当前位置:文档之家› SPB Academic Publishing bv, The Hague Macroclimate, microclimate and dune formation along t

SPB Academic Publishing bv, The Hague Macroclimate, microclimate and dune formation along t

SPB Academic Publishing bv, The Hague Macroclimate, microclimate and dune formation along t
SPB Academic Publishing bv, The Hague Macroclimate, microclimate and dune formation along t

Landscape Ecology vol. 6 no. 1/2 pp 15-27 (1991)

SPB Academic Publishing bv, The Hague Macroclimate, microclimate and dune formation along the West European coast

L.

16

direct action of weather on the mobility of sand and on the quantity of ground water (by wind, precipi - tation and evaporation), there is also an indirect ac - tion of the weather, since also the currents of the sea are dominantly maintained by the weather. The multitude of processes and the wide range of soils makes one expect that weather induced mor - phological structures will occur widespread over the sandy soils. A large part of the soils in Europe con - sists of sand. It is however remarkable that in spite of the fact that complexes o f coastal dunes are com - mon, inland dune complexes are relatively scarce. This is mainly due to the source of bare sand on the beach.

The small scale spatial differences with respect to micrometeorological parameters are larger in un - dulating areas then in flat areas. Coastal dunes are located near a transition zone because of the boundary between sea and land. This location and the effects of sloping surfaces leads to extreme differences within a small area. These local differ - ences are reflected in the nature of the vegetation cover. Hence the extent to which the vegetation cover is able to stabilize blown surfaces is pro - foundly influenced by the local microclimate, for which the macroclimate is a boundary condition. On the other hand the atmospheric parameters are profoundly modified by the action of the sur - face. Enormous differences in the degree of harsh - ness of winters exist between areas which are locat - ed on the same latitude but on a different longitude. Compare, for

example, Rome

heat), momen -

tum

meteorology,

A part of the solar

radiation is reflected by vegetation, bare soils, water and snow. The rest is absorbed, and con - verted to heat. Also important, especially during the night is the infrared radiation emitted by the surface and the atmosphere. At daytime a part of the heat gained by radiation penetrates the soil. Another part is transmitted to the air (sensible heat flux). The rest is mostly used to evaporate water (latent heat flux). Only a very small fraction is used for assimilation by plants. In the energy balance of the earth surface this fraction is less than the uncer - tainty in the other terms.

The solar radiation load of a surface depends upon the slope of the surface. Southern slopes receive more solar radiation than a flat area, north - ern slopes receive less. Eastern and western slopes receive an equal quantity of radiation, but western slopes will reach a higher temperature because they face the sun at the warmer part of the day.

Heat is transferred from the surface to the air by direct contact. Heating is causing the air to ex - pand, and so instability is created. In an unstable boundary layer heated parcels of air will rise and the still unheated air will descend. This process is considerably enhanced by wind. This causes for example that the difference in average air tempera - ture between a point situated two meters above the surface of a dune valley and a point two meters above the summit of a dune usually is small during day time, if at least a fair wind is blowing. Even the differences between a northern and a south - ern slope are negligible at two meters above the surface. However, air closer to the surface and absorbing elements, like plants, will become much warmer on a southern slope. A plant which grows on a southern slope therefore experiences far more extreme temperature differences than a plant

17

which grows on a northern slope.

The transport of heat into the soil is taken care of by two processes, conduction and distillation (distillation is discussed in the next section).

The ability to conduct heat increases with the soil moisture content. The differences in thermal con- ductivity are extremely large between a sand which has completely dried out and a sand which is moist after some rain. The thermal conductivity increases only slightly when a moist sand gets soaked (Wijk 1963). So the surface temperature of a moist soil will be lower than that of a dry soil under the same conditions. The warmer soil surface of a dry soil will transmit more heat to the air and the soil heat flux will consequently be reduced.

During the night time long wave radiation be- comes very important. Every surface, soil, plant or whatsoever radiates heat. The loss of heat by the surface due to long wave radiation increases with temperature. The atmosphere also emits long wave radiation, of which a part is received by the surface. Under a clear sky the received long wave radiation is much less than the emission by the surface be- cause the atmosphere does not radiate as a black body. Therefore the surface can cool down con- siderably. The free atmosphere is also cooling down slightly by its own radiation. The decrease is about one or two degrees in twenty-four hours. So the sur- face is cooling at a higher rate then the air above it. Clouds, however, do radiate as a black body. So under a heavily overcast sky the radiation received by the surface from the atmosphere can almost equal the radiation emitted by the surface. Under these conditions the cooling down during the night will be much less.

In general the soil and air gain heat during day time, and loose heat by night. By night the pro- cesses in the soil are physically spoken the same as during the day, but their direction is reversed. During the night the state of the air is significant- ly different from the day time situation. The colder air with the highest density is at the lowest possible height (stable stratification). Vertical movements are suppressed. This phenomenon causes enormous vertical temperature differences. If the cooling hap- pens above a slope then the cold air will slide down- wards. In this fashion the cold layer in depressions will grow higher and will get more stable. Between dune crest and dip large differences will arise, even at a height of one or two metres. Because of the small scale character of coastal dunes these differ- ences can be considerable on a short distance, even in the case of some wind. Temperature differences of about ten degrees or more are found at a height of ten centimetres.

The exchange of heat over the sea is not entirely analogous to the exchange over a land surface. In the first place the solar radiation is not absorbed at the surface, but it penetrates the uppermost layer of water. A 99 percent absorption requires at least a layer of ten metres depth. The heat is dispersed over the entire layer and therefore the temperature in- crease in a 24-hour period is very small. Moreover, vertical mixing increases the depth of the heated layer, leading to even smaller daily temperature changes. For these reasons the daily course of the temperature over sea is negligible and the yearly course is much smaller than over land. Since the dunes are so close to the sea, they are strongly af- fected by it. Especially the reduced yearly tempera- ture amplitude can be felt many kilometres inland. The micrometeorological differences due to topo- graphy, which were discussed before, can be seen as superpositions on this effect.

Evaporation

From a meteorological point of view water vapour transport is especially important because of its link with the energy balance. The transition of phase re- quires a tremendous amount of heat called the la- tent heat of evaporation. Over vegetation covered surfaces sensible heat transport and latent heat transport to the atmosphere usually are of the same order of magnitude. Only if the vegetation is very scarce or if not enough water is available, the evaporation will be lacking. Wind will improve the removal of water vapour from the vicinity of the leaves and so it tends to augment evaporation. It also carries away the heat, which causes the evapo- ration to decrease. So in the case of closed vegeta- tion or a bare soil the evaporation will be rather un- susceptible

t o wind,

18

10

n

Example of a wind profile near the surface. However, obstacles behave very differently. The evaporation of a solitary tree or an isolated shrub increases enormously with the wind speed. This de- pendence gets stronger with the water vapour deficit. Even during the night time the evaporation of an isolated plant can be considerable, although the plant also loses energy through radiation (the emitted radiation will usually exceed the incoming infrared radiation). Evaporation, which occurs in the soil, can not be neglected (Berge

19 is changing downwards in a counter clock wise

sense, because of the interaction between pressure

gradient force,

by humus, algae, car-

bonates or water. The surface will remain un-

disturbed as long as these cementing forces exceed

the drag force (also referred to as shearing stress).

If the shearing stress exceeds a certain threshold, a

grain may be loosened and start rolling over the

surface. The rolling grain may hit a small irregulari-

ty and rise from the surface. When the grain is air-

borne it will be accelerated horizontally by the dy-

namical pressure of the wind. The downwind im-

pact of the grain which has gained momentum and

which has fallen back to the surface initiates the

rising of more grains from the surface. Saltation,

the process of numerous grains jumping up and

travelling downwind, has started (see also Bagnold

1984).

The lightest particles, consisting of loam, clay or

organic matter are liable to be taken into suspen-

sion by the upward branches of turbulent whirls.

Dust in suspension is able to travel up to thousands

of kilometres.

The heavy particles are very important for the

processes which govern the formation of blown

structures. These are only moved horizontally and

not raised when they are subjected to a bombard-

ment of saltating grains. This mode of transporta-

tion is usually referred to as surface creep. It causes

accumulation of particles in zones perpendicular to

the wind. These zones can very often be observed as

ripples on b eaches and dunes. The coarsest material

accumulates on the crests of the ripples, the finer

material is to be found in the depressions between

the crests. If the ripples are located in an area with

prevailing light winds then they can grow slowly to

the height of several decimeters. These large ripples

are classified as ridges. Ridges are almost

20

pletely confined to the arid climates. A very strong wind can effectively prevent the formation of ripples. Dispersed shell debris can also suppress ripple formation. This material is able to stabilize an area, which is liable to sand drifts, entirely. Ripples can not grow to be dunes, since in compari- son to ripples the vertical distribution of grain sizes in dunes is inverted: the finest grains are on the crests.

Among the three modes of transport (suspen- sion, saltation and surface creep) saltation is the most important for dune formation, because firstly the larger part of the transport is by saltation and secondly saltation greatly enhances suspension and surface creep.

Dune formation

Saltation and surface creep are responsible for ripple formation, but are also vitally important to the creation of dunes. The wind causes grains to get blown away from the source area and it maintains the sand flow by surface creep and saltation. It can also alter the morphology of primary dunes by wind erosion. The velocity of the wind has to exceed a certain threshold, which is related to the texture of the topsoil. If the fetch is sufficiently long an equilibrium will be established between erosion and deposition. The sand load, which can be trans- ported under steady state conditions, will increase progressively with wind velocity. When the surface becomes rougher, the wind velocity near the surface will decrease and the sand load will consequently be reduced. With a given constant wind velocity, however, the sand flow will increase when the sur- face gets rougher. The solidity of the surface also has a profound effect on the maximum sand load. On a hard surface the descending g rains will bounce off with a smaller loss of momentum. On a softer surface a part of the momentum of the saltating grains will be used for surface creep.

Essential to the formation of dunes is the availa- bility of a large sand supply. Very subtle differences may decide if erosion or deposition is to occur. The existence of extensive sand deserts without dunes is due to a lack of sand susceptible to wind erosion. If the smaller grains are blown away and the courser ones remain then wind erosion may stop entirely. The source area then ceases to exist.

Along the coasts the sea is the main sand source. The sea bottom has to be subjected to erosion, or else the sea has to transport sediment from a retreating coastline. Another possibility is the dis- charge of sand by a river. A change in the pattern of sea currents or coastlines may divert the main sand flow. The rate of erosion, transport and depo- sition by the sea depends on the weather. This inter- action between sea and weather is most directly in- fluenced by the wind speed, wind direction and the duration of strong winds. During a strong onshore wind the sand deposited on the beach will usually be blown inland with remarkable ease.

A water surface retards the air far less than a land surface. When the wind blows from water onto a land surface a transition zone will develop in which, due to the inertia of the flowing air, the wind speed is too high in comparison to the equilibrium wind speed over a land surface. The air will already be sand saturated having travelled a couple of decameters over a dry surface. When the air moves further inland a new equilibrium will establish with overall reduced wind

speeds. This causes an

21

complexes possible. These occur all along the Euro- pean coasts of the Atlantic Ocean and the coasts of the North Sea. This is why dunes can be found everywhere along these coasts as long as there is a durable sand source. Local departures are due to the eroding action of rivers and the sea. Vegetation has a far reaching effect on dune formation. Every plant or part of it will act as an obstacle and favour sand deposition. On West European coastal dunes vegetation often has estab- lished. Generally the vegetation in the most sea- ward dunes is low and scarce, after a short distance inland, the vegetation becomes denser and taller and stabilizes the sand better.

Decay turns dead plant material into water repel- lent humus. This process is often observed when the colour of the sand changes from yellow to grey. The grey sand is relatively stable to wind erosion due to the binding effect of the humus. The water repellent nature of the humus may quite effectively inhibit infiltration of rain water (Dekker and Jungerius 1990, Jungerius and Jong 1989). This can consider- ably increase the susceptibility to water erosion due to surface runoff during heavy showers (Jungerius and de Jong 1989). Water erosion is most severe on the steepest (leeward) slopes. The newly exposed yellow sands of the subsoil are easily eroded by the wind. So wind erosion will often restart at the least likely places (from a atmospheric point of view): the leeward slopes. There blowouts can be formed which tend to grow upstream (against the wind) (Jungerius and Meulen 1989). More inland the difference between north oriented slopes and south oriented slopes also is important. The north orient- ed slopes usually have a well developed vegetation, whilst the vegetation on the south oriented slopes often is scarce due to the unfavourable water balance (much higher potential evaporation due to a higher radiation load and higher temperatures). The scarcer vegetation causes these slopes to be more susceptible t o water erosion and consequently to wind erosion.

Blowouts can lead to the formation of secondary dunes. According to Davies (1972) these will be lon- gitudinal dunes if the sand moving winds come from one major direction and parabolic dunes if there is a great variation in approach direction of the sand moving winds. From the foregoing it can be concluded that extensive and high complexes of coastal dunes can be formed if the sea acts as a durable sand source and if the wind is variable in strength and direction. These conditions are met at many locations at the West European coasts. Macroclimate along the European Atlantic and North Sea coast

The macroclimate is a boundary condition for the local microclimate and many geomorphological processes. For the following brief discussion of the macroclimate of the west coast of the European main land from

Skagen, Denmark

cases situated less than 10 km from the coast and at an elevation of less than 30 m.

The yearly mean temperature decreases with lati- tude (Figure 2). The yearly temperature amplitude shows a tendency to increase with latitude, because the change of the mean July temperatures with lati- tude is less than the change of the mean January temperatures. More inland the yearly temperature amplitude increases rapidly with the distance to the coast. Another interesting feature is the jump in the July and January

temperature near

a greater continentality .

In Figure 3 the yearly sum of precipitation is compared with the yearly potential evaporation,

which is the evaporation of a short wet vegetation

times the potential evaporation. The evapo- ration from a bare soil usually is even less. At most locations shown the yearly precipitation exceeds the yearly potential evaporation. Only the Southern half of Portugal and the Spanish coast South of Portugal have a definite precipitation deficit. The precipitation surplus eases the growth of vegetation and thereby the formation and the fixation of

22

A

Spain Strait

Fig. 2. Temperatures along the European Atlantic and North Sea coast. Data from Wernstedt (1972).

Tarifa Latitude

23

W

W

-4

I

-4

m

m

m

L

L

c

n

.

c

m

-4

I

-

4

N

24

Curacao in the Caribbean Sea. At many points along the West European coast the frequency of winds, strong enough to play a role in dune forma- tion, have a much more prevailing direction (SW, W and NW). However, the frequency of strong winds from other directions is still high enough to be in favour of the formation of high dune com- plexes.

Mesoscale effects

All mesoscale phenomena which are important to coastal dunes are related to the fact that these dunes are located near the boundary between land and sea. Climatic conditions over sea are completely different from those over land.

A coastal area experiences the weather present over the sea during onshore winds. Inversely, if the wind is offshore, the dunes are influenced by 'con- tinental' weather. Although mesoscale phenomena cause a moderate influence of the sea to reach ten or more kilometres inland, even during offshore winds, one may state that the coastal region alter- nately experiences maritime and continental weather situations. If the winds are onshore the weather has a far more maritime nature near the coast. The direct maritime influence is felt one hundred kilometres or so inland (Blom and Wartena 1969).

The yearly temperature amplitude over sea is much less than that over land. When moving inland this amplitude increases. Over sea there is hardly any diurnal course in the temperature. The differ- ence with the temperature course over land often causes land-sea breezes in the coastal zone. Dunes can cause a profound modification of the mesoscale phenomena. Coastal fronts for ex- ample will form sooner near coastal dunes than near an artificial sea defence on the edge of a plain. However if the hilly countryside is continuously extending from the shore inland then an increase in the formation of coastal fronts will not occur (Berg 1987).

Wind speeds over sea are higher than those over land. There is an relatively abrupt change in wind speed at the coast,

whereas more inland the wind speed reduces less suddenly

Geiger 1961).

When studying the micrometeorology of the dunes the physical interaction between atmosphere and surface is very important. If one studies meteorology on this scale, it appears that some ge- omorphological structures and vegetations have a characteristic set of parameters. A multitude of am- bient situations is

possible,

25 resulting surface temperatures has already been

discussed. On south oriented slopes the higher radi-

ation load and the higher daytime temperatures

also cause the potential evaporation to be higher

than on north oriented slopes. Since precipitation

is roughly the same on all slopes the water balance

is strongly dependent on the direction of the slope.

In the depressions the surface runoff from the

slopes is an additional water source. Since in most

cases the soil in the dunes is highly permeable to

water a large part of the precipitation is lost to the

ground water. Only in some low areas the ground

water table is high enough to be reached by smaller

plants.

Climatic change

Carbon dioxide plays a very important role in the

radiation balance of the atmosphere. The

(Cohen 1990). Since

1890 the global temperature has risen by about

periods with considerable warming (1910-1940) and

cooling

, b ut in Central and South Europe

there has been a decrease in precipitation of about

6% (Vinnikov et

26

0.60 I I I I I

t

1880 1900 1920 1940 1960

1980

(1990).

formation it was discussed that dune formation de- pends on the sand source (supplied by the sea) and strong onshore winds, combined with strong winds from other directions with sufficient frequency. At the present state of knowledge it is absolutely im- possible to predict the likelihood of certain changes in the wind distribution, or the magnitude of these changes.

Figure 5 shows the course of globally averaged mean yearly temperatures and 1 0-year running means relative to the average for the period 1881-1989 (data from Vinnikov et al. 1990). The climatological models do not yield a temperature course which resembles the course of the 10-year running mean. In the eighties the air temperature was rising. However this is nothing abnormal, since a similar rise is seen between 1920 and 1940. The rise of the global mean temperature in the eighties is mainly due to a warming in the tropics, while in the polar regions the temperature stays roughly constant .This is remarkable because climate models predict that the global warming will be strongest in the high latitudes. So the regional dis- tribution of the current warming is not reproduced by the models.

It is clear that from a meteorological point of view, an impact on the temperatures alone is very unlikely, if not impossible. Weather systems are responsible for cloudiness, insolation, precipita- tion, temperatures, wind speed and direction, storm frequency and intensity. The weather also causes sea currents and indirectly dune formation and erosion of dunes. So some of these factors could be changed.

Acknowledgement

The authors wish to thank dr. Gerlof de Roos for his cooperation and the fruitful discussions. References

Anonymous. 1972. Klimaatatlas van

Nederland,

Thesis University of Utrecht, The Netherlands.

27

Berge H.F.M. ten. 1986. Heat and water transfer at the bare soil

surface,

The Netherlands. Bessemoulin, J., 1969,

Atlas

Buishand, T.A. and Velds, C.A. 1980. Neerslag en verdamping, Royal Dutch Meteorological Institute, De Bilt, The Nether - lands, 266 pp.

Cohen, S.J. 1990. Bringing the global warming issue closer to home: The challenge of regional impact studies, Bull. Am.

Meteor. Dania, A.J. 1982. Beknopt overzicht van het klimaat van de Nederlandse Antillen, Publication of:

Meteorologische

der bodemnahen

Luftschicht,

Friedr. Vieweg

-Ansatz, Meteorol. Rdsch., 33: 18-30.

Jacobs, A.F.G. and Wartena, L. 1987. Flow and turbulence around thin fences in perpendicular and oblique flow direc - tions, Neth. J. Agric. Sc. 35: 7-20.

Jungerius, P.D. and Jong, J.H. de. 1989. Variability of water repellence in the dunes along the Dutch coast, Catena 16: Jungerius, P.D. and Meulen, F. van der. 1989. The development of dune blowouts, as measured with erosion pins and sequen - tial air photos, Catena 16: 369-376.

Kroon, L.J.M. 1985. Profile derived fluxes above

159 pp.

Monteith, J.L. 1973. Principles of environmental physics, Edward Arnold (publishers) LTD, London, 241 pp.

Schneider, S.H. 1990. The global warming debate heats up: Analysis and perspective, Bull.

Am. Meteor.

klimaat tot stadsklimaat, Zenit 15: 210-214.

Sutton, O.G. 1953. Micrometeorology, a study of physical processes in the lowest layers of the

atmosphere, P.Y. and Lugina, K.M. 1990.

Empirical data on contemporary global climatic changes (temperature and precipitation), J. Climate 3: 662-677.

Wernstedt, F.L. 1972. World climatic data, Climatic

Data Press,

Holland Publishing Company, Amsterdam.

49

世界各国安规认证简介

世界各国安规认证简介 一、世界各国市场认证概述 欧洲市场认证 CE标志的接受对象为欧共体成员国负责实行市场产品安全控制的国家监管当局。当一个产品已加附CE标志时,成员国负责销售安全监督的当局应假定其符合指令主要要求,可在欧共体市场自由流通。 C E认证可以说是当今世界上最先进的产品符合性评估模式,它率先引入模块概念,一种适用CE标志的产品的评估由评估模块和由这些评估模块组成的评估程序组成。一般来说,评估模块有以下几种: A:自我宣称(由生产者自我宣称,并提供产品关键技术资料); B:型式测试(由欧盟公告机构进行产品全面测试); C:公告机构针对产品生产的工厂审查; D:公告机构针对产品生产及其质量管理体系的工厂审查; E:公告机构针对质量管理体系对贸易商等中间商进行审查; F:公告机构针对进口欧盟上岸的批量产品进行审查; G:公告机构对于进口欧盟的尚未进行型式测试的产品进行包括型式测试的全面审查。 不同的指令对于应该由哪些模块组成评估程序做了规定。如:低电压指令(LVD)、电磁兼容性指令(EMC)可以由A组成;燃气具指令(GAD)由B-C、B-D、B-E或B-F 组成。 目前市场上比较常见的是采用自我宣称方式进行认证,但一般客户由于技术以及认可度等原因,一般会采取采用第三方机构型式测试进行自我宣称。

北美市场认证 1.UL UL是英文保险商试验所(Underwriter Laboratories Inc.)的简写。它是一个国际认可的安全检验及UL 标志的授权机构,对机电包括民用电器类产品颁发安全保证标志。部分UL 安全标准被美国政府采纳为国家标准。产品要行销美国市场,UL 认证标志是不可缺少的条件,该认证为自愿认证。 “C”“US”代表符合加拿大安规标准,该认证为自愿认证。 2. CSA 是加拿大最大的安全认证机构,也是世界上最著名的安全认证机构之一。CSA International已被美国联邦政府认可为国家认可测试实验室。这意味着能根据加拿大和美国的标准对您的产品进行测试和认证,同时保证您的认证得到联邦、洲、省和地方政府的承认。有了CSA有效的产品安全认证,想要进入世界上最为坚韧而广阔的北美市场就轻而易举了。CSA能够帮助您的产品迅速有效地打入美国和加拿大市场。该认证为自愿认证。 3. ETLETL SEMKO是Intertek Testing Services有限公司的一部分,ETL是美国电子测试实验室(Electrical Testing Laboratories)的简称。ETL试验室是由美国发明家爱迪

法国葡萄酒十大产区及十大名庄介绍

法国主要葡萄酒产区图

法国十大名庄介绍 Chateau Lafite Rothschild拉菲庄园 产地:法国波尔多梅多克菩依乐村 级别:1855年评列四大顶级名庄之首;1973年评列五大顶级名庄之首 种植面积:247英亩 葡萄品种:70%赤霞珠,25%梅洛,3%佛朗,2%小维度 平均葡萄树齡:45年 种植密度:每公顷7500株 平均产量:每公顷4800公升 年产量:210,000瓶 窖藏:在全新橡木桶内陈酿16至20个月 灌瓶前经澄清,未过滤,成熟期30至50年(视年份而定) 1855年左岸评级第一名,位居左岸五大名庄之首。 拉菲酒的个性温柔婉细,较为内向,不像同产于菩依乐村的两大名庄拉图和武当王的

刚强个性。拉菲的花香、果香突出,芳醇柔顺,所以很多葡萄酒爱好者称拉菲为葡萄王国中的“皇后”。 Chateau Latour拉图庄园 产地:法国波尔多梅多克菩依乐村 级别:1855年评列四大顶级名庄;1973年评列五大顶级名庄 种植面积:160.5英亩 葡萄品种:75%赤霞珠,20%梅洛,4%佛朗,1%小维度 平均树龄:40年 种植密度:每公顷10000株葡萄树 平均产量:每公顷4500公升 年产量:175,000瓶 窖藏:在橡木桶内陈酿17个月

灌瓶前经澄清,未过滤,成熟期20至50年(视年份而定) 左岸五大排名第二,以雄浑厚重的酒体,扎实强劲的单宁著称,成熟后有着极其丰富的层次感,丰满而细腻。较之拉菲、木桐需要更长的时间来醇化。 Chateau Mouton Rothschild木桐庄园 产地:法国波尔多梅多克菩依乐村 级别:1973年评级位列五大顶级名庄 种植面积:192.7英亩 葡萄品种:77%赤霞珠,11%梅洛,10%佛朗,2%小伟度 平均树龄:45年 种植密度:每公顷8500株葡萄树

2020{酒类与营销}法国葡萄酒十大产区及十大名庄介绍

法国葡萄酒十大产区及十 大名庄介绍

法国主要葡萄酒产区图

法国十大名庄介绍 Chateau Lafite Rothschild拉菲庄园 产地:法国波尔多梅多克菩依乐村 级别:1855年评列四大顶级名庄之首;1973年评列五大顶级名庄之首 种植面积:247英亩 葡萄品种:70%赤霞珠,25%梅洛,3%佛朗,2%小维度 平均葡萄树齡:45年 种植密度:每公顷7500株 平均产量:每公顷4800公升 年产量:210,000瓶 窖藏:在全新橡木桶内陈酿16至20个月 灌瓶前经澄清,未过滤,成熟期30至50年(视年份而定) 1855年左岸评级第一名,位居左岸五大名庄之首。 拉菲酒的个性温柔婉细,较为内向,不像同产于菩依乐村的两大名庄拉图和武当王的 刚强个性。拉菲的花香、果香突出,芳醇柔顺,所以很多葡萄酒爱好者称拉菲为葡萄王国 中的“皇后”。 Chateau Latour拉图庄园 产地:法国波尔多梅多克菩依乐村

级别:1855年评列四大顶级名庄;1973年评列五大顶级名庄 种植面积:160.5英亩 葡萄品种:75%赤霞珠,20%梅洛,4%佛朗,1%小维度 平均树龄:40年 种植密度:每公顷10000株葡萄树 平均产量:每公顷4500公升 年产量:175,000瓶 窖藏:在橡木桶内陈酿17个月 灌瓶前经澄清,未过滤,成熟期20至50年(视年份而定) 左岸五大排名第二,以雄浑厚重的酒体,扎实强劲的单宁著称,成熟后有着极其丰富的层 次感,丰满而细腻。较之拉菲、木桐需要更长的时间来醇化。 Chateau Mouton Rothschild木桐庄园产地:法国波尔多梅多克菩依乐村 级别:1973年评级位列五大顶级名庄 种植面积:192.7英亩 葡萄品种:77%赤霞珠,11%梅洛,10%佛朗,2%小伟度 平均树龄:45年 种植密度:每公顷8500株葡萄树 平均产量:每公顷4000至5000公升 年产量:300,000瓶 窖藏:在橡木桶内陈酿18至22个月

世界各国认证简介

世界各国认证简介 新加坡PSB认证 新加坡消费品保护法规1991指定新加坡标准,生产力和创新委员作为产品安全职能机构,负责对消费者保护(安全要求)注册方案(CPS)涉及的产品进行许可和注册。只有带“SAFETY”标志的注册产品才能在新加坡销售。 目前新加坡只要求安全而对EMC只是自愿原则。安全要求:在IEC标准要求下,产品还要符合热带条件测试。 新加坡电压:AC 230V\ 50Hz 验厂:一般需要(如果通过莱茵CB去申请有莱茵的工厂检查报告可以不再工厂检查)。 说明书:要求英文 证书有效期:证书有效期为一年。 申请周期:一般3-4周。 瑞士SEV 为非欧盟国家,在产品认证方面未加入欧盟的CE制度。因此瑞士的产品法规有自己的要求,瑞士的SEV低电压产品法规规定:进入瑞士市场的电子电气产品需要取得S-PLUS标志。此标志包含了产品的安全性也涵盖了电磁兼容(EMC)的要求。 电压:AC 23厂 说明书:法语0V/50Hz 验厂:无需验、意大利语或徳语(注,现在好像需要验厂) 认证周期:如用CB申请需2-3周。无CB需4-6周。 匈牙利(Hungary) 匈牙利的电工产品实验是依据关于人身、健康、财产安全的有关规定,按照匈牙利的电气标准而进行的强制实验。 认证机构:Magyar Elektrotechnikai Ellenorzo Intezet-MEEI 认证标志:S-Mark MEEI Mark 认证要求:安全及EMC都要求 电压:AC 230V/50Hz 验厂:需要或指定机构的验厂报告 说明书:匈牙利文 认证周期:S-Mark 1-2 周(有CB的时间) MEEI 2-3 周 (有CB的时间) 申请方式:CB报告或GS报告+EMC报告的基础上申请。 土耳其(Turkey) 土耳其标准学会(TSE)认证中心是土耳其国家认可权力`机构,对其国內及进口的工业电器设备产品进行质量监督.但不是强制要求,目前CE标识是强制的. 认证要求:目前只要求SAFETY.根据IEC标准测试.

法国产区细分

勃根地第地区』:本区约有一千八百处酒园,本区由南至北依序可再划分六个产区: 莎布里(Chablis)、夜坡(Cote de Nuits)、邦内坡(Cote de Beaune)、莎隆内坡(Cote de Chalonnaise)、马孔内(Maconnais)、薄酒莱(Beaujolais)-----勃根地六区中最精华的一区乃夜坡与邦邦内坡所构成的『黄金坡』(Cote d'Or),前者以红酒著称,后者则以白酒为尊。该地区的沃恩·罗曼尼(Vosne-Romanee)酒村中的『罗曼尼·康帝』酒园(Domaine de La Romanee Conti,DRC)所酿产的『罗曼尼·康帝』(La Romanee Conti)位居红酒首席。 『波尔多地区』:仅仅以法国波尔多地区一地而言,酒园(堡)已超过九千多座的。该地区的五大产酒区有:梅铎(Medoc)、柏美洛(Pomerol)、圣特美隆(St.Emilion)、格拉芙(Graves)、苏岱(Sauternes)。 梅铎(Medoc)可以说是最重要的一区,仅生产红酒。梅铎(Medoc)又可细分为四个小酒区,由北至南依序为圣特夫塔夫(St-Estephe)、波仪亚克(Pauillac)、圣朱利安(St. Julien)与玛哥(Margaux)。其中波仪亚克区(Pauillac)内的三大名酒Chateau Mouton Rothschild(木桐·罗吉德堡)、Chateau Lafite - Rothschild(拉菲堡)、Chateau Latour (拉图堡),犹如三颗钻石使得波仪亚克(Pauillac)简直变成波尔多地区的代表了。

公司项目管理信息系统简介

公司项目管理信息系统简介 (作者:王建华、胡蓉) 《中国水利水电第三工程局有限公司项目管理信息系统》全面覆盖并整合公司办公自动化(包括档案系统)、项目综合管控、市场经营管理、综合项目管理、决策驾驶舱等方面的信息,解决项目部、分局、公司间各为一体的信息孤岛,建成公司集中的信息数据库,最终形成数据仓库,实现公司在项目综合管理方面的全面信息化、高度集中和系统化,对项目管理向精细化、精益化迈进将起到极大的促进作用。 一、项目管理系统的基本情况 1、项目建设背景、建设目标及意义 建设背景:根据建市[2007]72号及建市[2007]241号文件要求,为加快信息化建设步伐,大幅提升企业信息化水平和市场竞争能力,在新修订的建筑业企业资质管理规定中,特级资质标准增加了企业信息化建设考核内容,而综合项目管理系统的应用是信息化建设系统的核心内容,其所占考核权重达50%。为此,为顺利完成企业资质的重新核定工作,根据资质核定信息化建设的考评要求,公司于2009年5月引进了易建科技有限公司研发的《项目管理软件》,并结合公司自身管理需求进行了系统改进和完善,最终形成了《中国水利水电第三工程局有限公司项目管理信息系统》,并于2009年8月正式投入使用。 建设目标:项目管理系统是以项目为管理对象,覆盖项目从招投标-开工-竣工生命周期各个阶段和各个业务环节的管控。通过系统的实施,可建立公司、区域分局(专业分局)、项目部三级项目综合管理信息平台,满足各管理

层级管理需要,实现项目管理的标准化、规范化,以提高项目管理工作的效率和效益。 建设意义和实施必要性:从企业层面讲,综合项目管理系统实施是企业信息化建设的重要组成部分,既是建设部特级资质考评的硬性要求(在建项目使用综合项目管理系统需达项目总数的50%以上,近两年项目竣工管理、档案管理使用率为50%以上),更是提升公司管理水平和竞争力,实现管理现代化与信息化的根本需要,它的实施是现代企业发展的必然趋势。从项目层面讲,系统通过不同的业务模块划分和流程设计,促进项目管理行为规范化、标准化,实现了以数据为依据的科学决策方法,规范了施工管理中的经济活动,由被动管理向主动管理转型,是项目管理模式的重大变革,系统的实施对项目管理向精细化、精益化管理迈进起到极大的促进作用。 2、系统架构 从管理架构划分,系统分为业务执行层、管理控制层和决策规划层,即各项目-区域分局(专业分局)-公司三层结构。通过信息管理平台可实现不同管理层的审批流程、数据汇总、信息传递。其管理层级体系如下:

国际认证机构简介

国际认证机构简介发布日期:2008-5-19 14:55:11 admin 阅读:1701 目前,我国正处在入世后的后过渡期,国际贸易形势发生不断变化,“绿色壁垒”、“反倾销调查”、“技术贸易壁垒”纷至沓来,企业经营存在无法回避的隐忧。最近,欧盟实施了REACH法案,对我国的化工行业及下游产业影响深刻;也突显出我国企业在国际检测与认证方面存在的不足与滞后。为帮助我市企业了解有关国际认证与检测方面的知识,今后,我会将陆续推出有关国际认证与检测方面知识的介绍,并将于近期与国际知名检测机构Intertek Testing Sevices Ltd.(天祥质量技术服务有限公司)等有关单位联合举办产品国际标准认证业务培训,请有此需要的企业及时与我会联系。 国际认证机构简介(一) ITS ITS,是Intertek Testing Sevices Ltd.(天祥质量技术服务有限公司)的简称。ITS是世界上规模最大的消费品测试、检验和认证公司之一。 Intertek 集团(天祥检验集团)总部设于英国伦敦,2002年5月在伦敦股票交易所上市。目前已在全球110个国家拥有863个办事处及实验室,共有超过17,400名全职专业人员,致力于服务全球客户,为各行各业的客户提供全面的测试、检验、认证及各类产品的其他相关服务。 Intertek是第一家进入中国的国际商业检验机构,早在1871年中国门户开放之初,Intertek 所属的泡立生公司已进入中国上海,是中国最早的外资检验公司。改革开放后的1989年,Intertek又与深圳计量测试研究院在深圳成立了新中国第一家合资检验公司。自1989年以来,已在全国建立20多个分支机构及国际水准的实验室,拥有超过4000名优秀的专业技术人才,以全球统一标准,为客户提供优质的本地化服务。 Intertek 由五个主要的业务线组成: 1、消费品(Consumer Goods),Labtest是国际上纺织品、玩具和其他消费品的测试和检验机构之一。 2、石油、化工及农产品(Oil, Chemical & Agri),Caleb Brett是对原油、石油产品、化工产品和农产品提供独立评估的世界领先者。 3、商用及电子产品(Commercial & Electrical),ETL SEMKO对电子电器产品、通讯设备、建筑产品、暖通及空调设备提供测试和认证服务。 4、政府服务(Government Services),Foreign Trade Standards(外贸标准监督部)为有关进口国家政府的贸易或经济相关负责单位提供独立、公平和认真的标准测试及货品装运前验证服务,以监督贸易的确实执行、商品的确认,及确保装运货品符合进口国进口要求。 5、风险管理(Risk Management):

项目管理部简介(部门介绍)

项目管理部部门介绍 XX公司项目管理部是公司新设项目的执行管理部门。主要制订项目计划和目标,开展项目立项、组织实施工作、管理、监督项目运作过程,确保项目的咨询、设计工作按合同要求组织实施,且需符合法律法规,符合质量、安全、环境、职业健康安全等内容。并负责质量、安全、环境方面的交底工作,并在项目进行过程中提供技术服务,最终达到按时按量顺利完成。所以项目管理部以开阔思路和视野,敏捷的思维习惯,务实的工作作风,全新的管理方法处理公司跨领域的复杂问题,并实现更高的运营效率。 XX项目管理部主要工作流程是:项目启动、项目计划、项目执行、项目控制、项目收尾共五个过程。根据各个阶段的特点和所面临的主要问题,进行系统分析,制定可行性的解决方案。归纳为四大工作内容和管理领域,即综合管理内容、施工管理、质量管理、风险管理,并分别对各领域的知识、技能、工具和技术作了全面的总结。 一、项目综合管理内容 1、组织工程项目论证; 2、组织项目建议书、可行性报告的编制; 3、工程技术、功能设计、工程监理、现场施工安全、变更控制、工程进度和工程质量管理、组织实施项目的巡检; 4、负责组织工程勘察设计,审查勘察设计方案、勘查报告和设计图纸的质量,并出具意见; 5、负责现场施工管理,审查施工组织设计、施工技术方案和施工进度计划等,并出具意见; 6、对工程项目工程竣工验收报送的有关资料进行审查,并会同有关部门对项目进行验收;

7、督促好各类工程建设项目档案管理。 8、洽谈并签订项目合同。 二、项目施工管理 1、负责项目施工计划的制定与落实,执行施工方案,协调项目现场施工的各项工作; 2、参与编制项目质量、环境、职业健康安全管理规定,严格按标准、合同施工; 3、参与制订项目进度计划,细化执行进度计划,确保项目施工工作按时完成。 三、项目质量管理 根据国家法律法规和企业的相关规定,制定并修改质量、环境、职业安全的规章制度,建立完善的质量、环境、职业健康安全管理体系。 四、项目风险管理 根据国家法律法规和企业的相关规定对项目风险从识别到分析乃至采取应对措施的一系列过程,主要包括项目风险识别、风险量化、制定风险对策三个方面。 项目管理部 二〇一四年三月七日

世界七大认证机构简介(ANQB、BVQI、SGS、TUV、DNV、BSI)

世界七大认证机构简介(ANQB、BVQI、SGS、TUV、DNV、BSI) 1.ANQB ANQB(美国国家资格认证委员会American National Qualifications Board),认证机构十大认证机构中唯一一个美国机构,是经美国政府批准的组织,美国最有权威的认证机构之一,世界上从事安全试验和鉴定的较大的机构,独立的、非营利的、为公共安全做试验的专业机构。ANQB 提供认证、检验、测试、验货、审核、咨询和培训等服务,具备ISO认证资格,且是世界上唯一一个可以出具IQS、IQP、IQT、IQM认证的机构。世界上大部分大型项目都采用和要求ANQB认证证书,属于权威中的权威。 ANQB 是一家全球性的独立的从事安全科学事业的公司,在创新性安全解决方案领域,拥有逾一个世纪的专业知识,从公众用电到具有突破性的可再生新兴能源及纳米技术,ANQB 涵盖各学科的方方面面ANQB致力于为公众创造更安全的生活与工作环境,保障公众、产品及场所的安全,从而推动全球贸易,并让广大公众安心。 为全球100多个国家和地区的公共部门,私营部门和个人提供服务。在遵守当地法律法规的前提下,ANQB提供高质量和高效的服务。 2.BVQI 必维 BVQI是法国国际检验局(Bureau Veritas,简称BV,成立于1828年)下属的专门从事质量和环境体系认证及其他行业标准认证的国际机构,总部设在伦敦。中文别名:必维国际检验集团、法国国际检验局、法国船级社、法国验船协会。 Bureau Veritas于2008年10月28日发布公告,将其在中国的名称从“法国国际检验局”更改为现在使用的“必维国际检验集团”。 自1828年成立以来,必维国际检验集团一直不断地打造专业技能,帮助客户满足质量、健康与安全、环境和社会责任领域内的相关标准与法规要求。 BVQI参与制定ISO9000标准及一系列行业标准,为标准的发展和推广作出很大的贡献。BVQI通过在世界154个国家的580多个办事机构中的专家进行体系认证业务,是公认的全球最具国际性的认证机构。 3.SGS 通标 SGS(瑞士通用公证行),通标标准技术服务有限公司,认证机构十大品牌,1878年创立于法国,全球领先的检验、鉴定、测试和认证机构,瑞士上市公司,全球公认的质量和诚信基准 SGS公司前身是法国谷物装运检测所,1919 年,公司在日内瓦注册,定名Société Générale de Surveillance 通用公证行。 通标标准技术服务有限公司是瑞士通用公证行与中国标准技术开发公司共同投资建立的公司。自1991年成立至今,通标公司建立了材料实验室、玩具实验室、杂货实验室、EMC实验室、电器安全实验室、纺织品实验室、食品实验室、石油化工产品实验室、矿产品实验室、羊绒纤维实验室、农产品实验室及生命科学实验室;并设有工业部和消费品部、国际认证服务部、矿产品部、石化部、农产品部、GIS部、汽车部、环境部和贸易保障部等业务部门;在中国拥有超过13000多名训练有素、高水平的专业人员。 4.TüV Rheinland

法国葡萄酒产区介绍

法国葡萄酒产区介绍 一、波尔多 波尔多(BORDEAUX)位于法国西南部,加龙河、多尔多涅河和吉龙德河谷地区,有葡萄园近11万公顷,年均产酒5亿瓶左右,是公认的世界最大葡萄酒产地。由于地广土肥,葡萄品种齐全,几乎所有的葡萄酒都有生产,有香醇味浓的红葡萄酒,有带辣味或甜味的白葡萄酒,还有玫瑰红葡萄酒等。从高级佳酿到普通佐餐酒,应有尽有,尤其以红葡萄酒口味最为优雅细腻。 波尔多地区法定使用的葡萄品种不算很多,有6种红葡萄酒品种和3种白葡萄酒品种。红葡萄酒法定品种: Merlot(梅乐):波尔多种植和使用最为广泛的品种,几乎在任何一瓶波尔多酒里都可以找到这个品种。肉质柔软而富果香。 Cabernet Sauvignon(赤霞珠):在左岸地区担当主要作用的品种,高贵,强健而耐久。 Cabernet Franc(弗朗):虽然在各个地方使用的都不会很多,但是独特的香气可以赋予葡萄酒更加复合的感觉。 Petit Verdot(味儿多),Malbec(马贝克):这两个品种在波尔多酒中使用都比较少,一些酒庄根本不使用这种葡萄原料。但他们确实能够赋予波尔多红葡萄酒更加完美的结构,所以在知名的酒庄内,依然会让他们发挥微妙的作用。Carmenere(佳美娜):虽然法律规定可以使用,但是在波尔多几乎已经绝迹了。不过最近有些酒庄重新开始种植此品种,但是数量微乎其微。 白葡萄酒法定品种: Semillon(赛美蓉):波尔多白葡萄酒的精髓所在,虽然在甜酒里面占的比重更大,但是不论甜酒还是干酒,Semillon带来的圆润优雅的风格才是波尔多白葡萄酒面貌的典型代表。 Sauvignon Blanc(长相思):在波尔多干白酒中占有较大的比例。Muscadelle(慕斯卡戴乐):使用较少,主要是麝香类葡萄特有的芳香特性,作为波尔多白葡萄酒的补充。 对于波尔多葡萄酒,红酒当然是最出名的,但是波尔多不仅仅出产红酒还有白酒、桃红酒。就连白酒也分为干和甜两种类别,著名的Sauternes就是甜白酒产区。在波尔多地区一共有57个AOC名号,超过9000个酒庄,大约13000个葡萄种植者。 梅多克(MEDOC):位于吉龙德河左岸,波尔多地区的西北部,地势平坦,表土多为沙砾鹅卵石质,下层土为赤褐色含铁土质,美度是世界上最著名的葡萄酒产区,美度自18世纪以来一直是波尔多最显赫和最尊贵的葡萄酒生产区。1855年,波尔多第一次评出62个特级酒庄,差不多全部都在美度产区,因而奠定了它的世界地位。美度的葡萄酒由波尔多市北的芝朗狄河左岸河向北延伸约80公里,种植面积达14000公顷,由于地势的不同,美度分为上美度(南部)和美度(北部),美度有自己的法定产区“AOC MEDOC”只生产红葡萄酒。而上美度由于其出产的葡萄酒品质卓越,它不但拥有自己的法定产区(AOC HAUT MEDOC)还有圣达斯特普依勒、圣朱利亚、李斯翠克、慕尼斯和玛高六个村庄级的法定产区例如:(AOC PAUILLAC)普依勒法定产区。

项目管理系统_需求规格说明书V3

品高项目管理系统 软件开发需求

目录 1引言 (2) 1.1编写目的 (2) 2功能性需求 (2) 2.1系统登录 (3) 2.2对内项目管理子系统 (6) 2.3对外项目交流系统 (22)

1 引言 1.1 编写目的 本文档可作为 1. 设计人员进行系统设计的输入源。 2. 开发人员对系统功能开发的依据。 3. 测试人员编写系统测试计划,测试案例编写的输入源。 4. 产品经理检查系统实现程度的依据。 5. 项目团队外人员进行沟通的外部接口,用于他们评审和理解系统。 6. 项目需求阶段的主要交付物。 7. 收集并记录所有的外部接口,以用于作为完成设计和实现系统的参考。 2 系统概貌 2.1 系统背景 随着公司发展,客户范围不断增长,项目数量多且繁杂,给公司的和客户了解项目实际情况带来很大不便,公司及客户之间缺乏有效快速的沟通交流环境. 基于上诉背景,我们提出需建立一套完善的项目管理系统,作为公司及客户之间对项目信息的了解及在线交流, 以满足公司发展的需求。 2.2 用户描述 本系统用户为我们公司业务人员、项目成员、项目经理、管理中心、财务合同管理员、部门经理,项目管理层等。 2.3 系统角色权限 系统的不同角色对信息的权限见附件表 角色权限表.xlsx 2.4 一般限制 ? 应用系统应采用B/S 结构,客户端支持IE6.0 以上的版本。 ? 应用系统的开发工具与技术应采用Microsoft .NET 的技术体系。 ? 应用系统中所有数据统一保存到SQL Server 数据库。

2.5出错处理 ?所有的应用系统错误都应记录到系统日志文件中。 ?所有的Windows服务错误都应记录到Windows服务日志文件中。 ?所有的Web服务错误都应记录到Web服务日志文件中。 2.6假设和依赖条件 ?本系统假设.Net Framework 4.0平台稳定可靠,性能满足实际需求。系统构建在Microsoft .Net Framework平台中,严重依赖于该平台的可靠性,稳定性和性能。 ?本系统假设Microsoft SQL Server数据库稳定可靠,性能满足实际需求。系统数据存储于Microsoft SQL Server数据库中,依赖Microsoft SQL Server数据库的可靠性,稳定性和性能。 ?本系统假设涉及的外部接口可靠运行,提供正确数据。系统部分数据展现依赖于外部接口,当外部接口不能正确工作时,可能会导致部分展示数据不正确或无法显示。 ?本系统假设网络状态良好。本系统和客户端交互时依赖于网络状况,当网络故障或者性能低下时,可能会造成系统无法访问,系统响应速度变慢,数据无法提交等现象。但不应出现数据完整性和一致性的损坏。 ?本系统假设工作流引擎稳定可靠,性能满足要求。 ?本系统假设硬件服务器工作状态良好。 3功能性需求 3.1系统登录 【REQ_1】使用系统的用户分2类,内部用户及外部用户 【REQ_2】内部用户访问系统的时候,需要输入AD帐号密码进行身份验证检查 【REQ_3】外部用户访问系统的时候,需要输入用户名和密码进行身份验证检查 3.2首页 【REQ_4】每个用户登录后都可进入自己所属角色的首页 3.2.1.1业务人员 【REQ_5】列出业务人员本人的预立项的项目列表,已完成的合同列表,个人待办事宜,如下图示:

英文介绍法国

首都巴黎是法国政治、经济、文化和交通中心,卢浮宫博物馆和巴黎圣母院誉满全球,香榭丽舍被誉为世界上最美丽的大街,其地上与地下交通四通八达、非常方便,每天客流量达1300万人。巴黎的标志建筑——埃菲尔铁塔像一个钢铁巨人高高地耸立在恬静的塞纳河畔。在法国最大港口和第二大城市马赛,你可以造访大仲马在小说《基督山伯爵》里描写过的监狱——奇伊夫堡。西南部城市波尔多酿酒历史悠久,其葡萄酒驰名于世。特等“波尔多红葡萄酒”列为世界葡萄酒“皇后”,一瓶百年陈酒在国际市场上可售3万多美元。位于地中海岸边的戛纳,是一座风景秀丽、气候宜人的小城,每年在此举办的戛纳电影节热闹非凡,其颁发的金棕榈奖被公认为电影界最高荣誉之一。法国的时装在世界上享有盛誉,选料丰富、优异,设计大胆,制作技术高超,使其一直引导世界时装潮流。在巴黎有2000家时装店,老板们的口号是:“时装不卖第二件”。而在大街上,几乎看不到两个妇女穿着一模一样的服装。法国人天性率真,浪漫,喜欢大自然,有一半以上的法国家庭饲养各种小动物,总数量在3000万只以上。 Its capital, Paris is France's political, economic, cultural and transportation center, the Louvre Museum and Notre Dame de Paris, known around the world, known as the Champs-Elysees Avenue, the world's most beautiful, its ground and underground traffic extending in all directions, very convenient, daily traffic reached 13 million people. Paris landmarks - the Eiffel Tower like a steel giant stands tall on the Seine River in the quiet. In France's largest port and second largest city of Marseille, you can visit the Alexandre Dumas novel "Count of Monte Cristo," too, portrayed in the prison - Fort Qi Yifu. The southwestern city of Bordeaux wine has a long history, its wines worldwide. Principal "Bordeaux red wine" as the world's wine, "Queen", a bottle of aged wine a hundred years in the international market can be sold more than 30,000 U.S. dollars. Located in the Mediterranean coast of Cannes, is a beautiful scenery and pleasant climate of the town, held annually in this crowded Cannes Film Festival, which awarded the Palme d'Or award has been recognized as one of the highest honor the film industry. France in the world-renowned fashion, choice of materials rich, excellent, bold design, production and skilled to lead the world in fashion trends has always been. There are 2,000 boutiques in Paris, the boss who's slogan is: "Fashion does not sell second." In the street, hardly less than two Women dressed in identical clothing. French nature straightforward, romantic, nature-loving, more than half of French households keep a variety of small animals, the total number of 30 million or more.

全球知名检测机构及LOGO

全球知名检测机构及LOGO 1.CTI 华测检测机构(Centre Testing International Corporation,简称“CTI”),是中国第三方测试、检验与验证服务的开拓者和领先者,为众多行业和产品提供一站式的全面质量解决方案,提升企业竞争优势,满足其对品质的更高要求。2009年10月,成功在深交所挂牌上市,成为中国检测行业首家上市公司,CTI具有中国合格评定国家认可委员会CNAS认可及计量认证CMA资质,并获得英国UKAS、新加坡SPRING、美国CPSC认可,检测报告具有国际公信力,赢得了国内外众多知名企业的信赖。 2. BACL 倍科电子技术服务有限公司(Bay Area Compliance Laboratories Corp.简称BACL),自1996年成立,国际性的认证机构,总部位于美国硅谷。 3. BV Bureau Veritas(必维国际检验集团)是目前全球业务范围最广,国际化程度最高的公证性机构,它创建于1828年,总部位于法国巴黎。BV集团在全球140多个国家设有700个分支机构和实验室,被160多个国家、地区及国际组织认可。 4. TUV TÜV(Technischer Überwachungs Verein)是德语“技术监督协会”的缩写。而同我们中国每个省有一个技术监督局一样,德国的每个州都有一个TUV,而他们都是独立营运的,比如莱茵州的TUV就是我们说的莱茵TUV,而最大的TUV是TUV南德意志集团。TUV的业务范围主要有:产品认证、体系认证、验货、工业服务等等5. UL

UL是一家产品安全测试和认证机构,她也是美国产品安全标准的创始者。在美国,对消费者来说UL就是安全标志的象征。全球,UL是制造厂商最值得信赖的合格评估提供者之一。 6. SGS SGS是Societe Generale de Surveillance S.A. 的简称,译为“通用公证行”。它创建于1887年,总部设在日内瓦,在世界各地没有251家分支机构,256个专业实验室和27000名专业技术人员,在142个国家开展产品质检、监控和保证活动。 7. ITS Intertek (ITS)是一家在伦敦上市的跨国经营集团,其主要业务是为跨国经营的零售商、生产商和采购商提供产品检验、测试、认证和其它技术服务。目前在世界上107个国家设有556个分支公司和307个实验室,共有14500名员工,是目前世界上规模最大、服务范围最广的专业集团之一。

法国波尔多红酒的等级划分产区介绍和分级制度详细有图样本

资料内容仅供您学习参考,如有不、"|之处,请联系改正或者删除。 法国波尔多(Bordeaux)红酒的等级划分. 产区介绍和分级制度 等级划分 (-)法国葡萄酒的4大等级 1.法定产区葡萄酒AOC 2.优良地区餐酒VDQS 3.地区餐酒VIN DE PAYS 4.日常餐酒VIN DE TABLE 法定产区葡萄酒,级别简称AOC,是法国葡萄酒最高级别——AOC在法文意思为”原产地控制命名”。 ——原产地地区的葡萄品种、种植数量、酿造过程、酒精含量等都要得到专家认证。 一一只能用原产地种植的葡萄酿制,绝对不可和别地葡萄汁勾兑。 一一AOC产量大约占法国葡萄酒总产量的35%。 酒瓶标签标示为Appellation+产区名+Controlee o如附图

资料内容仅供您学习参考,如有不半之处?请联系改正或者删除。 二优良地区餐酒,级别简称VDQS 一一是普通地区餐酒向AOC 级别过渡所必须经历的级别。 如果 在VDQS 时期酒质表现良好,则会升级为AOC o 一一产量只占法国 葡萄酒总产量的2%o --- 酒瓶标签标示为Appellation+产区名+Qualite Superieure o 如 附图 DOMAINE DE LA SALLE /7U.V1 ■ I vd VDQS 三.地区餐酒 VINDEPAYS (英文意思Wine of Country ) 一一日常餐酒中最好的酒被升级为地区餐酒 一一地区餐酒的标签上能够标明产区。 一一能够用标明产区内的葡萄汁勾兑,但仅限于该产区内的 AkXvok ? AOC 丄見一!. TURSAN 9 CHATEAU DE BUBAS Bordeaux ? ArPtLLAHOXBOROMUX CWlRfALl *

项目管理公司岗位职责正式版

Through the joint creation of clear rules, the establishment of common values, strengthen the code of conduct in individual learning, realize the value contribution to the organization.项目管理公司岗位职责正 式版

项目管理公司岗位职责正式版 下载提示:此管理制度资料适用于通过共同创造,促进集体发展的明文规则,建立共同的价值观、培养团队精神、加强个人学习方面的行为准则,实现对自我,对组织的价值贡献。文档可以直接使用,也可根据实际需要修订后使用。 1、为公司派驻工程项目施工现场的负责人,隶属工程管理部,负责工程现场业主方的日常管理及现场工作安排协调,必须严格遵循公司管理制度,努力提高现场管理水平和工作质量,树立公司良好的形象。 2、根据业主批准的施工总进度计划,审核工程项目施工组织设计,监督控制工程项目的现场施工进度,确保工程项目按计划进度完成。 3、根据合同的约定、设计图纸及相关规范规程的要求,严格监督工程项目施

工质量,参加组织工程项目检查验收,组织进行材料设备进场检查验收,对工程质量负管理责任。 4、根据业主批准的工程项目总施工预算书,严格监督控制工程项目施工成本,参加工程现场的经济签证、技术核定单、认质单、认价单的审查确认,确保工程项目成本控制目标的实现。 5、负责进行现场合同管理,严格执行合同规定,确保合同履约完成,协调处理合同实施执行过程中的纠纷、索赔等事宜。 6、负责现场业主、监理工程师、承包商之间的信息交流、信息传递和信息处理的管理事宜。

世界知名试剂公司

美国Proliant https://www.doczj.com/doc/4918459200.html, Proliant 是世界上最大最有经验的动物源蛋白生产商,生产大批量各种级别的第五组分BSA,是全球知名的BSA供应商,市场份额高达60%,是Sigma、Amresco等知名品牌的供应商。 瑞士诺华制药 https://www.doczj.com/doc/4918459200.html,/ 诺华公司(Novartis AG)是全球制药和消费者保健行业的领导者。诺华公司成立于1996年,由位于巴赛尔的两家化学品及制药公司汽巴-嘉基和山德士合并而成。2004年,集团总销售额达282亿美元,净利润达58亿美元,集团研发投入约42亿美元。诺华公司总部设在瑞士巴塞尔,业务遍及全球140多个国家和地区,员工约81,400人。2004年美国《商业周刊》按市值排名,诺华公司是瑞士第一大公司,居全球第21位,在世界医药行业排名第3位;诺华也是全球最具创新能力的医药保健公司之一。 德国默克https://www.doczj.com/doc/4918459200.html,/zh/company/company.html 默克集团是世界上历史最悠久的家族性医药化工企业,其历史可追溯到1668年。从1827年开始工业化生产,到100多年前初涉液晶研究,以及2003年分子靶向肿瘤治疗药物爱必妥发布,无数的里程碑都强有力的证明了默克人的领先精神。自1995年上市开始,默克公司全球范围内所有业务经营活动都是以默克股份两合公司的名义进行的。今天,默克集团总资本的约70%为伊.默克(E. Merck OHG)家族所持有,其余30%由自由股东持有。2007年1月,默克完成了对瑞士生物科技公司雪兰诺的并购。同年10月,默克将其仿制药业务部门出售给美国Mylan公司。默克医药业务包括创新性的处方药及保健药两部分。处方药如:用于癌症、神经变异退化性疾病、心血管疾病及不孕症治疗药物。化工业务包括:液晶材料、珠光颜料、实验室分析用品、制药和生物技术工艺生产链所需的产品及服务。 台湾https://www.doczj.com/doc/4918459200.html,/ Abnova是世界上最大的单克隆抗体生产商之一,现有抗体产品种类近30000种,其中2/3是单克隆抗体。和传统的单克隆抗体生产方法相比,Abnova采用更先进的技术和设备,可以极大地提高单克隆抗体的生产效率并降低其生产的成本。Abnova具有每个月开发500个小鼠单克隆抗体的能力,他们的目标是:人类基因组中的每一个表达基因都至少有一种抗体。

工程项目管理公司的简介怎么写范文

工程项目管理公司的简介怎么写范文 导语:工程项目管理公司的简介范文怎么写,以下小编为大家介绍工程项目管理公司的简介怎么写范文文章,仅供参考! 工程项目管理公司的简介怎么写范文 姓名:xx 性别:男 婚姻状况:未婚 民族:汉族 户籍:广东-东莞 年龄: 26 现所在地:广东-深圳 身高: 170cm 希望地区:广东-深圳 希望岗位:经营/管理类-项目经理/主管 工业/工厂类-新产品导入工程师 工业/工厂类-项目工程师 寻求职位:项目经理、高级项目管理工程师 教育经历 20xx-09 ~ 20xx-06 哈尔滨理工大学测控技术与仪器本科 培训经历

20xx-02 ~ 20xx-04 TDK DFM(Design For Manufacture) 20xx-02 ~ 20xx-04 TDK FMEA(Failure Mode and Effect Analysis) 20xx-09 ~ 20xx-xx TDK DOE(Design Of Experiment) 工作经验至今2年xx月工作经验,曾在1家公司工作 **公司 (20xx-09 ~至今) 公司性质:外资企业 行业类别:电子、微电子技术、集成电路 担任职位:项目管理工程师 岗位类别:新产品导入工程师 工作描述: 试产期: 1.协助处理客户RFQ,提供工序流程及物料清单。 2.负责项目运作,制定整体规划并对项目进行分解。 3.协调项目成员,并对资源进行合理分配。 4.制定物料采购计划,确保项目所需资源能按时到位。 5.项目数据分析,缺陷分析,协助制定改善措施及效果跟踪。 6.项目进度管理,确保关键路径上的任务按时完成。 7.项目质量管理,可靠性评估,保质保量完成客户交付并顺利量产。 8.DFM管理,确保设计能降低成本,提高产能,提高良率,更快速导入MP。

全球知名检测机构及LOGO

全球知名检测机构及LOGO 1. CTI 华测检测机构(Centre Testing International Corporation ,简称“CTI”),是中国第三方测试、检验与验证 服务的开拓者和领先者,为众多行业和产品提供一站式的全面质量解决方案,提升企业竞争优势,满足其对品质的更高要求。2009年10月,成功在深交所挂牌上市,成为中国检测行业首家上市公司,CTI具有中国合格评定国家 认可委员会CNAS认可及计量认证 CMA资质,并获得英国 UKAS新加坡SPRING美国CPSC认可,检测报告具有国际公信力,赢得了国内外众多知名企业的信赖。 2. BACL 倍科电子技术服务有限公司( Bay Area Complianee Laboratories Corp. 简称BACL,自1996年成立,国际性的 认证机构,总部位于美国硅谷。 3. BV Bureau Veritas (必维国际检验集团)是目前全球业务范围最广,国际化程度最高的公证性机构,它创建于1828 年,总部位于法国巴黎。 BV集团在全球140多个国家设有700个分支机构和实验室,被 160多个国家、地区及国际组织认可。 4. TUV TÜV(Technischer Überwachungs Verein) 是德语"技术监督协会”的缩写。而同我们中国每个省有一个 技术监督局一样,德国的每个州都有一个TUV,而他们都是独立营运的,比如莱茵州的TUV就是我们说的莱茵 TUV, 而最大的TUV是 TUV南德意志集团。TUV的业务范围主要有:产品认证、体系认证、验货、工业服务等等 5. UL UL是一家产品安全测试和认证机构,她也是美国产品安全标准的创始者。在美国,对消费者来说UL就是安全标志的象征。全球,UL是制造厂商最值得信赖的合格评估提供者之一。 6. SGS SGS是 Societe Gen erale de Surveilla nee S.A. 的简称,译为 "通用公证行”。它创建于1887年,总部设在日 内瓦,在世界各地没有 251家分支机构,256个专业实验室和27000名专业技术人员,在142个国家开展产品质检、监控和保证活动。 7. ITS

相关主题
文本预览
相关文档 最新文档