当前位置:文档之家› 飞机液压系统

飞机液压系统

飞机液压系统
飞机液压系统

飞机液压系统

【摘要】

本论文主要阐述了液压系统的原理,主要部件组成,功用,以及维护与修理。液压系统是指飞机上以油液为工作介质,靠油压驱动执行机构完成特定操纵动作的整套装置。液压系统由液压油箱、油箱增压系统、液压泵、地面勤务系统等组成。由于飞机液压系统的工作情况直接与飞行安全密切相关。故现代飞机上大多装有两套(或多套)相互独立的液压系统。单位功率重量小、系统传输效率高、安装简便灵活、惯性小、动态响应快、控制速度范围宽、油液本身有润滑作用、运动机件不易磨损是其优点;缺点为油液容易渗漏、不耐燃烧、操纵信号不易综合。与其他机械的液压系统相比,飞机液压系统的特点是动作速度快、工作温度和工作压力高。本论文主要以波音737为例分析飞机液压系统。

关键词:液压系统驱动马达泵(EMDP)液压动力转换组件(PTU)

Abstract: This paper describes the principle of the hydraulic system, major components, function, and maintenance and repair. Aircraft hydraulic system is to oil as the working medium, by the hydraulic actuator to complete a specific set of device control action. Hydraulic system by hydraulic tank, fuel tank pressurization system, hydraulic pump, ground service system components. Since the work of the aircraft hydraulic system directly related to flight safety. Therefore, most modern aircraft equipped with two (or sets) of independent hydraulic system. The weight of a small unit power, the system transmission efficiency, ease of installation flexibility, inertia is small, fast dynamic response, wide speed control, lubrication oil itself, moving parts, easy to wear its advantages; disadvantage of easy oil leakage, impatience burning, easy to manipulate the signal integrated. Hydraulic and other mechanical systems, aircraft hydraulic system is characterized by a movement speed, high temperature and pressure. In this thesis, an example of Boeing 737 aircraft hydraulic system.

Key words:The hydraulic system EMDP PTU

目录

1.概述 (3)

2.飞机液压系统 (4)

2.1工作原理 (4)

2.2系统组成 (6)

2.2.1液压油箱 (6)

2.2.2油箱增压系统 (6)

2.2.3液压泵 (9)

2.2.4PTU系统 (11)

2.2.5其他部位 (11)

2.2.6地面勤务 (11)

3.系统控制与指示 (17)

3.1主液压系统 (17)

3.2备用液压系统 (17)

3.3动力转换组件 (17)

3.4液压指示系统 (18)

3.4.1油量指示 (18)

3.4.2压力指示 (19)

3.4.3液压泵低压警告 (19)

3.4.4液压油过热警告 (19)

4.维护与排故 (20)

4.1注意事项 (20)

4.2液压油箱加油 (20)

4.3用EMDP给液压系统打压 (21)

4.4用EDP为A,B系统打压 (22)

4.5用便携式液压勤务车为A、B系统打压 (22)

4.6液压系统外漏检查 (22)

结束语 (24)

谢辞 (25)

文献 (26)

1.概述

为了完成飞机的预定功能 ,机上配置各种不同的系统 ,诸如操纵系统 ,液压系统、燃油系统、动力系统、空调系统、防冰防雨系统、氧化系统、电源系统、导航系统等等。其中液压系统是属于关键系统之一。该系统的工作情况直接与飞行安全密切相关。一般来说 ,它要承担飞机起落架的收放、刹车 ,各操纵活动面副翼、方向舵、升降舵、平尾、襟翼、扰流板等等的毖动等重要任务。

而另外一方面,据有关调查表明,全机发生故障的总数中,液压系统的故障约占40%;在登记严重的事故中,约有15~20%时由液压系统故障引起的。这就迫使人们对液压系统必须予以充分的关注。

首先要了解什么是飞机的液压系统。

液压系统是指飞机上以油液为工作介质,靠油压驱动执行机构完成特定操纵动作的整套装置。为保证液压系统工作可靠,特别是提高飞行操纵系统的液压动力源的可靠性,现代飞机上大多装有两套(或多套)相互独立的液压系统。它们分别称为公用液压系统和助力(操纵)液压系统。公用液压系统用于起落架、襟翼和减速板的收放,前轮转弯操纵,驱动风挡雨刷和燃油泵的液压马达等;同时还用于驱动部分副翼、升降舵(或全动平尾)和方向舵的助力器。助力液压系统仅用于驱动上述飞行操纵系统的助力器和阻尼舵机等,助力液压系统本身也可包含两套独立的液压系统。为进一步提高液压系统的可靠性,系统中还并联有应急电动油泵和风动泵,当飞机发动机发生故障使液压系统失去能源时,可由应急电动油泵或伸出应急风动泵使液压系统继续工作。

液压系统通常由以下部分组成:①供压部分:包括主油泵、应急油泵和蓄能器等,主油泵装在飞机发动机的传动机匣上,由发动机带动。蓄能器用于保持整个系统工作平稳。②执行部分:包括作动筒、液压马达和助力器等。通过它们将油液的压力能转换为机械能。③控制部分:用于控制系统中的油液流量、压力和执行元件的运动方向,包括压力阀、流量阀、方向阀和伺服阀等。④辅助部分:保证系统正常工作的环境条件,指示工作状态所需的元件,包括油箱、导管、油滤、压力表和散热器等。

2.飞机液压系统

液压系统具有以下优点:单位功率重量小、系统传输效率高、安装简便灵活、惯性小、动态响应快、控制速度范围宽、油液本身有润滑作用、运动机件不易磨损。它的缺点是油液容易渗漏、不耐燃烧、操纵信号不易综合。与其他机械(如机床、船舶)的液压系统相比,飞机液压系统的特点是动作速度快、工作温度和工作压力高。

现在以波音737为例(如图2-1和图2-2 所示)分析飞机液压系统。

2.1 工作原理

B737飞机有三个独立的液压系统提供液压动力它们分别是A,B和辅助液压系统。

图2-1 液压系统统一概述

A 系统和

B 系统是主液压系统,A系统部件大部分在飞机的左侧,B系统部件主要在飞机右侧。

正常情况下,A系统和B 系统分别有同一侧的发动机驱动液压泵(EDP),以及另一侧转换汇流条驱动马达泵(EMDP)来提供动力。而辅助系统则由2号汇流条驱动的EMDP来提供动力。

A系统为左发反推、主飞行操控系统、起落架收放、前轮转弯、备用刹车、自动驾驶、地面扰流板提供液压动力。

B系统为右发反推、主飞行操控系统、备用起落架收上、备用前轮转弯、正常刹车、自动驾驶、增升系统提供液压动力。

辅助液压系统包括备用液压系统和液压动力转换组件(PTU),备用液压系统是需求系统,在有需求的情况下为方向舵、前缘襟翼、锋翼、发动机反推提供备用的液压动力。

在B系统释压的情况下,A系统还可以通过PTU,为增压系统中的前缘襟翼,

锋翼,自动锋翼提供液压动力,液压油仍来自B系统。

图2-2B 飞机液压系统位置

2.2 系统组成

2.2.1液压油箱

每个液压系统都有自己的油箱,在油箱增压系统的压力下向各自系统液压泵供应液压油。

如图2-3所示A系统和B系统液压油箱位于主起落架轮舱的前壁板上,A系统油箱(25.8L)较小,在中间;B系统油箱(40.6L)较大,在右侧;备用的系统液压油箱在主起落架轮舱的龙骨梁上,容积更小,只有13.3L,见图2-4。

A系统和B系统液压油箱里都有个竖管,A系统的竖管只为A系统EDP供应液压油,而B系统的竖管则同时为EDP和EMDP供油。A系统液压油箱底部的出油口为A系统EMDP供油,B系统油箱底部出油口则为PTU供油,参见图2-5。

备用系统油箱顶部与B系统油箱之间有一条加油平衡管,可将备用系统油箱的过量液压油输送回B系统油箱,承受备用系统油箱的热膨胀,将B系统有箱压力传到备用系统油箱,该平衡管在B系统油箱的接口位于油箱72%容积水平线上,可保证备用邮箱渗漏不会使B系统油箱油量低于72%。

两个主系统液压油箱底部都有人工放油活门,还有液压油量传感/指示器。而备用液压则没有放油活门和油量传感器,只有低油量电门。

所有的油箱都通过地面勤务系统进行加油。

2.2.2油箱增压系统

油箱增压组件与释压活门,空气压力表,压力释放活门等组曾了油箱增压系统,都位于主起落架轮舱前壁板上参见图2-3图2-5。

油箱增压组件由引气系统增压,再把气压施加到A系统和B系统的液压油箱。

图2-4 备用液压系统油箱

图2-5 主系统液压油箱与增压系统

2.2.3液压泵

(1)EDP

两个EDP分别为A系统B系统提供液压压力,这样柱塞式,变位移,凸轮作动,压力补偿的液压泵,安装在每台发动机的附件齿轮箱前面的左侧(见图2-6)

图2-6 发动机上的液压部件

EDP上除了供油,压力输出,壳体回油管外,还有释压电磁阀。EDP正常输出量为36gpm,输出压力为3000psi。

两个主系统和备用系统各有一个EMDP提供液压压力。

(2)主系统EMDP

如图2-3,A,B系统EMDP通过吸震垫安装在主起落架轮舱前壁板中央,由三相冷交流马达,离心泵,单位变位移压力补偿型液压泵组成。EMDP正常输出量

为5.7gpm,输出压力为2700psi。

(3)备用系统EMDP

如下图,备用系统EMDP位于翼身整流罩右后部,刹车储压器的内侧,包括一个三相交流马达和液压泵组成,其正常输出量为3.7gpm,输出压力为2700psi。

图2-7 备用液压系统

2.2.4PTU系统

PTU系统只为前缘襟翼,锋翼提供备用液压动力,如果B系统EDP压力低于正常值,PTU系统压力可用于正常操控或者自动锋翼操控。PTU系统压力可用于正常操纵或者自动锋翼操纵。PTU系统主要由PTU,单向活门,PTU过滤器,限流器,PTU控制活门,EDP压力电门自动锋翼系统组成。

PTU由连接在同一轴上的液压马达和液压泵组成,液压马达由A系统启动。液压泵从B系统液压油箱得到供油。PTU控制活门可以控制A系统的压力进入PTU。

PTU位于主起落架轮舱龙骨架上,其他部位都位于轮舱前壁板上,如图2-3。

2.2.5其他部位

EDP供油关断活门

在A系统和B系统上,分别有EDP供油关断活门用来隔离系统,见图2-3,该活门位于EDP的上游,EDP与相应液压油箱之间供油管路上,安装在主起落架

轮舱前壁板左右两侧。

(1)压力组件

压力组件由过滤器,低压电门,EDP压力电门自动锋翼系统(仅B系统),单向活门,压力传感器,压力释放活门等构成,位于主起落架轮舱前壁板上,如图2-3.备用系统压力组件位于主起落架轮舱前壁板,备用油箱之后,见图2-7 压力组件主要功能是分配液压压力给油系统,清洁压力油,监控液压泵和系

统压力,高压保护。

(2)壳体回油滤组件

壳体回油滤组件是来自EDP和EDMP的壳体回油,在进入热交换机之前得到清洁。EDP壳体回油滤位于相应发动机EDP壳体回油管上,EMDP壳体回油滤则在主起落架轮舱前壁板,相应的EMDP的上面,见图2-3。备用系统壳体回油滤位

于主起落架轮舱后壁板上,见图2-7

(3)热交换器

热交换器将壳体回油在回到液压油箱之前进行冷却,A,B系统交换器分别位

于左右机翼燃油箱的底部

(4)回油滤

回油滤将液压油在回到油箱之前过滤一下,AB系统回油滤位于主起落架轮舱前壁板上,相应液压油箱下面。

2.2.6地面勤务

地面勤务断开组件

利用地面勤务断开组件,可以通过地面勤务车对AB液压系统打压。

图2-8A 地面勤务断开组件

图2-8B 地面勤务断开组件

每个断开组件由压力接头,回油接头和压力油滤,如图2-8,AB系统地面勤务断开组件,分别位于左右冲压空气的后壁板上.

地面勤务系统

通过地面勤务系统可以在一个位置对多有的液压油箱加油,地面勤务组件位于主起落架轮舱前壁板的右下侧,如图2-9所示,他包含油箱加油选择活门,加油过滤器,手动加油泵和加油接口.A系统与备用系统油箱油加油管直接与加油选择活门相连,B系统油箱通过加油平衡管加油.

油箱加油选择活门用来选择需要加油的油箱,他有三个位置:A,B和关闭,选择A,B可以为A,B系统油箱加油,加完油后一定要选择活门手柄放在关闭位.

在人工加油操作时,将手动加油泵吸管的一端接到手动加油泵上,另一端放到液压油容器中,在不用时,要将这一端装在保护罩中.

检查液压油量或加油时,飞机应处在如下状态:

飞行操控---中立

前缘襟翼和锋翼---收起

后缘襟翼---收起

扰流板---放下

起落架---放下

反推---关闭

A和B液压系统---关闭

刹车储压器---不低于2800psi

液压油在高空的冷却和出发地和目的地环境温度的巨大差异会导致液压油量降低,这种冷寖现象对系统操作没有影响,即使在前一次飞行前在温暖的地方进行过油箱勤务.在这种情况下,如果飞机回到温暖地方之前,在冷的地方将油箱油量加的多,会导致油箱的液压油溢出,并从排放管中流出.

如果到达地的环境温度不超过20°F(6℃),并且油箱油量低于RFL(加油),则加液压油刚好超过RFL位置,以免到下一温暖目的地时,液压油溢出。

2.3液压动力

液压系统A和B独立工作,分别向飞机系统提供液压动力。两个系统工作在3000psi正常压力下,并且两个系统几乎相同。

每个系统都由增压空气系统增压。油箱增压组件向主液压系统提供过滤的增压空气。

由增压空气系统来的增压空气通过油箱增压组件到达油箱。两个油箱为系统A和B的电动马达驱动泵(EMDP)和发动机驱动泵(EDP)提供油液。

每个系统的发动机驱动泵供油关断活门控制供向发动机驱动泵的液压油。

每个系统的液压泵向压力组件提供所需的压力。壳体回油用来冷却泵内部件,并且通过壳体回油油滤。

压力组件清洁、监控并分配来自油泵的压力油液。压力组件也可以防止系统超压。

壳体回油滤组件在壳体回油进入热交换器之前将油液清洁。

热交换器可在壳体回油流经回油滤组件的顶部之前冷却油液。

回油滤组件可在油液流回油箱之前过滤油液。

液压系统A为以下系统供压:

——动力转换组马达

——左侧反推装置

——起落架收放

——前轮转弯

——备用刹车

——副翼

——自动驾驶仪A

——升降舵

——升降舵载荷感觉器

——2、4、9和11号飞行扰流板

——1、6、7和12号地面扰流板

——方向舵

液压系统B向以下系统提供压力

——右侧反推装置

——备用前轮转弯

——备用起落架放下系统

——正常刹车

——副翼

——自动驾驶仪B

——升降舵

——升降舵载荷感觉器

——3、5、8、10号飞行扰流板

——方向舵

——后缘襟翼

——前缘襟翼和锋翼

主液压系统油泵的控制电门位于液压面板上。这个面板位于前顶板上P5上。

位于后电子面板上的P8上的发动机火警电门控制供向发动机驱动泵的油液。

3.系统控制与指示

液压系统的控制在p5头顶板上的液压面板,飞行操控面和p8的过热/防火面板上。液压指示则除了撒谎你高数面板外还有左右住警告灯和系统显示,以及油量表等。如图3-1所示,液压面板位于头顶面板的右中部,飞行操纵面板位于P5面板的左中部。

3.1主液压系统

主系统液压泵的控制在液压面板上,每个泵都有一个对应的电门,如图3-1所示ENG 1 HYD PUMP 电门控制A 系统EDP,ENG 2 HYD PUMP电门控制B系统EDP,每个EDP都有一个释压电磁阀,如图2-6所示,当ENG1或 ENG 2 HYD PUMP 电门放在OFF位时释压电磁阀会阻断相应系统的液压输出。ELEC 2HYD PUMP电门控制A系统EMDP,ELEC 1 HYD PUMP电门控制B系统EMDP。

EDP供油关断活门由位于过热/防火面板上的发动机灭火手柄操纵,当拔出发动机灭火手柄时,液压面板相应EDP上的LOW PRESSUREHUPODENG 接触预位,同时EDP供油关断活门关闭,切断相应的EDP液压油供应。

3.2备用液压系统

P5飞行操纵面板上的四个电门控制备用液压系统,如图3-1,它们是飞行操纵FLT control A和B,备用襟翼BEIYONG ALTERNATE FLAPS位,可以启动备用系统EMDP并打开备用系统组件的备用方向舵关断活门。

将备用襟翼ALTERNATE FLAPS预位电门放在ARM位,可以起动备用系统EMDP.

而将备用襟翼ALTERNATE FLAPS控制电门放在放下DOWN位,可以刻打开备用系统组件的前缘襟翼和缝翼关断活门。

3.3动力转换组件

PTU是由PTU控制活门控制的,如图2-2所示,当该活门打开时,PTU会自动工作。PTU控制活门打开条件是:飞机在空中,后缘襟翼位置在1到10之间,B系统EDP压力低,如果上述任一条件不能达到,则PTU控制活门自动关闭。

可以通过P5飞行操纵面板上一些备用系统电门来人工关断该活门,方法是将备用襟翼ALTERNATE FLAPS放在预位ARM位,然后将备用襟翼控制电门放到放下DOWN位。

图3-1 液压系统控制与显示

3.4液压指示系统

液压指示系统包括油量,压力,过热,和低压警告等子系统。

3.4.1油量指示

液压油量指示系统利用A,B系统的油量传感器发出的油量信号显示在公共显示器里。A,B系统液压油量在系统显示中显示(图3-1)为油箱容积的百分比。这两个油量传感器外面是指针式油量指示器,上面有0,RFL,F等标记,0表示空,REL表示需要加油,F表示油箱满。

当备用油箱的液压油量低于50%时,油量电门会发个低油量信号,这事位于

飞机控制面板的低油量LOW QUANTITY琥珀灯会亮,另外,主警告灯面板上的MASTERCAUTION灯和FLT CONT灯也会亮(图3-1)。

3.4.2压力指示

位于A,B系统压力组件上的压力传感器发出的系统压力信号被显示在公共显示器上,A,B系统液压压力在系统显示中位于油量的下面(图3-1)。

3.4.3液压泵低压警告

当液压泵的压力低于1300psi时,位于A,B系统压力组件上的低压电门回发出低压信号,是头顶液压面板上相应EDP或者EMDP的低压LOW PRESSURE琥珀灯亮,(图3-1)。当压力超过1600psi时,该琥珀灯自动灭。

备用系统EMDP的低压井盖是在头顶飞行控制面板上的备用系统低压LOW PRESSURE琥珀灯,低压点满在备用系统压力组件上工作过程与主系统相同。

3.4.4液压油过热警告

液压油过热电门监控左右系统的液压油的温度,位于相应EMDP与客体回油组件之间的壳体回油管路上。当壳体回油温度超过225F(107℃)时,头顶液压面板上相应的EMDP的过热OVERHEAT琥珀色灯亮,同时住警告灯面板上的MASTER CAUTION灯和HYD灯也会亮,当温度降到185F(85℃)时这些警告灯会自动灭。

除此之外,主系统的每个EMDP上还有液压泵温度电门,监控用来冷却点的马达泵的液压油的温度,该电门位于EMDP上。当电动泵壳体内液压油温度超过235F(113℃)时,相应EMDP的过热OVERHEAT琥珀色灯亮,同时MASTER CAUTION 灯和HYD灯也会亮(图3-1),当温度降到215F(102℃)时,这些警告灯会自动灭。

4.维护与排故

为了完成飞机的预定功能 ,机上配置各种不同的系统 ,其中液压系统是关键系统之一。该系统的工作情况直接与飞行安全密切相关。

据有关调查表明,全机发生故障的总数中,液压系统的故障约占40%;在登记严重的事故中,约有15~20%时由液压系统故障引起的。这就迫使人们对液压系统必须予以充分的关注,所以液压系统如何能够更好的进行检查维护修理就更显得日益重要。

飞机在飞行中,控制机构的失灵时非常危险的,比如飞机降落时放不下起落架,就会发生严重的灾难事故,因为飞机液压系统故障导致航班延误的事情在每家航空公司都发生过,特别是因为液压油管漏油、液压轮胎故障等,更是数不胜数,所以液压系统的维护与排故工作就显得尤为重要。

液压系统维护工作很多,这里仅介绍液压系统维护工作的注意事项,以及液压油箱加油、液压系统打压、外漏检查等工作。

4.1注意事项

严格执行液压系统安全操作规程。

(1)不要将液压油弄到身上,bms3-11液压油对人体有害.如果液压油撒到皮肤上或者眼睛里,请及时用清水清洗并就医。如果误食或者误饮液压油,请及时就医;

(2)在给液压系统打压前,确保所有的起落架地面安全销的插好,没有安源销,起落架可能会收起,造成人员伤亡和设备损坏;

(3)在给液压系统打压或者释压时,应确保飞行操纵面的行程内没哟障碍物;

(4)在用液压泵给液压系统打压时,运转液压泵不要超过2分钟,除非相对应的燃油油箱里有至少1675LBS(760Kg)燃油。如果邮箱里没有燃油,当液压泵运转达到2分钟时,应让液压泵停下,在继续测试前,让液压油箱冷却到环境温度。如果连续运转液压泵,则液压油会变得太烫;

(5)在给液压系统排故时,可以通过感觉液压管或者作动筒发热,或者听液压油渗漏的声音来找出有问题的部件。但只要可能,尽量使用标准设备测量温度,震动或声音。在接近移动部件之前,操作它们以使它们不会伤到你;

4.2液压油箱加油

加油设备位于右轮舱前壁板上。参见1.3的介绍。

航空电子系统技术发展趋势

航空电子系统技术发展趋势 众所周知,作战飞机需要三大技术做为支柱,那就是机载武器系统、飞行系统与航空电子系统。这三大系统之中,航空电子系统是操纵另外两大系统核心组成部分,没有航空电子系统的操纵指挥,另外两大系统也就形同虚设了。笔者以服务军方多年的实践经验浅淡我国的航空事业中的电子系统的技术发展趋势,以供有关技术部门用以参考。 标签:航空电子;航电;系统技术 引言 无论是做战飞机还是民用飞机,其航空电子系统的成本都已经占到了总成本的百分之三十至百分之四十,并且还有逐年扩大的趋势,由此可见,航空电子系统对于一架飞机的重要性。更为重要的是航空电子系统的先进与否已经成为衡量现代飞机的先进性的极为重要的标志之一。西方发达国家不惜巨资投入大规模开展航空电子系统的研发,就是要进一步加强航空电子系统的先进性。做为具有国际视野的航空电子系统工作人员,我们应该看到目前航空电子系统正朝着综合化、模块化、智能化的方向不断地向前飞速发展。 1 电子系统PHM的支撑技术 PHM(aircraft systems diagnostics,Prognostics and Health Managem,即电子系统的预测与健康管理技术)也就是说PHM就是航空电子系统的综合故障管理系统,其主要功能也是其重要性就是故障的早期预测、预警。 1.1 故障诊断技术 提到故障诊断技术,熟悉电脑的人恐怕首先会想起微软的故障诊断技术,微软的故障诊断技术在电脑出现异常时就会时常自动出现,但是却基本上帮不了用户什么忙。但是,与一无是处的微软的所谓的“故障诊断技术”截然不同的是,在航空电子系统中,PHM则是一项非常有效的保障飞行安全的技术。故障诊断技术在显示屏显示、语音提示、体感提示等多种提示提醒技术支撑下通过安装于机电设备不同部位的传感器对整个系统的状态进行实时监测,并与其他相关信息参照,比如某一部件的平均故障时间信息、某一部件的更换维修时间与频率信息等。在实时参照与状态实时监测的基础上进行科学评估,并将评估结果反馈到显示屏、头盔、体感装置上以提醒飞行员对这些信息加以注意。故障诊断技术通常使用解析模型等数学方法融合经验知识法与基于信号的综合处理法对设备的状态进行分析,并抽象出诸出频率、幅值、离散系统、相关曲线、方差等分析结果。对飞行器的早期可能故障加以诊断。 1.2 故障预测技术

飞机液压系统

飞机液压系统 【摘要】 本论文主要阐述了液压系统的原理,主要部件组成,功用,以及维护与修理。液压系统是指飞机上以油液为工作介质,靠油压驱动执行机构完成特定操纵动作的整套装置。液压系统由液压油箱、油箱增压系统、液压泵、地面勤务系统等组成。由于飞机液压系统的工作情况直接与飞行安全密切相关。故现代飞机上大多装有两套(或多套)相互独立的液压系统。单位功率重量小、系统传输效率高、安装简便灵活、惯性小、动态响应快、控制速度范围宽、油液本身有润滑作用、运动机件不易磨损是其优点;缺点为油液容易渗漏、不耐燃烧、操纵信号不易综合。与其他机械的液压系统相比,飞机液压系统的特点是动作速度快、工作温度和工作压力高。本论文主要以波音737为例分析飞机液压系统。 关键词:液压系统驱动马达泵(EMDP)液压动力转换组件(PTU) Abstract: This paper describes the principle of the hydraulic system, major components, function, and maintenance and repair. Aircraft hydraulic system is to oil as the working medium, by the hydraulic actuator to complete a specific set of device control action. Hydraulic system by hydraulic tank, fuel tank pressurization system, hydraulic pump, ground service system components. Since the work of the aircraft hydraulic system directly related to flight safety. Therefore, most modern aircraft equipped with two (or sets) of independent hydraulic system. The weight of a small unit power, the system transmission efficiency, ease of installation flexibility, inertia is small, fast dynamic response, wide speed control, lubrication oil itself, moving parts, easy to wear its advantages; disadvantage of easy oil leakage, impatience burning, easy to manipulate the signal integrated. Hydraulic and other mechanical systems, aircraft hydraulic system is characterized by a movement speed, high temperature and pressure. In this thesis, an example of Boeing 737 aircraft hydraulic system. Key words:The hydraulic system EMDP PTU

典型液压系统

单元七典型液压系统 学习目标: 1.掌握读懂液压系统图的阅读和分析方法 2.掌握YT4543型液压动力滑台液压系统的组成、工作原理和特点 3.掌握YB32-200型压力机液压系统的组成、工作原理和特点 4.掌握Q2—8汽车起重机液压系统的组成、工作原理和特点 5.能绘制电磁铁动作循环表? 重点与难点: 典型液压系统是对以前所学的液压件及液压基本回路的结构、工作原理、性能特点、应用,对液压元件基本知识的检验与综合,也是将上述知识在实际设备上的具体应用。本章的重点与难点均是对典型液压系统工作原理图的阅读和各系统特点的分析。对于任何液压系统,能否读懂系统原理图是正确分析系统特点的基础,只有在对系统原理图读懂的前提下,才能对系统在调速、调压、换向等方面的特点给以恰当的分析和评价,才能对系统的控制和调节采取正确的方案。因此,掌握分析液压系统原理图的步骤和方法是重中之重的内容。 1.分析液压系统工作原理图的步骤和方法 对于典型液压系统的分析,首先要了解设备的组成与功能,了解设备各部件的作用与运动方式,如有条件,应当实地考察所要分析的设备,在此基础上明确设备对液压系统的要求,以此作为液压系统分析的依据;其次要浏览液压系统图,了解所要分析系统的动力装置、执行元件、各种阀件的类型与功能,此后以执行元件为中心,将整个系统划分为若干个子系统油路;然后以执行元件动作要求为依据,逐一分析油路走向,每一油路均应按照先控制油路、后主油路,先进油、后回油的顺序分析;再后就是针对执行元件的动作要求,分析系统的方向控制、速度控制、压力控制的方法,弄清各控制回路的组成及各重要元件的作用;更后就是通过对各执行元件之间的顺序、同步、互锁、防干扰等要求,分析各子系统之间的联系;最后归纳与总结整个液压系统的特点,加深对系统的理解。 2.在此选用YT4543型组合机床动力滑台的液压系统,作为金属切削专用机床进给部件的典型代表。此系统是对单缸执行元件,以速度与负载的变换为主要特点。要求运动部件实现“快进一一工进一二工进一死挡铁停留一快退—原位停止”的工作循环。具有快进运动时速度高负载小与工进运动时速度低负载大的特点。系统采用限压式变量泵供油,调速阀调速的容积节流调速方式,该调速方式具有速度刚性好调速范围大的特点;系统的快速回路是采用三位五通电液换向阀与单向阀、行程阀组成的液压缸差动连接的快速运动回路,具有系统效率较高、回路简单的特点;速度的换接采用行程阀和液控顺序阀联合动作的快进与工进的速度换接回路,具有换接平稳可靠的特点;两种工进采用调速阀串联与电磁滑阀组成的速度变换回路实现两次工进速度的换接,换接平稳;采用中位机能为M型的电液换向阀实现执行元件换向和液压泵的卸荷。该系统油路设计合理,元件使用恰当,调速方式正确,能量利用充分。

民用飞机主要系统有哪些讲课稿

民用飞机主要系统有哪些 1、空调系统 2、自动驾驶系统 3、通讯系统 4、电源系统 5、防火系统 6、飞控系统 7、燃油系统 8、液压系统 9、防冰系统10、仪表系统11、起落架系统12、灯光系统13、导航系统14、氧气系统15、引气系统16、水系统17、发动机各个系统、发动机振动监测仪发动机接口控制装置18、主飞行控制系统19、驾驶舱控制系统20、照明系统21、内装饰系统22、控制板组件23、水/废水系统24、应急撤离系统25、氧气系统26、驾驶员座椅27、风档玻璃和通风窗28、风档温控和雨刷系统29、风门作动器30 航电系统31、高升力系统32、空气管理系统33、起落架系统图书目录编辑1.1 引言1.2 飞行控制原理1.3 飞行操纵面1.4 主飞行控制1.5 副飞行控制1.6 商用飞机1.6.1 主飞行控制1.6.2 副飞行控制1.7 飞行操纵联动系统1.7.1 操纵连杆系统1.7.2 钢索和滑轮系统1.8 增升控制系统1.9 配平和感觉1.9.1 配平1.9.2 感觉1.10 飞控作动装置1.10.1 简单的机械/液压式作动装置1.10.2 具有电信号的机械式作动装置1.10.3 多余度作动装置1.10.4 机械式螺旋作动器1.10.5 组合作动器组件(iap)1.10.6 先进作动机构1.11 民用系统的实施1.11.1 顶层比较1.11.2 空中客车的实施1.12 电传控制律1.13

a380飞控作动1.14 波音777的实施1.15 飞行控制、引导和飞行管理的相互关系参考文献控制系统编辑2.1 引言2.1.1 发动机/机体接口2.2 发动机技术和工作原理2.3 控制问题2.3.1 燃油流量控制2.3.2 空气流量控制2.3.3 控制系统2.3.4 控制系统参数2.3.5 输入信号2.3.6 输出信号2.4 系统实例2.5 设计准则2.6 发动机起动2.6.1 燃油控制2.6.2 点火控制2.6.3 发动机旋转2.6.4 油门杆2.6.5 起动顺序2.7 发动机指示2.8 发动机滑油系统2.9 发动机功率的提取2.10 反推力2.1l 现代民用飞机上的发动机控制参考文献燃油系统编辑3.1 引言3.2 燃油系统的特性3.3 燃油系统部件说明3.3.1 输油泵3.3.2 燃油增压泵3.3.3 输油阀3.3.4 止回阀(nrv)3.4 燃油油量测量3.4.1 油面传感器3.4.2 燃油油量测量传感器3.4.3 燃油油量测量基础3.4.4 油箱形状3.4.5 燃油的性质3.4.6 燃油油量测量系统3.4.7 福克f50/f100系统3.4.8 空中客车a3203.4.9 “智能型”传感器3.4.10 超声波传感器3.5 燃油系统的工作模式3.5.1 增压3.5.2 发动机供油3.5.3 燃油传输3.5.4 加油/放油3.5.5 通气系统3.5.6 用燃油作为热沉3.5.7 外部燃油箱(副油箱)3.5.8 应急放油3.5.9 空中加油3.6 综合民机系统3.6.1 庞巴迪“环球快车”3.6.2 波音7773.6.3 a340-500/600燃油系统3.7 燃油箱的安全

典型飞机电子系统教学大纲

《典型飞机电子系统》教学大纲 一、课程类型 本课程是本学院航空电子设备维修专业学生必修的专业必修课,为职业拓展课程。 二、学分与学时 学分:3学分;学时:48学时。 三、适用专业 适用于航空电子设备维修专业。 四、课程的性质和目的 《典型飞机电子系统》课程是航空电子设备维修专业必修的专业核心课,是航空维修人员处理维修问题必须具备的基础知识。它的任务是通过本课程的教学,使学生掌握飞机电子系统维护基本方法,具有对B737—800型和A320型飞机电子系统进行外场维护和定检的能力;熟悉飞机电子设备的安装位置、使用方法及维护操作程序,具有运用所学的知识和技能对飞机电子系统和附件进行测试和调试的能力;加强对飞机电子系统的总体认识,具有运用所学的知识,分析、隔离和排除飞机电子系统故障的能力,为毕业后从事本专业工作打下基础。 五、本课程与其它课程的联系 本课程的先修课程为:《航空仪表、《自动飞行控制系统》。学习本课程使学生掌握典型飞机电子系统的基本理论,基本知识和基本技能,培养学生分析问题和解决问题的能力,并为毕业后从事本专业工作打下基础。 六、课程的教学内容及基本要求 (一)飞机电子系统 1.基本内容: (1)737NG型飞机的基本概况 (2)典型飞机电子设备的操作方法 (3)典型飞机电子设备的指示内容判读 2.基本要求: (1)掌握737NG型飞机的基本概况 (2)掌握典型飞机电子设备的操作方法 (3)掌握典型飞机电子设备的指示内容判读 3.教学重点及难点: (1)重点:典型飞机电子设备的操作方法、典型飞机电子设备的指示内容判读(2)难点:典型飞机电子设备的操作方法 (二)电子飞行仪表系统维护 1.基本内容: (1)EADI中数据的读取 (2)EHSI中数据的读取 (3)EFIS中数据的读取

飞机液压系统

液压系统 摘要:详细阐述了液压系统的工作原理,飞机液压系统的各组成系统及元件,重点论述了B737-800飞机液压系统的功能、组成、工作特点和使用维护要求。 关键字:液压;液压油箱;B737-8OO; 1 液压系统工作原理 1.1 启动电磁铁全部不得电,主泵输出油液通过阀6、21中位卸载。 1.2电磁铁1Y、5Y 得电,阀6 处于右位,控制油经阀8 使液控单向阀9 开启。 进油路:泵1-阀6右位-阀13-主缸上腔。 回油路:主缸下腔-阀9-阀6右位-阀21中位-油箱。

主缸滑块在自重作用下迅速下降,泵1 虽处于最大流量状态,仍不能满足其需要,因此主缸上腔形成负压,上位油箱15 的油液经充液阀14 进入主缸上腔。 1.3主缸慢速接近工件、加压 当主缸滑块降至一定位置触动行程开关2S 后,5Y 失电,阀9 关闭,主缸下腔油液经背压阀10、阀6 右位、阀21 中位回油箱。这时,主缸上腔压力升高,阀14 关闭,主缸在泵1 供给的压力油作用下慢速接近工件。接触工件后阻力急剧增加,压力进一步提高,泵1 的输出流量自动减小。 1.4 保压 当主缸上腔压力达到预定值时,压力继电器7发信号,使1Y失电,阀6回中位,主缸上下腔封闭,单向阀13 和充液阀14 的锥面保证了良好的密封性,使主缸保压。保压时间由时间继电器调整。保压期间,泵经阀6、21的中位卸载。 1.5 泄压 主缸回程保压结束,时间继电器发出信号,2Y 得电,阀6 处于左位。由于主缸上腔压力很高,液动滑阀12 处于上位,压力油使外控顺序阀11 开启,泵1输出油液经阀11 回油箱。泵1 在低压下工作,此压力不足以打开充液阀14 的主阀芯,而是先打开该阀的卸载阀芯,使主缸上腔油液经此卸载阀芯开口泄回上位油箱,压力逐渐降低。当主缸上腔压力泄到一定值后,阀12 回到下位,阀11关闭,泵1 压力升高,阀14完全打开,此时进油路:泵1-阀6左位-阀9-主缸下腔。回油路:主缸上腔-阀14-上位油箱15。实现主缸快速回程。 1.6 主缸原位停止 当主缸滑块上升至触动行程开关1S,2Y失电,阀6 处于中位,液控单向阀9将主缸下腔封闭,主缸原位停止不 1.7 下缸顶出及退回 3Y得电,阀21 处于左位。进油路:泵1-阀6中位-阀21左位-下缸下腔。回油路:下缸上腔-阀21 左位-油箱。下缸活塞上升,顶出。 3Y失电,4Y得电,阀21 处于右位,下缸活塞下行,退回。动。泵1 输出油液经阀6、21中位卸载。

液压系统基本结构及工作原理

液压系统基本结构与工作原理 一、概述 液路系统主要包括主油泵,液压油箱,滤清器,减压阀,溢流阀,起升液缸,伸缩液缸,吊钳液缸,支腿液缸,液压马达,及各种液压操作阀等部件。设备出厂前溢流阀、减压阀及各种压力阀的压力已调定,确保液压系统安全运行,用户在使用中不得轻率更改。 液压系统包括主液压系统和转向液压系统,两个系统共用一液压油箱。 1、主液压系统 主液压系统为钻机车在设备调整和钻修作业时提供液压动力,配置有各种阀件,控制操作各液压机具正确安全运行。 2、转向液压系统 转向液压系统为车辆前部车桥的液压助力转向提供液压动力,配置有各种阀件,控制液压系统压力、流向和稳定最高流量,确保车辆转向轻便灵活,安全可靠。 二、结构特点 液压系统由以下组成: ?主液压系统 ?转向液压系统 1、主液压系统 由以下部件组成: 1)液压油箱:存储、冷却、沉淀和过滤液压油。油箱安装有: ●人孔盖,安装在油箱顶部,设置有两个,其中在油箱回油区的人孔盖上安 装液压空气滤清器; ●液压空气滤清器,过滤油箱流通空气,油箱加油时过滤油液; ●液位计,2个,安装在油箱的前侧面,设置有高低两个液位计,高位液位 计,显示井架降落后的油面;低位液位计,显示井架竖起后油面; ●油温表,安装在油箱的前侧面,测量油箱内油温,正常工作油温在30~ 70℃;主回油口,2个,设置在油箱的底板上,配置单向阀,分别连接主

回油管和溢流阀回油口;单向阀在维修液压管路时自动关闭,防止油箱中 的油液流失; ●排泄油口,设置在油箱的底板上,用堵头封堵;打开堵头可排放油箱液压 油; ●主油泵吸油口,设置在油箱的前侧面,安装主吸油滤清器; ●转向油泵吸油口,设置在油箱的前侧面,安装转向吸油滤清器; ●转向系统回油口,设置在油箱的底板上,配置单向阀,单向阀在维修液压 管路时自动关闭,防止油箱中的油液流失; 2)液压油泵:单联齿轮结构,2台,分别安装在两台液力变速箱取力箱上, 由变矩器泵轮驱动,发动机转动,取力箱就可驱动油泵。取力箱配置有液压离合器,当需要液压动作时,可操作司钻控制箱“液泵离合”手柄,置“油泵I合”位,油泵I结合,输出工作压力油液;手柄置“油泵II合” 位,油泵II结合,输出工作压力油液;。手柄置中位,两油泵均脱离停转。 3)溢流阀:先导式结构,2台,分别安装在主液压油泵的出油口端。调定系 统压力,防止系统过载,保护系统及元件安全。 溢流阀的结构原理:由先导阀和主滑阀组成,先导阀部分包括阀体,滑阀,调压弹簧等零件。主阀滑阀上开有一个小孔a,使进口压力油能进入滑阀上腔B,当作用在锥阀上的液压力小于弹簧的预紧力时,先导阀锥阀在弹簧力的作用下关闭,因为阀体内没有油液流动,滑阀上下两端油腔液压力相等。因此,滑阀在上端弹簧的作用下处于下端的极限位置。溢流阀的进出油口被滑阀切断,溢流阀不溢流;当作用在锥阀上的液压力因溢流阀进口压力的升高而增大到等于弹簧力时,锥阀被顶开,滑阀上腔B的油液经回油口b和滑阀中心通孔流入阀的出油口,然后溢流回油箱,这时溢流阀进油口的压力油从小孔a,向上补充到B腔,因为油液经小孔a时存在压力损失,因此B腔的压力低于进油口压力,滑阀上下两端出现压力差。 于是,在上下两端压力差的作用下滑阀克服弹簧力,滑阀自重以及摩擦力向上移动,打开溢流阀的进回油口,油液流回油箱,滑阀开启后,受液动力的影响,进口的压力P还要继续上升,滑阀继续上移,到某一位置滑阀受力平衡时,溢流阀进口压力稳定在一定值,该值称为溢流阀的调定压力。

国外民用飞机飞行管理系统发展现状与趋势

国外民用飞机飞行管理系统发展现状与趋势 飞行管理系统(FMS)是大型飞机数字化电子系统的核心,它通过组织、协调和综合机上多个电子和机电子系统的功能与作用,生成飞行计划,并在整个飞行进程中全程保证该飞行计划的实施,实现飞行任务的自动控制。现代飞机上广泛采用的飞行管理系统是综合化的自动飞行控制系统(AFCS),它集导航、制导、控制、显示、性能优化与管理功能为一体,实现飞机在整个飞行过程中的自动管理与控制。装备了飞行管理系统的飞机,不仅可以大量节省燃油,提高机场的吞吐能力,保证飞机的飞行安全和飞行品质,而且可以大大提高驾驶舱的综合化、自动化程度,减轻驾驶员的工作负担,带来巨大的无可估量的经济效益。目前,一个典型的飞行管理系统不仅能够根据飞机、发动机性能、起飞着陆机场、航路设施能力、航路气象条件及其装载情况,生成具体的全剖面飞行计划,而且能够实现多种功能,包括:通过主飞行显示系统显示和指示有关飞行信息;通过无线电通信与导航系统获得通信、空中交通和无线电导航数据;通过飞行操纵系统控制飞机的姿态;通过自动油门系统调节发动机功率;通过中央数据采集系统收集、记录和综合处理数据;通过空地数据链系统收发航行数据;通过机上告警系统提供系统监控和告警等功能。 1 飞行管理系统的发展历程 飞行管理的概念最早可以追溯到20世纪20年代。自从1929年杜立特上尉历史性的盲目飞行后,人们感到借助一个系统摆脱完全依靠飞行员的感官进行飞行的重要性。但飞行管理系统直到20世纪60年代才真正开始发展起来,并大致经历以下5个发展阶段:区域导航系统、性能管理系统、飞行管理系统、四维导航和新一代飞行管理系统。 2 飞行管理系统的基本构成和功能 飞行管理系统通常由一个飞行管理计算机系统(FMCS)和所需的相关接口设备组成,如电子飞行仪表系统(EFIS)和自动飞行系统等设备。而一个典型的FMCS通常由飞行管理计算机(FMC)和控制与显示单元(CDU)两种组件构成。一个飞行管理系统通常能完成或辅助飞行员完成的基本功能包括:飞行计划、导航与制导、性能优化与预测、电子飞行仪表系统显示、人/机交互和空地数据链。 1

A320飞机液压系统的工作原理

A320飞机液压系统的工作原理 姓名:XXX 学号:XXXX XXXXXXXXXXXXXXXXX 一:摘要 空客A320凭借其在设计上使用大量复合材料作为主要结构材料,更改机身的空间,加宽座椅的宽度,在控制上,其采用了电传操纵(fly-by-wire)飞行控制系统的亚音速民航运输机,代替了过去主要靠机械装置传输飞行员指令来控制飞机的姿态和动作。飞行员的操纵动作被转换成电子信号,经过计算机处理后再驱动液压和电气装置来控制飞机姿态。从而代替了过去的主要由线缆等机械装置来传输飞行员指令,进而控制飞机的姿态和动作。这是第一款使用电传操纵飞行控制系统的大型客机。凭借这些等优势,在国内及世界空客飞机中占有重要一席。本论文主要对其液压系统作介绍。 二:关键字 空客A320 液压系统 三:液压系统构造及工作原理 1:为何要采用液压系统 飞机大型化以后,一对副翼的重量就可达l吨以上,依靠驾驶员操纵控制各操纵面仅凭体力去搬动驾驶杆、踏踩脚蹬、拉动钢索使副翼或方向舵转动,那是绝对办不到的了。此时飞机上就出现了助力机构。飞机上的绝大部分助力机构采用的多为液压传动助力系统。日常生活中,常常可以看到在建设工地上施工的挖掘机,它那巨大的挖斗由伸出缩入的推杆来带动,就是由液压机构来实现的。 2:液压传动原理 液压传动是一种以液体为工作介质,利用液体静压能来完成传动功能的一种传动方式,也称容积式传动。 功用:给飞行操纵系统、起落架收放、前轮转弯、刹车系统和发动机反推装置等提供操纵动力。

3:液压系统的基本组成

(1):动力元件 液压泵,其作用是将机械能转换成液体的压力能。液压泵可分多种,有柱塞泵,齿轮泵等。这些泵在液压系统中都起着转换机械能的作用,但原理各不同,下面介绍齿轮泵和柱塞泵的工作原理图。 a:齿轮泵 齿轮按图示方向旋转 吸油过程:在吸油腔中的啮合 齿逐渐退出啮合,吸油腔容积 增大,形成部分真空,油箱中 的油液在油箱内压力作用下, 克服吸油管阻力被吸进来,并 随轮齿转动; 排油过程: 当油进入排油腔 时由于轮齿逐渐进入啮合,排 油腔容积逐渐减小,将油从排 油口挤压出去。齿轮不断旋转, 油液便不断地吸入和排出。排油腔吸油腔

民用航空电子系统发展及新技术研究

民用航空电子系统发展及新技术研究 民用航空电子系统是现代民用飞机的关键组成部分。近年来,航空电子系统发展迅速,大量先进技术研发并应用。文章先阐述了航空电子系统的设计准则,接着分析了系统的发展趋势,论述了新技术的研究及应用,并对今后的系统设计提出了自己的看法。 标签:民用飞机;航空电子;发展;新技术 民用航空电子系统是现代民用飞机的关键组成部分,它提供通信、导航、维护和人机接口等必须的功能。近年来,民用飞机的安全性、高效性、经济性和舒适性要求的逐渐提高,航空电子系统的重要性日益凸显。随着相关研究持续开展,大量先进技术应用其中,航空电子系统发展迅速。 1 航空电子系统的设计准则 1.1 安全性 安全性是民用航空发展的基石,民用飞机设计始终贯穿的主线,也是航空公司和乘客最关注的因素。民航适航法规是保障民用航空器适航的最低安全标准,它对民用航空器设计、制造、试验和运营等各个环节的行为进行规定。因此,民用航空电子系统设计必须满足民航适航法规的要求。此外,为提高飞机的竞争力,系统在实现基本法规要求之外,还应具有更好的安全性能。 1.2 经济性 经济性是航空公司选用飞机时的重要标准,是系统具有应用市场的重要因素。在民用航空电子系统设计时,诸多方面均影响到经济性的优劣。系统设计时应通过减少设备数量,降低设备尺寸、功耗和重量,减少电缆等途径降低系统重量和功耗。通过数字化、综合化、标准化和模块化的方式,提高系统性能。此外,维修性也对经济性有重要影响,有效的故障诊断和健康管理、便捷友好的维修流程能大大降低维修成本,从而提高系统经济性。 1.3 舒适性 民用航空电子系统舒适性包括驾驶舱和客舱两个方面。驾驶舱舒适性包括提高系统可操控性和减少驾驶员的工作负担,主要通过提高导航、自动飞行等系统性能,提供图像化的信息综合显示,合理便捷的操作程序等方面实现。客舱舒适性包括为乘客提供丰富的机上通信和娱乐设施,丰富乘坐体验。 1.4 环保性 随着人们对环境保护的关注,系统的环保性也愈发受到重视。降低系统重量

液压系统基础知识大全液压系统的组成及其作用一个完整的液压系统

液压系统基础知识大全 液压系统的组成及其作用 一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。 动力元件的作用是将原动机的机械能转换成液体的压力能,指液压系统中的油泵,它向整个液压系统提供动力。液压泵的结构形式一般有齿轮泵、叶片泵和柱塞泵。 执行元件(如液压缸和液压马达)的作用是将液体的压力能转换为机械能,驱动负载作直线往复运动或回转运动。 控制元件(即各种液压阀)在液压系统中控制和调节液体的压力、流量和方向。根据控制功能的不同,液压阀可分为村力控制阀、流量控制阀和方向控制阀。压力控制阀又分为益流阀(安全阀)、减压阀、顺序阀、压力继电器等;流量控制阀包括节流阀、调整阀、分流集流阀等;方向控制阀包括单向阀、液控单向阀、梭阀、换向阀等。根据控制方式不同,液压阀可分为开关式控制阀、定值控制阀和比例控制阀。 辅助元件包括油箱、滤油器、油管及管接头、密封圈、快换接头、高压球阀、胶管总成、测压接头、压力表、油位油温计等。 液压油是液压系统中传递能量的工作介质,有各种矿物油、乳化液和合成型液压油等几大类。 液压系统结构

液压系统由信号控制和液压动力两部分组成,信号控制部分用于驱动液压动力部分中的控制阀动作。 液压动力部分采用回路图方式表示,以表明不同功能元件之间的相互关系。液压源含有液压泵、电动机和液压辅助元件;液压控制部分含有各种控制阀,其用于控制工作油液的流量、压力和方向;执行部分含有液压缸或液压马达,其可按实际要求来选择。 在分析和设计实际任务时,一般采用方框图显示设备中实际运行状况。空心箭头表示信号流,而实心箭头则表示能量流。 基本液压回路中的动作顺序—控制元件(二位四通换向阀)的换向和弹簧复位、执行元件(双作用液压缸)的伸出和回缩以及溢流阀的开启和关闭。对于执行元件和控制元件,演示文稿都是基于相应回路图符号,这也为介绍回路图符号作了准备。 根据系统工作原理,您可对所有回路依次进行编号。如果第一个执行元件编号为0,则与其相关的控制元件标识符则为1。如果与执行元件伸出相对应的元件标识符为偶数,则与执行元件回缩相对应的元件标识符则为奇数。不仅应对液压回路进行编号,也应对实际设备进行编号,以便发现系统故障。 DIN ISO1219-2标准定义了元件的编号组成,其包括下面四个部分:设备编号、回路编号、元件标识符和元件编号。如果整个系统仅有一种设备,则可省略设备编号。 实际中,另一种编号方式就是对液压系统中所有元件进行连续编号,此时,元件编号应该与元件列表中编号相一致。这种方法特别适用于复杂液压控制系统,每个控制回路都与其系统编号相对应 国产液压系统的发展 目前我国液压技术缺少技术交流,液压产品大部分都是用国外的液压技术加工回来的,液压英才网提醒大家发展国产液压技术振兴国产液压系统技术。 其实不然,近几年国内液压技术有很大的提高,如派瑞克等公司都有很强的实力。 液压附件: 目前在世界上,做附件较好的有: 派克(美国)、伊顿(美国)颇尔(美国) 西德福(德国)、贺德克(德国)、EMB(德国)等 国内较好的有: 旭展液压、欧际、意图奇、恒通液压、依格等 液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,是工农业生产中广为应用的一门技术。如今,流体传动技术水平的高低已成为一个国家工业发展水平的重要标志。 1795年英国约瑟夫·布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。

SAE ARP 4754A 民用飞机系统研发指导

目录 1.范围(Scope) (1) 1.1目的(Purpose) (2) 1.2文件背景(Document Background) (3) 2.引用文件(References) (5) 2.1适用文件(Applicable Documents) (5) 2.1.1 SAE出版物 (5) 2.1.2 FAA出版物 (5) 2.1.3 EASA出版物 (6) 2.1.4 RTCA出版物 (6) 2.1.5 EUROCAE出版物 (6) 2.2 定义(Definitions) (7) 2.3缩写(Abbreviations And Acronyms) (12) 3.研制计划(Development Planning) (14) 3.1计划过程(Planning Process) (14) 3.2过渡准则(Transition Criteria) (15) 3.2.1偏离计划 (16) 4飞机和系统研制过程(Aircraft And System Development Process) (16) 4.1飞机/系统概念研制阶段(Conceptual Aircraft/System Development Process) (17) 4.1.1 研制保证 (18) 4.1.2研制保证过程的介绍 (18) 4.1.3源自安全性分析家等级安全性要求的介绍 (19) 4.1.4飞机级功能、功能要求和功能接口的识别 (20) 4.1.5飞机功能到系统的分配 (20)

4.1.6系统构架研制 (21) 4.1.7系统要求到项目的分配 (21) 4.1.8系统实施 (21) 4.2飞机功能研制(Aircraft Function Development) (21) 4.3飞机功能到系统的分配(Allocation of Aircraft Functions to Systems) (23) 4.4系统构架的研制(Development of System Architecture) (24) 4.5项目系统要求的分配(Allocation of System Requirements to Items) (24) 4.6系统实施(System Implementation) (25) 4.6.1信息流-从系统过程到项目过程&从项目过程到系统过程 (25) 4.6.2硬件和软件设计/建造 (27) 4.6.3电子硬件/软件集成 (27) 4.6.4飞机/系统集成 (27) 5集成过程(Integral Process) (28) 5.1安全性评估(Safety Assessment) (28) 5.1.1功能危害性评估 (30) 5.1.2初始飞机/系统安全性评估 (31) 5.1.3飞机/系统安全性评估 (32) 5.1.4共因分析 (33) 5.1.5安全性项目计划 (34) 5.1.6安全性相关的飞行操作或维修任务 (34) 5.1.7服务中安全性的关系 (35) 5.2研制保证等级分配(Assignment of Development Assurance Level) (35) 5.2.1一般准则—研制保证等级分配的介绍 (36) 5.2.2功能研制保证等级和项目研制保证等级(FDAL和IDAL) (37) 5.2.3详细的FDAL和IDAL分配指南 (37) 5.2.4考虑外部事件的FDAL分配 (50) 5.3要求捕获(Requirements Capture) (51) 5.3.1要求类型 (52) 5.3.2安全性分析的导出安全性相关要求 (55)

飞机液压(带答案)

A207选择题(含94 小题) 1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.B 9.B10.C 11.B12.C13.B14.C15.B16.C17.C18.B19.B20.C 21.C22.C23.C24.B25.C26.B27.D28.D29.C30.C 31.D32.D33.C34.D35.B36.D37.B38.A39.D40.D 41.D42.C43.A44.A45.C46.A47.C48.A49.A50.B 51.A52.D53.B54.B55.B56.A57.D58.C59.A60.D 61.D62.C63.A64.A65.A66.C67.B68.A69.B70.B 71.B72.B73.A74.D75.C76.C77.A78.D79.D80.D 81.B82.C83.B84.B85.B86.D87.C88.B89.B90.B 91.C92.D93.A94.D 1.为保护油泵免受超载而损坏,往往装的机械保险装置是 A、热力释压活门。B、单向活门。 C、剪切销。D、安全活门。 2.卸荷活门与发动机驱动的定量泵结合使用,其目的是 A、防止油流的过度损失。 B、消除油泵的压力脉动。 C、在工作系统不工作时, 卸去系统的压力。 D、在工作系统不工作时, 卸去油泵的工作压力。 3.液压系统使用的"供压组件"是 A、比通常的供压系统能提供更大的压力。 B、指它有一个能产生较大压力的发动机驱动泵。 C、把所有供压附件安置在一起的组合件。 D、指它有一个自增压式油箱。 4.如果壹架飞机液压系统属于定量泵恒压系统,发现比平时卸荷频繁,然而又没有发现不正常的渗漏现象,其最大可能原因是 A、安全活门调节的压力过高。 B、油箱通气管被堵塞。 C、油箱中油量过多。 D、储压器充气压力不足。 5.在液压泵工作时,下列哪些原因最可能引起压力表的过大摆动? A、压力表内的波顿管破裂。 B、储压器充气压力不足。C、供油不足。 D、系统安全活门卡在关闭位。 6.飞机液压供压系统中使用的变流量泵恒压系统 A、一定要用卸荷活门才能保证恒压要求。 B、由于泵内有压力补偿装置,所以不需使用卸荷活门。 C、使用安全活门保证在工作系统不工作时,泵出口压力为恒定。 D、在工作系统不工作时, 泵的出口压力为最小。 7.石油基液压油颜色为 A、紫色。B、兰色。C、绿色。D、红色。 8.除去导管以外,组成一个简单的液压系统至少需要的附件为: A、作动筒、增压油箱、储压器、选择活门。

民用飞机系统功能危险性评估

民用飞机系统功能危险性评估 对功能危险性进行评估是安全性评估中最重要的一步,并且还具有不容忽视的作用。文章对系统功能的实际危险性评估的步骤以及目的进行了介绍,然后把针对自动飞行这个控制系统的评估过程做了详细介绍,望民用飞机系统能够将此作为评估系统功能安全性的依据。 标签:民用飞机;系统功能;危险性;评估 针对民用飞机系统来看,首先要考虑的问题就是安全性能,这在研制、生产以及运营与退役过程中都有多贯穿,与此同时,也决定着民用飞机能够通过审查顺利地进入到市场。自动飞行这个控制系统是飞机的一个主要机载系统,它的安全性是设计过程中非常关键的环节。而飞机系统安全性包括了系统安全性的初步评估、评估、危险性评估以及实效模式影响与共因分析等。文章把民用飞机当中的自动飞行系统当作例子,对功能危险性进行了评估,具体如下。 1 简述功能危险性的评估 评估功能危险性这个系统能够对产品所具有的功能进行检查,并识别每项功能的实际生效状态,然后按照失效状态的情况逐个分类的一种分析安全性能方法。同时,还要把系统当做对象,实际上评估功能危险性这项研究就是在设计飞机过程中包线与飞行阶段,有可能会对飞机飞行以及系统造成影响的安全失效。 评估功能危险性的过程属于从上到下分析功能失效的一种评估方法,其主要目的就是当系统丧失功能的状况下,掌握失效状态以及各种有关分类。 而对评估民用飞机的安全性能够为以后的输入流程奠定基础,同时也为子系统以及后续系统的设计提出安全性需求,让系统构架更具有接受性,找出存在的问题以及设计需要作出怎样的修改,然后明确下步要设计的范围。而评估系统功能的危险性提出了所有功能的实际危险评估,确认以及推导设计系统安全性的标准,提出诸多种安全性的需求,同时也提出了诸多隐藏功能处于失效状态上信息,这部分信息能够明确各种系统的完整性、结构方案、隔离要求、最低设备、系统分离等清单需求[1]。 评估系统功能的危险性评估主要包括识别失效状态、功能评估清单、接口示意图、设计目标与要求、设计原理与方案、适航规章等。 2 评估系统功能的危险性过程 2.1 对系统功能进行定义 评估系统的功能性能就是先要探究系统所具有的一些功能,然后将分为外部与内部两种功能,分析确定之后再对功能清单进行建立。

飞机液压系统供压部分设计

目录 1 概述……………………………………………………………………………… 1 1.1 关于飞机液压系统…………………………………………………………… 1 1.2 液压传动的工作原理和工作特征…………………………………………… 2 1.3 液压传动的优缺点…………………………………………………………… 4 1.3.1 液压系统的优点…………………………………………………………… 5 1.3.2 液压系统的缺点…………………………………………………………… 5 1.4 本课题的任务要求和设计原始数据………………………………………… 6 1.4.1 任务要求…………………………………………………………………… 6 1.4.2 原始数据…………………………………………………………………… 6 1.5 本课题主要研究工作………………………………………………………… 7 2 液压系统设计…………………………………………………………………… 8 2.1 制定系统方案和系统原理图………………………………………………… 8 2.1.1 制定系统方案及拟订液压系统图………………………………………… 8 2.1.2 液压原理图的分析………………………………………………………… 13 2.2 油泵的参数计算和型号选择………………………………………………… 19 2.2.1 液压泵的主要性能参数…………………………………………………… 19 2.2.2 液压泵的转速……………………………………………………………… 20 2.2.3 液压泵的排量及流量……………………………………………………… 20 2.2.4 液压泵种类的选择………………………………………………………… 20 2.2.5 确定液压泵的各参数计算和型号选择…………………………………… 21

民用飞机液压系统技术现状及趋势研究

龙源期刊网 https://www.doczj.com/doc/4e18282590.html, 民用飞机液压系统技术现状及趋势研究 作者:陈宝琦 来源:《科技资讯》2015年第19期 摘要:目前民用飞机液压系统为保障安全性和操作性,在设计时通常会采用冗余和备份 技术,但同时也会带来成本、重量和复杂性的问题。该文通过对波音和空客多款机型机载液压系统的研究,重点分析泵源、余度配置、替换逻辑与系统布局方案,总结了其液压系统体结构、冗余备份等方面的技术现状,指出未来民机液压系统应具有单源系统向多源系统发展、系统独立性提升、多电化和分布式、控制技术和健康监测技术的应用以及高压化低压力脉动的发展趋势。 关键词:民用飞机液压系统布局分析发展趋势 中图分类号:V22 文献标识码:A 文章编号:1672-3791(2015)07(a)-0069-03 随着经济的发展和社会的繁荣,我国民航产业每年都以超过10%的增速快速增长,现已成为世界第二大民用航空市场。但作为航空大国,我国在大型民用飞机液压系统的研制方面却是刚刚起步,从元件级到系统级基本由国外供应商垄断,国内市场的供给量与巨大的需求极不匹配。 研制高效可靠的大型民用飞机液压系统,不仅可以在产品层级上为飞机减轻重量,提高安全性和效率,还可带动诸如新材料、电子、能源、精密制造等一系列相关的高新技术产业的发展,关系到整个国家航空系统集成能力的提高。 1 液压系统的定义及组成 按照ATA100(航空产品技术资料编写规范)的定义,民机液压系统是指使液压油在压力下供至公共点以便再行分配到其它规定系统的部件和零件。民用飞机液压系统按功能可分为液压能源系统和工作回路两个部分。液压能源系统为飞机上所有使用液压驱动的活动部位提供液压能源,并保证卸荷与散热等方面的要求。液压能源系统主要由泵源、能量转换装置、油箱、控制阀、管路及指示系统等组成。 2 典型民机液压系统技术现状 波音和空客是目前世界民航市场上两大巨头,均有多款产品在市场上获得巨大成功,具有极高的研究价值。 2.1 波音飞机液压系统的特点

液压系统主要由哪五部分组成

液压系统主要由哪五部分组成? 液压传动就是指在密封容积内利用液体的(),能来传递动力和运动的一种()。液压控制阀按其用途来分,可分为:()()() 压油的粘度随液压油的温度和压力而变化,当压力()时,液压油的粘度增大,当温度升高时,粘度() SW 9:57:24 双联叶片泵系统中,当运动部件高速轻载时可由()供给低压油,当重载慢速时,可由()供油 根据度量基准不同,液体压力分为()和()两种,大多数表测得的压力为() 齿轮泵,齿轮传动时,密闭容器发生变化,使其中液体膨胀或受压缩,此现象称为(),为了减少此现象的危害,常在啮合部位侧面泵盖上开() 液压泵的按结构分()()()三种,他们利用密封容积的大小变化来进行工作的,所以称为()。 对单向阀的主要性能要求,油液泵通过时,()要小,反向截止时()要好。 一般的外啮合齿轮泵,进口()出口()这主要为了解决外啮合齿轮泵径向力不平衡问题。某三位换向阀中位机能为H型,则换向精度(),缸被(),泵() 常见的密封方法有()密封,()密封,()密封三种 工作压力高或温度高时,宜采用粘度()的液压油以减少泄露 斜盘式轴向柱塞泵的缸体、柱塞、斜盘,配油盘中随输入轴一起转动的为() 当液压系统中液压缸的有效面积一定时,其内的工作压力P由()来决定,活塞运动速度由()决定 结构上所有液体阀都是由()、()和()阀芯动作的元件等组成的 调速阀是由()和()构成的一种组合阀 所有的液压阀都是通过,控制()和()的相对运动而实现控制目的的。 单活塞杆液压缸作为差动液压缸使用时,若使其往复运动速度相等,其活塞面积应为活塞杆面积的()倍 当不考虑阀芯自重,摩擦力和液压力的影响时,直动式溢流阀()压力不变,而减压阀()压力不变。 为防止立式液压缸运动部件在上位时因自垂而下滑或在下行时超速常采用()回路,即在下行时的回路上设置()使其产生适当阻力。 液压油排号采用()温度时的()的平均值来标号 液压油粘度的表示方法有(),()和() 液压缸的结构包括(),(),密封装置,缓冲设置,排气装置等五部分。 根据改变流量方法的不同,液压系统的调速方法可以分为()()() 9、某定量液压泵的排量排量为V=100ML/R 。转速为N=1450R/MIN。容积效率0.95,总效率为0.9,泵输出油的压力P=100MPA则泵所需电机驱动功率是() A20.66KW B137.75KW C22.96KW D 25.5KW 限制齿轮泵压力提高的主要因素是() A流量脉动B困油现象C泄露大D改变控制油路的方向 电液换向阀是由电磁换向阀和液体换向阀组成,其中磁换向阀的作用() A 切换大流量B控制主回路的方向C改变控制油路的方向 为使减压回路可靠工作,其减压阀最高调整压力应比系统压力() A低一定值B高一定值C相等 泵的实际流量()理论流量

相关主题
文本预览
相关文档 最新文档