当前位置:文档之家› 煤矿高低压短路电流计算

煤矿高低压短路电流计算

煤矿高低压短路电流计算
煤矿高低压短路电流计算

短路电流计算

计算条件

1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多.

具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限大.只要计算35KV及以下网络元件的阻抗.

2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻.

3. 短路电流计算公式或计算图表,都以三相短路为计算条件.因为单相短路或二相短路时的短路电流都小于三相短路电流.能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流.

简化“短路电流”计算法

在简化计算法之前必须先了解一些基本概念.

1.主要参数

Sd三相短路容量(MV A)简称短路容量校核开关分断容量

Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定

IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定

ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定

x电抗(Ω)

其中系统短路容量Sd和计算点电抗x 是关键.

2.标么值

计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(目的是要简化计算).

(1)基准

基准容量Sjz =100 MV A

基准电压UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV

有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3710.56.30.4

因为S=1.73*U*I 所以IJZ (KA)1.565.59.16144

(2)标么值计算

容量标么值S* =S/SJZ.例如:当10KV母线上短路容量为200 MV A时,其标么值容量

S* = 200/100=2.

电压标么值U*= U/UJZ ; 电流标么值I* =I/IJZ

3.无限大容量系统三相短路电流计算公式

短路电流标么值: I*d = 1/x* (总电抗标么值的倒数).

短路电流有效值: Id= IJZ* I*d=IJZ/ x*(KA)

冲击电流有效值: IC = Id *√1+2 (KC-1)2 (KA)其中KC冲击系数,取1.8所以IC =1.52Id冲击电流峰值: ic =1.41* Id*KC=2.55 Id (KA)

当1000KV A及以下变压器二次侧短路时,冲击系数KC ,取 1.3这时:冲击电流有效值IC =1.09*Id(KA)

冲击电流峰值: ic =1.84 Id(KA)

掌握了以上知识,就能进行短路电流计算了.公式不多,又简单.但问题在于短路点的总电抗如何得到?例如:区域变电所变压器的电抗、输电线路的电抗、企业变电所变压器的电抗,等等. 一种方法是查有关设计手册,从中可以找到常用变压器、输电线路及电抗器的电抗标么值.求

得总电抗后,再用以上公式计算短路电流; 设计手册中还有一些图表,可以直接查出短路电流. 下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法.

4.简化算法

【1】系统电抗的计算

系统电抗,百兆为一。容量增减,电抗反比。100除系统容量

例:基准容量100MV A。当系统容量为100MV A时,系统的电抗为XS*=100/100=1

当系统容量为200MV A时,系统的电抗为XS*=100/200=0.5

当系统容量为无穷大时,系统的电抗为XS*=100/∞=0

系统容量单位:MV A

系统容量应由当地供电部门提供。当不能得到时,可将供电电源出线开关的开断容量

作为系统容量。如已知供电部门出线开关为W-V AC 12KV 2000A额定分断电流为40KA。则可认为系统容量S=1.73*40*10000V=692MV A, 系统的电抗为XS*=100/692=0.144。【2】变压器电抗的计算

110KV, 10.5除变压器容量;35KV, 7除变压器容量;10KV{6KV}, 4.5除变压器容量。

例:一台35KV 3200KV A变压器的电抗X*=7/3.2=2.1875

一台10KV 1600KV A变压器的电抗X*=4.5/1.6=2.813

变压器容量单位:MV A

这里的系数10.5,7,4.5 实际上就是变压器短路电抗的%数。不同电压等级有不同的值。【3】电抗器电抗的计算

电抗器的额定电抗除额定容量再打九折。

例:有一电抗器U=6KV I=0.3KA额定电抗X=4% 。

额定容量S=1.73*6*0.3=3.12 MV A. 电抗器电抗X*={4/3.12}*0.9=1.15

电抗器容量单位:MV A

【4】架空线路及电缆电抗的计算

架空线:6KV,等于公里数;10KV,取1/3;35KV,取3%0

电缆:按架空线再乘0.2。例:10KV 6KM架空线。架空线路电抗X*=6/3=2

10KV 0.2KM电缆。电缆电抗X*={0.2/3}*0.2=0.013。

这里作了简化,实际上架空线路及电缆的电抗和其截面有关,截面越大电抗越小。

【5】短路容量的计算

电抗加定,去除100。

例:已知短路点前各元件电抗标么值之和为X*∑=2, 则短路点的短路容量

Sd=100/2=50 MV A。

短路容量单位:MV A

【6】短路电流的计算

6KV,9.2除电抗;10KV,5.5除电抗; 35KV,1.6除电抗; 110KV,0.5除电抗。0.4KV,150除电抗例:已知一短路点前各元件电抗标么值之和为X*∑=2, 短路点电压等级为6KV,

则短路点的短路电流Id=9.2/2=4.6KA。

短路电流单位:KA

【7】短路冲击电流的计算

1000KV A及以下变压器二次侧短路时:冲击电流有效值Ic=Id, 冲击电流峰值ic=1.8Id

1000KV A以上变压器二次侧短路时:冲击电流有效值Ic=1.5Id, 冲击电流峰值ic=2.5Id

例:已知短路点{1600KV A变压器二次侧}的短路电流Id=4.6KA,

则该点冲击电流有效值Ic=1.5Id,=1.5*4.6=7.36KA,冲击电流峰值ic=2.5Id=2.5*406=11.5KA。可见短路电流计算的关键是算出短路点前的总电抗{标么值}.但一定要包括系统电抗

5.举例

由电业部门区域变电站送出一路10KV架空线路,经10KM后到达企业变电所, 进变电所前有一段200M的电缆.变电所设一台1600KV A变压器. 求K1,K2点的短路参数.

系统容量: S=1.73*U*I=1.73*10.5*31.5=573 MV A

用以上口诀,很容易求得各电抗标么值,一共有4个.

系统电抗X0=100/573=0.175

10KM,10KV架空线路电抗X1=10/3=3.333

200M,10KV 电缆线路电抗X2=(0.2/3)*0.2=0.133

1600KV A变压器电抗X3=4.5/1.6=2.81

请注意:以上电抗都是标么值(X*)

将每一段电抗分别相加,得到K1点总电抗=X0+X1=3.51

K2点总电抗=X0+X1+X2+X3=6.45 (不是2.94 !)

再用口诀,即可算出短路电流

U (KV)X*Id (KA)IC (KA)ic (KA)Sd (MV A)

口诀5.5/X*1.52* Id2.55 Id100/X*

K110.53.511.562.374.028.5

口诀150/X*1.52* Id2.55 Id100/X*

K20.46.4523355915.5

用口诀算和用第3节公式算有什么不同?

用口诀算出的是实名制单位,KA,MV A,而用公式算出的是标么值.

细心的人一定会看出,计算短路电流口诀中的系数150、9.2、5.5、1.6. 实际上就是各级电压基准值.只是作了简化.准确计算应该是144、9.16、5.5、1.56.

有了短路参数有什么用? 是验算开关的主要参数.

例:这台1600KV A变压器低压总开关采用M25,N1.额定电流2500A, 额定分断电流55KA. 验算: 变压器额定电流为2253A

开关额定电流>变压器额定电流; 开关额定分断电流>短路电流Id..验

【摘要】本文简要介绍了短路的原因、后果、形式及短路电流的计算方法,通过实例详细介绍了兆伏安法计算短路电流的优越性,分析了短路电流计算方法的应用范围及在使用中应注意的问题,供广大建筑电气同仁参考。

【关键词】短路三相短路电流有效值兆伏安法标么值法欧姆法

一短路的原因、后果及其形式

在供电系统中,出现次数比较多的严重故障就是短路,所谓短路是指供电系统中不等电位的导体在电气上被短接。产生短路的主要原因,是由于电气设备载流部分绝缘损坏所造成。而绝缘损坏主要是因为绝缘老化、过电压、机械性损伤等引起。人为误操作及鸟兽跨越裸导体等也能引起短路。发生短路时,由于系统中总阻抗大大减少,因而短路电流可能达到很大数值(几万安至十几万安)。这样大的电流所产生的热效应和机械效应会使电气设备受到破坏;同时短路点的电压降到零,短路点附近的电压也相应地显著降低,使此处的供电系统受到严重影响或被迫中断;若在发电厂附近发生短路,还可能使整个电力系统运行解列,引起严重后果。

在三相供电系统中,可能发生的主要短路类型有三相短路、二相短路、两相接地短路和单相接地短路,三相短路属对称短路,其余三种为不对称短路。在四种短路故障中,出现单相短路故障的机率最大,三相短路故障的机率最小。但在电力系统中,用三相短路作为最严重的故障方式,来验算电器设备的运行能力。为了限制发生短路时所造成的危害和故障范围的扩大,需要进行短路电流计算,以便校验电气设备的动热稳定性、选择和整定继电保护装置、确定限流措施及选择主接线方案。

二短路的物理过程及计算方法

当突然发生短路时,系统总是由工作状态经过一个暂态过程进入短路稳定状态。暂态过程中的短路电流比其稳态短路电流大的多,虽历时很短,但对电器设备的危害性远比稳态短路电流严重得多。有限电源容量系统的暂态过程要比无限大电源容量系统的暂态过程复杂的多,在计算建筑配电工程三相短路电流时,都按无限大电源容量系统来考虑。短路全电流ik由两部分组成(ik=iz+if):一部分短路电流随时间按正弦规律变化,称为周期分量iz;另一部分因回路中存在电感而引起的自感电流,称为非周期分量if。

短路冲击电流(短路电流峰值或短路全电流瞬时最大值)

ich=(1+e-0.01/Ta) I″=KchI″

Kch=1+e-0.01/Ta—短路电流冲击系数,取决于回路时间常数Ta=L/R的大小,一般在1.3~1 8范围内变化。当高压回路发生短路时,因R高压供电系统中常采用标么值(相对值)法和兆伏安(MV A)法来计算短路电流;在低压供电系统中,常采用有名值法(绝对值法或欧姆法)来计算低压回路短路电流。

三计算实例

现通过实例介绍一下计算三相短路电流的各种方法,然后进行比较。插图所示为金庄煤矿供电系统接线图,已知电力部门鲍沟35KV变电所10KV母线最大短路容量为144MV A,其余参数已分别标在图上。兆伏安法即短路容量法,也叫短路功率法,是因在短路计算中以元件的短路容量来代替元件的阻抗而得名。兆伏安法实质上是欧姆法的变形,欧姆法的计算公式:Id=Ub/Z,即短路电流Id大小完全取决于阻抗Z。而短路容量为Sd=Ub2/Z,在无限大电源容量系统中Ub为常数,因此Sd∝1/Z,可见以元件的短路容量来替代其阻抗,与阻抗一样可表述元件在短路中的作用。

用兆伏安法求出d1、d2 、d4点的短路电流,计算过程如下:

1 计算各元件的短路容量

1) 电力系统:S1=144MV A

2) 输电线路:S2=Ub12/x0×L=10.52/0.341×2.5=129MV A

3) 下井电缆:S3=Ub12/x0×L=10.52/0.08×0.7=1969MV A

4) 地面低压变压器:S8=100Se/Ud%=100×0.8/4.5=17.8MV A

S9=100Se/Ud%=100×0.63/4.5=14MV A

两台变压器分段运行,短路容量按最大一台计算为17 8MV A。

2 简化电路,计算各短路点三相短路容量及三相短路电流

1)地面变电所10KV母线短路容量及短路电流为:1/Sd1=1/144+1/129,Sd1=68MV A

Id1=Sd1/√3×Ub1=68/√3×10.5=3.74KA

2)井下中央变电所10KV母线短路容量及母线短路电流为:

1/Sd2=1/144+1/129+1/1969,

Sd2=65.8MV A

Id2=Sd2/√3×Ub1=65.8/√3×10.5

=3.62KA

3)地面变电所0 4KV低压母线短路容量及短路电流为:1/Sd4=1/144+1/129+1/17.8,Sd4=14 MV A

Id4= Sd4/√3×Ub2=14/√3×0.4=20.2KA

标么值法也叫相对值法,某一物理量的相对值为该物理量的实际值与某一选定的同单位的基准值之比。基准值有四个,即基准容量(常取100MV A),基准电压Ub=1 05UN,基准电流Ib=Sb/Ub,基准电抗Xb=Ub/Ib=Ub2/Sb。

下面再用标么值法计算d1、d2 、d4点的短路电流,具体计算步骤如下:

1.选取基准容量为100MV A,当基准电压为Ub1=10.5KV,基准电流Ib1=100/√3×10.5=5.5KAUb2=0.4KV,基准电流Ib2=100/√3× 0.4=143.3KA

2.计算各元件的电抗标么值(有些元件的电抗标么值可用公式算出,也可查表求出):

电力系统:X1*=Sb/Sn=100/144=0.694

输电线路:X2*=0.309×2.5=0.773

下井电缆:X3*=0.0726×0.7=0.0508

地面低压变压器:

X8*= Ud% Sb/100Se= 4.5×100×106/(100×800×103)=5.63

X9*= Ud% Sb/100Se= 4.5×100×106/(100×630×103)=7.14

3.计算各短路点的总电抗标么值:

Xd1*=0.694+0.773= 1.467

Xd2*=0.694+0.773+0.0508= 1.52

Xd4*=0.694+0.773+0.0508+5.63= 7.15

4.d1、d2 、d4点三相短路电流及短路容量:

Id1= Ib1/Xd1*=5.5/1.467=3.75KA

Sd1=Ub1Id1=×10.5×3.75=65.2MV A

Id2=5.5/1.52=3.6KA

Sd2=×10.5×3.6=65.5MV A

Id4= Ib2/Xd2*=143.3/1.52=20.2KA

Sd4=Ub2 Id2=×0.4×20.2=14MV A

另外也可先求出总电抗标么值后,求出各支路的计算电抗,再求出电流标么值,最后计算各点三相短路电流及短路容量

1)求各支路的计算电抗值分别为

X′d1= Xd1*×144/100=1.467×1.44=2.11

X′d2= Xd2*×144/100=1.52×1.44=2.2

X′d4= Xd4*×144/100=7.15×1.44=10.3

2)根据计算电抗值求出电流标么值

I″ d1=U′/ X′d1=1/ 2.11=0.474

I″d2=U′/ X′d2=1/ 2.2=0.455

I″d4=U′/ X′d4=1/ 10.3=0.0973) d1、d2 、d4点三相短路电流及短路容量:

Id1=I″d1 ×I1 =0.474×144/1.732×10.5=3.75KA

Sd1= I″d1×S1=0.474×144=65.2MV A

同样可求Id2=3.6KA Sd2= 65.5MV A

Id4=20.2KA Sd4=14MV A

欧姆法又叫有名单位制法,它是由于短路计算中的阻抗都采用有名单位“欧姆”而得名。用欧姆法计算短路电路的总阻抗必须把所有元件阻抗换算成欧姆值,凡通过变压器互连的网络应各电压元件的欧姆值统一算到短路点所处电压的欧姆值。下面用欧姆法求出d1、d2、d4点的短路电流,计算过程如下:

(一)求出d1、d2点的短路电流

1 计算各元件的电抗及总电抗

1) 电力系统的电抗:

X1= Ub12/S1= 10.52/144=0.765Ω

2) 鲍沟变电所至矿变电所架空线路的电抗:

X2= x0×L=0.341×2.5=0.853Ω

3)下井电缆的电抗为:

X3= x0×L=0.08×0.7=0.056Ω

d1短路点的总电抗

Xd1=X1+X2=0.765+0.853=1.618Ω

d2短路点的总电抗

Xd2= X1+X2+X3=0.765+0.853+0.056=1.674Ω

2.计算各短路点三相短路电流及短路容量

Id1= Ub1/√3×Xd1

=10.5/√3×1.618=3.74KA

Sd1=UbId1=×10.5×3.74=68MV A

Id2=Ub1/√3Xd2=10.5/√3×1.674=3.62KA

Sd2= Ub Id2=×10.5×3.62=65.8MV

(二)求出d4点的短路电流

1.计算各元件的电抗及总电抗

1) 电力系统的电抗:

X1=Ub22/S1=0.42/144=0.0011Ω=1.1mΩ

2) 鲍沟变电所至矿变电所架空线路的电抗:

X2= x0×L (Ub2 /Ub1)2=0.341×2.5(0.4 /10.5)2=0.00124Ω=1.24mΩ

3)下井电缆的电抗为:

X3= 0.08×0.7(0.4 /10.5)2=0.0000812Ω=0.0812mΩ

4)地面低压变压器的电抗为:

X8= Ud%/100×Ub2/ Se=4.5/100×4002/800000=0.009=9mΩ

X9=4.5%×4002/630000=0.0114Ω=11.4mΩ

D4短路点的总电抗

Xd4= X1+X2+X3+X8=1.11+1.24+0.0812 +9= 11.43 mΩ

2.计算各短路点三相短路电流及短路容量

Id4=Ub2/√3×Xd4=400/√3×11.43=20.2KA

Sd4=Ub2 Id4=×0.4×20.2=14MV A

四计算方法的比较及说明

三种方法计算结果是相同的,兆伏安法优越性最明显,特作说明如下:

(一) 兆伏安法计算短路电流,具有运算简单,不要记忆很多公式,不易出错等优点,在计算不对称短路电流及大型电动机起动压降时更能体现出其简便准确的优点。兆伏安法计算过程较为简单:先求出电源元件的短路容量和阻抗元件短路时的通过能力,然后进行网络(串联、并联及三角形变星形)简化计算并求出短路点的短路容量,最后求出三相短路电流。

标么值法计算过程较为繁琐,计算步骤如下:

(1)按照供电系统图绘制出等效电路图,要求在图上标出各元件的参数。

(2)选定基准容量和基准电压,并按公式求出基准电流和基准电抗。

(3)求出供电系统各元件的电抗标么值。

(4)求出由电源至短路点的总阻抗X*Ξ

(5)按公式I* =1/ X*Ξ求出短路电流标么值,对无限大电源容量系统,短路电流周期分量保持不变,即I*″ = I*0.2= I* ∞

(6)求出短路电流、短路冲击电流和短路容量

欧姆法计算过程也较为简单:先求出各元件的阻抗值,然后根据公式计算出三相短路电流及短路容量。但用欧姆法要注意以下几点:

1.电力系统的阻抗值,可由当地电业部门供给,但一般电力系统的电阻很小,可略去不计。电力系统的电抗值可由系统变电所高压馈电母线上的最大短路容量来求出。在高压电路中,电抗远比电阻大,所以一般只考虑电抗,不计电阻。而在低压网络中一般不允许忽略电阻的影响,只有当短路电路的RΞ≤XΞ/3,才允许不计电阻值。低压网络的短路阻抗一般很小,通常以mΩ计。

2.低压元件如不太长的电缆和母线、线圈型电流互感器的一次线圈、自动空气开关的过电流脱扣线圈及开关的触头等的阻抗,对低压短路电流的大小都有影响,但为了简化计算(使短路电流值偏于安全,容许不考虑占回路总阻抗不超过10%的元件),在一般短路计算中均可略去不计。

3.在利用标么值法或欧法计算短路电路的阻抗时,假如电路内含有变压器, 则电路内的各元件的阻抗都应该统一换算到短路计算点的平均额定电压上去。

(二)在计算短路电流时,电路中各种参数的变化是很复杂的,影响的因素也很多,为简化计算,在不影响工程计算精确度的情况下,常忽略一些因素的影响。

1.认为变压器为理想变压器,不考虑励磁电流的影响;系统各元件的分布电容忽略不计。

2.以供电电源为基准的电抗标么值大于3,可认为电源容量为无限大的系统,短路电流的周期分量在短路全过程中保持不变。

3.短路前系统应是正常运行情况下的接线方式,不考虑在切换过程中短时出现的接线方式。

4.设定短路回路各元件的感抗为一常数,计算中只考虑电抗,不考虑有效电阻。只有当网络中总电阻大于总电抗1/3时,才计及有效电阻。

5.假定短路发生在短路电流为最大值的瞬间;所有电源的电动势相位角相同,电源都在额定负荷下运行。

(三)当电网短路时,异步电动机有时可能向短路点反馈电流,因为短路时,电网电压下降,若电动机离短路点较远时,其电势可能小于外加电压,电动机继续从电网吸收功率,仅是电动机转速下降而已。当电动机电势大于外加电压,此时电动机和发电机一样,向短路点馈送电流。但由于反馈电流将电动机迅速制动,所以反馈衰减很快。当异步电动机的容量较小时,对短路冲击电流影响较小,一般不予考虑。只有在靠近短路点处有大于1MW以上的电动机,或接于一处总容量大于1MW的几台电动机,在计算短路冲击电流时,才把它们当作附加电源来考虑。当电动机端头处发生三相短路时,电动机的反馈冲击电流ich=KchE*″/X*″In

Kch—电动机反馈电流冲击系数,对高压电机取1.4~1.6,对低压电动机可取1。

E*″—异步电动机次暂态电势标么值,取0.9

X*″—异步电动机次暂态电抗标么值,一般约为0.17,若知电动机起动电流,则X*″=In/IQ

In —异步电动机额定电流In=PN/UNcosφ。

当d1点发生短路时,电动机的冲击电流为

In1=(0.4+0.33)/(√3×10.5×0.8)=0.051

ich1=√2×1.6×(0.9/0.17 )×0.051=0.6KA

当d2点发生短路时,电动机的冲击电流为

In2=2×0.9/(√3×10.5×0.8)=0.12KA

ich2=√2×1.6×(0.9/0.17 ) ×0.12=1.4KA

短路故障点d1 d2处的短路冲击电流分别为

ichd1=2.55Id1 +ich1 =2.55×3.75+0.6=10.2KA

ichd2=2.55Id2 +ich2 =2.55×3.6+1.4=10.6KA

(二)短路电流的计算(例题)

4.3.1标幺制

标幺值= 有单位的实际值/和实际值同单位的基准值

可见,标幺值是一个没有单位的相对值,通常用带有*的下标以示区别。 在三相电路中,要满足以下关糸: S D =3U D I D U D =3I D Z D

显然,基准值的选择原则是任意大的,但为了方便计算,通常取100MVA 。 4.3.2短路回路中各元件的阻抗计算

(1)同步发电机

在产品样本中给出的是同步机的次暂态电抗的额定相对值X 11*G (N ),可以推导出同步发电机的电抗标幺值为:

1111**()

D G

G N NG

S X

X

S =

(2)变压器

变压器的电抗标幺值为:

*%100K D T NT

U S X S =

式中:U K %为变压器的短路电压比,S NT 为变压器的额定容量。 (3)电抗器

*%*100

3N R R R N R

U X X I =

式中:U NR ,I NR 为电抗器的额定电压、额定电流值,XR%为电抗器的电抗额定相对值。

(4)线路

线路阻抗有名值可以满足线路长度及单位长度的阻抗求得。

0022L L L

L

X X L R R L ZL X

R

===

+

相应的线路阻抗基准标幺值为:

*02*02D L A V

D L A V S X X L U

S R R L

U

==

例4.3.1 某供电糸统如下图,发电机为有自励磁调节装置的汽轮发电机。各元件参数如下:

发电机G :S NG =30MVA ,X 11*NG =0.27; 线路:L 1、L 2:100KM ,X0=0.4Ω/KM;变压器T1: S NT =31.5MV A,U K %=10.5;变压器T2: S NT =15MV A,U K %=10.5;电抗器:U NR =10KV ,I NR =0.3KA,X R %=6

试用标幺值分别计算K1,K2点短路时的短路回路总阻抗.

解:设SD=100MV A,UD=UAV ,计算各元件的电抗标幺值如下. 发机机:

1111**()

D G

G N NG

S X

X

S =

1000.27*300.9

==

变压器:

*%100K D T NT

U S X S =

10.5100*

100

31.50.333

==

线路L1,L2:

**022

100120.4*100*

115

D AV

S X L X L X L

U

===

=0.302

变压器T2:

*222

%10.5

100

*

*

0.7

100

10010.5

K D T AV

U S X U

=

=

=

电抗器L:

*22

%610

100

*

*

*

1.047

100

100

10.5

33*0.3NR R D

AV

NR U U S X R U

I =

=

=

回路K1短路点的短路总阻抗为:0.9+0.333=1.233

回路K2短路点的短路总阻抗为:0.9+0.333+0.302/2+0.7+1.047=3.131

4.无穷大糸统的三相短路电流的计算

无穷大糸统发生三相短路时,短路时周期分量的幅值保持不变,因此存在如下关糸:

I 11=I ∞=I P

无穷大糸统发生三相短路时,电源母线电压不变,则

3K

AV P U I Z ∑

=

在高压供电糸统中,短路回路的总电抗比总电阻大很多,若13

K

K

R X ∑

<

就可以把电阻省略掉.

*3K A V

P U

I X

=

采用标幺制时,可得

*11

K

D P I I

I X ∑

==

短路电流冲值:

11

2sh SH i K I

=

11

2

12(1)

SH SH I I

K =+-

对于高压供电糸统,K SH =1.8,则ish=2.55I 11, 对于低压供电糸统,K SH =1.3,则ish=1.84I 11 (3)三相短路功率的计算

*11

11

3K

D AV S S

U I

X ∑

==

例4.4.1 某无穷大容量电源糸统如图.变压器T1及T2:S NT =10MV A,U K %=4.5.电抗器U NR =6KV ,I NR =0.15KA,X R %=3.试计算K 点发生三相短路故障时的短路电流,次暂态值,冲击值及暂态功率.

解:设S D =100MV A,U D =U AV ,K 点基准电流1009.161.732*6.3

3D D AV

S I K A U =

=

=.

作等值电路,计算各元件的电抗标幺值并标于图上.

线路L1:X*L1=1.169 变压器T1:X*T1=0.45 电抗器L:X*R=1.746 则K 点短路时短路回路总阻

抗为

**1*2*4/2 1.1690.45/2 1.746 3.14K X

X X X ∑

=++=++=

短路电流次暂态值: 11

*9.16 2.923.14

K

D I I K A X ∑

=

=

=

短路电流冲击值:

11

2 2.55*2.927.45sh SH i K I

KA ===

次暂态功率:

11

11

3 1.732*6.3*2.9231.86AV S U I M VA ===

4.5 短路电流计算中的几个特殊问题 4.

5.1对外部未知糸统的考虑

1、已知糸统总容量SS 和总电抗XS ,此时可将糸统作为一个容量为SS ,总电抗为XS 的等值发电机来考虑,以占主要地位的发电机类型来确定该等值的类型。

2、如果只知道糸统的容量很大,也可视为电抗为零的无穷大容量糸统。

4.7低压电网短路电流计算

4.7.1低压电网短路电流计算的特点

1、配电变压器容量远小于电力糸统的容量,因此,变压器一次侧可以做为无穷大容量糸统来考虑。

2、低压回路中各元件的电阻值与电抗值之比较大,不能忽略。只有当短路回路的总电阻小于总电抗的1/3时,才可以忽略电阻的影响。

3、低压电网中电压一般只有一级,且元件的电阻多以毫欧计算,因此用有名制计算方便。

4.7.2低压电网各元件的短路回路阻抗

(1)变压器阻抗

变压器的每相阻抗、电阻、电抗可用下式计算

22

2

2

22

2

%1000N T K

T N T

K N T T N T T T

T

U

U

Z S P U

R S X Z R =?==

-

式中,U K %,△P K 分别表示变压器短路电压百分比、变压器的短路损耗,KW ;S NT ,U NT2分别为变压器的额定容量(MV A ),变压器的二次侧的额定电压(KV )。

(2)母线的阻抗

长度在10—15M 以上的母线阻抗都必须考虑。母线电阻可由下式计算

3

*10l

R S

γ=

L,S 为母线的长度(m )和截面积(mm 2)

γ为电导率,m/Ω?mm 2 。铜母线取53,铝母线取32。 水平排列的平放母线电抗可用下式近似计算

0.145P D X lL g

b

=

式中,l,b 为母线长度(m)和宽度(mm)

D P 为母线相间几何间距,如母线相间分别为a ab ,a bc ,a ca,则几何均距为

3P ab bc ca

D a a a =

实际计算中低压母线单位长度的电抗X 0常采用如下近似值:

S >500mm 2,X0=17m Ω/m

S<=500mm 2

,X0=13m Ω/m (3)其它元件的阻抗

自动空气开关的过电流线圈,自动空气开关及各种刀开关的接触电阻,电流互感器一次线圈的阻抗,架空线和电缆的阻抗都可以从有关手册查得。

当导线回路中几段导线截面不同时,应按以下方法将它们算到同一截面以后第i 段线路的等效长度上。

题目短路电流及其计算

题目:短路电流及其计算 讲授内容提要:三相短路、两相短路及单相短路的计算 短路电流的效应及短路校验条件 教学目的:掌握三相短路、两相短路及单相短路电流的计算,会根据短路条件进行设备校验。 教学重点:欧姆法和标幺值法计算短路电流的方法,掌握短路热稳定和动稳定校验的方法。 教学难点:欧姆法和标幺值法计算短路电流的方法 采用教具和教学手段:多媒体及板书 授课时间:年月日授课地点:新教学楼教室 注:此页为每次课首页,教学过程后附;以每次(两节)课为单元编写教案。

第三章 短路电流及其计算 本次课主要内容:三相短路、两相短路及单相短路的计算 短路电流的效应及短路校验条件 第三节 无限大容量电力系统中短路电流的计算 计算过程:绘出计算电路图、元件编号、绘等效电路、计算阻抗和总阻抗、计算短路电流和短路容量。 一、欧姆法进行三相短路计算 22 ) 3(3∑ ∑ += X R U I C K 计算高压短路时电阻较小,一般可忽略。 、电力系统的阻抗计算 OC C S S U X 2= 、电力变压器的阻抗计算 2)(N C K T S U P R ?≈ N C K T S U U X 2 100%? ≈ 、电力线路的阻抗计算 l R R WL 0= l X X WL 0= 、阻抗换算 2'' )(C C U U R R = 2'' )(C C U U X X = 三、标幺制法三相短路电流计算 、基准值 基准容量 MVA S d 100= (可以任意选取) 基准电压 c d U U = (通常取短路计算电压) 基准电流 C d d d d U S U S I 33==

基准电抗 d C d d d S U I U X 2 3= = 、元件标幺值: 电力系统电抗标幺值: OC d d C OC C d S S S S S U S U X X X ===*//22 电力变压器电抗标幺值: N d K d C N C K d T T S S U S U S U U X X X ?=?==*100%/100%2 2 电力线路电抗标幺值: 22/C d O d C O d WL WL U S l X S U l X X X X ?===* 、短路电流标幺值及短路电流计算 *)* 3()3(2) 3()3(1 3/3/∑ * ∑ ∑∑* = =====X I I I I X X S U U S X U I I I d d K K d C C d C d K K 、三相短路容量 ** ) 3()3(33∑ ∑== =X S X U I U I S d c d C K K 四、两相短路电流的计算 ∑ =Z U I C K 2) 2( 866.02/3/) 3()2(==K K I I 五、单相短路电流的计算 ∑ ∑∑++=321)1(3Z Z Z U I K ? 工程计算 0 )1(-= ??Z U I K 第四节 短路电流的效应和稳定度校验 一、短路电流的电动效应和动稳定度 动稳定度校验 一般电器: )3(max ) 3(max sh sh I I i i ≥≥

电力系统短路电流计算书

电力系统短路电流计算书 1 短路电流计算的目的 a. 电气接线方案的比较和选择。 b. 选择和校验电气设备、载流导体。 c. 继电保护的选择与整定。 d. 接地装置的设计及确定中性点接地方式。 e. 大、中型电动机起动。 2 短路电流计算中常用符号含义及其用途 a. 2I -次暂态短路电流,用于继电保护整定及校验断路器额定断充容量。 b. ch I -三相短路电流第一周期全电流有效值,用于校验电气设备和母线的动稳 定及断路器额定断流容量。 c. ch i -三相短路冲击电流,用于校验电气设备及母线的动稳定。 d. I ∞-三相短路电流稳态有效值,用于校验电气设备和导体的热稳定。 e. "z S -次暂态三相短路容量,用于检验断路器遮断容量。 f. S ∞-稳态三相短路容量,用于校验电气设备及导体的热稳定. 3 短路电流计算的几个基本假设前提 a. 磁路饱和、磁滞忽略不计。即系统中各元件呈线性,参数恒定,可以运用叠加原理。 b. 在系统中三相除不对称故障处以外,都认为是三相对称的。 c. 各元件的电阻比电抗小得多,可以忽略不计,所以各元件均可用纯电抗表示。 d. 短路性质为金属性短路,过渡电阻忽略不计。 4 基准值的选择 为了计算方便,通常取基准容量S b =100MVA ,基准电压U b 取各级电压的平均 电压,即 U b =U p =,基准电流 b b I S =;基准电抗 2b b b b X U U S ==。

常用基准值表(S 基准电压U b (kV ) 37 115 230 基准电流I b (kA ) 基准电抗X b (Ω) 132 530 各电气元件电抗标么值计算公式 元件名称 标 么 值 备 注 发电机(或电动机) " % "*100 cos d b N X S d P X φ =? "%d X 为发电机次暂态电抗的百 分值 变压器 %" * 100 k b N U S T S X = ? %k U 为变压器短路电压百分值, S N 为最大容量线圈额定容量 电抗器 2%*100 3k N b N b X U S k I U X =? ? %k X 为电抗器的百分电抗值 线路 2*0b b S l U X X l =? 其中X 0为每相电抗的欧姆值 系统阻抗 *b b kd S S c S S X = = S kd 为与系统连接的断路器的开断容量;S 为已知系统短路容量 其中线路电抗值的计算中,X 0为: a. 6~220kV 架空线 取 Ω/kM b. 35kV 三芯电缆 取 Ω/kM c. 6~10kV 三芯电缆 取 Ω/kM 上表中S N 、S b 单位为MVA ,U N 、U b 单位为kV ,I N 、I b 单位为kA 。 5 长岭炼油厂短路电流计算各主要元件参数 系统到长炼110kV 母线的线路阻抗(标么值) a. 峡山变单线路供电时: 最大运行方式下:正序; 最小运行方式下:正序 b. 巴陵变单线路供电时: 最大运行方式下:正序

煤矿高压短路电流计算

第一章地面6KV母线及以上系统参数计算 一、概述: 裴沟矿矿井电源有两个,电源回路四条,两个35KV变电站分别引自两个110KV变电站,其中裴沟35KV变电站电源有两条电源线路,一条电源线路为I密裴线引自七里岗110KV变电站35KV母线(属省网电源),另一条电源线路为II来裴线引自来集110KV变电站35KV 母线(属集团公司自备电网电源);杨河35KV变电站两条电源线路均引自来集110KV变电站35KV母线。两35KV变电站低压侧均以6KV 配电。 来集110KV变电站两段35KV母线分裂运行,系统配置相同,均为三相三卷变压器,七里岗同样为三相三卷变压器。 裴沟35KV变电站两段35KV母线、两段6KV母线均分裂运行,杨河35KV变电站两段35KV母线、两段6KV母线正常情况下分裂运行。 二、35KV及以上系统资料及6KV出口母线短路参数计算 1、系统资料 2006年7月15日集团公司供电处生产科向我矿提供系统阻抗参数如下: 集团公司来集110KV变电站35KV母线侧: 最大方式相对基准阻抗:X max?j·35·L=0.2949 最小方式相对基准阻抗:X min?j·35·L=0.4221 两35KV母线阻抗相同。 七里岗110KV变电站35KV母线出口阻抗: 最大方式相对基准阻抗:X max?j·35·Q=0.2034 最小方式相对基准阻抗:X min?j·35·Q=0.4106 以上参数基准容量为100MVA。

2、35KV部分资料 ⑴、I密裴线为LGJ-120-5.5Km II来裴线为LGJ-120-1.5Km I来杨线为LGJ-120-2.2Km II来杨线为LGJ-120-2.6Km (来杨线计算均取2.4Km计算) 裴I主变为SF b-10000KVA/35KV。 裴II主变为SF b-12500KVA/35KV。 杨I、II主变均为SFZ9-10000KVA/35KV。 附:网络示意图附图一。 ⑵、参数、资料收集: ①、主变压器 注:为计算方便,将差别不太大的裴II主变按裴I主变参数参与计算。以上表中参数为铭牌数值。 ②、35KV电路计算参数(架空线)

煤矿高压整定计算示例

一、系统概况……………………………………………………3 二、短路电流和短路容量计算 (6) 三、高爆开关整定计算 (12) 1、高爆开关计算原则 (12) 2、中央变电所高爆开关整定计算 (14) 3、采区变电所高爆开关整定计算 (19) 4、付井底变电所高爆开关整定计算 (22) 5、地面主井高压变电所整定计算 (24)

一、系统概况 1、供电系统简介 XXXXXXX开关站供电系统为单母线分段分列运行供电方式,由来集变电站(110/10KV)馈出两趟10 KV架空线路(来7板、来14板,架空线型号为LGJ-150 )到宏达10KV开关站,通过此10KV宏达开关站分别供宏达矿和桧树亭两矿用电。 桧树亭煤矿井下供电采用双回路分列运行方式(电缆型号为:MYJV42-8.7/10.5KV-3*70-528 /504米),分别在地面桧树亭开关站两段母线上(桧11板在Ⅰ段母线,桧4板在Ⅱ段母线),井下布置有1个中央变电所(14台高爆开关,其中3台高压启动器、12台高压馈电开关,其中11#为采区I回路,2#为采区II回路。4台KBSG 干式变压器,容量分别为两台500KVA,两台100KVA)、1个采区变电所(7台高爆开关、4台KBSG干式变压器,容量分别为两台315KVA,两台100KVA)。1个付井底变电所(5台高爆开关、2台KBSG干式变压器,容量分别为315KVA)。采区变电所、付井底变电所有两回路进线电源,采用分列供电,通过高压铠装电缆从中央变电所馈出线。局部扇风机实现“三专加两专”供电。全矿井下变压器总容量2660kVA,高压负荷3*280kW,最大启动电流10kV侧130A。负荷使用率0.75。 2、10KV系统资料 ⑴、来集变电站主变压器

短路电流及其计算

短路电流及其计算 第一节短路电流概述 本节将了解短路的原因及危害,掌握短路的种类,并知道短路电流计算的基本方法。 一、短路的概念 短路时至三相电力供电系统中,相与相或相与地的导体之间非正常连接。 在电力系统设计和运行中,不仅要考虑正常工作状态,而且还必须考虑到发生事故障碍时所照成的不正常工作状态。实际运行表明,在三相供电系统中,破坏供电系统正常运新的故障最为常见而且危害最大的就是各种短路。当发生短路时,电源电压被短接,短路回路阻抗很小,于是在回路中流通很大的短路电流。 对中性点不接地的系统又相遇相之间的短路;对于中性点接地的系统又相遇相之间的短路,一项于几项与大地相连接以及三相四线制系统中相与零项的连接等,其中两相接地的短路实际上是两相短路。常见的短路形式如图3—1所示 2.短路的基本种类 在三相供电系统中,短路的类型主要有: (1)三相电路 三相短路是指供电系统中,三相在同一点发生短接。用“d(3)”表示,如图3-1a所示。(2)两相电路 两相短路是指三相供电系统中,任意两项在同一地点发生短接。用“d(2)”表示,如图3-1b 所示。 (3)单相电路 单相短路是指在中性点直接接地的电力系统中,任一项与地发生短接。用“d(1)”表示,如图3-1c所示。 (4)两相接地电路 两相接地的短路是指在中性点直接接地的电力系统中,不同的两项同时接地所形成的两相短路,用“d(1-1)”表示,如图3-1d所示。 按短路电流的对称性来说,发生三相短路时,三项阻抗相等,系统中的各处电压和电流仍保持对称,属于对称性短路,其他形式的短路三相阻抗都不相等,三相电压和电流不对称,均为不对称短路。

低压配电系统短路电流计算

低压配电系统短路电流计算说明 中冶京诚工程技术有限公司电气工程技术所 2004年7月

低压配电系统短路电流计算 在设计低压配电系统时,需要进行短路电流计算,以选择低压电器、校验其稳定性及确定保护方案等。目前,钢铁企业电力设计手册上虽有此内容,但不够详细,特别是单相短路计算,很不具体。现从实用角度出发,编写此资料,目的是使设计者在具体工程中能很快地计算出各点的短路电流值。 假定三相电源和网络元件阻抗都是对称的,因此三相短路是对称的短路,元件的阻抗是指元件的相阻抗,即正序阻抗。但是单相短路是不对称的短路,在TN系统中,发生单相接地短路时,短路电流从相线流出,经保护中性线(TN-C中的PEN线)或保护线(TN-S中的PE线)流回,遇到的是相线与保护线间的阻抗,这一阻抗过去叫相零阻抗,即从相线流出,零线流回,如今TN系统叫保护线,故引入了相保阻抗这一概念。 本资料中列出了高压系统、配电变压器、低压主母线,配电线路的相阻抗及相保阻抗。相阻抗供计算三相短路电流用,相保阻抗供计算单相短路电流用。应该说明,单相接地短路的短路电流除经由PE或PEN线流回外,尚有一部分经接地的其它金属构架回流,但后者难以计算,故本资料中全部按经由保护线流回计算。关于相线与中性线(N线)的单相短路,在TN-C系统,与单相接地短路一样,因PE与N 是合一的,而在TN-S系统短路电流经中性线流回,阻抗应略有不同,在中性线与保护线截面相同的情况下,可仍用单相接地短路时的阻抗值,如中性线与保护线的截面不同,则仅更换其电阻值即可。一般工程上只要计算单相接地短路(如碰壳故障)电流值,因这种故障和相线与中性线短路故障相比,其机率要高得多。 计算中遵循下列规定: 1.计算三相短路电流时,计算相电压取230V,计算单相短路电流时,取220V。 2.计算三相短路电流时,导体计算温度取为+20℃,计算单相短路电流的相保电阻时,对电 缆及导线来说,计算温度提高,相应电阻值加大,取+20℃时的1.5倍,母线则不需要提高计算温度,仍按+20℃考虑。 一、高压系统阻抗(S-System) 高压系统的阻抗可按下式计算:

电力系统下课程设短路电流计算

《电力系统分析》课程设计报告题目:3G9bus短路电流计算 系别电气工程学院 专业班级10级电气四班 学生姓名 学号 指导教师 提交日期 2012年12月10日

目录 一、设计目的 (3) 二、短路电流计算的基本原理和方法 (3) 2.1电力系统节点方程的建立 (3) 2.2利用节点阻抗矩阵计算短路电流 (4) 三、3G9bus短路电流在计算机的编程 (6) 3.1、三机九节点系统 (6) 3.3输出并计算结果 (13) 四.总结 (15)

一、设计目的 1.掌握电力系统短路计算的基本原理; 2.掌握并能熟练运用一门计算机语言(MATLAB 语言或FORTRAN 或C 语言或C++语言); 3.采用计算机语言对短路计算进行计算机编程计算。 二、短路电流计算的基本原理和方法 2.1电力系统节点方程的建立 利用节点方程作故障计算,需要形成系统的节点导纳(或阻抗)矩阵。一般短路电流计算以前要作电力系统的潮流计算,假定潮流计算的节点导纳矩阵已经形成,在此基础上通过追加支路的方式形成电力短路电流计算的节点导纳矩阵YN 。 1)对发电机节点 在每一发电机节点增加接地有源支路 i E 与i i i Z R jX =+串联 求短路稳态解: i Qi E E = i i qi Z R jX =+ 求短路起始次暂态电流解:i i E E ''= i i i Z R jX ''=+ 一般情况下发电机定子绕组电阻忽略掉,并将i E 与i i i Z R jX =+的有源支路转化成电流源 i i i I E Z =与导纳 1 i i i i i Y G B R jX =+= +并联的形式 2)负荷节点的处理 负荷节点在短路计一算中一般作为节点的接地支路,并用恒定阻抗表示,其数值由短路前瞬间的负荷功率和节点实际电压算出,即首先根据给定的电力系统运行方式制订系统的等值电路,并进行各元件标么值参数的计算,然后利用变压器和线路的参数形成不含发电机和负荷的节点导纳矩阵 YN 。 2?k LDk LDk LDk LDk V Z R jX S =+= 2 ?LDk LDk LDk LDk k S Y G jB V =+=

短路电流计算方法及习题

三相短路的有关物理量 1)短路电流周期分量有效值: 短路点的短路计算电压(或称平均额定电压),由于线路首端短路时 其短路最为严重,因此按线路首端电压考虑,即短路计算电压取为比 线路额定电压高5%,按我国标准有0.4,0.69, 3.15,6.3,10.5,37,69,…… 短路电流非周期分量最大值: 2)次暂态短路电流: 短路电流周期分量在短路后第一个周期的有效值。 3)短路全电流有效值: 指以时间t 为中心的一个周期内,短路全电流瞬时值的均方根值。 4)短路冲击电流和冲击电流有效值: 短路冲击电流:短路全电流的最大瞬时值. 出现在短路后半个周期,t=0.01s ksh 为短路电流冲击系数;对于纯电阻电路,取1; 对于纯电感性电路,取2;因此,介于1和2之间。 冲击电流有效值:短路后第一个周期的短路全电流有效值。 5)稳态短路电流有效值: 短路电流非周期分量衰减后的短路电流有效值 p pm I I =p I == 0np pm p i I ≈ = ''p I I I == 0.01 (0.01)(0.01)(1)sh p np p sh p i i i e I τ - =+=+=sh sh p I I ==或 p I I ∞=''p k I I I I ∞====

6)三相短路容量: ? 短路电流计算步骤 短路等效电路图 ? 短路电流计算方法 相对单位制法——标幺值法 概念:用相对值表示元件的物理量 步骤: 选定基准值 基准容量、基准电压、基准电流、基准阻抗 且有 通常选定Ud 、Sd.Sd=100MVA,Ud=Uav=1.05UN 3 K av K S U I =(,,,) (,,,)MVA kV kA MVA kV kA Ω=Ω物理量的有名值标幺值物理量的基准值d S d I d Z d U 33d d d d d d S U I U I Z ==2/(3)/d d d d d d I S U Z U S ?==

低压系统短路电流计算与断路器选择

低压系统短路电流计算与断路器选择 低压系统短路电流计算是电气设计中的一项重要组成部分,计算数据量大,过程繁琐,设计人员大多以经验估算,常常影响设计质量,甚至埋下安全隐患。本文拟在通过对低压短路电流的计算简述以及实例介绍,说明低压断路器的选择及校验方法。 在设计中,短路电流计算与断路器选择的步骤如下: ①简单估算低压短路电流; ②确定配电中心馈出电缆满足热稳定的最小截面; ③选择合适的低压断路器; ④合理选择整定值,校验灵敏度及选择性。 1.低压短路电流估算 1.1短路电流的计算用途 短路电流的计算用途主要有以下几点: ①校验保护电器的整定值,如断路器、熔断器的分断能力应大于安装处最大预期短路电流。 ②确定保护电器的整定值,使其在短路电流对开关电器及线路器材造成破坏之前切断故障电路。 ③校验开关电器及线路器材的动热稳定是否满足规范和实际运行的要求。 1.2短路电流的计算特点 短路电流计算的特点:

①用户变压器容量远小于系统容量,短路电流周期分量不衰减。 ②计入短路各元件有效电阻,但不计入元件及设备的接触电阻和电抗。 ③因线路电阻较大,不考虑短路电流非周期分量的影响。 ④变压器接线方式按D、yn11考虑。 1.3短路电流的计算方法 短路电流计算的方法: ——三相短路电流或单相短路电流kA; 式中 I k Z ——短路回路总阻抗mΩ(包括系统阻抗、变压器阻抗、母 k 线阻抗及电缆阻抗等,其中阻抗还包括电阻、电抗、相保电阻、相保电抗) U——电压V(用于三相短路电流时取230,用于单相短路电流时取220) 1.4短路电流的计算示例 下面通过范例来叙述低压短路电流的计算过程。

两相短路电流计算

根据两相短路电流计算公式:I d=U e/2√(∑R)2+(∑X)2 其中∑R=R1/K b2+R b+R2;∑X=X X+X1/ K b2+X b+X2 式中I d--两相短路电流,A; ∑R、∑X—短路回路内一相电阻、电抗值的总和,Ω; X X—根据三相短路容量计算的系统电抗值,Ω; R1、X1—高压电缆的电阻、电抗值,Ω; K b—矿用变压器的变压比,若一次电压为10KV,二次电压为1200V、690V时,变比依次为8.3、14.5R b、X b—矿用变压器的电阻、电抗值 R2、X2—低压电缆的电阻、电抗值 U e—变压器二次侧的额定电压,对于660V网络,U e以690V 计算;对于1140V网络,U e以1200V计算 经查表: 702高压电缆R1=0.3Ω/Km,X1=0.08Ω/Km; 502高压电缆R1=0.42Ω/Km,X1=0.08Ω/Km; 352高压电缆R1=0.6Ω/Km,X1=0.08Ω/Km; 1140V变压器R b=0.0167,X b=0.1246; 660V变压器R b=0.0056,X b=0.0415; 1140V系统下X X=0.0144; 660V系统下X X=0.0048; 702低压电缆R2=0.315Ω/Km,X2=0.078Ω/Km; 502低压电缆R2=0.448Ω/Km,X2=0.081Ω/Km;

352低压电缆R2=0.616Ω/Km,X2=0.084Ω/Km;252低压电缆R2=0.864Ω/Km,X2=0.088Ω/Km;162低压电缆R2=1.37Ω/Km,X2=0.09Ω/Km; 1、副井井下660V系统最远端两相短路电流 ∑R=R1/K b2+R b+R2=0.539948 ∑X=X X+X1/ K b2+X b+X2=0.118166 I d=U e/2√(∑R)2+(∑X)2=627.27A 2、副井井下1140V系统最远端两相短路电流∑R=R1/K b2+R b+R2=0.27092 ∑X=X X+X1/ K b2+X b+X2=0.20162 I d=U e/2√(∑R)2+(∑X)2=1776.73A 3、副井井下风机专用线最远端两相短路电流∑R=R1/K b2+R b+R2=0.2 ∑X=X X+X1/ K b2+X b+X2=0.086 I d=U e/2√(∑R)2+(∑X)2=1568A 4、主井井下660V系统最远端两相短路电流 ∑R=R1/K b2+R b+R2=0.09 ∑X=X X+X1/ K b2+X b+X2=0.06 I d=U e/2√(∑R)2+(∑X)2=3136A 5、主井井下1140V系统最远端两相短路电流∑R=R1/K b2+R b+R2=0.277 ∑X=X X+X1/ K b2+X b+X2=0.2

煤矿高低压整定计算

小回沟项目部井下变电所供电系统 整定计算书 中煤第十工程处小回沟项目部 2016年1月1日

小回沟项目部 供电系统保护整定计算会签会签意见: 机电经理: 技术经理: 机电部长: 机电队长: 计算: 审核: 日期:

小回沟项目部井下变电所电力负荷统计表

整定值统计表(变电所高压部分)

第一部分 井下变电所高压供电 计算公式及参数: 通过开关负荷电流计算公式:?cos 3???= ∑∑N e X E U P K I 过载保护动作电流计算公式:∑?=E rel aoc I K I (A ); 过流保护动作电流计算公式:Ie=Iqe+Kx ∑Ie 速断保护动作电流计算公式:∑+?=) (E q rel aq I I K I (A ); Ie —过流保护装置的电流整定值; Iqe —容量最大的电动机的额定起动电流; ∑Ie —其余电动机的额定电流之和; rel K :可靠系数; X K :需用系数; ?cos :功率因数; b K :变压器的变压比; N U :开关额定电压;

∑e P :负荷总功率; q I :最大电机起动电流; 一、10KV 一回路进线高开(001) 负荷总功率∑e P :2710.5KW ;功率因数:0.8;同时系数:1 (1)过载保护动作电流: ?cos 3??? ? ?=? =∑∑N e x s rel E rel aoc U P K K K I K I = A I aoc 5.2058.0*10*732.15 .2710*1* 1*05.1==A ; 过载保护动作电流实际整定值:210A ; 动作时间:4S (2)过流保护动作电流Ie : Ie=75+[(2710.5-260)/(1.732*10)]=216 整定值:360A ,动作时间1.3S (3)速断保护动作电流: 最大电机总功率e P :260KW ;最大电机起动电流q I :75A ; 速断保护电流整定计算: ?? ?? ??????-??+?= + ?=∑∑?cos 3)()(N e e x s q rel E q rel aq U P P K K I K I I K I = ??? ?????-??+?=8.010732.1)2605.2710(11752.1aq I = 298.7A; 速断保护电流实际整定值:640A ; 动作时间:0S 灵敏度校验:电缆型号MYJV22 3×95,供电距离1100米,换算后供电距离583米,根据两相短路电流效验算,1100*0.53=583 查表得:Id(2)=1120A 。

电力系统短路电流计算书

电力系统短路电流计算书 Final revision by standardization team on December 10, 2020.

电力系统短路电流计算书 1短路电流计算的目的 a.电气接线方案的比较和选择。 b.选择和校验电气设备、载流导体。 c.继电保护的选择与整定。 d.接地装置的设计及确定中性点接地方式。 e.大、中型电动机起动。 2短路电流计算中常用符号含义及其用途 I-次暂态短路电流,用于继电保护整定及校验断路器额定断充容量。 a. 2 I-三相短路电流第一周期全电流有效值,用于校验电气设备和母线的动稳定及b. ch 断路器额定断流容量。 i-三相短路冲击电流,用于校验电气设备及母线的动稳定。 c. ch d.I∞-三相短路电流稳态有效值,用于校验电气设备和导体的热稳定。 e."z S-次暂态三相短路容量,用于检验断路器遮断容量。 f.S∞-稳态三相短路容量,用于校验电气设备及导体的热稳定. 3短路电流计算的几个基本假设前提 a.磁路饱和、磁滞忽略不计。即系统中各元件呈线性,参数恒定,可以运用叠加原 理。 b.在系统中三相除不对称故障处以外,都认为是三相对称的。 c.各元件的电阻比电抗小得多,可以忽略不计,所以各元件均可用纯电抗表示。

d.短路性质为金属性短路,过渡电阻忽略不计。 4基准值的选择 为了计算方便,通常取基准容量S b=100MVA,基准电压U b取各级电压的平均电压,即 U b =U p = ,基准电流 b b I S = ;基准电抗2 b b b b X U U ==。 常用基准值表(S b=100MVA) 各电气元件电抗标么值计算公式

关于高压短路电流计算

关于35kv/6kv高压供电系统短路电流计算

关于35kv/6kv高压供电系统短路电流计算 目的: 因高压供电系统发生短路时会产生的大电流,大电流的热效应及冲击性会严重损害高压供电设备及供电线路,严重时还可能发生人身安全事故,所以计算高压短路点短路电流、冲击电流、短路容量来调整高压配电装置继电保护整定值是保证供电系统正常运行的必要条件。 变电站简单介绍: 我单位拥有35kv/6kv独立变电站,采用35kv双回路供电方式,变电站有三台型号S11-8000主变压器,控制室采用先进的通信技术及控制技术,能准确检测变电站高压设备的运行情况及相关参数并及时传送到上位机,实际情况详见我单位高压供电系统图纸图一。 一、关于对高压供电系统设备(35kv供电线路、S11-8000主变压器、6kv供电线路、6kv高压电缆、6kv电抗器)详细参数说明: 1、35kv供电线路:长:4.4km、直径:150mm、材质:LGJ、实际电抗值为:0.394Ω/km(查自煤矿电工高压供电一书) 2、35kv供电线路长:3.08km、直径:150mm、材质:LGJ、实际电抗值为:0.394Ω/km(查自煤矿电工高压供电一书)此供电线路为热备用,再此不做计算。 3、S11-8000主变压器(计算中所涉及T1、T2主变型号、参数

完全一样,另一台备用):型号为:S11-8000、容量:8000kva 、阻抗电压为7.23%、变比:35kv/6kv (查自变压器参数说明书) 4、6kv 供电线1:长:3.6km 、直径:120mm 、材质:LGJ 、实际电抗值为:0.353Ω/km (查自煤矿电工高压供电一书) 6kv 供电线2:长:2.64km 、直径:120mm 、材质:LGJ 、实际电抗值为:0.353Ω/km (查自煤矿电工高压供电一书) 5、6kv 高压电缆:长:0.5km 、直径:120mm 、材质:铜、实际电抗值为:0.08Ω/km (查自煤矿电工高压供电一书)说明:我单位一号井地面配电室通往井下为3条同等长度、规格、型号6kv 高压电缆。 6、6kv 电抗器:额定电压:6kv 、额定电流180A 、实际电抗百分值为5.9%(查自电抗器产品说明书)。 二、为了计算方便我们采用标幺值法,电力系统基准容量取Sd=100MVA ,高压供电系统简化等效电路详见图二 S WL1WL2WL4 电力系统35kv架空线路S11-8000主变6kv架空线路16k高压电缆(3)R1电抗(6) T1T2WL3 6kv架空线路2 S11-8000主变短1短2短3短4短5短6高压供电系统等效电路简化图

井下中央变电所高压开关整定计算说明书

山西吕梁离石西山亚辰煤业有限公司井下中央变电所高开整定计算说明书二0一八年四月二十五日

井下中央变电所高开整定计算说明书 1、开关802的保护整定计算与校验: 负荷额定总功率:260(KW); 最大电机功率:160 (KW);最大电流倍数:6; 1× 0.7×260×1000 3×10000×0.7 = 15.01(A); ◆反时限或长延时过流保护(过载): 反时限过流保护:rel c N dz ret i K K I I K K ??= ?=1.1×1×15.01 1×40 = 0.41(A ); 取=z I 0.4 (A );即一次侧实际电流取为16(A ); 时限特性:默认反时限,报警时间1s ; ◆躲过最大负荷电流的过流保护(短路): 通过开关最大电流:max qe e I I I =+∑= 65.21+ 5.77 = 70.98(A) 过流保护:max rel c dz ret i K K I I K K ??= ?= 1.1×1×70.98 1×40=1.95 (A); 取=dz I 2(A )档;即一次侧实际电流取为80(A ); 时限特性:默认反时限; 短路电流计算:系统短路容量d S :60MV A ;系统电抗为:1.8375Ω; 高压电缆阻抗参数表 短路电流计算表 2 2) 2(min ) ()(2∑∑+?= X R U I av d = 10.5×1000 2×0.18322+1.91432 = 2730.04(A); 2 2) 3(min )()(3∑∑+?= X R U I av d = 10.5×1000 3×0.18322+1.9143 2 = 3152.38 (A); U I S d d ??=)2(min 2= 2×2730.04×10.5 1000 =57.33 (MV A);

低压短路电流计算方法

一、短路原因及危害 短路是电力系统中常见的故障之一,它是指供配电系统中相导体之间或者相导 体与大地之间不通过负载阻抗而直接电气连接所产生的。产生短路电流的主要 原因有绝缘老化或者机械损伤;雷击或高电位浸入;误操作;动、植物造成的 短路等。发生短路时会产生很大的短路电流,短路电流会产生很大的电动力和 很高的温度,也就是短路的电动效应和热效应,可能会造成电路及电气装置的 损坏;短路将系统电压骤减,越靠近短路点电压越低,严重影响设备正常运行;还有发生短路后保护装置动作,从而造成停电事故,越靠近电源造成停电范围 越大;对于电子信息设备可能会造成电磁干扰。短路电流可以分为:三相短路,两相短路,单相短路。两相短路分为相间短路和两相接地短路。单相短路可以 分为相对地短路和相对中性线短路。一般三相短路电流值最大,单相短路电流 值最小。 二、计算短路电流的意义 1 选择电器。《低压配电设计规范》GB 50054—2011第3.1.1的5和6条关 于选择低压电器需要考虑短路电流的有关规定如下: 电器应满足短路条件下的动稳定与热稳定的要求; 用于断开短路电流的电器应满足短路条件下的接通能力和分断能力。 2 选择导体。《低压配电设计规范》GB 50054—2011第3.2.2的3条关于选 择电缆需要考虑短路电流的有关规定如下: 导体应满足动稳定与热稳定的要求;

3 断路器灵敏度校验。《低压配电设计规范》GB 50054—2011第6.2.4条关于低压断路器灵敏度校验有关规定如下: 当短路保护电器为断路器时,被保护线路末端的短路电流不应小于断路器瞬时或短延时过电流脱扣器整定电流的1.3倍。 4 根据 IEC60364-434.2 和IEC60364-533.2 条文中的规定,必须计算在回路首端的预期最大短路电流和回路末端的预期最小短路电流。 5 预期最大短路电流用在:断路器的分断能力;电器的接通能力;电气线路和开关装置的热稳定性和动稳定性。 6 预期最小短路电流主要用在:断路器脱扣器和熔断器灵敏度校验。 三、实用低压短路电流计算低压系统的短路计算,应计入短路电路各元件的有效电阻,但短路点的电弧电阻、导线连接点、开关设备和电器的接触电阻可忽略不计。低压短路电流的计算宜采用有名值法。1 配电变压器低压侧出口短路电流计算 配电变压器低压侧出口短路电流计算公式可以按照19DX101-1《建筑电气常用数据》15-3页,如下所示。 上面公式可用于主配电柜三相短路电流计算,用于校验主配电柜中断路器在短路条件下的分断能力和接通能力,用于校验主配电柜中母排的热稳定性和动稳定性。

煤矿井下供电常用计算公式及系数

煤矿供电计算公式 井 下 供 电 系 统 设 计 常 用 公 式 及 系 数 取 值

目录: 一、短路电流计算公式 1、两相短路电流值计算公式 2、三相短路电流值计算公式 3、移动变电站二次出口端短路电流计算 (1)计算公式 (2)计算时要列出的数据 4、电缆远点短路计算 (1)低压电缆的短路计算公式 (2)计算时要有计算出的数据 二、各类设备电流及整定计算 1、动力变压器低压侧发生两相短路,高压保护装值电流整定值 2、对于电子高压综合保护器,按电流互感器二次额定电流(5A)的1-9倍分级整定的计算公式 3、照明、信号、煤电钻综合保护装置中电流计算 (1)照明综保计算公式 (2)煤电钻综保计算公式 4、电动机的电流计算 (1)电动机额定电流计算公式 (2)电动机启动电流计算公式 (3)电动机启动短路电流 三、保护装置计算公式及效验公式 1、电磁式过流继电器整定效验 (1)、保护干线电缆的装置的计算公式 (2)、保护电缆支线的装置的计算公式 (3)、两相短路电流值效验公式 2、电子保护器的电流整定 (1)、电磁启动器中电子保护器的过流整定值 (2)、两相短路值效验公式 3、熔断器熔体额定电流选择 (1)、对保护电缆干线的装置公式 (2)、选用熔体效验公式 (3)、对保护电缆支线的计算公式 四、其它常用计算公式 1、对称三相交流电路中功率计算 (1)有功功率计算公式 (2)无功功率计算公式 (3)视在功率计算公式

(4)功率因数计算公式 2、导体电阻的计算公式及取值 3、变压器电阻电抗计算公式 4、根据三相短路容量计算的系统电抗值 五、设备、电缆选择及效验公式 1、高压电缆的选择 (1) 按持续应许电流选择截面公式 (2) 按经济电流密度选择截面公式 (3) 按电缆短路时的热稳定(热效应)选择截面 ①热稳定系数法 ②电缆的允许短路电流法(一般采用常采用此法) A、选取基准容量 B、计算电抗标什么值 C、计算电抗标什么值 D、计算短路电流 E、按热效应效验电缆截面 (4) 按电压损失选择截面 ①计算法 ②查表法 (5)高压电缆的选择 2、低压电缆的选择 (1)按持续应许电流选择电缆截面 ①计算公式 ②向2台或3台以上的设备供电的电缆,应用需用系数法计算 ③干线电缆中所通过的电流计算 (2)按电压损失效验电缆截面 ①干线电缆的电压损失 ②支线电缆的电压损失 ③变压器的电压损失 (3) 按起动条件校验截面电缆 (4) 电缆长度的确定 3、电器设备选择 (1)变压器容量的选择 (2)高压配电设备参数选择 ①、按工作电压选择 ②、按工作电流选择 ③、按短路条件校验 ④、按动稳定校验 (3)低压电气设备选择

3短路电流及其计算课后习题解析(精选、)

习题和思考题 3-1.什么叫短路?短路的类型有哪些?造成短路故障的原因有哪些?短路有哪些危害?短路电流计算的目的是什么? 答:所谓短路,就是指供电系统中不等电位的导体在电气上被短接,如相与相之间、相与地之间的短接等。其特征就是短接前后两点的电位差会发生显著的变化。 在三相供电系统中可能发生的主要短路类型有三相短路、两相短路、两相接地短路及单相接地短路。三相短路称为对称短路,其余均称为不对称短路。在供电系统实际运行中,发生单相接地短路的几率最大,发生三相对称短路的几率最小,但通常三相短路的短路电流最大,危害也最严重,所以短路电流计算的重点是三相短路电流计算。 供电系统发生短路的原因有: (1)电力系统中电气设备载流导体的绝缘损坏。造成绝缘损坏的原因主要有设备长期运行绝缘自然老化、设备缺陷、设计安装有误、操作过电压以及绝缘受到机械损伤等。 (2)运行人员不遵守操作规程发生的误操作。如带负荷拉、合隔离开关(内部仅有简单的灭弧装置或不含灭弧装置),检修后忘拆除地线合闸等; (3)自然灾害。如雷电过电压击穿设备绝缘,大风、冰雪、地震造成线路倒杆以及鸟兽跨越在裸导体上引起短路等。 发生短路故障时,由于短路回路中的阻抗大大减小,短路电流与正常工作电流相比增加很大(通常是正常工作电流的十几倍到几十倍)。同时,系统电压降低,离短路点越近电压降低越大,三相短路时,短路点的电压可能降低到零。因此,短路将会造成严重危害。 (1)短路产生很大的热量,造成导体温度升高,将绝缘损坏; (2)短路产生巨大的电动力,使电气设备受到变形或机械损坏; (3)短路使系统电压严重降低,电器设备正常工作受到破坏,例如,异步电动机的转矩与外施电压的平方成正比,当电压降低时,其转矩降低使转速减慢,造成电动机过热而烧坏; (4)短路造成停电,给国民经济带来损失,给人民生活带来不便; (5)严重的短路影响电力系统运行稳定性,使并列的同步发电机失步,造成系统解列,甚至崩溃; (6)单相对地短路时,电流产生较强的不平衡磁场,对附近通信线路和弱电设备产生严重电磁干扰,影响其正常工作。 计算短路电流的目的是: (1)选择电气设备和载流导体,必须用短路电流校验其热稳定性和动稳定性。

(完整版)低压短路电流计算方法

短路电流计算及设备选择 1短路电流计算方法 (2) 2.母线,引线选择及其计算方法 (4) 2.1 主变压器35KV侧引线:LGJ-240/30 ............ 错误!未定义书签。 2.2 35KV开关柜内母线:TMY-808 ................. 错误!未定义书签。 2.3 主变压器10KV侧引线及柜内主接线:TMY-10010 . 错误!未定义书签。 3. 35KV开关柜设备选择............................. 错误!未定义书签。 3.1 开关柜..................................... 错误!未定义书签。 3.2 断路器..................................... 错误!未定义书签。 3.3 电流互感器................................. 错误!未定义书签。 3.4 电流互感器................................. 错误!未定义书签。 3.5 接地隔离开关............................... 错误!未定义书签。 4. 10KV开关柜设备选择............................. 错误!未定义书签。 4.1 开关柜..................................... 错误!未定义书签。 4.2 真空断路器................................. 错误!未定义书签。 4.3 真空断路器................................. 错误!未定义书签。 4.4 真空断路器................................. 错误!未定义书签。 4.5 电流互感器................................. 错误!未定义书签。 4.6 电流互感器................................. 错误!未定义书签。 4.7电流互感器................................. 错误!未定义书签。 4.8 电流互感器................................. 错误!未定义书签。 4.9 零序电流互感器............................. 错误!未定义书签。 4.10 隔离接地开关.............................. 错误!未定义书签。 4.11 高压熔断器................................ 错误!未定义书签。 5. 电力电缆选择................................... 错误!未定义书签。 5.1 10KV出线电缆.............................. 错误!未定义书签。 5.2 10KV电容器出线............................ 错误!未定义书签。

电力系统短路电流计算及标幺值算法

第七章短路电流计算 Short Circuit Current Calculation §7-1 概述General Description 一、短路的原因、类型及后果 The cause, type and sequence of short circuit 1、短路:是指一切不正常的相与相之间或相与地(对于中性点接地 的系统)发生通路的情况。 2、短路的原因: ⑴元件损坏 如绝缘材料的自然老化,设计、安装及维护不良等所造成的设备缺陷发展成短路. ⑵气象条件恶化 如雷击造成的闪络放电或避雷器动作;大风造成架空线断线或导线覆冰引起电杆倒塌等. ⑶违规操作 如运行人员带负荷拉刀闸;线路或设备检修后未拆除接地线就加电压. ⑷其他原因 如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等. 3、三相系统中短路的类型: ⑴基本形式: )3(k—三相短路;)2(k—两相短路; )1( k—单相接地短路;)1,1(k—两相接地短路; ⑵对称短路:短路后,各相电流、电压仍对称,如三相短路; 不对称短路:短路后,各相电流、电压不对称; 如两相短路、单相短路和两相接地短路. 注:单相短路占绝大多数;三相短路的机会较少,但后果较严重。4、短路的危害后果 随着短路类型、发生地点和持续时间的不同,短路的后果可能只破坏局部地区的正常供电,也可能威胁整个系统的安全运行。短路的危险后果一般有以下几个方面。 (1)电动力效应 短路点附近支路中出现比正常值大许多倍的电流,在导 体间产生很大的机械应力,可能使导体和它们的支架遭 到破坏。 (2)发热 短路电流使设备发热增加,短路持续时间较长时,设备 可能过热以致损坏。 (3)故障点往往有电弧产生,可能烧坏故障元件,也可能殃

相关主题
文本预览
相关文档 最新文档