个增大了,一个就要减小,一个减小,另外一个必然增大,以1600KW为例:用户投入进相器电流也保持109A这时的功率因子上升到了滞后,因为用户一般不考虑功率因子,只看电流,通过计算这个等式的结果是1705KW,实际电机的负荷是1705KW,这种情况我们在外所遇到占90%,主机厂把我们电机留有的余量全部用尽,(因为到了这个时候磨机设计的装载量基本加完),特别是现在我们大Y1600的电机铁心由10档缩小为9档,其空载电流由41A左右上升到55A(6KV),那么我们的余量没有了,磨机厂再挖余量,电机就故障更多了与用户的矛盾也就更多,有的用户反映大Y电机温度高,公司设计处对老大Y设计其发热温升是当超载10%时,温升是56K,在额定状态下,温升是40K,也就是说,如超载温度上升特别快.高,当用户反映电机绕组温度高时(大Y)我们首先要了解其带负载的情况,电流情况,有没有带进相器,如果有超载这就是电机绕组温度高的原因。一般情况下大Y在正常负载其绕组温度不会超过规定温度。超载后除引起绕组温度高外,还会引起一连串的其它故障,如转子并头套拉弧、放

相关主题
文本预览
相关文档 最新文档