当前位置:文档之家› AN2867_ST微控制器振荡器电路设计指南

AN2867_ST微控制器振荡器电路设计指南

AN2867_ST微控制器振荡器电路设计指南
AN2867_ST微控制器振荡器电路设计指南

AN2867

Application note

Oscillator design guide for ST microcontrollers

简介:

大部分设计人员对振荡器(Pierce-Gate topology 皮尔斯门结构)都很熟悉,但真的明白它是如何工作的人并不多,更甭提设计一个合适的振荡器了。实际上,很多设计人员并未真正关注过振荡器的设计,直到他们发现振荡器不正常运行了(通常这时产品已经投产了)。这本是不应该发生的。许多系统、工程项目的拖延就仅仅是因为一个振荡器没有工作在预计的状态上。振荡器应该在产品设计阶段就得到足够的重视,并且最好是在投产之前。这样设计人员才可能避免大批产品被退回来返修那噩梦样的场景。

本应用笔记将介绍皮尔斯(Pierce)振荡器的基本原理,并为如何设计一个优良的振荡器提供指导。同时也会说明如何选取不同的外围元件,并就怎样为振荡器设计一个优良的PCB提供指导。

本文档的最后部分就如何选取合适的晶体和外围元件提供一个简单的指导,并列出一些为STM32和STM8A/S推荐的晶体型号(HSE和LSE),以方便快速开始一个设计。

1.石英晶体的特性和模型(Quartz crystal properties

and mod el)

石英晶体是一种压电器件,它能够实现电能和机械能的互相转换。这个转换发生在谐振频率处。石英晶体的等效模型如下:

Figure 1. Quartz crystal model

C0:代表电极引入的并联电容

L m:(振荡电感)代表晶体的振荡量

C m:(振荡电容)代表晶体的振荡弹性

R m:(振荡电阻)代表电流损耗

晶体的阻抗计算式如下:(假设R m是可以忽略的)

图2是晶体在频域内的阻抗曲线。

Figure 2. Impedance representation in the frequency domain

F s是晶体在Z=0时的串联谐振频率。它的表达式可以从等式(1)中推导出来:

F a是反谐振频率,此时的Z趋于无穷大。从等式(1)中可以推导出它的表达式为:

由Fs和Fa界定的区域被称作为并联谐振区域(图2中的阴影部分)。在这段区域内,晶体工作在并联谐振状态下,其表现像一个电感,会在环路中增加180度的相移。它的频率Fp(或F L:负载频率)的表达式如下:

从等式4中可以看出,晶体的振荡频率能够通过使用不同的负载电容C L进行调校。这也就是为什么晶体制造商会在他们的晶体数据手册内指明晶体振荡在标定的频率上时所需要的精确的负载电容C L值。

表1给出了一个标定为8MHz的晶体,其等效电路元件值的例子。

表1 等效电路的参数的例子

通过等式(2)、(3)、(4)我们可以算出这个晶体的Fs,Fa,Fp:

Fs = 7988768 Hz,Fa = 8008102 Hz

如果该晶体电极上的负载电容C L等于10pF,则该晶体将振荡在如下的频率上:

Fp = 7995695 Hz

如果要精确的得到8MHz的振荡频率,则C L应等于4.02pF。

2.振荡器理论

一个振荡器包含一个放大器和一个提供选频的反馈网络。

图3是这个基本原理的框图:

图3 振荡器原理

●A(f) 是放大器的复转移函数(complex transfer function),为保持振荡器的振荡提供能量。

●B(f) 是反馈的复转移函数(complex transfer function),用来设置振荡器的频率。

为了能够振荡,必须要满足以下Barkhausen条件:闭环增益大于1;总相移为360度。即:

启动振荡器需要有一个初始的电能量。上电的瞬间以及噪声都可以提供这种能量。但是,这个能量必须足够大到可以触发振荡器振荡在设计的频率上。数学表达式为:

这个表达式意味着开环增益必须远大于1。振荡器达到稳定所需要的时间就取决于这个开环增益。

满足了振荡条件并不足以解释晶体振荡器为什么可以起振。实际上,之所以能够起振,是因为在满足了振荡条件后,那个放大器是非常不稳定的,从正反馈网络中引入的任何一点干扰都会导致放大器的失稳并导致起振。这个干扰可以归因于一个上电,一个使能电平的跳变,或者是晶体的热噪声,等等。另外值得注意的是,只有落在串-并频率范围内的噪声能够被放大(译注:“串-并频率范围”是指图2中Fa到Fs之间的频率)。这表示能够触发振荡的频率范围是很小的,这也就解释了为什么晶体振荡器需要如此长的时间才能启动。

3.皮尔斯振荡器(Pierce oscillator)

皮尔斯振荡器(Pierce oscillator)在各种应用中使用的非常普遍,因为它功耗低,成本低,并且稳定性好。

图4 皮尔斯振荡器(Pierce oscillator)电路

Inv:内部的反向器,作为放大器来工作。

Q:石英晶体或者陶瓷谐振器。

R F:内部反馈电阻。

R Ext:外部电阻,用于限制反向器的输出电流。

C L1和C L2:两个外部负载电容。

Cs:MCU引脚(OSC_IN和OSC_OUT)间和PCB线路上的杂散电容,它是一个并联电容。

4.皮尔斯振荡器的设计(Pierce oscillator design)

本章讲解各种限定因素,以及如何为它们取值,进一步熟悉皮尔斯振荡器

(Pierce oscillator)的设计。

4.1 反馈电阻RF(Feedback resistor RF)

在大多数的ST微控制器中,R F是嵌入在振荡器电路内部的,它的作用是使反向器作为放大器工作。该反馈电阻被并接在Vin和V out上,这样就使放大器的V out = Vin,从而强制它运行在线性区内(图5中的阴影区域)。放大器会把处于串-并频率范围(Fa,Fs)(译注:原文为(Fa, Fa),应是有误)内的噪声放大(例如,晶体的热噪声)。这个噪声会引发振荡器起振。在某些情况下,当振荡器的振荡稳定后将R F移走,振荡器仍可以继续正常的运行。

图5 反向器的转移函数

表2是R F的典型值。

表2 在给定的频率下的典型R F值

4.2 负载电容CL (Load capacitor CL)

负载电容是指与晶体振荡器相连的电路中的所有电容。它的值取决于外接电容C L1、C L2,以及PCB和连接点上的杂散电容(Cs)。负载电容C L由晶体制造商指定。值得注意的是,若要得到精确的频率,振荡器电路的负载电容必须与所需要的值相等;若要频率保持稳定,则负载电容必须稳定。外接电容C L1和C L2

就是为了把负载电容调校为制造商所指定的C L值。

下面的等式给出了负载电容C L的表达式:

下面举一个例子说明外接电容C L1、C L2的值的计算:

假设某晶体的负载电容C L值为15pF,且Cs=5pF,则:

4.3 振荡器的增益裕量(Gain margin of the oscillator)

增益裕量是一个关键参数,它决定着振荡器是否能够起振。它的表达式是:

其中,

●g m是反向器的跨导(在高频模块中的单位是mA/V,在32KHz低频模块中的单位是μA/V)

●g mcrit(g m 的临界值),取决于晶体的参数。假设C L1 = C L2,并且晶体上的负载电容与制造商的给定值完全一样,则g mcrit可用下式来表示:

,式中ESR的意思是等效串联电阻(equivalent series resistor)

根据Eric Vittoz理论:晶体动态的等效RLC电路的阻抗由放大器和两个外接电容的阻抗作补偿。

由此理论,反向器的跨导(gm)的值必须满足g m> g mcrit,这是振荡器能够正常运行的必要条件。通常认为,增益裕量值为5是保证振荡器有效起振的最小值。

举个例子,为某微控制器中g m值为25 mA/V的振荡器做设计时,我们选择了具有以下特性的石英晶体:frequency = 8 MHz,C0 = 7 pF,C L = 10 pF,ESR = 80,问此晶体是否可以用于此微控制器?

我们首先计算一下g mcrit,

然后计算gain margin,

可见,gain margin值远大于5,满足起振条件,能够起动振荡器。晶体能够正常振荡。

如果计算后发现gain margin值不合适(增益裕量gain margin值小于5),则达不到振荡条件,晶体将不能振荡。这时你只能再选择一个有更低ESR和/或有更低

C L值的晶体了。

4.4 驱动功率和外接电阻的计算(Drive level DL and external resistor R Ext calculation)

驱动功率与外接电阻紧密相关,因此在本章中将两者一并讨论。

4.4.1 计算驱动功率(Calculating drive level DL)

驱动功率就是指晶体内消耗的功率。它必须被限制在一定范围内,否则晶体会因过度的机械振动而损坏。最大驱动功率由晶体制造商指定,单位通常用mW。超过指定的驱动功率,可能会导致晶体损坏。

驱动功率可以用这个表达式来表示:

其中,

●ESR是等效串联电阻(由制造商指定)。

●I Q是流过晶体的电流的有效值(均方根)。流过晶体的电流可以通过示波器观测到,它是一个正弦曲线。电流值可以通过测量峰-峰值(I PP)读出。如果使用电流探针(如图6所示),示波器上电压网格的尺度就可以转换为1mA/1mV 。

图6 使用电流探针测量驱动电流

由前面所述的可知,在用电位计调节流过晶体的电流时,电流值不可以超过I Q max的有效值(均方根)(假设流过晶体的电流是完全正弦的)。由此,可以反推出I Q max:

(译注:I Q maxPP为正弦波的峰-峰值,为求有效值I Q max,需先将峰-峰值

除以2,再除以。交流电有效值的推导过程:原理是总功耗相等,即,

假设电阻R=1Ω,单位正弦电压峰值为1V,对正弦电压求平方,再求其周期内的积分得

,得到。)

流过晶体的电流值(从示波器上读到的峰-峰值)不可以超过最大峰-峰值电流I Q maxPP,由上式可以得到其最大值为:

因此,当实际电流I Q超过了I Q maxPP时,需要加上一个外接电阻R Ext(参考4.4.3节)。这时该电阻是电路中不可缺少的一部分,相应地,在计算I Q max 的表达式中会增大那个ESR的值。

4.4.2 另一种测量驱动功率的方法(Another drive level measurement method)

驱动功率可以按下式计算:

其中,I QRMS是交流电流的有效值(均方根)。

电流值可以通过使用一个低电容值(不大于1pF)的示波器探针测量放大器输入端的电压波形计算得出。因为相对于C L1而言,流入放大器的电流稍不足道,所以我们可以假设流过晶体的电流等于流过C L1的电流。因此,这一点上的电压有效值(均方根)与电流有效值(均方根)的关系为:

(译注:电容阻抗z=1/(2*pi*F*C);所以电流I=V/z可推出上式。)

其中,

● F 为晶振的频率

●其中,V pp是C L1上的电压峰峰值

●Ctot = C L1 + (Cs/2) + C probe,其中:

– C L1是放大器输入端的外接负载电容

– Cs 是杂散电容

– C probe是探针电容

因此可以按下式计算驱动功率DL:

该DL值必须小于晶体制造商指定的驱动功率值。

4.4.3 计算外接电阻R Ext(Calculating external resistor R Ext)

这个电阻的作用是限制晶体的驱动功率。它和C L2一起构成了一个低通滤波器,强制振荡器工作在基波频率上,而不是其他高次谐波(防止振荡器振荡在3,5,7倍的基波频率上)。如果晶体上的功率耗散大于制造商的指定值,则外接电阻R Ext是必须的,以避免晶体被过驱动;如果晶体上的功率耗散小于制造商的指定值,则不建议加入外接电阻R Ext,或者它的值为0Ω。

可以通过计算由R Ext/C L2构成的分压来估算外接电阻R Ext的初始值。即令R Ext等于C L2的容抗。如下:

例如,假设:

●振荡频率 F = 8 MHz

●C L2 = 15 pF

则可以算出R Ext的值为1326Ω。

推荐使用下面的方法优化外接电阻R Ext:先以之前介绍的方法选择C L1和C L2,然后在R Ext的位置初始放置一个值等于C L2的容抗的分压电阻。然后不断微调这个分压电阻的值,直到得到符合要求的输出和驱动功率。

注意:在计算完R Ext的值以后,建议重新计算增益裕量(参考4.3节,振荡器的增益裕量)以确保增加的电阻不会影响振荡器的起振条件。也就是说,g mcrit 表达式中的ESR还要加上R Ext,并且依然要满足g m >> g mcrit的条件:

注:如果R Ext太低,晶振上就没有功率耗散;如果如果R Ext太高,就不会产生振荡,因为不满足起振条件。(原文:If R Ext is too low, there is no power dissipation in the crystal. If R Ext is too high, there is no oscillation: the oscillation condition is not reached. 译注:这句话想表达的意思没弄明白。貌似是原文档写错/反了吧。推测它想表达的实际意思应该是Rext阻值越大越好,可有效防止晶振被过驱动,但太大会导致Gmargin过小,不能起振。)

4.5启动时间(Startup time)

这是振荡器从开始起振到振荡稳定的时间。石英谐振器的启动时间要比陶瓷谐振器的长。

启动时间取决于:

外接电容C L1和C L2;

晶体的振荡频率,频率越高启动时间越短;

所选用的晶体类型,相比较而言,石英谐振器的启动时间远长于陶瓷谐振器。

启动问题通常可归因于增益裕量(如前面所述的那样),与之相关的是C L1和C L2过小或过大,或者是ESR太大了。

一个MHz级的晶体,启动时间一般是ms级。

32kHz晶体的启动时间一般在1-5s范围内。

4.6 晶体牵引度(pullability)

晶体牵引度(Pullability)是指在通常的并联谐振应用中晶体频率的改变。它也是对晶体在负载电容按指定规律变化时所对应的频率变化的一个测量。负载电容减小会导致频率增大;相反的,负载电容增大会导致频率减小。晶体牵引度(Pullability)可用下式表示:

5.轻松选择合适晶体和外围器件的指导(Easy guid eline

for the selection of suitable crystal and external components)

本章给出了选择合适晶体和外围器件的推荐流程。整个流程可分解为三个步骤:

步骤一:计算增益裕量。(请参考4.3节:振荡器的增益裕量)

●选择一个晶体,然后找到控制器的参考手册(选择晶体+微控制器数据手册)

●计算微控制器中振荡器的增益裕量,查看它是否比5大:

如果增益裕量小于5,该晶体不合适,再选择其他具有较低ESR或/和有较低CL的晶体,然后重复步骤一。

如果增益裕量大于5,进入步骤二。

步骤二:计算外接负载电容。(请参考4.2节:负载电容CL)

计算C L1和C L2,查看是否能够在市场上买到它们:

●如果你能买到与你的计算值完全一样的电容,振荡器就会工作在预期的频率上,你可以进入步骤三了。

●如果你没有买到那个值的电容,并且:

–频率精度对你而言非常关键,你可以使用一个可调电容以获得精确的值。然后你可以进入步骤三了。

–你对频率精度的要求并不严格,就选择一个在市场上能买到的值最接近的

电容,然后进入步骤三。

步骤三:计算驱动功率和外接电阻。(请参考4.4节:驱动功率和外接电阻的计算)

●计算DL,然后比较它与DL crystal谁大谁小:

–如果DL < DL crystal,不需要增加外接电阻。恭喜你选到了一个合适的晶体!

–如果DL > DL crystal,你应该再计算R Ext以满足DL < DL crystal。然后你还需要把R Ext代到增益裕量的计算公式中重新计算增益裕量。

如果增益裕量>5,恭喜你,你找到了一个合适的晶体!

如果增益裕量太小,这个晶体将不能正常工作,你只能再重新选择一个晶体了。回到步骤一,选择一个新的晶体吧。

6.推荐一些适合STM32 MCU用的晶体

(略)

7.推荐一些适合STM8 MCU用的晶体

(略)

8.一些PCB的提示(Some PCB hints)

1.必须避免引入过多的杂散电容和电感,因为它们可能会使振荡器进入到

非预期的状态,并产生启动问题。高频信号尽量不要靠近振荡器电路。

2.尽可能地缩短布线长度。

3.使用地平面隔离信号,减少噪声。例如在最靠近晶振保护环路(译注:

指器件或走线外围成一圈用于屏蔽干扰的导线环,一般要求理论上没有

电流从该导线环上经过)的另一个板层上铺设一层本地地平面,可有效

防止晶振与其他PCB板层产生不希望的耦合(串扰)。应当注意的是,这

个本地地平面只是在晶振附近铺设,而不是在整个板子都铺设。见图7。

4.V SS路径也可以像图7那样布置。在这种方法中,V SS路径将振荡器的输入

与输出隔离开,同时也把振荡器与邻近的其他电路隔离开。V SS路径中间

不能被打断,两端分别终止于CL2、CL2下面,并不连接到晶振下面的那

块地保护上。图7中所有V SS的过孔/焊盘都和在另一层上的本地地平面相

连(即图7中除了晶振的焊盘)。

5.在每个V DD和离它最近的V SS上使用去耦电容,以减小噪声干扰。

图7 推荐的振荡电路PCB布线

警告:强烈建议在图7中所示的PCB区域使用保护涂料,尤其是在LSE晶体,C L1,C L2,和OSC_IN、OSC_OUT线路上,以防止水雾,灰尘,湿气和极端温度导致启动问题。

注意:RExt只有当晶体的功率耗散比制造商规定的驱动功率大的时候才是必须的,否则其值应当为0(详细内容参考4.4 驱动功率和外接电阻的计算)

9.结论(Conclusion)

最重要的参数是振荡器的增益裕量,它决定了振荡器是否能够起振。这个参数必须在晶体的选型阶段被计算。

第二个重要的参数是外接负载电容,它的选择必须与晶体所规定的C L相一致(该C L值由晶体制造商提供)。外接负载电容决定着晶体的频率精度。

第三个重要的参数是用于限制驱动功率的外接电阻的值。但是,在32kHz 振荡器模块中,不推荐使用外接电阻。

因为有太多的变量被涉及,所以在实验阶段所使用的元件应该与将来在产品上所使用的元件有完全相同的特性。例如,你应当在相同的环境条件下使用同样的振荡器布线来工作,以避免无法预料的情况,并因此节省时间。

10.版本历史(Revision history)

(略)

高频压控振荡器设计

前言 (1) 1高频压控振荡器设计原理压控振荡器 (2) 1.1工作原理 (2) 1.2变容二极管压控振荡器的基本工作原理 (2) 2高频压控振荡器电路设计 (4) 2.1设计的资料及设备 (4) 2.2变容二极管压控振荡器电路的设计思路 (4) 2.3变容二极管压控振荡器的电路设计 (4) 2.4实验电路的基本参数 (5) 2.5实验电路原理图 (6) 3高频压控振荡器电路的仿真 (7) 3.1M ULTISIM软件简介 (7) 3.2M ULTISIM界面介绍 (8) 3.2.1电路仿真图 (9) 3.2.2压控振荡器的主要技术指标 (9) 3.3典型点的频谱图 (9) 4高频压控振荡器电路实现与分析 (16) 4.1实验电路连接 (16) 4.2实验步骤 (16) 4.3实验注意事项 (18) 4.4硬件测试 (19) 5心得体会 (21) 参考文献 (22)

压控振荡器广泛应用于通信系统和其他电子系统中,在LC振荡器决定振荡器的LC 回路中,使用电压控制电容器(变容管),可以在一定的频率范围内构成电调谐振荡器。这种包含有压控元件作为频率控制器件的振荡器就称为压控振荡器。它广泛应用与频率调制器、锁相环路以及无线电发射机和接收机中。 压控振荡器是锁相环频率合成器的重要组成单元,在很大程度上决定了锁相环的性能。在多种射频工艺中,COMS工艺以高集成度、低成本得到广泛的应用。 压控振荡器(VCO)在无线系统和其他必须在一个范围的频率内进行调谐的通信系统中是十分常见的组成部分。许多厂商都提供VCO产品,他们的封装形式和性能水平也是多种多样。现代表面的贴装的射频集成电路(RFIC)VCO继承了近百来工程研究成果。在这段历史当中。VCO技术一直在不断地改进中,产品外形越来越小而相位噪声和调谐线性度越来越好。 对压控振荡器的技术要求主要有:频率稳定度好,控制灵敏度高,调频范围宽,频偏与控制电压成线性关系并宜于集成等。晶体压控振荡器的频率稳定度高,但调频范围窄;RC压控振荡器的频率稳定度低而调频范围宽,LC压控振荡器居二者之间。 压控振荡器可分为环路振荡器和LC振荡器。环路振荡器易于集成,但其相位噪声性能比LC振荡器差。为了使相位噪声满足通信标准的要求,这里对负阻RC压控振荡器进行了分析。

模拟电路课程设计心得体会

模拟电路课程设计心得 体会 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

精选范文:《模拟电路》课程设计心得体会(共2篇)本学期我们开设了《模拟电路》与《数字电路》课,这两门学科都属于电子电路范畴,与我们的专业也都有联系,且都是理论方面的指示。正所谓“纸上谈兵终觉浅,觉知此事要躬行。”学习任何知识,仅从理论上去求知,而不去实践、探索是不够的,所以在本学期暨模电、数电刚学完之际,紧接着来一次电子电路课程设计是很及时、很必要的。这样不仅能加深我们对电子电路的任职,而且还及时、真正的做到了学以致用。这两周的课程设计,先不说其他,就天气而言,确实很艰苦。受副热带高气压影响,江南大部这两周都被高温笼罩着。人在高温下的反应是很迟钝的,简言之,就是很难静坐下来动脑子做事。天气本身炎热,加之机房里又没有电扇、空调,故在上机仿真时,真是艰熬,坐下来才一会会,就全身湿透,但是炎炎烈日挡不住我们求知、探索的欲望。通过我们不懈的努力与切实追求,终于做完了课程设计。在这次课程设计过程中,我也遇到了很多问题。比如在三角波、方波转换成正弦波时,我就弄了很长时间,先是远离不清晰,这直接导致了我无法很顺利地连接电路,然后翻阅了大量书籍,查资料,终于在书中查到了有关章节,并参考,并设计出了三角波、方波转换成正弦波的电路图。但在设计数字频率计时就不是那么一帆风顺了。我同样是查阅资料,虽找到了原理框图,但电路图却始终设计不出来,最后实在没办法,只能用数字是中来代替。在此,我深表遗憾!这次课程设计让我学到了很多,不仅是巩固了先前学的模电、数电的理论知识,而且也培养了我的动手能力,更令我的创造性思维得到拓展。希望今后类似这样课程设计、类似这样的锻炼机会能更多些!

课程设计--四花样彩灯控制器

课程设计--四花样彩灯控制器

2012 ~ 2013 学年第二学期 《数字电子技术》 课程设计报告 题目:四花样彩灯控制器 专业:电子信息工程 班级: 11 电信一班 姓名:孙叶林陶轮汪宏俊汪义涛王安 亚 王劲松王亮亮王向阳魏伟指导教师:周旭胜 电气工程系 2013年5月30日

任务书 课题名称四花样彩灯控制器 指导教师(职称)周旭胜 执行时间2012~ 2013 学年第 2学期第 14 周学生姓名学号承担任务 王安亚1109121033 设计总电路图1 汪宏俊1109121031 设计总电路图2 陶轮1109121030 负责对比两个总电路图 汪义涛1109121032 设计555时钟脉冲产生电路 王向阳1109121036 设计四种码产生电路 王劲松1109121034 设计输出电路 魏伟1109121037 设计开关电路 王亮亮1109121035 查找参考资料 孙叶林1109121029 负责写课程设计报告 设计目的 通过设计方案的比较,对比电路的复杂与简单,器件的市场价格等方面因素,来选择一种比较好的可行性设计方案 设计要求(1) 彩灯一亮一灭,从左向右移动; (2) 彩灯两亮两灭,从左向右移动; (3) 四亮四灭,从左向右移动; (4) 从1~8从左到右逐次点亮,然后逐次熄灭; (5) 四种花样自动变换。

摘要 随着人们生活环境的不断改善和美化,在许多场合可以看到彩色霓虹灯。LED彩灯由于其丰富的灯光色彩,低廉的造价以及控制简单等特点而得到了广泛的应用,用彩灯来装饰街道和城市建筑物已经成为一种时尚。但目前市场上各式样的LED彩灯控制器大多数用全硬件电路实现,电路结构复杂、功能单一,这样一旦制作成品只能按照固定的模式闪亮,不能根据不同场合、不同时间段的需要来调节亮灯时间、模式、闪烁频率等动态参数。优易LED全彩灯光控制系统由Color Edit编辑软件、主控器、分控器和LED光源组成,广泛应用于城市景观、风景名胜、道路桥梁、建筑轮廓、娱乐场所、户外广告、室内装饰等美化、亮化工程。 四花样自动切换的彩灯控制器,其电路简单、取材容易,而且被广泛地应用与现实生活当中。例如用于店面装饰可以增加其美观,吸引更多顾客。 在经过了几天紧张的电路焊接和调试,期间还进行了部分方案的修改和改进,现已实现了课程设计的主要任务和具体要求。 关键字:LED彩灯硬件电路

传感器电路设计毕业论文范文

毕业设计 设计题目:传感器电路设计

目录 1. 引言 1 2. 溶解氧传感器简介 1 3.信号输入部分电路 4 3.1 电源滤波电路图 4 3.2 信号放大电路 5 3.2.1信号放大电路图 5 3.3 AD623放大器简介 6 3.3.1AD623放大器的特点 6 3.3.2AD623放大器的工作原理 6 4 单片机电路7 4.1 单片机电源电路图8 4.2 89LPC925芯片简介8 4.2.1 P89PLC925芯片主要功能8 4.2.2 P89PLC925的低功耗选择11 4.2.3 P89PLC925的极限参数11 4.2.4 P89PLC925芯片管脚图11 5.MiniICP下载线的电路连接13 6.PCB板的绘制13 7.程序流程14 8. 总结16 参考文献16

传感器电路设计 摘要:溶解氧数字化传感器是应用单片机控制的智能化传感器,它可以对液体中溶解氧 的含量进行准确的测量。本设计从总体上介绍了溶解氧数字化传感器的工作原理,着重介 绍了电路元器件的选取以及输入信号的放大和P89LPC925芯片的工作原理,利用P89LPC925 芯片实现对溶解氧浓度的准确测量。 关键词:溶解氧传感器;P89LPC925;AD623 The design of the dissolved oxygen sensor (College of Physics and Electronic Engineering, Electrical Engineering and Its Automation, Class2 Grade2003, 0323110235) Abstract:Dissolved oxygen digital sensor is a king of intelligent sensor which use single-chip computer to control, it could measure the oxygen dissolved in liquid accurately. This design introduces the work principle of dissolved oxygen digital sensor, it introduces the selection of the circuit components and amplification of input signals and the work principle of P89LPC925 chip, P89LPC925 chip using the dissolved oxygen concentration on the measurement accuracy. Key Words: dissolved oxygen sensor; P89LPC925; AD623 1 引言 氧是维持人类生命活动必不可少的物质,它与人类的生存息息相关。氧也是与化学、生化反应、物理现象最密切的一种化学元素,无论是在工业、农业、能源、交通、医疗、生态环境等各个方面都有重要作用。特别是在水产养殖中,水体溶解氧对水中生物如鱼类的生存有着至关重要的影响。缺溶氧(溶解氧低于4mg/L)时将导致水生物窒息死亡;低溶氧导致水生物生长缓慢,增重率低而饵料系数高,对疾病的抵抗能力发病率高,生物的生长受到限制;高溶氧时某些鱼类幼体可能会出现气泡病。因此溶解氧浓度的精确测量显得尤为重要。 2 溶解氧传感器简介 溶解氧是溶解在水中的分子态氧,该定义是可查资料[1]-[4],随着科技和经济的发展,溶解氧测量已从水介质延伸到了非水液体介质,如丙酮、苯、氯苯、环乙烷、甲醇、正辛烷。分布方式有水平分布和垂直分布两种.溶解氧的一个来源是水中溶解氧未饱和时,大气中的氧气向水体渗入;另一个来源是水中植物通过光合作用释放出的氧。溶解氧随着温度、气压、盐分的变化而变化,一般说来,温度越高,溶解的盐分越大,水中的溶解氧越低;气压越高,水中的溶解氧越高。

经典模拟、数字电路设计

实验一 单级阻容耦合放大器设计 一、设计任务书 1.已知条件 电源电压V cc =+12V,信号源U s =10mV,内阻R s =600Ω,负载R L =2k Ω。 2.主要技术指标 输入电阻R i >2k Ω,频率响应20Hz ~500kHz,输出电压U o ≥0.3V,输出电阻R O <5k Ω,电路工作稳定。 3.实验用仪器 双踪示波器一台,信号发生器一台,直流稳压电源一台,万用表一台。 二、电路设计 1.电路形式讨论 由于电压增益A V =U O /U S =30,采用一级放大电路即可,要求电路工作稳定,采用分压式电流负反馈偏置电路,输入电阻比较大和频率响应比较宽,引入一定的串联负反馈,电路如图。 2.具体电路设计 (1)静态工作点选择 I CQ =2mA,V BQ =3V (选择硅管) (2)晶体管的选择 78) (2 =+=L s i V R R R A β取100, U CEO >V CC =12V,I CM >2I CQ =4mA, P CM >I CQ V CC =24mW, f T >1.5βf H =75MHz 选择9014:U CEO >20V,I CM >100mA, P CM >300mW,f T >80MHz,Cb'c<2.5pF (3)元件参数的计算 R E =(V BQ -0.7)/I CQ ≈1.2k Ω I BQ =I CQ /β=20μA 则 Ω== k I V R BQ BQ B 15102,R B2=15k Ω Ω=-= k I V V R BQ BQ CC B 45101,取标称值47k Ω Ω≈++=k mA I mV r EQ be 6.1) (26) 1(300β, 取R F =10Ω.则Ω=++=k R r R F be i 16.2)1('β Ω==k R R R R i B B i 12.2////'21,取A V =40,

555多谐震荡器-实验报告

实验题目:用555定时器设计一个时钟信号源,频率为f=1KHz,占空比为60%。 实验报告: 一、实验相关信息 1、实验日期: 2、实验地点: 二、实验内容 用555定时器设计一个时钟信号源,频率为f=1KHz,占空比为60%。 三、实验目的 1、了解555定时器的工作原理和电路结构; 2、掌握555定时器的典型应用。 三、实验设备、元器件 1、实验仪器:(写清型号) 2、实验元器件: 四、理论计算 (1)555多谐震荡器电路结构 图1 多谐振荡器 (2)工作波形

(3)工作过程简述 接通电源后,电容C 被充电,νc 上升,当νc 上升到 Vcc 32 时,触发器被复位,同时 放电T 导通,此时 νo 为低电平,电容C 通过R 2 和T 放电,使νc 下降,当νc 下降到Vcc 31 时,触发器又被复位,νo 为高电平。电容C 放电所需时间为 C R C R t PL 227.02ln ≈= (1) 当电容C 放电结束时,T 截止,Vcc 将通过R 1、R 2向电容C 充电,νc 由Vcc 31上升到Vcc 32所需时间为 C R R C R R t PH )(7.02ln )(2121+≈+= (2) 当νc 上升到Vcc 32 时,触发器由发生翻转,如此周而服始,在输出端就得到一个周期 性的方波,其频率为 C R R t t f PH PL )2(43.1121+≈+= (3) %100)2((%)212 1X R R R R t t t q PH PL PH ++=+= (4) (4)占空比可调电路结构 对于图1电路结构占空比固定不变,要得到占空比可调的周期方波,对其电路改进,如图2所示。 由(4)式可知,占空比始终大于50%,要得到占空比小于50%的方波,只要在输出端加一个反向器即可。

传感器应用电路设计.

传感器应用电路设计 电子温度计 学校:贵州航天职业技术学院 班级:2011级应用电子技术 指导老师: 姓名: 组员:

摘要 传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 本文将介绍一种基于单片机控制的数字温度计。在件方面介绍单片机温度控制系统的设计,对硬件原理图做简洁的描述。系统程序主要包括主程序、读出温度子程序、温度转换命令子程序、计算温度子程序、显示数据刷新子程序。软硬件分别调试完成以后,将程序下载入单片机中,电路板接上电源,电源指示灯亮,按下开关按钮,数码管显示当前温度。由于采用了智能温度传感器DS18B20,所以本文所介绍的数字温度计与传统的温度计相比它的转换速率极快,进行读、写操作非常简便。它具有数字化输出,可测量远距离的点温度。系统具有微型化、微功耗、测量精度高、功能强大等特点,加之DS18B20内部的差错检验,所以它的抗干扰能力强,性能可靠,结构简单。 随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域已经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。 测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段:①传统的分立式温度传感器②模拟集成温度传感器③智能集成温度传感器。 目前的智能温度传感器(亦称数字温度传器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。社会的发展使人们对

角度传感器应用电路设计

磁阻式传感器KMZ41的特点: 内部包含有两个有磁阻构成的、位置成正交的、独立的电桥(Wheatstone Bridge)。其内部结构如下图所示: 将KMZ41置于有X轴、Y轴构成的平面上,当旋转磁场强度变化时,KMZ41就会产生两路正弦输出的信号,两信号的相位差就代表芯片轴向与磁场方向的夹角a,输出信号波形如下图所示: 图1 图2 图1为KMZ41产生的两路正弦输出信号;图2为芯片轴向与磁场方向的夹角。UZZ9001的内部结构与工作原理: UZZ9001的芯片内部包括A/D转换器1和A/D转换器2、滤波器、算法逻辑、SPI接口、时钟振荡器、;逻辑控制及复位等。UZZ9001Y与KMZ41连接,能够将磁阻式传感器KMZ41输出的两个有相位差的正弦信号转换成数字信号输出,与微控制器配套构成一个角度测量系统。 *

角度传感器部分设计: 方案一 由UZZ9000和KMZ41构成的角度检测电路: UZZ9000为线性电压输出式角度传感器调理器电路,输出电压与被测角度信号成正比;测量角度的范围是0~180°,且在0~100°范围内;测量误差小于±0.45°分辨力达0.1°;测量范围和输出零点均可调节;电源电压范围为+4.5~+5.5V;电源电流为10mA;工作温度范围是-40~+150℃。 由UZZ9000和KMZ41构成的电压输出式角度检测电路如图所示。改变R2和R3的比值,可以调节传感器1的偏移量;改变R4和R5的阻值,可以调节传感器2的偏移量;改变R6和R7的比值,可以调节零点偏移;改变R8和R9的比值;可以调节测量角度范围。电阻R2~R9可以采用电位器代替。电路输出电压送至数字电压表或者微控制器系统,即可显示出被测角度值。该电路可广泛用于发动机凸轮/曲轴速度及位置检测、节流阀控制、转向操作控制、汽车中的ABS系统等领域。 注:1.设置角度范围。在UZZ9000的引脚端13加上不同的外部电压可以选择0~30到0~180共16个不同的角度范围。

压控振荡器的设计与仿真.

目录 1 引言 (2) 2 振荡器的原理 (5) 2.1 振荡器的功能、分类与参数 (5) 2.2 起振条件 (9) 2.3 压控振荡器的数学模型 (10) 3 利用ADS仿真与分析 (11) 3.1 偏置电路的的设计 (12) 3.2 可变电容VC特性曲线测试 (13) 3.3 压控振荡器的设计 (15) 3.4 压控振荡器相位噪声分析 (18) 3.5 VCO振荡频率线性度分析 (23) 4 结论 (24) 致谢 (25) 参考文献 (25)

压控振荡器的设计与仿真 Advanced Design System客户端软件设计 电子信息工程(非师范类)专业 指导教师 摘要:ADS可以进行时域电路仿真,频域电路仿真以及数字信号处理仿真设计,并可对设计结果进行成品率分析与优化,大大提高了复杂电路的设计效率。本论文运用ADS仿真软件对压控振荡器进行仿真设计,设计出满足设计目标的系统,具有良好的输出功率,相位噪声性能及震荡频谱线性度。本论文从器件选型开始,通过ADS软件仿真完成了有源器件选型,带通滤波器选型,振荡器拓扑结构确定,可变电容VC特性曲线,瞬态仿真及谐波平衡仿真。实现了准确可行的射频压控振荡器的计算机辅助设计。关键字:压控振荡器,谐波平衡仿真,ADS 1 引言 振荡器自其诞生以来就一直在通信、电子、航海航空航天及医学等领域扮演重要的角色,具有广泛的用途。在无线电技术发展的初期,它就在发射机中用来产生高频载波电压,在超外差接收机中用作本机振荡器,成为发射和接收设备的基本部件。随着电子技术的迅速发展,振荡器的用途也越来越广泛,例如在无线电测量仪器中,它产生各种频段的正弦信号电压:在热加工、热处理、超声波加工和某些医疗设备中,它产生大功率的高频电能对负载加热;某些电气设备用振荡器做成的无触点开关进行控制;电子钟和电子手表中采用频率稳定度很高的振荡电路作为定时部件等。尤其在通信系统电路中,压控振荡器(VCO)是其关键部件,特别是在锁相环电路、时钟恢复电路和频率综合器电路等更是重中之重,可以毫不夸张地说在电子通信技术领域,VCO几乎与电流源和运放具有同等重要地位。 人们对振荡器的研究未曾停止过。从早期的真空管时代当后期的晶体管时代,无论是理论上还是电路结构和性能上,无论是体积上还是制作成本上无疑都取得了飞跃性的

路灯控制器课程设计

电子技术课程设计 课程设计任务书 20 16 - 20 17学年第一学期第18周—19周 题目《路灯控制器》 内容及要求 ①设计一个路灯控制自动照明的电路 ②当日照光亮到一定程度时使灯自动熄灭,而日照光暗到一定程度时又能自 动点亮。开启和关断的日照光照度根据用户进行调节。 ③设计计时电路,用数码管显示路灯当前一次的连续开启时间。 ④设计计数显示电路,统计路灯的开启次数。 进度安排 1、查资料,确定方案(三 天) 2、方案设计(天) 3、仿真调试 (二 天) 4、硬件实现与调试 (三 天) 5 、 撰写课程设计报告并答辩(天)学生姓名:

目录 前言 (3) 一选题背景 (4) 1.1 设计要求 (4) 1.2 指导思想 (4) 二方案论证 (5) 2.1 方案说明 (5) 2.2 方案原理 (5) 三电路的设计与分析 (6) 3 . 1 电路原理框图. (6) 3.2单元电路的设计与分析. (6) 四. 电路的调试与分析 (13) 4.1调试使用的仪器. (13) 4.2 电路的调试 (13) 五.总结 (15) 5.1 设计体会 (15) 5.2 改进提高 (15) 六. 附录及参考文献 (16) 6.1 附录1 元器件清单. (16) 6.2 附录2 电路的原理图. (16)

6.3 附录3 实物图 (17) 6.4 参考文献 (18) 、八、- 前言 在现代城市中,效率意识日益突出,人们希望不需要人力资源的浪费,希望使效率合理使用最大化。因此,自动路灯控制器是实现无人管理自动开关的重要设计。本课程设计的任务就是设计一个路灯控制器。鼓励学生在熟悉基本原理的前提下,与实际应用相联系,提出自己的方案,完善设计。

霍尔传感器转速测量电路设计

课程设计报告书

2.概述 2.1系统组成框图 系统由传感器、信号预处理电路、处理器、显示器和系统软件等部分组成。传感器部分采用霍尔传感器,负责将电机的转速转化为脉冲信号。信号预处理电路包含待测信号放大、波形变换、波形整形电路等部分,其中放大器实现对待测信号的放大,降低对待测信号的幅度要求,实现对小信号的测量;波形变换和波形整形电路实现把正负交变的信号波形变换成可被单片机接受的TTL/CMOS兼容信号。处理器采用AT89C51单片机,显示器采用8位LED数码管动态显示。本课题采用的是以8051系列的A T89C51单片机为核心开发的霍尔传感器测转速的系统。系统硬件原理框图如图1所示: 图1 系统框图 2.2系统工作原理 转速是工程上一个常用的参数,旋转体的转速常以每分钟的转数来表示。其单位为 r/min。由霍尔元件及外围器件组成的测速电路将电动机转速转换成脉冲信号,送至单片机AT89C51的计数器 T0进行计数,用T1定时测出电动机的实际转速。此系统使用单片机进行测速,采用脉冲计数法,使用霍尔传感器获得脉冲信号。其机械结构也可以做得较为简单,只要在转轴的圆盘上粘上两粒磁钢,让霍尔传感器靠近磁钢,机轴每转一周,产生两个脉冲,机轴旋转时,就会产生连续的脉冲信号输出。由霍尔器件电路部分输出,成为转速计数器的计数脉冲。控制计数时间,即可实现计数器的计数值对应机轴的转速值。单片机CPU将该数据处理后,通过LED显示出来。

2.2.1霍尔传感器 霍尔传感器是对磁敏感的传感元件,由磁钢、霍耳元件等组成。测量系统的转速传感器选用SiKO 的 NJK-8002D 的霍尔传感器,其响应频率为100KHz ,额定电压为5-30(V )、检测距离为10(mm )。其在大电流磁场或磁钢磁场的作用下,能测量高频、工频、直流等各种波形电流。该传感器具有测量精度高、电压范围宽、功耗小、输出功率大等优点,广泛应用在高速计数、测频率、测转速等领域。输出电压4~25V ,直流电源要有足够的滤波电容,测量极性为N 极。安装时将一非磁性圆盘固定在电动机的转轴上,将磁钢粘贴在圆盘边缘,磁钢采用永久磁铁,其磁力较强,霍尔元件固定在距圆盘1-10mm 处。当磁钢与霍尔元件相对位置发生变化时,通过霍尔元件感磁面的磁场强度就会发生变化。圆盘转动,磁钢靠近霍尔元件,穿过霍尔元件的磁场较强,霍尔元件输出低电平;当磁场减弱时,输出高电平,从而使得在圆盘转动过程中,霍尔元件输出连续脉冲信号。这种传感器不怕灰尘、油污,在工业现场应用广泛。 2.2.2转速测量原理 霍尔器件是由半导体材料制成的一种薄片,器件的长、宽、高分别为 l 、b 、d 。若在垂直于薄片平面(沿厚度 d )方向施加外磁场B ,在沿l 方向的两个端面加一外电场,则有一定的电流流过。由于电子在磁场中运动,所以将受到一个洛仑磁力,其大小为:qVB f = 式中:f —洛仑磁力, q —载流子电荷, V —载流子运动速度, B —磁感应强度。 这样使电子的运动轨迹发生偏移,在霍尔元器件薄片的两个侧面分别产生电子积聚或电荷过剩,形成霍尔电场,霍尔元器件两个侧面间的电位差H U 称为霍尔电压。 霍尔电压大小为: H U H R =d B I /??(mV) 式中:H R —霍尔常数, d —元件厚度,B —磁感应强度, I —控制电流 设 H K H R =d /, 则H U =H K d B I /??(mV) H K 为霍尔器件的灵敏系数(mV/mA/T),它表示该霍尔元件在单位磁感应强度和 单位控制电流下输出霍尔电动势的大小。应注意,当电磁感应强度B 反向时,霍尔电动势也反向。图2为霍耳元件的原理结构图。

压控振荡器原理和应用说明

压控振荡器(VCO 一应用范围 用于各种发射机载波源、扩频通讯载波源或作为混频器本振源。 二基本工作原理 利用变容管结电容Cj 随反向偏置电压VT 变化而变化的特点(VT=OV 时Cj 是最大值,一 般变容管VT 落在2V-8V 压间,Cj 呈线性变化,VT 在8-10V 则一般为非线性变化,如图1 所示,VT 在10-20V 时,非线性十分明显),结合低噪声振荡电路设计制作成为振荡器,当 改变变容管的控制电压,振荡器振荡频率随之改变,这样的振荡器称作压控振荡器(VCO 。 压控振荡器的调谐电压 VT 要针对所要求的产品类别及典型应用环境(例如用户提供调谐要 求,在锁相环使用中泵源提供的输出控制电压范围等 )来选择或设计,不同的压控振荡器, 对调谐电压VT 有不同的要求,一般而言,对调谐线性有较高要求者, VT 选在1-10V ,对宽 频带调谐时,VT 则多选择1-20V 或1-24V 。图1为变容二极管的V — C 特性曲线。 图1变容二极管的V — C 特性曲线 三压控振荡器的基本参数 1工作频率:规定调谐电压范围内的频率范围称作工作频率,通常单位为“ MHZ 或 “GHz 。 2输出功率:在工作频段内输出功率标称值,用 Po 表示。通常单位为“ dBmW 。 3输出功率平稳度:指在输出振荡频率范围内,功率波动最大值,用△ P 表示,通常 单位为“ dBmW 。 4调谐灵敏度:定义为调谐电压每变化1V 时,引起振荡频率的变化量,用 MHz/ △ VT 表示,在线性区,灵敏度最咼,在非线性区灵敏度降低。 5谐波抑制:定义在测试频点,二次谐波抑制 =10Log (P 基波/P 谐波)(dBmw )。 6推频系数:定义为供电电压每变化1V 时,引起的测试频点振荡频率的变化量,用 MHz/V 表 示。 7相位噪声:可以表述为,由于寄生寄相引起的杂散噪声频谱,在偏移主振 f0为fm 的带内,各杂散能量的总和按fin 平均值+15f0点频谱能量之比,单位为dBC/Hz 相位噪 声特点是频谱能量集中在f0附近,因此fm 越小,相噪测量值就越大,目前测量相噪选定 WV) 0 8 10

NE555多谐振荡电路课程设计要点

目录要....................................................................................................................................................... 2摘......................................................................................................................................... 41 设计任务和要求...................................................................................................................................... 4.1.1:设计任务.................................................................................................................................... 4:设计要求.1.2 ........................................................................................................................................ 4方案比较与论证.2 .......................................................................................................................... 4 .:稳压电源通常由 2.1.................................................................................................................................... 8 .2.2 :方案论证错误!未定义书签。硬件设计. (3) .................................................................................................. 错误!未定义书签。3.1 :设计思想............................................................................................... 错误!未定义书签。3.2 :称功能模块.系统仿真.. (84) .................................................................................................................... 8:仿真原理图如下:.4.1 错误!未定义书签。................................................................................................................ 5系统的组装............................................................................................... 错误!未定义书签。PCB版板图.:5.1 ......................................................................................................................................................... 96 结论:错误!未定义书签。参考文献:................................................................................................................... .................................................................................................. 错误!未定义书签。附录一:电路原理图.错误!未定义书签。:元件列表...................................................................................................................

传感器与测控电路设计说明书

传感器与测控电路课程设计 说明书 设计题目电感式(螺管型)位移传感器的设计 学校湖南科技大学学院机电工程学院 班级 07级测控一班学号 0703030116 设计人李广 指导教师余以道杨书仪 完成日期 2010 年 6 月 22 日

目录 一、设计题目与要求 (2) 二、基本原理简述 (2) 三、设计总体方案拟定 (7) 四、传感器的结构设计 (8) 五、结构设计CAD图 (12) 六、测控电路的设计与计算 (12) 七、电路框图及电路CAD图 (14) 八、精度误差分析 (14) 九、参考文献 (16)

一、设计题目与要求 1、设计题目:电感式(螺管型)位移传感器的设计 2、设计要求: 采用差动变压器原理设计一个测量位移的传感器,并设计一测控电路对传感器的输出量进行处理,使信号能输入到A/D 转换器,进行一系列的测量与控制。 二、基本原理简述 电感式传感器是利用被测量的变化引起线圈自感或互感系数的变化,从而导致线圈电感量改变这一物理现象来实现测量的。因此根据转换原理,电感式传感器可以分为自感式和互感式两大类。 自感式电感传感器可分为变间隙型、变面积型和螺管型三种类型。 一、 螺管型自感传感器 有单线圈和差动式两种结构形式。 单线圈螺管型传感器的主要元件为一只螺管线圈和一根圆柱形铁芯。传感器工作时,因铁芯在线圈中伸入长度的变化,引起螺管线圈自感值的变化。当用恒流源激励时,则线圈的输出电压与铁芯的位移量有关。 铁芯在开始插入(x =0)或几乎离开线圈时的灵敏度,比铁芯插入线圈的1/2长度时的灵敏度小得多。这说明只有在线圈中段才有可能获得较高的灵敏度,并且有较好的线性特性。 1、工作原理 设线圈长度为l 、线圈的平均半径为r 、线圈的匝数为N 、衔铁进入线圈的长度la 、衔铁的半径为ra 、铁心的有效磁导率为μm ,则线圈的电感量L 与衔铁进入线圈的长度la 的关系可表示为 [] 2222 2)1(4a a m r l lr l N L -+=μπ

粮仓智能传感器设计

用于粮仓领域的智能温度传感器的设计 摘要: 近年来随着计算机在社会领域的渗透, 单片机的应用正在不断地走向深入, 同时带动传统控制检测日新月益更新。在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用,仅单片机方面知识是不够的,还应 根据具体硬件结构,以及针对具体应用对象特点的软件结合,以作完善。 系统以AT89C51 单片机为控制核心,利用新型一线制温度传感器DS18B20 测量温度值,实现粮仓环境温度的检测和报警。本文给出了由AT89C51 单片机和 DS18B20 构成的单总线温度测量系统的硬件电路及软件流程图。该系统具有测点多、精度高、速度快、稳定性好、报警及时等特点,也可应用于其它相关的温度控制系统,通用性较强。 关键词:一线总线;DS18B20;AT89C51;数字温度传感器 Abstract:The system for the control of the core is AT89C51,the temperature sensors DS18B20 is used to measure temperature and this system can realize ambient temperature measurement and alarm. This article introduces the hardware circuit which the software flow chart constitutes by AT89C51 monolithic integrated circuit and DS18B20. This system has many measuring point, high-precision, wide range of temperature monitoring, good stability and alarms timely, it may also be applied in other related temperature control system and the versatility is strong. Keywords:1-Wire TM;DS18B20;AT89C51;Digit Temperature Densor

压控LC电容三点式振荡器设计及仿真

实验二压控LC 电容三点式振荡器设计及仿真 一、实验目的 1、了解和掌握LC 电容三点式振荡器电路组成和工作原理。 2、了解和掌握压控振荡器电路原理。 3、理解电路元件参数对性能指标的影响。 4、熟悉电路分析软件的使用。 二、实验准备 1、学习LC 电容三点式西勒振荡器电路组成和工作原理。 2、学习压控振荡器的工作原理。 3、认真学习附录相关内容,熟悉电路分析软件的基本使用方法。 三、设计要求及主要指标 1、采用电容三点式西勒振荡回路,实现振荡器正常起振,平稳振荡。 2、实现电压控制振荡器频率变化。 3、分析静态工作点,振荡回路各参数影响,变容二极管参数。 4、振荡频率范围:50MHz~70MHz,控制电压范围3~10V。 5、三极管选用MPSH10(特征频率最小为650MHz,最大IC 电流50mA,可 满足频率范围要求),直流电压源12V,变容二极管选用MV209。 四、设计步骤 1、整体电路的设计框图

整个设计分三个部分,主体为LC 振荡电路,在此电路基础上添加压控部分,设计中采用变容二极管MV209 来控制振荡器频率,由于负载会对振荡电路的 频 率产生影响,所以需要添加缓冲器隔离以使振荡电路不受负载影响。 2、LC 振荡器设计 首先应选取满足设计要求的放大管,本设计中采用MPSH10 三极管,其特征频率f T=1000MHz。LC 振荡器的连接方式有很多,但其原理基本一致,本实验中采用电容三点式西勒振荡电路的连接方式,该振荡电路在克拉泼振荡电路的基础上进行了细微的改良,增加了一个与电感L 并联的电容,主要利用其改变频率而不对振荡回路的分压比产生影响的特点。电路图如下所示:

模拟电路课程设计..

模拟电子技术课程设计任务书 一、课程设计的任务 通过理论设计和实物制作解决相应的实际问题,巩固和运用在《模拟电子技术》中所学的理论知识和实验技能,掌握常用模拟电路的一般设计方法,提高设计能力和实践动手能力,为以后从事电子电路设计、研发电子产品打下良好的基础。 二、课程设计的基本要求 1、掌握电子电路分析和设计的基本方法。包括:根据设计任务和指标初选电路;调查研究和设计计算确定电路方案;选择元件、安装电路、调试改进;分析实验结果、写出设计总结报告。 2、培养一定的自学能力、独立分析问题的能力和解决问题的能力。包括:学会自己分析解决问题的方;对设计中遇到的问题,能通过独立思考、查询工具书和参考文献来寻找解决方案,掌握电路测试的一般规律;能通过观察、判断、实验、再判断的基本方法解决实验中出现的一般故障;能对实验结果独立地进行分析,进而做出恰当的评价。 3、掌握普通电子电路的生产流程及安装、布线、焊接等基本技能。 4、巩固常用电子仪器的正确使用方法,掌握常用电子器件的测试技能。 5、通过严格的科学训练和设计实践,逐步树立严肃认真、一丝不苟、实事求是的科学作风,并逐步建立正确的生产观、经济观和全局观。

三、课程设计任务 课题4 逻辑信号电平测试器的设计 (一)设计目的 1、学习逻辑信号电平测试器的设计方法; 2、掌握其各单元电路的设计与测试方法; 3、进一步熟悉电子线路系统的装调技术。 (二)设计要求和技术指标 在检修数字集成电路组成的设备时,经常需要使用万用表和示波器对电路中的故障部位的高低电平进行测量,以便分析故障原因。使用这些仪器能较准确地测出被测点信号电平的高低和被测信号的周期,但使用者必须一面用眼睛看着万用表的表盘或者示波器的屏幕,一面寻找测试点,因此使用起来很不方便。 本课题所设计的仪器采用声音来表示被测信号的逻辑状态,高电平和低电平分别用不同声调的声音来表示,使用者无须分神去看万用表的表盘或示波器的荧光屏。 1、技术指标: (1)测量范围:低电平<1V,高电平>3V; (2)用1.5KH Z的音响表示被测信号为高电平; (3)用500H Z的音响表示被测信号为低电平;

实验三多谐振荡器

实验三多谐振荡器和计数器的设计 一、实验目的 1、学会用Multisim7 的总线功能设计电路; 2、学会Multisim7 虚拟仪器逻辑分析仪的使用; 3、掌握用555 电路设计振荡器的方法; 4、掌握集成同步十进制计数器74LS160 的逻辑功能,用置零法和置数法设计其它 进制计数器。 二、实验原理及参考图 1、555 定时器是一种多用途的数字—模拟混合集成电路,利用它能极方便地构成施密特触发器、单稳态触发器和多谐振荡器,其管脚图如图4-3.1 所示。 2、集成同步十进制计数器74LS160 除了十进制加法功能之外,还有同步预置数、异步置零和保持功能,其管脚图如图4-3.2 所示,其功能表如表4-3.2 所示。74LS160通过置零法和置数法可以构成其它进制计数器。 置零法的原理:当计数器从零开始,计数到某个状态时,令它跳过后面的其它状态,直接置零,重新开始计数。 置数法的原理:通过给计数器重复置入某个数值,使计数器跳过若干个状态。 图 4-3.1 图4-3.2 三、实验内容与步骤 1、多谐振荡器的设计

(1)、用555 电路设计一个输出频率可调范围为100Hz~10KHz 的多谐振荡器;(2)、根据设计值,选择元件并设置好参数、连接好电路; ( 3)、用示波器观察输出波形,并测量输出信号的频率范围,与设计值进行比较,讨论产生误差的原因。 当输入电阻为R2=4997500Ω 时,获取100HZ的振荡器。 实际输出波形的周期为T=10.038ms; 其误差为(100-1/10.038*1000)/100*100%=0.38%;

当输入电阻为R2=47500Ω 时,获取10KHZ的振荡器; 实际输出波形的周期为T=117.424us; 其误差为(10000-1/117.424*1000000)/10000*100%=14.84%; 误差分析:当输入频率较小时,相对误差小;频率大,则具有较大的误差。如上原理图显示,电容C1的取值Q=1/(Ln3-Ln1.5),而实际取值为1.4427nF,无法消除所有的计算误差。所以,在获取较大频率值时,误差得到放大,使实际产生的数据不准确。这就是100HZ和10KHZ误差大小的原因之一。二来实现硬件电路的元器件本身数值不是准确的,存在相对误差,从而引起波形频率不准确。 2、计数器的设计 (1)、用置零法将74LS160 连接成七进制计数器,输出QD、QC、QB、QA 接数码管 及逻辑分析仪;

相关主题
文本预览
相关文档 最新文档