当前位置:文档之家› 王浩算法的Java实现

王浩算法的Java实现

王浩算法的Java实现
王浩算法的Java实现

贪心算法构造哈夫曼树

软件02 1311611006 张松彬利用贪心算法构造哈夫曼树及输出对应的哈夫曼编码 问题简述: 两路合并最佳模式的贪心算法主要思想如下: (1)设w={w0,w1,......wn-1}是一组权值,以每个权值作为根结点值,构造n棵只有根的二叉树 (2)选择两根结点权值最小的树,作为左右子树构造一棵新二叉树,新树根的权值是两棵子树根权值之和 (3)重复(2),直到合并成一颗二叉树为 一、实验目的 (1)了解贪心算法和哈夫曼树的定义(2)掌握贪心法的设计思想并能熟练运用(3)设计贪心算法求解哈夫曼树(4)设计测试数据,写出程序文档 二、实验内容 (1)设计二叉树结点数据结构,编程实现对用户输入的一组权值构造哈夫曼树(2)设计函数,先序遍历输出哈夫曼树各结点3)设计函数,按树形输出哈夫曼树 代码: #include #include #include #include typedef struct Node{ //定义树结构 int data; struct Node *leftchild; struct Node *rightchild; }Tree; typedef struct Data{ //定义字符及其对应的频率的结构 int data;//字符对应的频率是随机产生的 char c; }; void Initiate(Tree **root);//初始化节点函数 int getMin(struct Data a[],int n);//得到a中数值(频率)最小的数 void toLength(char s[],int k);//设置有k个空格的串s void set(struct Data a[],struct Data b[]);//初始化a,且将a备份至b char getC(int x,struct Data a[]);//得到a中频率为x对应的字符 void prin(struct Data a[]);//输出初始化后的字符及对应的频率 int n; void main() { //srand((unsigned)time(NULL));

实验三.哈夫曼编码的贪心算法设计

实验四 哈夫曼编码的贪心算法设计(4学时) [实验目的] 1. 根据算法设计需要,掌握哈夫曼编码的二叉树结构表示方法; 2. 编程实现哈夫曼编译码器; 3. 掌握贪心算法的一般设计方法。 实验目的和要求 (1)了解前缀编码的概念,理解数据压缩的基本方法; (2)掌握最优子结构性质的证明方法; (3)掌握贪心法的设计思想并能熟练运用 (4)证明哈夫曼树满足最优子结构性质; (5)设计贪心算法求解哈夫曼编码方案; (6)设计测试数据,写出程序文档。 实验内容 设需要编码的字符集为{d 1, d 2, …, dn },它们出现的频率为 {w 1, w 2, …, wn },应用哈夫曼树构造最短的不等长编码方案。 核心源代码 #include #include #include typedef struct { unsigned int weight; //用来存放各个结点的权值 unsigned int parent,LChild,RChild; //指向双亲、孩子结点的指针 } HTNode, *HuffmanTree; //动态分配数组,存储哈夫曼树 typedef char *HuffmanCode; //动态分配数组,存储哈夫曼编码 ∑=j i k k a

//选择两个parent为0,且weight最小的结点s1和s2 void Select(HuffmanTree *ht,int n,int *s1,int *s2) { int i,min; for(i=1; i<=n; i++) { if((*ht)[i].parent==0) { min=i; break; } } for(i=1; i<=n; i++) { if((*ht)[i].parent==0) { if((*ht)[i].weight<(*ht)[min].weight) min=i; } } *s1=min; for(i=1; i<=n; i++)

数据结构哈夫曼树的实现

#include #include #include #include using namespace std; typedef struct { unsigned int weight; unsigned int parent,lchild,rchild,ch; }HTNode,*HuffmanTree; //动态分配数组存储哈夫曼树 typedef char *HuffmanCode; //动态分配数组存储哈夫曼编码表 int m,s1,s2; HuffmanTree HT; void Select(int n){ //选择两个权值最小的结点 int i,j; for(i=1;i<=n;i++){ if(!HT[i].parent){ s1 = i;break; } } for(j=i+1;j<=n;j++){ if(!HT[j].parent){ s2 = j;break; } } for(i=1;i<=n;i++){ if((HT[s1].weight>HT[i].weight)&&(!HT[i].parent)&&(s2!=i)){ s1=i; } } for(j=1;j<=n;j++){ if((HT[s2].weight>HT[j].weight)&&(!HT[j].parent)&&(s1!=j)) s2=j; } } void HuffmanCoding(HuffmanCode HC[], int *w, int n) { // w存放n个字符的权值(均>0),构造哈夫曼树HT,// 并求出n个字符的哈夫曼编码HC int i, j; char *cd; int p; int cdlen; int start; if (n<=1) return;

数据结构课程设计哈夫曼编码-2

数据结构课程设计哈夫曼编码-2

《数据结构与算法》课程设计 目录 一、前言 1.摘要 2.《数据结构与算法》课程设计任务书 二、实验目的 三、题目--赫夫曼编码/译码器 1.问题描述 2.基本要求 3.测试要求 4.实现提示 四、需求分析--具体要求 五、概要设计 六、程序说明 七、详细设计 八、实验心得与体会

前言 1.摘要 随着计算机的普遍应用与日益发展,其应用早已不局限于简单的数值运算,而涉及到问题的分析、数据结构框架的设计以及设计最短路线等复杂的非数值处理和操作。算法与数据结构的学习就是为以后利用计算机资源高效地开发非数值处理的计算机程序打下坚实的理论、方法和技术基础。 算法与数据结构旨在分析研究计算机加工的数据对象的特性,以便选择适当的数据结构和存储结构,从而使建立在其上的解决问题的算法达到最优。 数据结构是在整个计算机科学与技术领域上广泛被使用的术语。它用来反映一个数据的内部构成,即一个数据由那些成分数据构成,以什么方式构成,呈什么结构。数据结构有逻辑上的数据结构和物理上的数据结构之分。逻辑上的数据结构反映成分数据之间的逻辑关系,而物理上的数据结构反映成分数据在计算机内部的存储安排。数据结构是数据存在的形式。 《数据结构》主要介绍一些最常用的数据结构,阐明各种数据结构内在的逻辑关系,讨论其在计算机中的存储表示,以及在其上进行各种运算时的实现算法,并对算法的效率进行简单的分析和讨论。数据结构是介于数学、计算机软件和计算机硬件之间的一门计算机专业的核心课程,它是计算机程序设计、数据库、操作系统、编译原理及人工智能等的重要基础,广泛的应用于信息学、系统工程等各种领域。 学习数据结构是为了将实际问题中所涉及的对象在计算机中表示出来并对它们进行处理。通过课程设计可以提高学生的思维能力,促进学生的综合应用能力和专业素质的提高。

哈夫曼树的建立与操作

实验六哈夫曼树的建立与操作 一、实验要求和实验内容 1、输入哈夫曼树叶子结点(信息和权值) 2、由叶子结点生成哈夫曼树内部结点 3、生成叶子结点的哈夫曼编码 4、显示哈夫曼树结点顺序表 二、详细代码(内包含了详细的注释): #include using namespace std; typedef char Elemtype; struct element { int weight; Elemtype date; element* lchild,*rchild; }; class HuffmanTree { public: HuffmanTree()//构造函数 { cout<<"请输入二叉树的个数"<>count; element *s=new element[count];//s为指向数组的指针,保存指向数组的地址 for(int i=0;i>s[i].weight;

cout<<"输入第"<>s[i].date; s[i].lchild=NULL; s[i].rchild=NULL; }//以上为初始化每一个结点 element * *m=new element*[count];//m为指向数组成员的地址的指针,保存【指向数组成员地址的指针】的地址 for(int i=0;iweightweight; return1=i; } } for(int i=0;iweightweight>a) { b=m[i]->weight; return2=i; } } q=new element;//构建一棵新树 q->weight=m[return1]->weight+m[return2]->weight; q->lchild=m[return1]; q->rchild=m[return2]; m[return1]=q; m[return2]=NULL; //用新树替换原来的两子树,并置空一个数 } boot=q;//把最后取得的哈夫曼树的头结点即q赋值给boot

哈夫曼编码算法实现完整版

实验三树的应用 一.实验题目: 树的应用——哈夫曼编码 二.实验内容: 利用哈夫曼编码进行通信可以大大提高信道的利用率,缩短信息传输的时间,降低传输成本。根据哈夫曼编码的原理,编写一个程序,在用户输入结点权值的基础上求哈夫曼编码。 要求:从键盘输入若干字符及每个字符出现的频率,将字符出现的频率作为结点的权值,建立哈夫曼树,然后对各个字符进行哈夫曼编码,最后打印输出字符及对应的哈夫曼编码。 三、程序源代码: #include #include #include #include typedef struct{ char data; int weight; int parent,lchild,rchild; }HTNode,*HuffmanTree; typedef char * * HuffmanCode; void Select(HuffmanTree &HT,int n,int m) {HuffmanTree p=HT; int tmp; for(int j=n+1;j<=m;j++) {int tag1,tag2,s1,s2; tag1=tag2=32767; for(int x=1;x<=j-1;x++) { if(p[x].parent==0&&p[x].weights2) //将选出的两个节点中的序号较小的始终赋给s1 { tmp=s1; s1=s2; s2=tmp;} p[s1].parent=j;

哈夫曼树 实验报告

计算机科学与技术学院数据结构实验报告 班级2014级计算机1班学号20144138021 姓名张建华成绩 实验项目简单哈夫曼编/译码的设计与实现实验日期2016.1.5 一、实验目的 本实验的目的是进一步理解哈夫曼树的逻辑结构和存储结构,进一步提高使用理论知识指导解决实际问题的能力。 二、实验问题描述 利用哈夫曼编码进行通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本。但是,这要求在发送端通过一个编码系统对待传数据预先编码,在接收端将传来的数据进行译码,此实验即设计这样的一个简单编/码系统。系统应该具有如下的几个功能: 1、接收原始数据。 从终端读入字符集大小n,以及n个字符和n个权值,建立哈夫曼树,并将它存于文件hfmtree.dat中。 2、编码。 利用已建好的哈夫曼树(如不在内存,则从文件hfmtree.dat中读入),对文件中的正文进行编码,然后将结果存入文件codefile.dat中。 3、译码。 利用已建好的哈夫曼树将文件codefile.dat中的代码进行译码,结果存入文件textfile.dat中。 4、打印编码规则。 即字符与编码的一一对应关系。 5、打印哈夫曼树, 将已在内存中的哈夫曼树以直观的方式显示在终端上。 三、实验步骤 1、实验问题分析 1、构造哈夫曼树时使用静态链表作为哈夫曼树的存储。 在构造哈夫曼树时,设计一个结构体数组HuffNode保存哈夫曼树中各结点的信息,根据二叉树的性质可知,具有n个叶子结点的哈夫曼树共有2n-1个结点,所以数组HuffNode的大小设置为2n-1,描述结点的数据类型为: Typedef strcut { Int weight;/*结点权值*/ Int parent; Int lchild; Int rchild; }HNodeType; 2、求哈夫曼编码时使用一维结构数组HuffCode作为哈夫曼编码信息的存储。 求哈夫曼编码,实质上就是在已建立的哈夫曼树中,从叶子结点开始,沿结点的双亲链域回退到根结点,没回退一步,就走过了哈夫曼树的一个分支,从而得到一位哈夫曼码值,由于一个字符的哈夫曼编码是从根结点到相应叶子结点所经过的路径上各分支所组成的0、1序列,因此先得到的分支代码为所求编码的低位码,后得到的分支代码位所求编码的高位码,所以设计如下数据类型:

哈夫曼树建立、哈夫曼编码算法的实现

#include /*2009.10.25白鹿原*/ #include /*哈夫曼树建立、哈夫曼编码算法的实现*/ #include typedef char* HuffmanCode;/*动态分配数组,存储哈夫曼编码*/ typedef struct { unsigned int weight ; /* 用来存放各个结点的权值*/ unsigned int parent, LChild,RChild ; /*指向双亲、孩子结点的指针*/ }HTNode, * HuffmanTree; /*动态分配数组,存储哈夫曼树*/ void select(HuffmanTree *ht,int n, int *s1, int *s2) { int i; int min; for(i=1; i<=n; i++) { if((*ht)[i].parent == 0) { min = i; i = n+1; } } for(i=1; i<=n; i++) { if((*ht)[i].parent == 0) { if((*ht)[i].weight < (*ht)[min].weight) min = i; } } *s1 = min; for(i=1; i<=n; i++) { if((*ht)[i].parent == 0 && i!=(*s1)) { min = i; i = n+1; } } for(i=1; i<=n; i++) { if((*ht)[i].parent == 0 && i!=(*s1)) {

if((*ht)[i].weight < (*ht)[min].weight) min = i; } } *s2 = min; } void CrtHuffmanTree(HuffmanTree *ht , int *w, int n) { /* w存放已知的n个权值,构造哈夫曼树ht */ int m,i; int s1,s2; m=2*n-1; *ht=(HuffmanTree)malloc((m+1)*sizeof(HTNode)); /*0号单元未使用*/ for(i=1;i<=n;i++) {/*1-n号放叶子结点,初始化*/ (*ht)[i].weight = w[i]; (*ht)[i].LChild = 0; (*ht)[i].parent = 0; (*ht)[i].RChild = 0; } for(i=n+1;i<=m;i++) { (*ht)[i].weight = 0; (*ht)[i].LChild = 0; (*ht)[i].parent = 0; (*ht)[i].RChild = 0; } /*非叶子结点初始化*/ /* ------------初始化完毕!对应算法步骤1---------*/ for(i=n+1;i<=m;i++) /*创建非叶子结点,建哈夫曼树*/ { /*在(*ht)[1]~(*ht)[i-1]的范围内选择两个parent为0且weight最小的结点,其序号分别赋值给s1、s2返回*/ select(ht,i-1,&s1,&s2); (*ht)[s1].parent=i; (*ht)[s2].parent=i; (*ht)[i].LChild=s1; (*ht)[i].RChild=s2; (*ht)[i].weight=(*ht)[s1].weight+(*ht)[s2].weight; } }/*哈夫曼树建立完毕*/ void outputHuffman(HuffmanTree HT, int m) { if(m!=0) {

构建哈夫曼树及输出哈夫曼代码及算法思想

哈夫曼树描述文档 一、思路 通过一个argv[]数组存储从test文件中读取字母,然后利用ascal 码循环计算每个字母的权值,利用weight[]是否为零,确定叶子节点,节点个数为count,传入到构建哈夫曼树的子程序中,然后利用cd[]数组存储每一个叶子节点的哈夫曼代码.输出代码时,通过与argv[]数组的比对,扫描ht数组,进而读出所有的数据。 二、截图 三、代码 #include #include #include typedefstruct { char data; int weight; int parent; intlchild;

intrchild; }HTNode; typedefstruct { char cd[50]; int start; }HCode; using namespace std; int enter(char argv[])//进行读入操作 { fstream in; ofstream out; char c; int number=0;//字母个数置为0 in.open("test.txt",ios::in); //打开文件test.txt out.open ("code.txt",ios::trunc); //打开文件code.txt,如果不存在就新建一个,如果存在就清空 if(!in.eof()) in>>c; //从test.txt中读取一个字符存入c printf("原文本是:\n"); while(! in.eof()){ //文件不为空,循环读取一个字符 cout<>c; //从test.txt中读取一个字符存入c } argv[number]='\0'; printf("\n"); in.close; out.close; //使用完关闭文件 return(number);//返回叶子节点数目 } voidCreateHT(HTNodeht[],int n) { inti,j,k,lnode,rnode; double min1,min2; for(i=0;i<2*n-1;i++) ht[i].parent=ht[i].lchild=ht[i].rchild=-1;//置初值 for(i=n;i<2*n-1;i++) { min1=min2=32167; lnode=rnode=-1; for(k=0;k<=i-1;k++) if(ht[k].parent==-1) {

哈夫曼编码的JAVA实现课程设计

哈夫曼编码的JAVA实现课程设计 目录 摘要 (2) 一、问题综述 (2) 二、求解方法介绍 (3) 三、实验步骤及结果分析 (4) 四、程序设计源代码 (5) 参考文献 (8)

摘要 利用哈夫曼编码进行通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本,试用java语言设计一个哈夫曼编码系统。通过本课程设计,应使学生掌握哈夫曼编码的特点、储存方法和基本原理,培养学生利用java语言正确编写程序及调试程序的能力,运用数据结构知识解决实际问题的能力。 关键字:哈夫曼编码JA V A语言类方法 一、问题综述 1 哈夫曼编码的算法思想 哈夫曼编码也称前缀编码,它是根据每个字符出现的频率而进行编码的,要求任一字符的编码都不是其它任意字符编码的前缀且字符编码的总长度为最短。它主要应用于通信及数据的传送以及对信息的压缩处理等方面。哈夫曼编码的基础是依据字符出现的频率值而构造一棵哈夫曼树,从而实现最短的编码表示最常用的数据块或出现频率最高的数据,具体的方法是: 1.1 建立哈夫曼树 把N 个字符出现的频率值作为字符的权值,然后依据下列步骤建立哈夫曼树。 1.1.1 由N 个权值分别作N 棵树的根结点而形成一个森林。 1.1.2 从中选择两棵根值最小的树T1 和T2 组成一棵以结点T 为根结点的增长树,根结点T = T1 + T2 ,即新树的根值为原来两棵树的根值之和,而T1 和T2 分别为增长树的左右子树。 1.1.3 把这棵新树T 加入到森林中,把原来的两棵树T1 和T2 从森林中删除。 1.1.4 重复1.1.2~1.1.3 步,直到合并成一棵树为止。 1.2 生成各字符的哈夫曼编码 在上面形成的哈夫曼树中,各个字符的权值结点都是叶子结点,从叶子结点开始向根搜索,如果是双亲的左分支,则用“0”标记,右分支用“1”标记,从叶子结点到根结点所经过的分支编码“0”、“1”的组合序列就是各字符的哈夫曼编码。 2 构造哈夫曼树的算法 1)对给定的n个权值{W1,W2,W3,...,Wi,...,Wn}构成n棵二叉树的初始集合F={T1,T2,T3,...,Ti,..., Tn},其中每棵二叉树Ti中只有一个权值为Wi的根结点,它的左右子树均为空。 2)在F中选取两棵根结点权值最小的树作为新构造的二叉树的左右子树,新二叉树的根结点的权值为其左右子树的根结点的权值之和。 3)从F中删除这两棵树,并把这棵新的二叉树同样以升序排列加入到集合F 中。

哈夫曼算法及其改进

霍夫曼编码及其改进 在通信中,为了提高信息传输效率,得到或接近信息熵的最小信息率,我们需要解决信源编码的问题。在信源编码中,我们试图让信源编码的平均码长尽可能缩短,减少冗余度,从而提高编码效率。信源编码又分为无失真信源编码和限失真信源编码。 哈夫曼编码(Huffman Coding)是一种无失真编码方式,是可变字长编码(VLC)的一种,由Huffman于1952年提出,该方法完全依据字符出现概率来构造异字头的平均长度最短的码字,有时称之为最佳编码,一般就叫作Huffman编码。哈夫曼编码是一种最优的前缀编码技术。 对于多元独立信源,哈夫曼编码为最佳编码,之所以称之为最佳编码,因为其拥有以下特性:(1) 保证概率大的对应短码,概率小的对应长码,即短码得到充分利用;(2) 每次缩减信源的最后两个码字,总是最后面的一个码元不同,而前面的各个码元相同;(3) 每次缩减信源的最长两个码字有相同的码长。 平均码长n=2×10+8 38+3×7+6+3 38 +4×2 38 +5×1+1 38 =2.68 冗余度 哈夫曼编码是一种非唯一性编码,其编码方式并不唯一。首先,因为对缩减信源最后两个概率小的符号用0和1码的赋予可以是任意的,故可以得到不同的码,但是它们只是码的具体形式不同。其码长n不变,平均码长?也不变,所以没有本质区别。其次,若当缩减信源中合并后的符号概率与其他信源符号概率相同时,从编码方法上说哪个在上面哪个在下面是没有本质区别的,但是得到的码是不相同的对这两种不同的码,它们的码长n不同,但是平均码长?是相同的。 为了克服哈夫曼编码方式存在的问题,提高哈夫曼编码的可用性,我们需要设法降低哈夫曼编码树的存储空间。在数据特定的情况下,我们可以让编码器和解码器使用事先约定的编码树,如此可以消除哈夫曼树生成和传输储存的时间,但是当信源变化,此种方法就不再适用,不具备通用性。

算法笔记——【贪心算法】哈夫曼编码问题

0023算法笔记——【贪心算法】哈夫曼编码问题 1、问题描述 哈夫曼编码是广泛地用于数据文件压缩的十分有效的编码方法。其压缩率通常在20%~90%之间。哈夫曼编码算法用字符在文件中出现的频率表来建立一个用0,1串表示各字符的最优表示方式。一个包含100,000个字符的文件,各字符出现频率不同,如下表所示。 有多种方式表示文件中的信息,若用0,1码表示字符的方法,即每个字符用唯一的一个0,1串表示。若采用定长编码表示,则需要3位表示一个字符,整个文件编码需要300,000位;若采用变长编码表示,给频率高的字符较短的编码;频率低的字符较长的编码,达到整体编码减少的目的,则整个文件编码需要(45×1+13×3+12×3+16×3+9×4+5×4)×1000=224,000位,由此可见,变长码比定长码方案好,总码长减小约25%。 前缀码:对每一个字符规定一个0,1串作为其代码,并要求任一字符的代码都不是其他字符代码的前缀。这种编码称为前缀码。编码的前缀性质可以使译码方法非常简单;例如001011101可以唯一的分解为0,0,101,1101,因而其译码为aabe。

译码过程需要方便的取出编码的前缀,因此需要表示前缀码的合适的数据结构。为此,可以用二叉树作为前缀码的数据结构:树叶表示给定字符;从树根到树叶的路径当作该字符的前缀码;代码中每一位的0或1分别作为指示某节点到左儿子或右儿子的“路标”。 从上图可以看出,表示最优前缀码的二叉树总是一棵完全二叉树,即树中任意节点都有2个儿子。图a表示定长编码方案不是最优的,其编码的二叉树不是一棵完全二叉树。在一般情况下,若C是编码字符集,表示其最优前缀码的二叉树中恰有|C|个叶子。每个叶子对应于字符集中的一个字符,该二叉树有|C|-1个内部节点。 给定编码字符集C及频率分布f,即C中任一字符c以频率f(c)在数据文件中出现。C的一个前缀码编码方案对应于一棵二叉树T。字符c 在树T中的深度记为d T(c)。d T(c)也是字符c的前缀码长。则平均码长定

哈夫曼算法的实现及应用

摘要:哈夫曼树是带权路径长度(WPL)最小的二叉树,通过对哈夫曼算法的研究,提出一种求取哈夫曼树带权路径长度的计算方法和应用。 关键词:哈夫曼算法、二叉树、WPL、编码 1 引言: 哈夫曼树是一种特殊的二叉树,又称最优二叉树:假设有一组(无序)实数{w1,w2,w3,w4,…,wm},现要构造一棵以wi(i=1,2,3,4…,m)为权的m个外部结点的扩充二叉树,使得带权的外部路径长度WPL最小。满足这一要求的扩充二叉树就称为哈夫曼树或最优二叉树。若l表示从根到第i个外部结点的路径长度,m为外部结点的个数,wi 为第i个外部结点的权值,则有WPL=∑wili(0 #include #define MAXINT 50 #define MAXNUM 50 /* 数组w中最多容纳的元素个数,注意m<=MAXNUM */ #define MAXNODE 100 /* 哈夫曼树中的最大结点数,注意2*m-1

实验6:哈夫曼树及哈夫曼编码的算法实现 - 副本

实验6:哈夫曼树及哈夫曼编码的算法实现 实验所需 学时数 2学时 实验目的1)掌握哈夫曼树的基本概念及其存储结构; 2)掌握哈夫曼树的建立算法; 3)掌握哈夫曼树的应用(哈夫曼编码和译码)。 实验内容对输入的一串电文字符实现哈夫曼编码,再对哈夫曼编码生成的代码串进行译码,输出电文字符串。 实验所需 器材 计算机及VC++ 6.0软件 内容要求: 1、初始化(Init):能够对输入的任意长度的字符串s进行统计,统计每个字符的频度,并建立哈夫曼树 2、建立编码表(CreateTable):利用已经建好的哈夫曼树进行编码,并将每个字符的编码输出。 3、编码(Encoding):根据编码表对输入的字符串进行编码,并将编码后的字符串输出。 4、译码(Decoding):利用已经建好的哈夫曼树对编码后的字符串进行译码,并输出译码结果。测试数据: 输入字符串“this*program*is*my*favourite”,完成这28个字符的编码和译码。 实验结果 1、演示程序运行结果。 2、说明调试过程中出现的现象 学生实验评价依据: 优:实验认真、刻苦,有钻研精神,不无故缺席。 良:能认真对待实验,不无故缺席。 中:基本能认真对待实验,不无故缺席。 差:对待实验不够认真,有少量迟到、早退或无故缺席现象。 不及格:对待实验马虎、敷衍,经常迟到、早退或无故缺席。

#include #include #define maxvalue 10000 //定义最大权值常量 #define maxnodenumber 100 //定义节点最大数 #define maxbit 10 //定义哈弗曼编码最大长度 typedef struct{ //定义新数据类型即节点结构 int weight; //权重域 int parent,lchild,rchild; //指针域 }htnode; //节点类型标识符// typedef htnode * huffmanstree; //定义哈弗曼数类型 htnode ht[maxnodenumber]; //定义三叉链表存储数组 typedef struct {//定义保存一个叶子节点哈弗曼编码的结构 int bit[maxbit]; //定义一维数组为编码域 int start; //定义位置域 }hcnodetype; //定义编码类型 htnode * creatstree(int n) //huffmanstree creatstree(int n) //建立哈夫曼树算法实现函数{ int i,j,m1,m2,k1,k2; //局部变量 for(i=0;i<2*n-1;i++) //初始化各节点 { ht[i].weight=0; //权重初始化为0 ht[i].parent=-1; //根节点和给左右孩子初始化为-1 ht[i].lchild=-1; ht[i].rchild=-1; } for(i=0;i

信息论与编码课程设计(哈夫曼编码的分析与实现)

建筑大学 电气与电子信息工程学院 信息理论与编码课程设计报告 设计题目:哈夫曼编码的分析与实现 专业班级:电子信息工程 101 学生: 学号: 指导教师:吕卅王超 设计时间: 2013.11.18-2013.11.29

一、设计的作用、目的 《信息论与编码》是一门理论与实践密切结合的课程,课程设计是其实践性教学环节之一,同时也是对课堂所学理论知识的巩固和补充。其主要目的是加深对理论知识的理解,掌握查阅有关资料的技能,提高实践技能,培养独立分析问题、解决问题及实际应用的能力。 通过完成具体编码算法的程序设计和调试工作,提高编程能力,深刻理解信源编码、信道编译码的基本思想和目的,掌握编码的基本原理与编码过程,增强逻辑思维能力,培养和提高自学能力以及综合运用所学理论知识去分析解决实际问题的能力,逐步熟悉开展科学实践的程序和方法 二、设计任务及要求 通过课程设计各环节的实践,应使学生达到如下要求: 1. 理解无失真信源编码的理论基础,掌握无失真信源编码的基本方法; 2. 掌握哈夫曼编码/费诺编码方法的基本步骤及优缺点; 3. 深刻理解信道编码的基本思想与目的,理解线性分组码的基本原理与编码过程; 4. 能够使用MATLAB 或其他语言进行编程,编写的函数要有通用性。 三、设计容 一个有8个符号的信源X ,各个符号出现的概率为: 编码方法:先将信源符号按其出现的概率大小依次排列,并取概率最小的字母分别配以0和1两个码元(先0后1或者先1后0,以后赋值固定),再将这两个概率相加作为一个新字母的概率,与未分配的二进制符号的字母重新排队。并不断重复这一过程,直到最后两个符号配以0和1为止。最后从最后一级开始,向前返回得到各个信源符号所对应的码元序列,即为对应的码字。 哈夫曼编码方式得到的码并非唯一的。在对信源缩减时,两个概率最小的符号合并后的概率与其他信源符号的概率相同时,这两者在缩减中的排序将会导12345678,,,,,()0.40.180.10.10.070.060.050.04X x x x x x x x x P X ????=????????

(完整word版)哈夫曼编码和译码的设计与实现

算法与数据结构课程设计 哈夫曼编码和译码的设计与实现 1.问题描述 利用哈夫曼编码进行通信可以大大提高信道的利用率,缩短信息传输时间,降低传输成本。但是,这要求在发送端通过一个编码系统对待传数据预先编码,在接收端将传来的数据进行译码(复原)。对于双工信道(即可以双向传输信息的信道),每端都需要一个完整的编/译码系统。试为这样的信息收发站设计一个哈夫曼码的编/译码系统。

2.基本要求 a.编/译码系统应具有以下功能: (1)I:初始化(Initialization)。从终端读入字符集大小n,以及n个字符和n个权值,建立哈夫曼树,并将它存于文件hfmTree中。 (2)E:编码(Encoding)。利用已建好的哈夫曼树(如不在内存,则从文件hfmTree中读入),对文件ToBeTran中的正文进行编码,然后将 结果存入文件CodeFile中。 (3)D:译码(Decoding)。利用已建好的哈夫曼树将文件CodeFile中的代码进行译码,结果存入文件TextFile中。 (4)P:印代码文件(Print)。将文件CodeFile以紧凑格式显示在终端上,每行50个代码。同时将此字符形式的编码文件写入文件CodePrin 中。 (5)T:印哈夫曼树(Tree printing)。将已在内存中的哈夫曼树以直观的方式(树或凹入表形式或广义表)显示在终端上,同时将此字符形 式的哈夫曼树写入文件TreePrint中。 b.测试数据 (1)利用下面这道题中的数据调试程序。 某系统在通信联络中只可能出现八种字符,其概率分别为0.25,0.29,0.07,0.08,0.14,0.23,0.03,0.11,试设计哈夫曼编码。 (2)用下表给出的字符集和频度的实际统计数据建立哈夫曼树,并实现以下报文的编码和译码:“THIS PROGRAM IS MY FAVORITE”。 字符空格 A B C D E F G H I J K L M 频度 186 64 13 22 32 103 21 15 47 57 1 5 32 20 字符 N O P Q R S T U V W X Y Z 频度57 63 15 1 48 51 80 23 8 18 1 16 1 3.需求分析 3.1程序的基本功能 本程序可以对任何大小的字符型文件进行Huffman编码,生成一个编码文件。并可以在程序运行结束后的任意时间对它解码还原生成字符文件。即:先对一条电文进行输入,并实现Huffman编码,然后对Huffman编码生成的代码串进行译码,最后输出电文数字

贪心法构造哈夫曼树

实验报告 ( 2013 / 2014 学年第二学期) 学院贝尔学院 学生姓名任晓强 班级学号 Q12010218 指导教师季一木 指导单位计算机软件教学中心 日期 2014年3月12日

实验一:贪心算法构造哈夫曼树 问题简述: 两路合并最佳模式的贪心算法主要思想如下: (1)设w={w0,w1,......w }是一组权值,以每个权值作为根结点值,构造n棵只有根的 n-1 二叉树 (2)选择两根结点权值最小的树,作为左右子树构造一棵新二叉树,新树根的权值是两棵子树根权值之和 (3)重复(2),直到合并成一颗二叉树为止 一、实验目的 (1)了解贪心算法和哈夫曼树的定义 (2)掌握贪心法的设计思想并能熟练运用 (3)设计贪心算法求解哈夫曼树 (4)设计测试数据,写出程序文档 二、实验内容 (1)设计二叉树结点数据结构,编程实现对用户输入的一组权值构造哈夫曼树 (2)设计函数,先序遍历输出哈夫曼树各结点 (3)设计函数,按树形输出哈夫曼树 三、程序源代码 #include #include #include #include typedef struct Node{ //定义树结构 int data; struct Node *leftchild; struct Node *rightchild;

}Tree; typedef struct Data{ //定义字符及其对应的频率的结构int data;//字符对应的频率是随机产生的 char c; }; void Initiate(Tree **root);//初始化节点函数 int getMin(struct Data a[],int n);//得到a中数值(频率)最小的数void toLength(char s[],int k);//设置有k个空格的串s void set(struct Data a[],struct Data b[]);//初始化a,且将a备份至b char getC(int x,struct Data a[]);//得到a中频率为x对应的字符void prin(struct Data a[]);//输出初始化后的字符及对应的频率 int n; void main() { //srand((unsigned)time(NULL)); Tree *root=NULL,*left=NULL,*right=NULL,*p=NULL; int min,num; int k=30,j,m; struct Data a[100]; struct Data b[100]; int i;

Matlab函数实现哈夫曼编码算法

编写Matlab函数实现哈夫曼编码的算法一、设计目的和意义 在当今信息化时代,数字信号充斥着各个角落。在数字信号的处理和传输中,信源编码是首先遇到的问题,一个信源编码的好坏优劣直接影响到了后面的处理和传输。如何无失真地编码,如何使编码的效率最高,成为了大家研究的对象。 哈夫曼编码就是其中的一种,哈夫曼编码是一种变长的编码方案。它由最优二叉树既哈夫曼树得到编码,码元内容为到根结点的路径中与父结点的左右子树的标识。所以哈夫曼在编码在数字通信中有着重要的意义。可以根据信源符号的使用概率的高低来确定码元的长度。既实现了信源的无失真地编码,又使得编码的效率最高。 二、设计原理 哈夫曼编码(Huffman Coding)是一种编码方式,哈夫曼编码是可变字长编码(VLC)的一种。uffman于1952年提出一种编码方法,该方法完全依据字符出现概率来构造异字头的平均长度最短的码字,有时称之为最佳编码,一般就叫作Huffman编码。 而哈夫曼编码的第一步工作就是构造哈夫曼树。哈夫曼二叉树的构造方法原则如下,假设有n个权值,则构造出的哈夫曼树有n个叶子结点。n 个权值分别设为w1、w2、…、wn,则哈夫曼树的构造规则为: (1) 将w1、w2、…,wn看成是有n 棵树的森林(每棵树仅有一个结点); (2) 在森林中选出两个根结点的权值最小的树合并,作为一棵新树的 左、右子树,且新树的根结点权值为其左、右子树根结点权值之和; (3)从森林中删除选取的两棵树,并将新树加入森林;

(4)重复(2)、(3)步,直到森林中只剩一棵树为止,该树即为所求得的哈 夫曼树。 具体过程如下图1产所示:(例) 图1 哈夫曼树构建过程 哈夫曼树构造成功后,就可以根据哈夫曼树对信源符号进行哈夫曼编码。具体过程为先找到要编码符号在哈夫曼树中的位置,然后求该叶子节点到根节点的路径,其中节点的左孩子路径标识为0,右孩子路径标识为1,最后的表示路径的01编码既为该符号的哈夫曼编码。可以知道,一个符号在哈夫曼树中的不同位置就有不同的编码。而且,不同符号的编码长度也可能不一样,它由该结点到父结点的路径长度决定,路径越长编码也就越长,这正是哈夫曼编码的优势和特点所在。它以各符号出现的概率大小将各符号的编码区分开。 例如对上例图中“1”的编码为“100”,“3”的编码为“101”,“5” 的编码为“11”。 对于一个信源消息的熵可以以下公式(1)求得: (1) 其中H(x)表示信源的总信息量,既为信源的熵。p()为信源中一特定符号出现的概率。 三、详细设计步骤

相关主题
文本预览
相关文档 最新文档