当前位置:文档之家› TiAl金属间化合物及其连接技术的研究进展

TiAl金属间化合物及其连接技术的研究进展

第23卷第5期焊接学报v01.23

N。.5

2002年IO月TRANSACTIONS0FTHECHⅡVAWELDINGINs,ⅡTUrⅡON()ctober2O02T.A|金属间化合物及其连接技术的研究进展

何鹏,冯吉才,韩杰才,钱乙余

(哈尔滨工业大学现代焊接生产技术国家重点实验室,哈尔滨150001)

摘要:近年来,TjAl金属问化台物由于其密度小、硬度大、耐高温、具有优良的抗氧化

能力等独特的性能,因此越来越弓l起广泛的关注并得到了迅猛的发展。根据目前Ti^l

金属间化台物被认为是在航空、航天飞行器等军事和民用两者都具有广泛应用前景的

高温结构材料,文中介绍了世界范围内TiAl金属间化台物研究发展现状。删金属问

化台物有效的运用必须要有可靠的连接技术,因此TiAl金属间化台物的连接问题是其

实用化所要面临的同题之一。固态焊接是实现Ti^l金属问化合物连接十分有效的方

法。文中介绍了Tj灿金属同化合物连接技术的发展现状,重点评述了TiAl金属间化合

物固态焊接的研究状况,指出了需要琢人研究的问题。

关键词:咖金属间化合物;固态焊接;自蔓延高温合成反应焊接

中围分类号:TG406文棘标识码:A文章编号:O笛3—360x(2002)阱一91—06何鹏

[续接】

2TiAl金属间化合物同种材料连接技术发展现状

目前,关于Tim金属间化合物连接技术的研究多在国外开展,其中主要包括氩弧焊…、电子柬焊‘”、激光焊‘引、电阻焊‘引、钎焊‘5,6|、摩擦焊¨卅01、自蔓延高温合成反应焊。”o“、扩散连接””…。TiAl金属间化合物熔焊的可焊性表明,存在两个较突出的问题:焊接热裂倾向严重;连接缝区与基体相比表现出较低的力学性能。从现有的研究结果看,TiAI金属问化合物可以采用熔焊工艺连接,但其连接后性能,包括室温和高温性能尚未确定,不能肯定所有这些熔焊方法都可以应用于关键部件的连接。另外,对TiAl金属问化合物连接性能的关键控制因素的了解依赖于对其物理冶金特点的详细分析,目前,TiAl金属间化台物连接中的主要问题仍然是对该材料的冶金学特点研究不够,已有的文献中对Ti—Al二元相图的论述存在许多混乱之处,对于三元及四元相图的资料更少。对TiAl金属间化合物熔焊连接性具有重要影响的另一个方面是间隙元素的影响,任何熔焊工艺都不可避免地引人间隙元素,并且这种间隙元素一般具有有害作用,虽然这在该类台金中尚未引起注意,但从间隙元素对常规钛台金连

收藕日期:200l一1I一19接件的影响来看,这一点值得深^研究。因此,针对TiA】金属间化合物其材料特点,研究认为,钎焊、摩擦焊及扩散连接是较为有效的连接技术。

2.1T洲金属间化台物的钎焊技术

对于TiAl金属问化合物这种对组织性能非常敏感的材料,用传统的钎焊连接技术由于其加热、冷却速度慢,高温停留时间长,很难保障接头的质量并得到高性能的接头,因此很少被采用;但随着近些年来快速等热技术在电子工业中的发展和应用,kesp’61等人用红外钎焊连接技术成功地连接了TiAl金属间化台物。他们用Ti一15cu—15Ni(质量分数,%)作为钎料,在1373一l473K温度,氩气保护环境下,用红外加热法连接了TjAl金属间化合物。作者详尽分析了连接界面的微观组织结构,指出Al从T认l金属间化合物向界面区的扩散是形成界面微观组织结构的主导因素,经过扩散反应,接头界面区形成的多层结构主要包括:y—T认l,d+p双相区,高Al的n相区,吗一Tj,Al,B—Ti。残留的连接料凝固区。当连接温度为l423K时,保温时间的不同将导致界面区多层结构不同,保温30s时为,一TjAⅣ口1va+B/B一1v残留的连接料凝固区;保温608时为y—TiAv高Al的瑾相区/q2一T13AvB一Ⅳ残留的连接料凝固区。对不同保温时间界面区的组织结构及其产生原因,作者也作了分析,但作者没有进行试件的力学性能试验。可见,TIAl金属间化合物的红外钎焊连接技术的研究才剐刚起步,

现在还停留在钎料的选择和界面微观组织结构观察

 万方数据

金属间化合物资料讲解

1、什么是金属间化合物,性能特征? 答:金属间化合物:金属与金属或金属与类金属之间所形成的化合物。 由两个或多个的金属组元按比例组成的具有不同于其组成元素的长程有序晶体结构和金属基本特性的化合物。 金属间化合物的性能特点:力学性能:高硬度、高熔点、高的抗蠕变性能、低塑性等;良好的抗氧化性;特殊的物理化学性质:具有电学、磁学、声学性质等,可用于半导体材料、形状记忆材料、储氢材料、磁性材料等等。 2、含有金属间化合物的二元相图类型及各自特点? 答:熔解式金属间化合物相:在相图上有明显的熔化温度,并生成成分相同的液相。通常具有共晶反应或包晶反应。化合物的熔点往往高于纯组元。 分解式金属间化合物相:在相图上没有明显的熔解温度,当温度达到分解温度时发生分解反应,即β<=>L+α。常见的是由包晶反应先生成的。化合物的熔点没有出现。 固态生成金属间化合物相:通过有序化转变得到的有序相。经常发生在一定的成分区间和较无序相低的温度范围。通过固态相变而形成的金属间化合物相,可以有包析和共析两种不同的固态相变。 3、金属间化合物的溶解度规律特点? 答:(1)由于金属间化合物的组元是有序分布的,组成元素各自组成自己的亚点阵。固溶元素可以只取代某一个组成元素,占据该元素的亚点阵位置,也可以分布在不同亚点阵之间,这导致溶解度的有限性。 (2)金属间化合物固溶合金元素时有可能产生不同的缺陷,称为组成缺陷(空位或反位原子)。但M元素取代化合物中A或B时,A和B两个亚点阵中的原子数产生不匹配,就会产生组成空位或组成反位原子(即占领别的亚点阵位置)。 (3)金属间化合物的结合键性及晶体结构不同于其组元,影响溶解度,多为有限溶解,甚至不溶。表现为线性化合物。 (4)当第三组元在金属间化合物中溶解度较大时,第三组元不仅可能无序取代组成元素,随机分布在亚点阵内,而且第三组元可以从无序分布逐步向有序化变化,甚至生成三元化合物。 4、金属间化合物的结构类型及分类方法?(未完) 答:第一种分类方法:按照晶体结构分类(几何密排相(GCP相)和拓扑密排相(TCP相))。第二种分类方法:按照结合键的特点分类:a结合键性和其金属组成元素相似,主要是金属键。b结合键是金属键含有部分定向共价键。c具有强的离子键结合。d具有强的共价键结合。 第三种分类方法:按照影响其结构稳定性的主要因素分类(类型:价电子化合物、电子化合物(电子相)、尺寸因素化合物) 第四种分类方法:按照化学元素原子配比的特点分类。 5、什么是长程有序和短程有序度,举例说明长程有序度随温度变化规律? 答:长程有序度σ定义为: Pαα为α原子占据α亚点阵的几率(α=A或B),Cα0为α原子的当量成分。

SnAg系无铅焊料中金属间化合物的形成与控制

SnAg系无铅焊料中金属间化合物的形成与控制

中文摘要 微电子封装工艺中,起到热、电和机械连接作用的无铅焊料合金组织中金属间化合物的形态和分布直接影响着该合金的连接性能。本文以共晶配比附近的Sn—Ag 合金为研究对象,通过改变成分配比和凝固速率系统研究了其凝固过程中金属间化合物相(Ag。Sn)的析出规律。结合显微组织观察、热分析和热力学计算,从凝固过程两相竞争生长的角度揭示了块状金属间化合物Ag。Sn的形成机理。采 用高温时效模拟焊点的高温服役过程,阐明了在持续高温环境下合金组织中金属间化合物相的演化规律。最后探讨了第三组元及异相纳米ZrO:微粒的掺入对合金组织中金属间化合物的析出控制及强化机理。上述研究包括的主要内容和获得的结论是:通过改变冷却介质,系统研究了亚共晶、共晶和过共晶Sn-Ag合金在不同凝固速率下其组织中金属间化合物的形成规律。结果表明:只在缓冷过共晶合金凝固组织中有块状金属间化合物Ag。Sn的析出。在较快凝固速率下,三种合金组织均呈现亚共晶组织特征,即由初生13一Sn枝晶和由Ag。Sn相与B—Sn相共晶体所构成。这归因于非平衡条件下的动力学过冷使合金凝固过程按亚稳伪共晶反应进行。提高凝固速率对合金组织的影响为:一方面,符合经典共晶合金枝晶生长规律,其B-Sn枝晶得到细化,即:d=3.7t043(其中d为13-Sn枝晶二次枝晶间距,凝固速率在0.08.-一104 Ks。1的范围内)。另一方面,符合弥散强化原理,在共晶体区域中析出纳米Ag。Sn相提高了其显微硬度。在低速凝固速率下,发展了一种通过合金凝固时的名义热容曲线来确定固相体积转变过程,进而确定组织中块状金属间化合物体积分数的有效方法,结合定量金相分析和热力学计算,揭示了过共晶合金组织中块状金属间化合物Ag。Sn的形成机理,即:凝固时,合金熔体中的共晶Ag。Sn相因与初生Ag。Sn相有共同的晶体结构,会在小过冷度下依附于后者生长并成为块状金属间化合物Ag。Sn,并且该块状相的体积分数值随着合金凝固速率的提高而增大。 采用高温时效处理模拟焊点高温服役过程研究了Sn-3.5Ag合金在持续高温环境下的组织稳定性。结果表明:合金组织中金属间化合物Ag。Sn相的演化符合系统自由能最小原理。平衡凝固合金组织中Ag。Sn相趋于破裂和表面球化;而非平衡凝固合金组织中Ag。Sn相在初生B-Sn枝晶晶界的扩散推移作用下合并成为块状金属间化合物Ag。Sn。通过精确的热焓计算和精细的组织分析,揭示了非平衡凝固合金组织中纳米Ag。Sn相的生长驱动力源于其较高的表面能,使其处于热力学亚稳状态。但由于该纳米Ag。Sn相仅局部分布于共晶组织中,因此该合金在

金属间化合物

目录 摘要 (1) 1金属间化合物的定义 (1) 2金属间化合物晶体结构 (1) 2.1 金属间化合物晶体结构分类 (1) 2.2金属间化合物晶体结构特点 (2) 2.2.1几何密排相 (2) 2.2.2拓扑密排相 (5) 2.3 金属间化合物晶体结构的稳定性 (6) 2.3.1几何密排相 (8) 2.3.2拓扑密排相 (10) 3金属间化合物的电子理论 (11) 3.1金属间化合物的结合键形式 (11) 3.2合金的基态性质 (12) 3.3金属间化合物的电子结构方法 (13) 4 总结 (16) 5 参考文献 (16)

金属间化合物晶体结构、结构稳定性和电子理论 摘要 为了促进金属间化合物在结构材料方面的应用,首先必须理解金属间化合物的晶体结构、结构稳定性及电子理论。本文从金属间化合物的定义出发,详细介绍了金属间化合物晶体结构的分类、特点和稳定性,并且为了弄清金属间化合物的结合键形式,从合金的基态性质出发介绍了两种研究金属间化合物电子结构的方法,即第一性原理和固体与分子经验电子理论。作者认为,金属间化合物的电子结构决定了结合键形式,而结合键形式又决定了结构类型。根据能量最低最稳定的原则,表征晶体结构的参数应以原子结合能为主,其它参数如原子尺寸、负电性和电子浓度均不够全面,金属间化合物的电子结构计算方法也应着重计算不同结构下的原子结合能。 关键词:金属间化合物,晶体结构,结合键,基态性质,第一性原理 1金属间化合物的定义 金属间化合物是指由两个或更多的金属组元或类金属组元按比例组成的具有金属基本特性和不同于其组元的长程有序晶体结构的化合物。金属间化合物具有金属的基本特性,如金属光泽、金属导电性及导热性等。金属间化合物的晶体结构不同于其组元,为有序的超点阵结构。组元原子各占据点阵的固定阵点,最大程度地形成异类原子之间的结合。 2金属间化合物晶体结构 2.1 金属间化合物晶体结构分类 图1为金属间化合物晶体结构的分类,粗略分为两类,即几何密排相(Geometrically Close-packed Phase)和拓扑密排相(Topologically Close-packed Phase)。几何密排相是由密排面按不同方式堆垛而成的,根据密排面上A原子和B原子的有序排列方式和密排面的堆垛方式,几何密排相又分为多种类型,常见的有以面心立方结构为基的长程有序结构、以体心立方结构为基的长程有序结构、以密排六方结构为基的长程有序结构和长周期超点阵。几何密排相有较高的对称性,位错运动滑移面较多,是有利于得到塑性的晶体结构。我们知道,等径原子最紧密堆垛的配位数只能是12,致密度为0.74。在这种紧密堆垛结构中存在四面体间隙和八面体间隙。间隙最小为四面体间隙,因此这种堆垛还不是最紧

金属间化合物浅析

◆山水世人出品金属间化合物(IMC)浅析?山水世人

◆山水世人出品 目录 ?IMC定义 ?IMC的特点及应用领域 ?IMC对焊点的影响 ?IMC的形成和长大规律 ?如何适当的控制IMC ?保护板镀层中IMC实例 ?总结

◆山水世人出品 IMC的定义 金属间化合物(i t t lli d)是指金属与金属金属与类?intermetallic compound)是指金属与金属、金属与类金属之间以金属键或共价键形式结合而成的化合物。在金属间化合物 中的原子遵循着某种有序化的排列。Cu 6Sn5、Cu3Sn、CuZn、InSb、 等都是金属间化合物 GaAs、CdSe等都是金属间化合物, ?金属间化合物与一般化合物是有区别的。首先,金属间化合物的组成常常在一定的范围内变动;其次金属间化合物中各元素的化合价很难确定,而且具有显著的金属键性质。

◆山水世人出品 IMC的特点及应用领域 ?金属间化合物在室温下脆性大,延展性极差,很容易断裂,缺乏实用金属间化合物在室温下脆性大延展性极差很容易断裂缺乏实用价值。经过50多年的实验研究,人们发现,含有少量类金属元素如硼元素的金属间化合物其室温延展性大大提高,从而拓宽了金属间化合物的应用领域。与金属及合金材料相比,金属间化合物具有极好的耐高温及耐磨损性能,特别是在一定温度范围内,合金的强度随温度升高而增强,是耐高温及耐高温磨损的新型结构材料。 ?除了作为高温结构材料以外,金属间化合物的其他功能也被相继开发,稀土化合物永磁材料、储氢材料、超磁致伸缩材料、功能敏感材料等稀土化合物永磁材料储氢材料超磁致伸缩材料功能敏感材料等也相继开发应用。 ?金属间化合物材料的应用,极大地促进了当代高新技术的进步与发展,促进了结构与元器件的微小型化、轻量化、集成化与智能化,促进了促进了结构与元器件的微小型化轻量化集成化与智能化促进了 新一代元器件的出现。金属间化合物这一“高温英雄”最大的用武之地是将会在航空航天领域,如密度小、熔点高、高温性能好的钛铝化合物等具有极诱人的应用前景 合物等具有极诱人的应用前景。

ZnFe及ZnFeMn固态扩散偶中金属间化合物的生长

Zn/Fe及Zn/Fe-M n固态扩散偶中金属间化合物的生长*刘 赛1,王建华1,2,3,彭浩平1,徐 鹏1,童 晨1,涂 浩2, 3 (1 材料设计及制备技术湖南省重点实验室,湘潭411105;2 常州大学材料科学与工程学院,常州213164; 3 常州大学先进金属材料常州市重点实验室,常州213164)摘要 采用Zn/Fe及Zn/Fe-Mn固固扩散偶方法,研究了锰对金属间化合物生长动力学的影响。对扩散偶在385℃扩散10~300min的研究结果表明,在Zn/Fe扩散偶中,扩散层以δ相为主,ζ相和δ相之间具有平直的界面,随扩散时间的延长,δ相的厚度增加,ζ相逐渐被消耗,厚度比dζ/dδ的值逐渐减小;在Zn/Fe-Mn扩散偶中,扩散层也以δ相为主,ζ相和δ相之间的界面更平直, 铁基体中的锰在扩散初期促进δ相的生长,但在扩散后期促进ζ相生长。对Zn/Fe-Mn扩散偶中金属间化合物的生长动力学研究表明,0.4%(质量分数,下同)的锰使扩散层总厚度增加,当锰含量增加到1.2%以上时,扩散层总厚度反而开始下降。Zn/Fe、Zn/Fe-0.4%Mn、Zn/Fe-1.2%Mn及Zn/Fe-2.0%Mn四个扩散偶中总扩散层的生长均由扩散控制。 关键词 Zn-Fe金属间化合物 扩散偶 显微组织 生长动力学 Zn-Fe-Mn中图分类号:TG113.1;TG111.6 文献标识码:A Growth of Intermetallic Comp ounds in Solid Zn/Fe andZn/Fe-Mn Diffusion Coup lesLIU Sai 1,WANG Jianhua1,2,3,PENG Haoping1,XU Peng1, TONG Chen1,TU Hao2,3 (1 Key Laboratory of Materials Design and Preparation Technology  of Hunan Province,Xiangtan 411105;2 School of MaterialsScience and Engineering,Changzhou University,Changzhou 213164;3 Key Laboratory  of Advanced Metal Materials ofChangzhou City,Changzhou University,Chang zhou 213164)Abstract The growth of Zn-Fe intermetallic compounds and the effect of Mn were studied by means of diffu-sion experiments at 385℃for 10-300min.The results show that the layer is mainly  composed ofδphase in Zn/Fecouples,the interface betweenζandδis planar,the thickness ofδphase increases andζphase decreases with prolon-gation of time,the value of dζ/d δalso decreases with time.In Zn/Fe-Mn couples,the diffusion layer is mainly com-posed ofδphase,the interface betweenζandδis more planar,and the manganese in iron promotes the growth ofδphase in the initial period but the growth ofζ is promoted in the later period.The results of Zn/Fe-Mn couples showthat 0.4%manganese makes the total thickness of diffusion layer increase,however,when the mang anese content in-creases to 1.2%,the total thickness decreases.The growth of the total layer in four couples Zn/Fe,Zn/Fe-0.4%Mn,Zn/Fe-1.2%Mn and Zn/Fe-2.0%Mn are diffusion- controlled.Key  words Zn-Fe intermetallic compounds,diffusion couple,microstructure,growth kinetics,Zn-Fe-Mn *国家自然科学基金( 50971111;50971110);江苏省青蓝工程资助;常州市国际合作项目(CZ20110014) 刘赛:女,1986年生,硕士生 E-mail:610667060@qq .com 涂浩:通讯作者,副教授,硕士生导师 E-mail:tuhao@cczu.edu.cn0 引言 热浸镀锌是一种能制备出具有优良耐腐蚀性能产品且成本低的涂层技术, 在各个行业得到了广泛的应用。但在一般镀锌过程中,由于钢中硅的存在引起镀锌层中Fe-Zn合金层相的剧烈增长,使镀层变厚并形成灰色层,同时镀层附着 性能变差,产生硅反应性(又称Sandelin效应) [1,2] 。目前采用最多的抑制Sandelin效应的方法是在锌池中添加一定量 的合金元素(如Ni、Mg、Mn、Sn、Pb等)[3-5] ,并做了大量的研究工作。早期研究[3] 表明,锌池中锰的添加能明显抑制镀层 的生长,但是未见有关钢基中锰的添加对镀层组织影响的研 究报道。 扩散偶法最先由Girchner提出, 是一种广泛用于相图计算及界面反应的研究方法[6,7]。许多研究者[8-10] 都用此方法来研究热浸镀锌Fe- Zn反应的反应动力学。李智等[9] 通过研究固态Zn/Fe及Zn/Fe-Si扩散偶扩散区内金属间化合物的生长动力学, 分析了硅反应性。一般钢中含锰0.30%~0.50%(质量分数,下同),在碳素钢中加入0.70%以上的锰就算“锰钢”,高强钢中锰含量为1.5%左右。因此本实验选择锰含量分别为0.4%、1.2%和 2.0%的铁锰合金,与固态纯锌制成扩散偶后,对其扩散层的显微组织及Zn- Fe金属间化合物的生长动力学进行分析探讨。· 38·Zn/Fe及Zn/Fe-Mn固态扩散偶中金属间化合物的生长/刘 赛等

金属间化合物

1、什么是金属间化合物,性能特征 答:金属间化合物:金属与金属或金属与类金属之间所形成的化合物。 由两个或多个的金属组元按比例组成的具有不同于其组成元素的长程有序晶体结构和金属基本特性的化合物。 金属间化合物的性能特点:力学性能:高硬度、高熔点、高的抗蠕变性能、低塑性等;良好的抗氧化性;特殊的物理化学性质:具有电学、磁学、声学性质等,可用于半导体材料、形状记忆材料、储氢材料、磁性材料等等。 2、含有金属间化合物的二元相图类型及各自特点 答:熔解式金属间化合物相:在相图上有明显的熔化温度,并生成成分相同的液相。通常具有共晶反应或包晶反应。化合物的熔点往往高于纯组元。 分解式金属间化合物相:在相图上没有明显的熔解温度,当温度达到分解温度时发生分解反应,即β<=>L+α。常见的是由包晶反应先生成的。化合物的熔点没有出现。 固态生成金属间化合物相:通过有序化转变得到的有序相。经常发生在一定的成分区间和较无序相低的温度范围。通过固态相变而形成的金属间化合物相,可以有包析和共析两种不同的固态相变。 3、金属间化合物的溶解度规律特点 答:(1)由于金属间化合物的组元是有序分布的,组成元素各自组成自己的亚点阵。固溶元素可以只取代某一个组成元素,占据该元素的亚点阵位置,也可以分布在不同亚点阵之间,这导致溶解度的有限性。 (2)金属间化合物固溶合金元素时有可能产生不同的缺陷,称为组成缺陷(空位或反位原子)。但M元素取代化合物中A或B时,A和B两个亚点阵中的原子数产生不匹配,就会产生组成空位或组成反位原子(即占领别的亚点阵位置)。 (3)金属间化合物的结合键性及晶体结构不同于其组元,影响溶解度,多为有限溶解,甚至不溶。表现为线性化合物。 (4)当第三组元在金属间化合物中溶解度较大时,第三组元不仅可能无序取代组成元素,随机分布在亚点阵内,而且第三组元可以从无序分布逐步向有序化变化,甚至生成三元化合物。

固溶体和金属间化合物的区别

无标题 合金是2种或2种以上的金属或金属与非金属元素经过熔炼或者粉末冶金的方法得到的具有金属特性的物质。通常我们所使用的金属材料以合金居多,纯金属相对要少。各种合金的标准都是可查到的(合金往往都是往一种金属中有意识的加入另外一种或几种金属以达到某些制定的要求)合金存在的状态有无限固溶、有限固溶、共晶、包晶、金属间化合物、非晶等多种状态。而固溶就是其中的一种。可以参考一下分类: 固溶体之一 由几种不同化学组分所组成的均匀晶体,通常以一种物质为溶剂,在固态下溶有其他溶质的原子或分子而形成的晶体。在合金及硅酸盐系统中较多见,主要可分为以下两种类型: ①间隙固溶体 由溶质原子渗入溶剂晶格中的原子之间的空隙中构成,如碳溶解于铁中而形成的固溶体。 ②置换固溶体 由溶质原子代替溶剂晶格中的原子构成,如铜溶于镍中而成的固溶体。 在一定条件下,有的两种元素可以依任意比例互相置换而形成无限固溶体;有的则有浓度限制,即一种物质在另一种物质中有一定的溶解度,超过此浓度将有另一种固溶体产生,称该类固溶体为有限互溶固溶体,如Cu-Al固溶体。固溶体为单相。  固溶体之二 以一种元素(或化合物)为溶剂,另一种或几种元素做溶质的固态下的溶体。固溶体保有溶剂的晶格,固溶体的成分可以在或大或小的范围内变化。若两组元固态下呈无限互溶时称无限固溶体,亦称连续固溶体;固态下两组元若部分互溶时,则为有限固溶体,亦称端际固溶体;若溶质原子在溶剂的分布完全是混乱无序的,称无序固溶体;总溶质原子产生溶质偏聚或溶质原子周围尽量和溶剂原子结合,称有序固溶体;依溶质原子在溶剂晶格中所占据的位置的不同,又分为置换固溶体、间隙固溶体和缺位固溶体。 ①置换固溶体 在晶格中溶质原子替代了溶剂的位置。其固溶度(固态下溶质在溶剂中的溶解度极限)有如下特点:受尺寸因素的影响是,溶质与溶剂元素的原子半径越小固溶度越大。若其他因素相同,铜基与银基固溶体中,若原子半径差大于15%时固溶度很小,小于15% 或更小时甚至可形成无限互溶固溶体。受化学亲和力因素的影响是,亲和力越大越易形成稳定的金属间化合物,而形成固体的溶解度比较小、经验上用电负性衡量,若溶质与溶剂电负性差小于0.4~0.5时有利于固溶体形成,若大于0.5时则有利于形成化合物。受元素化合价因素的影响是,溶质的比合价越高溶解度越小。受晶体结构因素的影响是,若溶质与溶剂结构相同,易形成无限固溶的连续固溶体或具有较大溶解度的有限固溶体,否则反之。 ②间隙固溶体 溶质原子只占据溶剂晶格的间隙位置而不占据晶格的结点位置。形成间隙固溶体的溶剂元素大都是过渡金属元素,溶质原子半径一般小于10-10m。间隙固溶体都是有限固溶体,其固溶度除与溶质原子半径大小有关外,还与溶剂晶格类型有关,因为后者决定间隙的大小。由于溶质原子的溶入,间隙固溶体的晶格发生畸变,晶格常数也随溶质的增多而增大。 ③缺位固溶体 多以化合物为溶剂,而以一组元素为溶质所组成的固溶体。这种固溶体在成分上偏离理想化合物的成分,因此,实际上这种固溶体是金属间化合物。 所谓金属间化合物,是指金属和金属之间,类金属和金属原子之间以共价键形式结合生成的化合物,其原子的排列遵循某种高度有序化的规律。当它以微小颗粒形式存在于金属合金的组织中时,将会使金属合金的整体强度得到提高,特别是在一定温度范围内,合金的强度随温度升高而增强,这就使金属间化合物材料在高温结构应用方面具有极大的潜在优势。 然而事物的优劣总是一把双刃剑。伴随着金属间化合物的高温强度而来的,是它本质上难以克服的室温脆性。当30年代金属间化合物刚被发现时,它们的室温延性大多数为零,也就是说,一拉就会断。因此,许多人预言,金属间化合物作为一种大块材料是没有任何实用价值的。 80年代中期,美国科学家们在金属间化合物室温脆性研究上取得了突破性进展。他们往金属间化合物中加人少量硼,可以使它的室温延伸率提高到50%,与纯铝的延性相当。这一重要发现及其所蕴含的巨大发展前景,吸引了各国材料科学家展开了对金属间化合物的深入研究,使之开始以一种崭新的面貌在新材料天地登台亮相。 目前已有约300种金属间化合物可用,除了作为高温结构材料以外,金属间化合物的其他功能也被相继开发,稀土化合物永磁材料、储氢材料、超磁致伸缩材料、功能敏感材料等相继汹涌而来。金属间化合物材料的应用,极大地促进了当代高新技术的进步与发展,促进了结构与元器件的微小型化、轻量化、集成化与智能化,促进了新一代元器件的出现。 金属间化合物这一“高温英雄”最大的用武之地是将会在航空航天领域,如密度小、熔点高、高温性能好的钛铝化合物等具有极诱人的应用前景。 第 1 页

金属间化合物膜材料项目建议书

第一章项目概要 一、项目名称及建设性质 (一)项目名称 金属间化合物膜材料生产建设项目 (二)项目建设性质 本期工程项目属于新建工业项目,主要从事金属间化合物膜材料项目投资及运营。 二、项目承办企业及项目负责人 某某有限责任公司 三、项目建设背景分析 建设“制造强国”的战略清晰,战术也需有力。要始终把创新摆在核心位置,突破一批重点领域关键共性技术,让核心技术助推“中国制造”站上“微笑曲线”最高端;要强化企业主体地位,激发企业活力和创造力,让企业自主经营、自主创新,成为做强制造业的“活力因子”;要坚持全面深化改革,破除一切制约创新、抑制发展的思想障碍和制度藩篱,同时发挥好制度优势,全面提升劳动、信息、知识、技术、管理、资本的效率,让政府、市场各司其职、各尽其责。 全面贯彻党的十八大和十八届三中、四中、五中、六中全会精神,深入学习贯彻总书记系列重要讲话精神,认真落实国务院决策部署,按照“五

位一体”总体布局和“四个全面”战略布局要求,积极适应把握引领经济发展新常态,牢固树立和贯彻落实创新、协调、绿色、开放、共享的发展理念,紧紧把握全球新一轮科技革命和产业变革重大机遇,培育发展新动能,推进供给侧结构性改革,构建现代产业体系,提升创新能力,深化国际合作,进一步发展壮大新一代信息技术、高端装备、新材料、生物、新能源汽车、新能源、节能环保、数字创意等战略性新兴产业,推动更广领域新技术、新产品、新业态、新模式蓬勃发展,建设制造强国,发展现代服务业,为全面建成小康社会提供有力支撑。 四、项目建设选址 “金属间化合物膜材料投资建设项目”计划在某某省某某市某某县经济开发区实施,本期工程项目规划总用地面积106667.20 平方米(折合约160.00 亩),净用地面积106107.20 平方米(红线范围折合约159.16 亩)。该建设场址地理位置优越,交通便利,规划道路、电力、天然气、给排水、通讯等公用设施条件完善,非常适宜本期工程项目建设。 江都区,是江苏省扬州市下辖区,地处于江苏省中部,南濒长江,西傍扬州市广陵区、邗江区,东与泰州市接壤,北与高邮市毗连。江都区早在五六千年以前的新石器晚期,就有人类从事各项农业生产活动。春秋时期属吴国。秦楚之际,项羽欲在广陵临江建都,始称江都。江都区连续十届被评为中国县域经济基本竞争力百强县(市),可持续发展能力列全省

行业标准《铁铝金属间化合物多孔材料》-编制说明

FeAl 金属间化合物烧结多孔材料过滤元件编制说明书 1 任务由来及说明 近年来,大气污染日益严重,空气环境质量日益恶化;因此,本单位提出了将环保理念前置到工业前沿过程中,本单位自主研发的FeAl 金属间化合物烧结多孔材料作为一种新型的高温气体除尘过滤材料,综合金属和陶瓷多孔材料的性能优点,经过本单位历年的不断研发、完善,已广泛应用于高温气体过滤领域,适用于铁合金、煤化工、煤制油、钢铁行业、火法电厂等行业高温苛刻环境的长期稳定过滤,保证了客户生产体系正常运行,提升了生产效率;实现了贵重金属回收、产品提纯及副产品利用,并有利于解决大气污染PM2.5 问题。 2 标准制定的目的和意义 为了将FeAl 金属间化合物烧结多孔材料管状过滤元件应用于高温苛刻环境的长期稳定过滤,保证客户生产体系正常运行,提升生产效率,实现技术的广泛传播及改善环境,需要规范该产品的结构尺寸、技术性能要求、相关检验方法,使产品在使用过程中具有通用性、互换性,实现污染环境治理,解决环境污染问题。但目前由于我国具有自主知识产权的FeAl 金属间化合物烧结多孔材料过滤元件是一种新型高温气体过滤产品,没有相关标准,存在产品规格、型号不统一,产品互换性差;产品性能、质量指标、产品的使用工况不清晰,用户无选型依据;无产品相关的检验、储存、包装、运输及维护等方法;给用户使用和政府主管部门的管理带来不便,因此有必要对我国自主研发的新型FeAl 金属间化合物烧结多孔材料管状过滤元件进行标准化。 3 编制过程 本标准的编制工作从2013年3 月开始,由成都易态科技有限公司研发部具体承担。 本标准制定严格按GB/T1.1《标准化工作导则第1部分:标准的结构和编写规则》,GB/T1.2《标准化工作导则第2部分:标准中规范性技术要素内容的确定方法》要求进行。 从接到标准的编制任务开始,参加编写的人员就开始收集国内外有关金属多孔材料滤芯、陶瓷滤芯的资料,随后召集了国内部分滤芯生产企业和使用企业的代表共同讨论,结合工况实际应用状态,制定了本标准中需要检测的各项指标。 4标准编制原则和依据

相关主题
文本预览
相关文档 最新文档