当前位置:文档之家› 聚丙烯酸与纳米硅溶胶制备SiO2气凝胶的保温性能研究

聚丙烯酸与纳米硅溶胶制备SiO2气凝胶的保温性能研究

聚丙烯酸与纳米硅溶胶制备SiO2气凝胶的保温性能研究
聚丙烯酸与纳米硅溶胶制备SiO2气凝胶的保温性能研究

聚丙烯酸与纳米硅溶胶制备SiO2气凝胶的保温性能研究

韦平

(亚士创能科技(上海)股份有限公司上海 201707)

摘要:SiO2气凝胶是一种具有三维空间微小网络结构,气孔率高,密度小的多孔轻质材料,具有良好

的保温性能[1],二水甲酸钠作为分子量调节剂,过硫酸钾作为引发剂,聚合出分子量适宜的聚丙烯酸(PAA);以KH-560为偶联剂,将聚合好的PPA与纳米硅溶胶进行杂化,经过陈化干燥得到杂化凝胶;经过煅烧除去水分和烧掉有机组分,从而制备了比重较小的SiO2气凝胶。

关键词:聚丙烯酸;杂化溶胶;溶胶凝胶法;SiO2气凝胶;保温性能

Abstract:SiO2 aerogel is a kind of materials with three-dimensional micro-network structure, high porosity,

low density, lightweight and good insulation properties. Sodium dihydrate as molecular weight regulator,

potassium persulfate as initiating agent, prepare the appropriate molecular weight polyacrylic acid

(PAA); KH-560 as the coupling agent, hybrid PPA and nano-silica to dried hybrid gel through aging; finally,

remove water and burn the organic components by calcining to obtain the SiO2 aerogel with low density. Key words:acrklic acid;hybrid sol;sol-gel method;SiO2aerogels;thermal insulstion properties

SiO2气凝胶是一种具有纳米结构的多孔轻质固体材料,拥有高通透性的圆筒形多分枝孔和纳米骨

架组成的三维空间纳米网络结构[2]。气凝胶孔洞率最高可达99%(密度最低可达0.003g/cm3,比表面

积约1120cm2/g;体积密度仅为3.03cm3/g,孔径尺寸20nm 左右[3]。其特殊的结构和性质,赋予其很

低的折射率、导热系数和传播速度及对气体选择性透过等特性,尤其是低导热系数使其在保温材料上

的应有很有优势[4]。以丙烯酸和纳米硅溶胶为原料,并加入KH-560作为偶联剂,采用溶胶-凝胶法制

备比重较小的二氧化硅有机无机杂化材料。不同固含量丙烯酸聚合物与纳米硅溶胶按不同比例进行杂

化,聚丙烯酸固含量为5%,8%,10%,12%,而有机与无机组分比例为3:1,2:1,1:1,1:3,

1:2。探索提高SiO2有机无机杂化材料的交联效果和保温性能的最优配方。

1 实验部分

1.1 药品名称

本次实验所用到的化学药品如下表:

表1药品名称表

药品名称化学式分子量生产厂家

丙烯酸

二水甲酸钠C3H4O2

CHNaO2.2H2O

(72.06)

(104.04)

天津市光复精细化工研究所

国药集团化学试剂有限公司

过硫酸钾KH-560

纳米硅溶胶K2S2O8

C9H20O5Si

固含量为30%

(270.32)

(236.00)

上海优耐德引发剂有限公司

国药集团化学试剂有限公司

国药集团化学试剂有限公司

注:以上药品均为分析纯(A.R.)

1.2高分子量聚丙烯酸的制备

按下表比例将原料加入到三口叉瓶中(一口加料,一口通回流管,一口插入温度计),采用磁力加热搅拌器加热至50o C至80o C并搅拌两到三个小时,使丙烯酸完全聚合生成不同固含量的聚合物。

表2 制备聚丙烯酸所用到各原料的含量

丙烯酸(g) 蒸馏水(ml) 二水甲酸钠(g) 过硫酸钾(g) 聚合物固含量

5 95 0.05 0.05 5%

8 92 0.05 0.05 8%

10 90 0.05 0.05 10%

12 88 0.05 0.05 12%

注:其中二水甲酸钠作为分子量调节剂,过硫酸钾为引发剂。

1.3聚丙烯酸与KH-560的水解及开环缩合

不同固含量乳液和KH-560按固定比例(10:1)在反应釜中常温下进行水解开环缩合成乳液A,在反应过程中不停搅拌1h。

1.4杂化溶胶的制备

将乳液A与硅溶胶按不同比例混合搅拌形成SiO2杂化溶胶C,常温下搅拌3h。

表3 PAA与纳米硅溶胶用量比

A 1 2 3 1 1

B 1 1 1 3 2

(注:以上均为体积比)

1.5杂化凝胶的干燥及焙烧

将搅拌好的溶胶C进行注模,模具为果冻塑料杯,使乳液陈化3天形成溶胶,再将溶胶在干燥箱中在50o C下干燥两个星期,使之形成凝胶,最后将凝胶进行焙烧,得到轻质块状气溶胶。其升温制度为室温以1o C/min升到120o C,再以每分钟2o C/min升到400o C保温1h,再以2o C/min升到600 o C 保温1h,最后以5o C/min升到800o C保温2h。

具体工艺流程如下图所示:

图1样品合成工艺流程图

2结果与讨论

2.1红外光谱分析

从图2的红外光谱图中可知:3300 cm-1~3500cm-1处的吸收峰为-OH的伸缩振动峰(包括材料中的-0H和没有完全缩合的Si-OH);1050cm-1~1180 cm-1处范围内出现了强吸收峰,这是由于热处理后形成了Si-O-C和Si-O-Si的特征吸收峰,说明有机相与无机相间以共价键相连;1730cm-1为-C=O 的伸缩振动峰,1000 cm-1~1250cm-1为酯类-C-O-C峰,500cm-1左右为聚丙烯酸吸收峰。由上述表征可以推断,Si02表面有大量的硅羟基Si-0H存在,使其表面具有较强的化学吸附性,Si02凝胶网络的形成,使得有机聚合物与无机相形成一个键联型强相互作用的杂化体系,削弱了原本单相的本体键,这为杂化材料具备许多优良性能提供了基础。

有机无机杂化凝胶的红外光谱图

图2 Si0

2

2.2 XRD分析

从XRD衍射图可看出,在20o到80o范围内只出现两个较强的衍射峰强度,这说明样品中晶体种类较少,图3中没有过多杂峰,基线较规整,说明样品粉末晶形结构较完整,图中所显示的(220)和(311)衍射峰晶面均为微晶相的立方Si02晶体结构,在衍射角为22o附近衍射峰强度达到7400,在衍射角为36o附近衍射峰强度也有1400左右,这是由于粉末样品中含有立方Si02微晶相晶体结构,并没有发现其他衍射峰,因为材料的制备仅由纳米硅溶胶和丙烯酸通过交联形成,而在热处理时,水分和有机组分都已经被处理掉了,仅剩Si02骨架,将其磨成粉末,进而含有微粒很小的立方Si02晶体。

气凝胶粉末的XRD衍射图

图3 Si0

2

2.3微观结构分析

由SEM照片可发现材料的微观结构中含有很多小于1μm的孔洞,这些空洞大小不均匀,这说明在材料的杂化过程中有机组分和无机组分确实通过化学键交联,而且在热处理过程中形成了SiO2骨

架,并且通过除去水分和烧掉有机物时形成了很多微小孔洞的SiO2气溶胶材料,这些孔洞的形成使得材料的密度很小,而且由于孔洞的存在,使材料具有保温的性能。

图4 Si0

2

气凝胶的SEM图

2.4比重分析

Si02气凝胶比重测试结果如下表:

表4 比重分析数据

PAA固含量有机无机组分比M1/g M2/g M3/g 密度(g/cm3)

12% 3:1 1.3475 2.7808 0.3248 0.5486 1:1 1.2718 2.8026 0.3012 0.5084 1:3 1.4634 3.2594 0.2672 0.4890

10% 3:1 1.5236 3.2142 0.4202 0.5453 1:1 1.1086 2.8732 0.3536 0.4399 1:3 1.3218 3.6489 0.3028 0.3950

8% 3:1 3.4392 7.6474 0.8234 0.5039 1:1 3.8763 9.6452 0.8365 0.4400 1:3 3.6542 9.8432 0.6238 0.3963

5% 3:1 2.6418 6.4735 0.6712 0.4553 1:1 2.4963 6.2394 0.6032 0.4429 1:3 2.7596 7.6126

0.6839 0.3983

其中M1为干重,D1为水密度,M2为湿重,M3为浮重。

从以上数据可知,在PAA固含量固定的时候,样品的密度随着无机组分的增大而变小;当有机无机组分比例一定时,PAA固含量的增大使得样品密度变大。其原因在于,当加入有机组分较多时,烧出的样品交联效果好,样品比较致密,形成孔洞较少,所以导致材料密度增大,当PAA固含量减少或者无机组分大于有机组分时,烧成后,形成网络结构很疏松,孔洞也较多,材料密度比较小。因此,同时考虑到交联效果,我们选择PAA固含量时,应该选择是10%,当PAA固含量为10%时,其交联效果好。

2.5样品保温性能的综合分析

导热系数是衡量材料保温性能优劣的主要指标,导热系数越小,保温性能越好[5]。保温材料的导热系数决定于材料的成分、内部结构、密度、含水量等因素[6]。通过分析SiO2气凝胶的成分,内部结构,材料密度和含水量来分析其保温性能:首先SiO2气凝胶主要成分含有耐高温又不易传导的SiO2,比较适合作为保温材料;另外通过有机无机杂化,使材料骨架的机械性能得到保证,通过焙烧,除去水分和有机组分,可形成较小空洞,甚至是纳米级多孔洞的轻质块体材料;比重测试结果也证明其密度在0.5g/cm3左右,适合做保温材料。

3.结论

(1)以丙烯酸和纳米硅溶胶为原料通过溶胶凝胶法可以得到晶体结构完整的SiO2气凝胶。

(2)对样品进行比重测试,大体上,样品的比重较小,达到作为保温材料的基本要求,测试结果表明,无机组分越大样品密度越小,而且孔洞也较多,而10%PAA固含量与高组分纳米硅溶胶是所作众多配方中效果最好的。

(4)通过对SiO2气凝胶的保温性能的综合分析,SiO2气凝胶材料骨架的机械性能良好,通过焙烧,除去水分和有机组分,可形成较小空洞,甚至是纳米级空洞的轻质块体材料,可达到保温所需的基本要求。

参考文献

[1] 郭军,雷志坚.有机无机杂化材料研究进展.湖南科技学院学报,第26卷第11期,2005年11月.

[2] 史铁钧,王华林,襄小宁. 有机无机杂化材料研究进展. 合肥工业大学学报(自然科学版),第23卷第1期, 2000年2月.

[3] 井新荆,部茂盛,金志浩等. PMMA/SIO2原也复台材料的剖备及性能研究[J].高劈子村料科学与工程,1998.14(4) 62—65.

[4]1Schmidt H,popall M.Inorganic-organic composites for opticail applicadon [J].Proe SP1E,1990,13(2):249—253.

[5] 王华林,史铁钩,余锡宾等.PMMA/SIO2杂化凝胶材料的研究[J].四川大学学报(工程科学版),1999,6(3) 52—56.

[6] Makemie J D,Chung Y J,Hu Y.Rubbery ormosils and their application[J].J Non-Cryst Solids,1992,147(2):271—276.

硅溶胶的性质及用途

HX- HX-是胶体二氧化硅的简称,其基本成分是无定型二氧化硅,并以10~20纳米的粒径均匀地分散于水中。其外观为乳白色或青白色半透明状胶体溶液,是一种良好的无机粘结剂,具有无毒、无味、耐高温、隔热、绝缘性能好、比表面积大、吸附力强、热膨胀系数低等优点。 二、的性能 1、具有较大的吸附性:硅溶胶中无数胶团产生的无数网络结构孔隙,在一定的条件下对无机物及有机物具有一定的吸附作用。 2、具有较大的比表面积:比表面积一般为250~300平方/g。 3、具有较好的粘结性:因其胶团尺寸均匀,并在10~20nm左右,自身风干即产生一定的粘接强度,但强度较小。如将硅溶胶加入某种纤维或粒状材料中,然后干燥固化即可成坚硬的凝胶结构,会产生较大的粘接性(一般46.7Kg/cm2左右)。 4、具有良好的耐温性:一般可耐1600℃左右。 5、硅溶胶具有较好的亲水性和憎油性:可以用蒸馏水稀释至任意浓度,而且随稀释度的增加而稳定性增强。但加入有机物或多种金属离子中又可产生憎水性。 6、硅溶胶具有“高度的分散性”,“较好的耐磨性”和良好的“透光性”等。因此,可作为良好的“分散剂”,“防腐剂”,“絮凝剂”,“冷却剂”和特殊的“光学材料”等。 三、的用途 1、应用于精密铸造业:代替硅酸乙脂使用,无毒性;不仅可以降低成本,用于制作零件,尺寸精确度高,铸件光洁度好,可使壳型强度大,造型比使用水玻璃质量好;用于铸模的耐高温涂料,可以使涂层具有较好的耐热性,减少高温下熔融金属与模具的损耗,并有助于脱模。 2、应用于涂料行业,能够使涂料牢固,具有耐水、耐火、耐污、耐高温、涂膜强度大、色泽艳丽、不褪色等优点。还可以应用于耐酸、耐碱、防火涂料和远红外线辐射涂料。 3、应用于耐火材料的粘结剂:具有粘结强度高、耐高温(1500~1600℃)等优点。 4、应用于纺织业:可以用做纺织上浆助剂,减少断头率;在织物染色中使用,因具有粘结性,可以形成优良的保护液,增加染色的附着力等等。

气凝胶原理及市场

气凝胶原理及市场 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

气凝胶市场调研报告 一、概述 二氧化硅气凝胶是一种合成的无定形硅胶,与结晶硅胶显着不同。硅胶分子由一个硅原子和两个氧原子构成。如下图所示,硅胶有两种基本形式:无定形硅胶和结晶硅胶。如果硅胶分子排列整齐并且形成可重复样式,则为结晶硅胶。如果硅胶分子排列不整齐,则为无定形硅胶。 两种不同气凝胶产品的扫描电子显微镜(SEM)图像显示,气凝胶存在无定形特性。粉末X光衍射没有发现可测量的结晶成分。在超过1200℃(显着高于气凝胶材料的最高使用温度)时,气凝胶会转换为结晶相。 二氧化硅气凝胶又被称作“蓝烟”、“固体烟”,是目前已知的最轻的固体材料,也是迄今为止保温性能最好的材料。因其具有纳米多孔结构(1~100nm)、低密度(3~250kg/m3)、低介电常数(~)、低导热系数(~(m·k))、高孔隙率(80~%)、高比表面积(500~1000m2/g)等特点,在力学、声学、热学、光学等诸方面显示出独特性质,在航天、军事、石油、化工、矿产、通讯、医用、建材、电子、冶金等众多领域有着广泛而巨大的应用价值,被称为“改变世界的神奇材料”。 气凝胶于1931年在美国发明。目前气凝胶全球重点发展区域主要集中在美国、德国、英国,其中,依托强大的技术开发实力和新产品开发力度,美国的应用领域尤为突出和领先。在高性能气凝胶应用方面,美国已经成功应用于航空航天、新能源、建筑以及高级体育用品等方面。我国在气凝胶研究和开发方面尚属早期阶段,主要集中在附加值较高的航空航天、医药等方面,众多领域仍属空白。目前国际上关于气凝胶材料的研究工作主要集中在德国的维尔茨堡大学、BASF公司、美国的劳伦兹·利物莫尔国家实验室、桑迪亚国家实验室,法国的蒙彼利埃材料研究中心,日本高能物理国家实验室,美国阿斯彭气凝胶技术有限公司等。国内主要集中在同济大学波尔固体物理实验室、浙江省绍兴市纳诺高科股份有限公司、广东埃力生高新科技有限公司、上海美桥科材料科技有限公司等。 二、基本特性

微硅粉和硅微粉的区别

微硅粉和硅微粉的区别有哪些? 目前国内大部分生产硅微粉与微硅粉的厂商对二者的概念混为一谈,仅从字面意思上理解,把二者看做是一种产品。那么两者之间到底有何区别呢?现在,就让笔者就和大家分析一下他们之间的差异。 一、硅微粉与微硅粉市场现状的差异:世界上只有中国、美国、德国等少数国家具备硅微粉生产能力,中国硅微粉的市场主要还是在国内,集中在安徽凤阳,浙江湖州,辽宁铁岭等地,出口量相对来说比较小。微硅粉的市场多集中在国外,国外在微硅粉的使用中已经获取了巨大的经济利益,加工后高价卖到国内的建筑、水泥、化肥等领域。 二、硅微粉与微硅粉的生产流程上的差异:硅微粉是由天然石英(SiO2)或熔融石英(天然石英经高温熔融、冷却后的非晶态SiO2)经破碎、球磨(或振动、气流磨)、浮选、酸洗提纯、高纯水处理等多道工艺加工而成的微粉。微硅粉是铁合金在冶炼硅铁和工业硅(金属硅)时,矿热电炉内产生出大量挥发性很强的SiO2和Si气体,气体排放后与空气迅速氧化冷凝沉淀而成。 三、硅微粉与微硅粉外观上的差异:从外观上来说,硅微粉其质纯、色白、颗粒均衡,是一种无毒、无味、无污染的无机非金属材料;而微硅粉则根据硅石原料、还原剂或炉况的不同,绝大多数微硅粉呈灰色或深灰色。在形成过程中,因相变的过程中受表面张力的作用,形成了非结晶相无定形圆球状颗粒,且表面较为光滑,有些则是多个圆球颗粒粘在一起的团聚体。 四、硅微粉与微硅粉性能和用途差异:从硅微粉与微硅粉性能或作用上硅业在线是这么划分的:硅微粉概括的说具备耐温性好、耐酸碱腐蚀、导热性差、高绝缘、低膨胀、化学性能稳定、硬度大等优良的性能。根据其用途硅微粉分为以下几类:普通硅微粉、电工级硅微粉、电子级硅微粉系列、熔融石英硅微粉、超细石英硅微粉、纳米硅微粉。而微硅粉的作用主要作用有如下几个方面: 1.VCEM微硅粉用于砂浆与砼中:高层建筑物、海港码头、水库大坝、水利涵闸、铁路公桥梁、地铁、隧道、机场跑道、砼路面以及煤矿巷道锚喷加固等。 2.材料工业中:高档高性能低水泥耐火浇注料及预制件,使用寿命是普通浇注料的三倍,耐火度提高约 100℃,高温强度及抗热震性能都明显改善;已普遍应用于:焦炉、炼铁、炼钢、轧钢、有色金属、玻璃、陶瓷及发电等行业;大型铁沟及钢包料、透气砖、涂抹修补料等;自流型耐火浇注材料及干湿法喷射施工应用;氧化物结合碳化硅制品(陶瓷窑窑具、隔焰板等);高温型硅酸钙轻质隔热材料;电瓷窑用刚玉莫来石推板。;高温耐磨材料及制品;刚玉及陶瓷制品;赛隆结合制品;目前除在浇注型耐火材料中普遍使用之外,在电熔和烧结型耐火材料亦获得大量应用。 3.新型墙体材料、饰面材料:1墙体保温用聚合物砂浆、保温砂浆、界面剂。 4.水泥基聚合物防水材料。 5.轻骨料保温节能砼及制品。 6.内外墙建筑用腻子粉加工。 7.其他用途: ①硅酸盐砖原料。②生产水玻璃。③用做有机化合物的补强材料。④化肥行业中用作防结块剂。 五、硅微粉与微硅粉指标的差异:从指标上来看,也有很多不同之处。硅微粉与微硅粉的化学成分基本上是相同的,只不过硅微粉的含硅量比较高,基本都在99%以上,而微硅粉的含硅量一般都在80-92%,94%以上都属于很不常见的。从粒度上来说,硅微粉由天然石英加工而成的,粒度比较大,是一种粉状态。而微硅粉的细度小于1靘的占80%以上,平均粒径在0.1-0.3靘,是一种灰状态。从以上我们可以看出硅微粉与微硅粉有着本质的区别,性质不同决定着二者本质的不同。

纳米二氧化硅表面改性研究

文章编号:1003 1545(2011)02 0018 04 纳米二氧化硅表面改性研究 李金玲,王宝辉,李 莉,张钢强,盖翠萍,杨雪凤,邵丽英,隋 欣 (东北石油大学化学化工学院,黑龙江大庆 163318) 摘 要:采用甲苯二异氰酸酯(TD I)接枝聚乙二醇(PEG )对纳米Si O 2进行表面改性,并利用红外光谱(FT I R )和热重(TG )、扫描电镜(SE M )、粒径分析、重力沉降法等方法对改性前后的纳米Si O 2的表面形貌和在介质中的分散稳定性进行了表征和分析。结果表明,改性后的纳米S i O 2表面接枝上了TD I 、PEG 的有机官能团,降低了颗粒的团聚程度,提高了纳米S i O 2在介质中的分散性。当n (TD I):n (PEG )=1:0 8时,分散性最好,接枝率为54 03%。 关键词:纳米S i O 2;表面改性;分散性中图分类号:TQ127.2 文献标识码:A 收稿日期:2010-10-12 基金项目:黑龙江省教育厅科学技术研究项目资助(11531009) 作者简介:李金玲,1984年生,女,在读硕士研究生,主要从事纳米改性水性聚氨酯的研究。E -m a i:l dqp ilj@l 163.co m 纳米二氧化硅是目前世界上大规模工业化 生产的产量最高的一种纳米粉体材料[1] 。特殊的微粒表面层结构和电子能级结构产生了普通粒子所不具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子效应,导致了其在热、磁、光、敏感特性和表面稳定性等方面不同于常规粒子[2] 。但这些特殊效应同时赋予了纳米S i O 2表层大量羟基,导致羟基间的范德华力、氢键的产生,使粉体间的排斥力变为吸引力,热力学状态不稳定,极易发生凝并、团聚,在介质中难以分散,难以与基料很好结合,纳米粒子的优异特性 得不到充分发挥[3] 。因此要维持纳米粉体的特异性能,拓展其在生物、医药、化工、材料、电子、机械、能源、国防及交叉学科等领域的应用范围,有必要对纳米粉体进行表面改性。 纳米粉体表面改性方法有酯化反应法、偶联剂法、表面活性剂法、接枝聚合物法、高能法等[4] 。本文采用PEG2000、TDI 对纳米二氧化硅进行接枝改性,通过FT I R 、SE M 、TG 、粒度分析、沉降实验等对改性前后的纳米S i O 2进行表征和分析。 1 实验部分 1 1 实验原料 表1 实验药品 药 品生产厂家预处理纳米Si O 2 自制 真空脱水二月桂酸二丁基锡 (DB TDL 分析纯)天津市光复精细化工研究所直接使用 2,4 二异氰酸甲苯酯(TD I 分析纯)天津市化学试剂厂六分厂分子筛干燥无水乙醇(分析纯)沈阳市华东试剂厂直接使用聚乙二醇2000(PEG 分析纯)沈阳市华东试剂厂真空脱水甲苯(分析纯) 沈阳市华东试剂厂 分子筛干燥 1 2 表面改性及表征 将纳米二氧化硅在真空烘干箱中120 烘4h ,以除去表面吸附的水分。将烘好的纳米粒子分散于甲苯溶液中,剪切分散30m i n 、超声分散30m in 后,加入到装有温度计、冷凝管的三口烧瓶中,同时加入TD I 、DBTDL ,在水浴锅中缓慢升温,80 冷凝回流反应4h 后,加入PEG 恒温反应4h 。产物进行离心分离,并用甲苯、无水乙醇各洗涤3次,然后在120 进行真空干燥8h ,得到改性后的纳米Si O 2,研磨待用。 将上述TDI /PEG 分别按摩尔比为1:0 6,1:0 8,1:1 0,1:1 2重复上述实验步骤。

气凝胶的市场规模和前景分析

气凝胶的市场规模和前景分析 气凝胶是世界上密度最小、孔径为纳米量级的固体,种类繁多,主要有硅系、碳系、硫系、金属氧化物系、金属系等。被称为“冷冻烟雾”。 据纽约消息报道,https://www.doczj.com/doc/4218488014.html,宣布发布其最近完成的研究报告,题为“全球气凝胶市场的应用、形态、种类、工艺类型和地区——全球至2026年的预测”,通过对涵盖目标市场各个方面的详细划分,提供了对全球气凝胶市场的整体观点。报告称,2016年全球气凝胶市场价值为5.129亿美元,在2017-2026年复合年增长率31.8%的情况下,预计2026年全球气凝胶市场价值将达到80.837亿美元。 而气凝胶在国内市场起步较晚,前期主要是国外气凝胶产品在销售,价格较昂贵,市场推广力度也较小,近年来随着国内气凝胶企业逐步增多,实力不断增强,成本不断下降,规模不断扩大,再得益于国内节能减排政策推行和经济体量的迅速扩大,气凝胶行业驶入了快速发展通道。 1.中国气凝胶的供给情况 2008—2016年中国气凝胶产量情况

(单位:万吨) 2008—2016年中国气凝胶消费情况 (单位:万吨) 随着气凝胶工艺成本的降低和产业规模的不断扩大,一些新兴应用不断开发出来,气凝胶市场日益成熟。预计到2022年我国气凝胶产量预计达到2.32万吨,消费量为5.16万吨。

2017年—2020年中国气凝胶产量、消费量预测 (单位:万吨) 2气凝胶的中国市场 中国作为新兴经济体,在市场增长方面将会以快于国际平均水平的速度迅速增加,未来几年将进入快速增长阶段。关于气凝胶的一些新兴应用不断被开发出来,比如用于日用保温产品的气凝胶布,可用于帐篷、防寒服、消防服、冲锋衣化学服等,已经用于电子新能源电池等热源绝热的气凝胶纸等产品,气凝胶的市场将会日益成熟并不断扩大。 气凝胶市场规模及预测(单位:亿元) 中国气凝胶市场应用 未来中国的气凝胶主要用于建筑节能和石油石化,交通运输,电力工业等领域。预计到2019年,中国气凝胶约有30%用于建筑节能领域,25%用于石油石化领域。

微硅粉与硅微粉区别

微硅粉与硅微粉辨析 目前国内大部分生产硅微粉与微硅粉的厂商对二者的概念混为一谈,仅从字面意思上理解,把二者看做是一种产品。为了区分二者之间的关系,澄清市场的混乱状态,减少企业的损失,笔者将从外观、性能、生产流程、用途、指标、市场现状等各方面对这两种产品做具体的分析。 一.硅微粉与微硅粉市场现状当前来说,世界上只有中国、美国、德国等少数国家具备硅微粉生产能力,中国硅微粉的市场主要还是在国内,集中在安徽凤阳,浙江湖州,辽宁铁岭等地,出口量相对来说比较小,太阳能产业的加速又促使硅微粉的市场需求迅猛增长,硅微粉呈现出供不应求的局面。微硅粉的市场多集中在国外,而微硅粉在中国还属于一中粗放型的工业副产品,国外在微硅粉的使用中已经获取了巨大的经济利益,加工后高价卖到国内的建筑、水泥、化肥等领域,。而国内专门做微硅粉的企业甚少,产量较大的还是东北、西北地区的几家大的铁合金企业,环保设备达标,回收回来的微硅粉硅含量比较高,而大连千年矿业的微硅粉是目前国内自己的品牌,已经在行业中有了一定的影响。 二.硅微粉与微硅粉的生产流程上的差异,硅微粉是由天然石英(SiO2)或熔融石英(天然石英经高温熔融、冷却后的非晶态SiO2)经破碎、球磨(或振动、气流磨)、浮选、酸洗提纯、高纯水处理等多道工艺加工而成的微粉。微硅粉也叫硅灰或称凝聚硅灰,也有人叫硅粉。是铁合金在冶炼硅铁和工业硅(金属硅)时,矿热电炉内产生出大量挥发性很强的SiO2和Si气体,气体排放后与空气迅速氧化冷凝沉淀而成。 三.硅微粉与微硅粉外观上的差异,从外观上来说硅微粉与微硅粉基本也是比较容易辨别的,硅微粉其质纯、色白、颗粒均衡,是一种无毒、无味、无污染的无机非金属材料;根据硅石原料、还原剂或炉况的不同,绝大多数微硅粉呈灰色或深灰色。在形成过程中,因相变的过程中受表面张力的作用,形成了非结晶相无定形圆球状颗粒,且表面较为光滑,有些则是多个圆球颗粒粘在一起的团聚体。 四.硅微粉与微硅粉性能和用途差异,从硅微粉与微硅粉性能或作用上硅业在线是这么划分的:硅微粉概括的说具备耐温性好、耐酸碱腐蚀、导热性差、高绝缘、低膨胀、化学性能稳定、硬度大等优良的性能。根据其用途硅微粉分为以下几类:普通硅微粉、电工级硅微粉、电子级硅微粉系列、熔融石英硅微粉、超细石英硅微粉、.纳米硅微粉。而微硅粉的作用主要作用有如下几个方面: 1.用于砂浆与砼中:高层建筑物、海港码头、水库大坝、水利涵闸、铁路公桥梁、地铁、隧道、机场跑道、砼路面以及煤矿巷道锚喷加固等。 2.材料工业中:高档高性能低水泥耐火浇注料及预制件,使用寿命是普通浇注料的三倍,耐火度提高约 100℃,高温强度及抗热震性能都明显改善;已普遍应用于:焦炉、炼铁、炼钢、轧钢、有色金属、玻璃、陶瓷及发电等行业;大型铁沟及钢包料、透气砖、

二氧化硅气凝胶

海南大学 课程名称现代材料科学进展 题目名称二氧化硅气凝胶 学院材料与化工学院 专业班级2010级材料2班 姓名周俊琛 学号20100413310089 评阅老师: 日期:年月日

二氧化硅气凝胶 周俊琛20100413310089 摘要:本文从二氧化硅的研究历史和现状出发,从制备方法、干燥工艺、性能与应用领域等方面综述了二氧化硅气凝胶的研究进展,并对二氧化硅气凝胶的发展前景进行了展望。 关键词:二氧化硅气凝胶,制备,干燥,应用 Current Research and Applications of Silica Abstract: The article reviewed the latest development and the h istory of the research of silica aerogel, summarized the progre ss of the silica aerogel research in the aspects of preparatio n methods, drying technologies, properties and current applicatio n. And the article also looks forward to the development prosp ect of silica aerogel. Keywords: silica aerogel, preparation, drying, application 一、气凝胶的简介 气凝胶通常是指以纳米量级超微颗粒相互聚集构成纳米多孔网络结构,并在网络孔隙中充满气态分散介质的轻质纳米固态材料。气凝胶是一种固体,但是99%都是由气体构成,外观看起来像云一样。气凝胶因其半透明的色彩和超轻重量,有时也被称为“固态烟”或“冻住的烟”。 最常见的气凝胶为二氧化硅气凝胶。SiO2气凝胶是一种防热隔热性能非常优秀的轻质纳米多孔非晶固体材料,其孔隙率高达80-99.8%,孔洞的典型尺寸为1-100 nm,比表面积为200-1000 m2/g,而密度可低达3 kg/m3,室温导热系数可低达0.012 W/(m?k)。正是由于这些特点使气凝胶材料在热学、声学、光学、微电子、粒子探测方面有很广阔的应用潜力。。 二、气凝胶发展历史 早在1931年,Steven.S.Kistler就开始研究气凝胶。他最初采用的方法是用硅酸钠水溶液进行酸性浓缩,用超临界水再溶解二氧化硅,用乙醇交换孔隙中的水后,利用超临界流体干燥技术制成了最初的真正意义上的气凝胶。这种材料的特点是透明、低密度、高孔隙率。但受当时科研手段的限制,这种材料的研制并没有引起科学界的重视。

纳米二氧化硅

1前言 1.1纳米二氧化硅的发展现状及前景 纳米材料是指微粒粒径达到纳米级(1~100nm)的超细材料。当粒子的粒径为纳米级时,其本身具有量子尺寸效应和宏观量子隧道效应等,因而展现出许多特有的性质,应用前景广阔。纳米SiO 是极具工业应用前景的纳米材料,它的应用领域十分广泛,几乎 2 粉体的行业。我国对纳米材料的研究起步比较迟,直到“八五计涉及到所有应用SiO 2 划”将“纳米材料”列人重大基础项目之后,这方面的研究才迅速开展起来,并取得了令人瞩目的成果。1996年底由中国科学院固体物理研究所与舟山普陀升兴公司合作,成 [1],从而使我国成为继美、英、日、德功开发出纳米材料家庭的重要一员——纳米SiO 2 国之后,国际上第五个能批量生产此产品的国家。纳米SiO 的批量生产为其研究开发提 2 供了坚实的基础。 目前,我国的科技工作者正积极投身于这种新材料的开发与应用,上海氯碱化工与华东理工大学[2]建立了连续化的1000t/a规模中试研究装置,开发了辅助燃烧反应器等核心设备,制备了性能优良的纳米二氧化硅产品,其理化性能和在硅橡胶制品中的应用性能,已经达到和超过国外同类产品指标。专家鉴定认为,纳米二氧化硅氢氧焰燃烧合成技术、燃烧反应器和絮凝器等关键设备及应用技术具有创新性,该成果总体上达到国际先进水平,其中在预混合辅助燃烧新型反应器和流化床脱酸两项核心技术方面达到了国际领先水平,对于突破国际技术封锁具有重大价值。但总地来讲,我国纳米SiO 的生 2 产与应用还落后于发达国家,该领域的研究工作还有待突破。 1.2 纳米二氧化硅的性质[3]~[5] 纳米二氧化硅是纳米材料中的重要一员,为无定型白色粉末,是一种无毒、无味、无污染的非金属材料。微结构呈絮状和网状的准颗粒结构,为球形。这种特殊结构使它具有独特的性质: 纳米二氧化硅对波长490 nm以内的紫外线反射率高达70%~80%,将其添加在高分子材料中,可以达到抗紫外线老化和热老化的目的。 纳米二氧化硅的小尺寸效应和宏观量子隧道效应使其产生淤渗作用,可深入到高分子链的不饱和键附近,并和不饱和键的电子云发生作用,改善高分子材料的热、光稳定性和化学稳定性,从而提高产品的抗老化性和耐化学性。 纳米二氧化硅在高温下仍具有强度、韧度和稳定性高的特点,将其分散在材料中,

(推荐)硅溶胶用途

无机硅涂料的应用 1、防水涂料 硅溶胶对混凝土、水泥砂浆具有良好渗透力,同时渗透进去的胶体粒子膨胀这就使涂料牢固地粘接在墙上。现在的“立邦漆”等大部分高档乳胶漆都含有硅溶胶。 2、防壁毯装饰涂料 涉及一种呈软包装效果的仿壁毯涂料,用硅溶胶和白乳胶做为助剂,用传统配比制作工艺调配而成,具有良好的软包装饰效果和质感,是目前最新式的高档内外墙装饰材料。 3、种彩色建筑装饰膏 装饰膏中有831纤维素,硅溶胶,重钙,多能粉。还可有增塑剂成膜助剂,活化重钙,有机硅乳液等。成膜后表面光滑细腻、硬度高、成本低、工艺简单、适应性强、寿命长。 4、水溶性高光彩瓷涂料 本发明公开了一种水溶性高光彩瓷涂料,由(按重量%计):硅溶胶3—4,尿素树脂80,苯丙乳液0.5—1,聚乙烯醇2—3,本发明可以直接用水调节其粘度。无毒、无味、不污染环境,成本较低,附着力较好,色彩丰富,耐磨和耐酸碱。 5、新型水性复合高分子外墙涂料 提供了一种新型水性复合高分子外墙涂料,采用的是二次复合工艺。其组分是硅溶胶、苯丙乳液、各类助剂及颜填料。本涂料既有有机涂料的柔性、又有无机涂料的硬度,涂料软硬适度,耐酸、耐碱、耐高温、耐久性好,施工上墙后同水泥墙面不仅仅表面附着,还形成配位反应,对基层产生渗透,十分牢固。涂膜不产生静电、不易吸附灰尘、耐污染性好、十分有利美化市容。 6、一种防水涂料 提供了一种防水涂料,是乙二醛和硅溶胶作为成膜物质,利用其良好的耐水性能和不透水性,以及对混凝土、水泥砂浆的良好粘结力,并添加了防水剂、早强剂等,使其成为具有一定柔性特征的刚性多功能防水涂料。 7、水性无机双组分富锌涂料的制造方法及该涂料 一种水性无机双组分富锌涂料制造方法及该涂料,该涂料通过将制备好的组分 A即粘结剂与组分B即锌粉以1∶2-4的重量比混和而制成,所述组分A的制备包括: 1)将含适量锂、钠、钾离子的混合型硅溶胶放入容器加以搅拌,并在搅拌的旋涡稳定的条件下顺序加入总重量比为0.2-10%的硅酸锂,同时不断搅拌,使溶液呈半透明胶体状。该制造方法操作简便、成本低;制成的涂料早期耐水性特好,对基材附着力强且稳定;且无废水、废渣及挥发性气体产生,符合环保要求。 8、一种环保型水性彩瓦涂料及其制备方法 涉及一种环保型彩瓦涂料,其原料为:水份、分散剂、硅溶胶、成膜助剂、杀菌剂。实用而又廉价的产品,必然具有极大的商业价值;3.由于产品无毒、无味、不燃不爆,无论对生产环境的安全、生产和使用人员的集体健康来说都是十分有益的。 9、具有自洁、抗霉、灭菌及净化空气作用的水性功能涂料 是一种具有自洁、抗霉、灭菌及净化空气作用的水性功能涂料,水溶性树脂或聚合物乳液或硅溶胶以及它们的复合物。该涂料可用于各种混凝土、金属或木质等建筑物的内、外表面,亦可用于家具、办公用具、交通工具等,应用范围。 10、抗日光隔热涂料 涉及一种抗日光隔热涂料,它的组分和含量(重量份)为苯丙乳液 7-15、三聚氰胺改性聚乙烯醇粘合剂4-8、聚醋酸乙烯2-20、硅溶胶(液态)3-7、尿素0.3-0.8、粉状硅酸盐纤维1-2、明矾0.3-0.8。它有极好的反射太阳光的作用和隔热保温性能,并且涂层不龟裂、硬度好、表面 11、一种环保型光催化内墙涂料 该涂料的特征在于具有以下各原料组分及重量百分配比:硅丙乳液和聚丙烯酸酯乳液中的一种或两种的混合液为10-35%、硅溶胶为 5-15%、纳米级的锐钛矿相或锐钛矿相和金红石相的混合相二氧化钛颗粒,本发明的环保性光催化内墙涂料可有效降解周围空气中污染物质,净化室内空气,特别是对室内的甲醛、甲苯等有害有机物质进行降解,且具有抗菌、自净、消雾等功能。

纳米硅粉

释义 纳米硅指的是直径小于5纳米(10亿(1G)分之一米)的晶体硅颗粒。纳米硅粉具有纯度高, 粒径小,分布均匀等特点。比表面积大,高表面活性,松装密 度低,该产品具有无毒,无味,活性好。纳米硅粉是新一代光 电半导体材料,具有较宽的间隙能半导体,也是高功率光源材 料。由硅材料国家重点实验室苏州研制中心研发并且量产的纳 米硅颗粒,具有纯度高、分散性能好、粒径小、分布均匀,比 表面积大、高表面活性,松装密度低,活性好,工业化产量大 等特点。纳米硅-Si-001可以与石墨、碳纳米管等复合,制成 锂离子电池的负极材料,可以提高锂离子电池的容量及循环次 数,延长使用寿命。是新一代光电半导体材料,具有较宽的间隙能。 物性参数 应用 1、用纳米硅粉做成纳米硅线用在充电锂电池负极材料里,或者在纳米硅粉表面包覆石墨用做充电锂电池负极材料,提高了充电锂电池3倍以上的电容量和充放电循环次数; 2、纳米硅粉用在耐高温涂层和耐火材料里; 3、纳米硅可以应用到涂料中,形成硅纳米薄膜,被大量应用到太阳能上面; 4、纳米硅粉与金刚石高压下混合形成碳化硅---金刚石复合材料,用做切削刀具。 5、替代纳米碳粉或石墨,作为锂电池负极材料,大幅度提高锂电池容量

下一代电池:硅阳极电池 美国佐治亚理工学院Gleb Yushin副教授利用高温管式炉对碳黑纳米颗粒进行退火处理,得到枝状结构,再通过化学气相沉积制备出粒径小于30 nm的硅纳米球,并附着在碳枝状结构上。用石墨碳作为导电粘合剂,将硅碳复合物自组装成带有外部开口、内部互连孔道结构的直径在10-30 μm 的小球(见附图),即可用作电池阳极材料。硅碳复合物小球的孔道既可以允许锂离子快速进入从而提高充电速度,也可以为硅的膨胀和收缩提供空间而不致使阳极破裂。碳枝状结构以及硅纳米球的大小决定了复合物中孔道的尺寸。改变反应时长及压力,可调整硅球的尺寸。在小型纽扣电池上的测试显示,该新阳极的容量是石墨阳极理论容量的五倍多。 通过自下而上的自组装方法,克服了硅基电池阳极的不足,而且这种操作简便、成本低廉的工艺易于规模放大,并与现有电池制造工艺兼容

二氧化硅纳米颗粒的制备

二氧化硅纳米颗粒制备表征及其应用的研究 周韬 摘要:本实验采用沉淀法和溶胶凝胶法制备了二氧化硅纳米晶体,并对得到的产物进行了红外光谱和粒径分析。 关键词:溶胶凝胶,红外光谱,粒径分析 引言 近几年来用单分散二氧化硅球形颗粒为原料自组装制备光子晶体受到了人们的广泛关注,光子晶体广泛的应用前景,促使人们制备出优良的单分散二氧化硅球形颗粒[1]。 光子晶体是介质的周期排列而构成的一种人工微结构材料, 由于电磁波在其中的传播可以用类似于电子在半导体中传播的能带理论来描述, 故而得光子晶体之名, 以此表明光子之晶体与电子之晶体(半导体)的区别与联系。光子晶体被认为是控制光子(电磁波)传播的行之有效的工具, 光子晶体的典型特点是具有光子带隙。当物质的自发辐射频率处在光子带隙内时, 它可以用于抑制光子晶体内的物质的自发辐射。同时, 当在光子晶体内引入缺陷时,如果物质的自发辐射频率和缺陷模的频率一致, 又可用于增强物质的自发辐射, 而且这种自发辐射有类似于受激辐射的特性。光子晶体可以用于制备超高品质因子的微腔, 用于研究腔量子电动力学效应,是量子通讯和量子信息处理的有力工具[2]。 本实验采用溶胶凝胶的方法尝试制备二氧化硅纳米颗粒。 1、实验部分 1.1原理 二氧化硅的制备方法也有很多种,依据反应是否在溶液中发生,分为干法和湿法。干法主要有气相法和电弧法,湿法主要有溶胶-凝胶法,沉淀法,水热法及微乳液法等。其中,溶胶凝胶法(以下简称Sol-Gel法)利用活性较高的前驱体作为原料,在含水的溶液中水解,生成溶胶,然后溶胶颗粒间进一步发生相互作用,与溶剂共同生成凝胶,干燥后、煅烧获得前驱体相应的氧化物。 二氧化硅的制备主要分为如下两步: 第一步水解 ?Si?OR+H2O →?Si?OH+ROH

纳米硅溶胶的用途

纳米硅溶胶的用途 我厂年生产优质酸性,碱性硅溶胶2000吨公司网址:https://www.doczj.com/doc/4218488014.html, 【硅溶胶产品简介】硅溶胶是无定形二氧化硅在水中的分散体系,其分子式可表示为mSiO2?nH2O。外观多呈乳白色或淡青透明的溶液状。国际上从四十年代开始生产工业用硅溶胶,我国从1958开始硅溶胶的生产与应用。但长期以来,产品品种、质量、数量、用途同发达国家相比都有很大差距。90年代始,这种情况已有了大幅度改观,特别是硅溶胶应用领域的不断拓宽,带动了整个硅溶胶工业的发展。本公司生产的硅溶胶是采用国外新工艺硅粉法制备的,并严格按照HG/T25-1993标准检测。二氧化硅粒径均匀,杂质含量低,能满足各领域对硅溶胶的要求。随着应用领域的扩大,我公司不断改进生产工艺,提高检测技术,以满足用户对硅溶胶品类和数量日益增长的需要。【硅溶胶的性能】1、硅溶胶具有较大的吸附性:硅溶胶中无数胶团聚产生的无数网络结构孔隙,在一定的条件下能对无机物及有机物具有一定的吸附作用。2、硅溶胶具有较大的比表面积:比表面积一般为250~300/g。3、硅溶胶具有较好的粘结性:因其胶团尺寸既均匀又具有10~20m/u左右,自身风干即产生一定的粘接强度,但强度较小,如将硅溶胶加入某种纤维或粒状材料中,然后干燥固化即可成坚硬的凝胶结构,会产生较大的粘接性(一般46.7Kg/C㎡左右)。4、硅溶胶具有良好的耐温性:一般可耐1600℃左右。5、硅溶胶具有自身一般绝缘电阻为8×105Ω,但加入石墨等导电材料中,又会具有一定的导电性。6、硅溶胶具有较好的亲水性和憎油性:可以用蒸馏水稀释至任意浓度,而且随稀释度的增加,稳定性增强,但加入有机物或多种金属离子中,又可产生憎水性。硅溶胶具有较强的憎油性。此外,硅溶胶具有“高度的分散性”,“较好的耐磨性”和良好的“透光性”等。因此,可作为良好的“分散剂”,“防腐剂”,“絮凝剂”,“冷却剂”和特殊的“光学材料”等。硅溶胶在很大的pH值范围内是稳定的,在特定的条件下,单独能形成连续的粘附的硬薄膜(如1微米)。在使用中受pH值的影响较少。所以应从实际出发,对于给定的硅溶胶在实际使用条件下,经验的确定使用时的pH值。小颗粒的硅溶胶对酸、碱、盐(强电解质)反应比较敏感性状] 硅溶胶属胶体溶液,无臭、无毒,分子式可表示为mSiO2.nH2O. 1、粘度较低,水能渗透的地方都能渗透,因此和其他物质混合时分散性和渗透性都非常好 2、由于胶体粒子微细(10-20nm), 有相当大的比表面积,粒子本身无色透明,不影响被覆盖物的本身。3 、当硅溶胶水分蒸发时,胶体粒子牢固的附着在物体表面,粒子间形成硅氧结合,是很好的粘合剂。[用途] 1、用于各种耐火材料粘合剂,具有粘结力强、耐高温(1500—1600℃)等特点2、用于涂料工业,能使涂料牢固,又有抗污防尘、耐老化、防火等功能 3、用于薄壳精密铸造,可使壳型强度大、铸造光洁度高。用其造型比水玻璃造型质量好,代替硅酸乙酯造型可降低成本和改善操作条件。 4、硅溶胶有较高的比表面积,可用于催化剂制造及催化剂载体。 5、用于造纸工业,可作为玻璃纸防粘剂、照相用纸前处理剂、水泥袋防滑剂等 6、用作纺织工业上浆剂,它与油剂并用处理羊毛、兔毛,可以改善羊毛、兔毛的可纺性,减少断头,防止飞花,提高成品率,增加经济效益。 7、用作矽钢片处理剂、显像管管分散剂、地板蜡抗滑等。硅溶胶(酸性碱性)

二氧化硅气凝胶保温材料.

气凝胶 作为世界上最轻的固体,气凝胶已经正式被列入吉尼斯世界纪录。气凝胶99%的组成成分是气体,这使得气凝胶呈云雾状,学术界称之为“固态的烟”;通常情况下其密度仅为3mg/cm3 (每毫升3克),是玻璃的千分之一。其隔热性能优越常温下的热导率在0.011-0.016w/mk之间;纯的气凝胶很容易碎,但改进物理强度后,气凝胶具备很好的物理性能同时最高可耐受1600℃的高温。目前在溶胶-凝胶制备气凝胶工艺中,随着制作工艺的革新,制作成本降低,大大提高了气凝胶工业化应用的可能性。 英德埃力生气凝胶特性: 孔隙率:95-98% 孔径:20-70nm 比表面积:500-650m2/g 密度:12.5-18kg/m3 孔容: 3.5ml/g 导热系数:0.01-0.02w/m·k 突出特点: ·孔隙率极高(95-98%) ·密度极低 ·比表面积大(500-650m2/g) ·导热系数小 ·隔音减震性能好 利用其特性,气凝胶得到较广泛应用。例如:气凝胶中纳米大小的气孔可以像海绵一样收集各种污染物质。英国诺丁汉人鲍勃拥有了一套用气凝胶隔热的房子,房子的保温效果大大改善。登山者穿着有气凝胶隔热鞋垫的登山靴登顶珠穆朗玛峰只感觉脚底太热。气凝胶还可用作催化剂载体、超绝热燃烧载体、在恶劣气象条件下可以使用的燃烧质(类似固体酒精)、与燃料电池技术结合、用作光触媒载体等。

纳米气凝胶毡 工业领域用耐高温柔性隔热材料 气凝胶毡是以二氧化硅气凝胶为主体原料,通过高科技工艺复合而成。 柔韧、环保、可抑制辐射、可灵活施工的气凝胶毡,其导热系数极低,可应用于-200℃到1000℃温度范围的保温隔热,是工业管道、储罐、设备等领域最为理想的保温隔热材料,也是世界上最为先进的新型节能保温材料之一。 材料物理性能 包装状态卷状 厚度3mm、6mm、10mm,可按要求订制 幅宽920mm、1200mm、1500mm 导热系数0.018w/mk以下(25℃环境) 适用温度范围-200℃~90℃, 0℃~600℃,500℃~1000℃ 密度130-230kg/m3 疏水性整体疏水 应用特性 隔热性能优越 隔热性能是传统材料的3~8倍。达到同等隔热效果,所需隔热层厚度仅为传统材料的几分之一,且使用寿命长 良好的机械性能 质轻,柔韧,优良的抗拉强度 防火、疏水 防火性能为A1级,材料整体如荷叶般疏水。 易于加工、施工便捷 利用普通裁剪工具即可加工成适合复杂部件所需形状。 低厚度隔热层,大大缩短工时,大幅削减人力需求。 节省物流开支 更薄的隔热层,对比传统材料用量,大大降低物流成本

二氧化硅气凝胶综述讲解学习

二氧化硅气凝胶简介 气凝胶(aerogels)通常是指以纳米量级超微颗粒相互聚集构成纳米多孔网络结构,并在网络孔隙中充满气态分散介质的轻质纳米固态材料。气凝胶是一种固体,但是99%都是由气体构成,外观看起来像云一样。气凝胶因其半透明的色彩和超轻重量,有时也被称为“固态烟”或“冻住的烟” 。 最常见的气凝胶为二氧化硅气凝胶。SiO2 气凝胶是一种防热隔热性能非常优秀的轻质纳米多孔非晶固体材料,其孔隙率高达80-99.8%,孔洞的典型尺寸为 1-100 nm,比表面积为200-1000 m2/g,而密度可低达3 kg/m3,室温导热系数可低达0.012 W/ (m?k)。正是由于这些特点使气凝胶材料在热学、声学、光学、微电子、粒子探测方面有很广阔的应用潜力。 一、气凝胶发展历史 早在1931年,Steven.S.Kistler就开始研究气凝胶。他最初采用的方法是用硅酸钠水溶液进行酸性浓缩, 用超临界水再溶解二氧化硅, 用乙醇交换孔隙中的水后,利用超临界流体干燥技术制成了最初的真正意义上的气凝胶。这种材料的特点是透明、低密度、高孔隙率。但受当时科研手段的限制,这种材料的研制并没有引起科学界的重视。 上世纪七十年代,在法国政府的支持下,Stanislaus Teichne在寻找一种用于存储氧和火箭燃料的多孔材料的过程中,找到一种新的合成方法,即把溶胶- 凝胶化学方法用于二氧化硅气凝胶的制备中。这种方法推动了气凝胶科学的发展。 此后,气凝胶科学和技术得到了快速发展。1983年Arlon Hunt 在Berkeley 实验室发现可用更安全、更廉价的二氧化硅气凝胶制作方法。与此同时,微结构材 料研究小组发现可用具有更低临界温度和临界压力的二氧化碳超临界流体取代乙醇作为超临界干燥的流体,使得超临界干燥技术得以向实用化阶段迈进。 八十年代后期,Larry Hrubesh 领导的研究者在Lawrence Livermore National Laboratory (LLNL) 制备了世界上最轻的二氧化硅气凝胶,密度是0.003 g/cm 3,仅有空气的 3 倍。不久之后,Rick Pekala(LLNL) 制备了有机气凝胶,包括间苯二酚-甲醛气凝胶、三聚氰胺-甲醛气凝胶。间苯二酚-甲醛气凝胶能够被热解得到纯碳气凝胶,该方法开创了气凝胶研究的新领域。 进入九十年代以后,对于气凝胶领域的研究更为深入。据不完全统计,近

气凝胶原理及市场

气凝胶市场调研报告 一、概述 二氧化硅气凝胶是一种合成的无定形硅胶,与结晶硅胶显著不同。硅胶分子由一个硅原子和两个氧原子构成。如下图所示,硅胶有两种基本形式:无定形硅胶和结晶硅胶。如果硅胶分子排列整齐并且形成可重复样式,则为结晶硅胶。如果硅胶分子排列不整齐,则为无定形硅胶。 两种不同气凝胶产品的扫描电子显微镜(SEM)图像显示,气凝胶存在无定形特性。粉末X 光衍射没有发现可测量的结晶成分。在超过1200℃(显著高于气凝胶材料的最高使用温度)时,气凝胶会转换为结晶相。 二氧化硅气凝胶又被称作“蓝烟”、“固体烟”,是目前已知的最轻的固体材料,也是迄今为止保温性能最好的材料。因其具有纳米多孔结构(1~100nm)、低密度(3~250kg/m3)、低介电常数(1.1~2.5)、低导热系数(0.013~0.025W/(m·k))、高孔隙率(80~99.8%)、高比表面积(500~1000m2/g)等特点,在力学、声学、热学、光学等诸方面显示出独特性质,在航天、军事、石油、化工、矿产、通讯、医用、建材、电子、冶金等众多领域有着广泛而巨大的应用价值,被称为“改变世界的神奇材料”。 气凝胶于1931年在美国发明。目前气凝胶全球重点发展区域主要集中在美国、德国、英国,其中,依托强大的技术开发实力和新产品开发力度,美国的应用领域尤为突出和领先。在高性能气凝胶应用方面,美国已经成功应用于航空航天、新能源、建筑以及高级体育用品等方面。我国在气凝胶研究和开发方面尚属早期阶段,主要集中在附加值较高的航空航天、医药等方面,众多领域仍属空白。目前国际上关于气凝胶材料的研究工作主要集中在德国的维尔茨堡大学、BASF公司、美国的劳伦兹·利物莫尔国家实验室、桑迪亚国家实验室,法国的蒙彼利埃材料研究中心,日本高能物理国家实验室,美国阿斯彭气凝胶技术等。国主要集中在同济大学波尔固体物理实验室、省市纳诺高科股份、

纳米硅

纳米硅指的是直径小于5纳米(10亿(1G)分之一米)的晶体硅颗粒。 编辑本段纳米硅粉 纳米硅粉具有纯度高,粒径小,分布均匀等特点。比表面积大,高表面活性,松装密度低,该产品具有无毒,无味,活性好。纳米硅粉是新一代光电半导体材料,具有较宽的间隙能半导体,也是高功率光源材料。 主要用途: 可与有机物反应,作为有机硅高分子材料的原料 金属硅通过提纯制取多晶硅。 金属表面处理。 替代纳米碳粉或石墨,作为锂电池负极材料,大幅度提高锂电池容量编辑本段纳米硅防水剂 一、性能特点 白色乳液,无毒,无刺激味,不燃烧,PH值12,密度1.15~1.2。用于砖瓦、水泥、石膏、石灰、涂料、石棉、珍珠岩、保温板等基面上具有优异的防水抗渗效果。有防止建筑物风化、冻裂及外墙保洁、防污、防霉、防长青苔之功能;质量可靠,耐久性好,耐酸碱,耐候性优良,对钢筋无锈蚀,且使用安全,施工方便。砂浆抗渗性能≥S14,混凝土抗渗性能≥S18。技术性能符合JC474-1999[砂浆、混凝土防水剂]标准及JC/T902-2002标准 二、使用方法 1、喷涂施工: 使用前先将基面清理干净(特别是油污、青苔),将纳米硅防水剂加8倍清水搅拌均匀,用喷雾器或刷子直接在干燥的基面上施工,纵横至少连续两遍(上一遍没干时施工第二遍),对于1:2.5砂浆的毛面,大约可渗透1mm深,有效寿命可达5~10年,每公斤本剂每遍可施工约40~50m2,施工后24小时内不得受雨淋水浸,4℃以下停止施工。常温下干燥后即有优良的防水效果,一周后效果更佳(冬季固化时间较长)。试验表明:固化后的防水试块高温300℃反复锻烧20次及-18℃反复冷冻20次后,防水效果没有明显变化。稀释液现配现用,当天用完。 2、防水砂浆施工: 清理基层泥沙、杂物、油污等,灰砂比控制在1:2.5~3(425#硅酸盐水泥、中砂含泥量小于3%);纳米硅防水剂加水8-15倍(体积比)可直接用于配制防水砂浆,水灰比≤0.5,实际净防水剂用量占水泥的3~5%。

二氧化硅气凝胶综述

二氧化硅气凝胶简介 气凝胶(aerogels)通常是指以纳米量级超微颗粒相互聚集构成纳米多孔网络结构,并在网络孔隙中充满气态分散介质的轻质纳米固态材料。气凝胶是一种固体,但是99%都是由气体构成,外观看起来像云一样。气凝胶因其半透明的色彩和超轻重量,有时也被称为“固态烟”或“冻住的烟”。 最常见的气凝胶为二氧化硅气凝胶。SiO2气凝胶是一种防热隔热性能非常优秀的轻质纳米多孔非晶固体材料,其孔隙率高达80-99.8%,孔洞的典型尺寸为1-100 nm,比表面积为200-1000 m2/g,而密度可低达3 kg/m3,室温导热系数可低达0.012 W/(m?k)。正是由于这些特点使气凝胶材料在热学、声学、光学、微电子、粒子探测方面有很广阔的应用潜力。 一、气凝胶发展历史 早在1931年,Steven.S.Kistler就开始研究气凝胶。他最初采用的方法是用硅酸钠水溶液进行酸性浓缩,用超临界水再溶解二氧化硅,用乙醇交换孔隙中的水后,利用超临界流体干燥技术制成了最初的真正意义上的气凝胶。这种材料的特点是透明、低密度、高孔隙率。但受当时科研手段的限制,这种材料的研制并没有引起科学界的重视。 上世纪七十年代,在法国政府的支持下,Stanislaus Teichner在寻找一种用于存储氧和火箭燃料的多孔材料的过程中,找到一种新的合成方法,即把溶胶- 凝胶化学方法用于二氧化硅气凝胶的制备中。这种方法推动了气凝胶科学的发展。 此后,气凝胶科学和技术得到了快速发展。1983年Arlon Hunt 在Berkeley 实验室发现可用更安全、更廉价的二氧化硅气凝胶制作方法。与此同时,微结构材料研究小组发现可用具有更低临界温度和临界压力的二氧化碳超临界流体取代乙醇作为超临界干燥的流体,使得超临界干燥技术得以向实用化阶段迈进。 八十年代后期,Larry Hrubesh 领导的研究者在Lawrence Livermore National Laboratory (LLNL) 制备了世界上最轻的二氧化硅气凝胶,密度是0.003 g/cm 3,仅有空气的3倍。不久之后,Rick Pekala(LLNL) 制备了有机气凝胶,包括间苯二酚-甲醛气凝胶、三聚氰胺-甲醛气凝胶。间苯二酚-甲醛气凝胶能够被热解得到纯碳气凝胶,该方法开创了气凝胶研究的新领域。 进入九十年代以后,对于气凝胶领域的研究更为深入。据不完全统计,近

相关主题
文本预览
相关文档 最新文档