当前位置:文档之家› 热敏电阻与铂电阻区别

热敏电阻与铂电阻区别

热敏电阻与铂电阻区别
热敏电阻与铂电阻区别

铂电阻与热敏电阻的区别

热敏电阻是一种电阻值随其温度呈指数变化的半导体热敏感元件;

一般分为

1. 负温度系数NTC,它的特点是电阻随温度的升高而降低;

2. 正温度系数PTC,它的特点与NTC相反,电阻随温度的升高而增加,并且,达到某一温度时,阻值突然变得很大,故称为正温度系数热敏电阻;

性能特点:

1. 热敏电阻的其阻值与温度的关系呈非线性关系,元件的稳定性及互换性较差,测量温度一般在-40~200℃;

2. 测量精度较差,一般最高等级的热敏电阻温度误差也在±0.3%;

3. 由于热敏电阻的互换性较差,各个厂家的温度系数都不一样,所以在维修或者更换起来比较麻烦;

铂电阻的特点:

1. 铂电阻是电阻随着温度的升高阻值而增加,其阻值与温度呈线性关系;

2. 温度系数在均为3850,也就是温度每升高1℃,其Pt100的阻值变化0.385Ω;

3. 铂电阻的精度高,一般A级其0℃的温度误差为:±0.15℃;

4. 测量温度范围广,-200~600℃均能保证良好的稳定性;

5. 由于有一个统一的温度系数标准,所以该产品具有良好的互换性,给维修带来方便;

6. 与测量仪表容易配合使用,目前国内显示仪表,控制器一般均有Pt100的匹配功能。

7. 长期稳定性好,如果没有强大的冲击或者大电流的情况下,一般该产品不会损坏。

铂丝热电阻传感器

PT100是一个温度传感器,是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃至 650℃的范围. 电阻式温度检测器(RTD,Resistance Temperature Detector)是一种物质材料作成的电阻,它会随温度的上升而改变电阻值,如果它随温度的上升而电阻值也跟著上升就称为正电阻係数,如果它随温度的上升而电阻值反而下降就称为负电阻系数。大部分电阻式温度检测器是以金属作成的,其中以白金(Pt)作成的电阻式温度检测器,最为稳定-耐酸碱、不会变质、相当线性...,最受工业界采用。 PT100温度感测器是一种以白金(Pt)作成的电阻式温度检测器,属于正电阻系数,其电阻和温度变化的关系式如下:R=Ro(1+αT) 其中α=0.00392,Ro为100Ω(在0℃的电阻值),T为摄氏温度
因此白金作成的电阻式温度检测器,又称为PT100。 1:Vo=2.55mA ×100(1+0.00392T)=0.255+T/1000 。 2:量测Vo时,不可分出任何电流,否则量测值会不準。电路分析由于一般电源供应较多零件之后,电源是带杂讯的,因此我们使用齐纳二极体作为稳压零件,由于7.2V齐纳二极体的作用,使得1K电阻和5K可变电阻之电压和为6.5V,靠5K可变电阻的调整可决定电晶体的射(集极)极电流,而我们须将集极电流调为2.55mA,使得量测电压V如箭头所示为0.255+T/1000。其后的非反向放大器,输入电阻几乎无限大,同时又放大10倍,使得运算放大器输出为2.55+T/100。6V齐纳二极体的作用如7.2V齐纳二极体的作用,我们利用它调出2.55V,因此电压追随器的输出电压V1 亦为 2.55V。其后差动放大器之输出为 Vo=10(V2-V1)=10(2.55+T/100-2.55)=T/10,如果现在室温为25℃,则输出电压为2.5V。 工作原理: 传感器的接入非常简单,从系统的 5V 供电端仅仅通过一支 3K92 的电阻就连接到 PT100 了.这种接法通常会引起严重的非线性问题,但是.由于有了单片机的软件校正作为后盾,因此就简化了传感器的接入方式 PT100铂金属温度传感器使用铂金属pt100温度传感器原理及使用 Pt100 温度传感器是正温度系数热敏电阻传感器,Pt100 温度传感器还具有抗振动、稳定性好、准确度高、耐高压等优点。铂热电阻的线性较好,在0~100 摄氏度之间变化时,最大非线性偏差小于0.5 摄氏度,Pt100 温度传感器主要技术参数如下:测量范围:-200℃~+850℃;允许偏差值△℃:A 级±(0.15+0.002│t│), B 级±(0.30+0.005│t│);最小置入深度:热电阻的最小置入深度≥200mm;允通电流≤ 5mA。 PT100温度感测器是一种以白金(Pt)作成的电阻式温度检测器,属于正电阻系数,其电阻和温度变化的关系式如下:R=Ro(1+αT) 其中α=0.00392,Ro为100Ω(在0℃的电阻值),T为摄氏温度,因此白金作成的电阻式温度检测器,又称为PT100。 1:Vo=2.55mA ×100(1+0.00392T)=0.255+T/1000 。 2:量测Vo时,不可分出任何电流,否则量测值会不準。电路分析 由于一般电源供应较多零件之后,电源是带杂讯的,因此我们使用齐纳二极体作为稳压零件,

热敏电阻温度特性的研究

热敏电阻温度特性的研究 一、实验目的:了解和测量热敏电阻阻值与温度的关系 二、实验仪器:YJ-RZ-4A 数字智能化热学综合实验仪、NTC 热敏电阻传感器、Pt100传感器、万用表 三、实验原理 热敏电阻是其电阻值随温度显著变化的一种热敏元件。热敏电阻按其电阻随温度变化的典型特性可分为三类,即负温度系数(NTC )热敏电阻,正温度系数(PTC )热敏电阻和临界温度电阻器(CTR )。PTC 和CTR 型热敏电阻在某些温度范围内,其电阻值会产生急剧变化。适用于某些狭窄温度范围内的一些特殊应用,而NTC 热敏电阻可用于较宽温度范围的测量。热敏电阻的电阻-温度特性曲线如图1所示。 图1 NTC 半导体热敏电阻是由一些金属氧化物,如钴、锰、镍、铜等过渡金属的氧化物,采用不同比例的配方,经高温烧结而成,然后采用不同的封装形式制成珠状、片状、杠状、垫圈状等各种形状。与金属导热电阻比较,NTC 半导体热敏电阻具有以下特点: 1.有很大的负电阻温度系数,因此其温度测量的灵敏度也比较高; 2.体积小,目前最小的珠状热敏电阻的尺寸可达mm 2.0φ,故热容量很小可作为点温或表面温度以及快速变化温度的测量; 3.具有很大的电阻值(Ω-521010),因此可以忽略线路导线电阻和接触电阻等的影响,特别适 用于远距离的温度测量和控制; 4.制造工艺比较简单,价格便宜。半导体热敏电阻的缺点是温度测量范围较窄。 NTC 半导体热敏电阻具有负温度系数,其电阻值随温度升高而减小,电阻与温度的关系可以用下面的经验公式表示 )/exp(T B A R T = (1) 式中,T R 为在温度为T 时的电阻值,T 为绝对温度(以K 为单位),A 和B 分别为具有电阻量纲和温度量纲,并且与热敏电阻的材料和结构有关的常数。由式(1)可得到当温度为0T 时的电阻值0R , 即 )/exp(00T B A R = (2) 比较式(1)和式(2),可得 )]1 1(exp[0 0T T B A R R T -= (3) 由式(3)可以看出,只要知道常数B 和在温度为 0T 时的电阻值0R ,就可以利用式(3)计算在

热敏电阻_热敏电阻工作原理

热敏电阻根据温度系数分为两类:正温度系数热敏电阻和负温度系数热敏电阻。由于特性上的区别,应用场合互不相同。 正温度系数热敏电阻简称PTC(是Positive Temperature Coefficient 的缩写),超过一定的温度(居里温度---居里温度是指材料可以在铁磁体和顺磁体之间改变的温度。低于居里温度时该物质成为铁磁体,此时和材料有关的磁场很难改变。当温度高于居里温度时,该物质成为顺磁体,磁体的磁场很容易随周围磁场的改变而改变。这时的磁敏感度约为10的负6次方。)时,它的电阻值随着温度的升高呈阶跃性的增高。其原理是在陶瓷材料中引入微量稀土元素,如La、Nb...等,可使其电阻率下降到10Ω.cm以下,成为良好的半导体陶瓷材料。这种材料具有很大的正电阻温度系数,在居里温度以上几十度的温度范围内,其电阻率可增大 4~10个数量级,即产生所谓PTC效应。 目前大量被使用的PTC热敏电阻种类:恒温加热用PTC热敏电阻;低电压加热用PTC热敏电阻;空气加热用热敏电阻;过电流保护用PTC热敏电阻;过热保护用PTC热敏电阻;温度传感用PTC热敏电阻;延时启动用PTC 热敏电阻。 负温度系数热敏电阻简称NTC(是Negative Temperature Coefficient 的缩写),泛指负温度系数很大的半导体材料或元器件。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 PTC、NTC两种热敏电阻都可以用作温度传感,在目前的实际应用中,多采用NTC热敏电阻作为温度测量、控制的温度传感器。 NTC负温度系数热敏电阻专业术语 零功率电阻值(Ω) 指在规定温度T时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。

pt100 铂热电阻

pt100 铂热电阻 设计原理: pt100是铂热电阻,它的阻值会随着温度的变化而改变。PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。它的工业原理:当PT100在0摄氏度的时候他的阻值为100欧姆,它的的阻值会随着温度上升它的阻值是成匀速增涨的。 应用范围: 医疗、电机、工业、温度计算、阻值计算等高精温度设备,应用范围非常之广泛。 组成的部分 常见的pt1oo感温元件有陶瓷元件,玻璃元件,云母元件,它们是由铂丝分别绕在陶瓷骨架,玻璃骨架,云母骨架上再经过复杂的工艺加工而成 薄膜铂电阻:用真空沉积的薄膜技术把铂溅射在陶瓷基片上,膜厚在2微米以内,用玻璃烧结料把Ni(或Pd)引线固定,经激光调阻制成薄膜元件。 ================================================================================= Pt100 温度传感器为正温度系数热敏电阻传感器,主要技术参数如下: 测量范围:-200℃~+850℃; 允许偏差值△℃:A 级±(0.15+0.002│t│), B 级±(0.30+0.005│t│); 最小置入深度:热电阻的最小置入深度≥200mm; 允通电流≤ 5mA。 另外,Pt100 温度传感器还具有抗振动、稳定性好、准确度高、耐高压等优点。 铂热电阻的线性较好,在0~100 摄氏度之间变化时,最大非线性偏差小于0.5 摄氏度。

应用领域 宽范围、高精度温度测量领域。如: 轴瓦,缸体,油管,水管,汽管,纺机,空调,热水器等狭小空间工业设备测温和控制。 汽车空调、冰箱、冷柜、饮水机、咖啡机,烘干机以及中低温干燥箱、恒温箱等。 供热/制冷管道热量计量,中央空调分户热能计量和工业领域测温和控制 常用电路图 R2、R3、R4 和Pt100 组成传感器测量电桥,为了保证电桥输出电压信号的稳定性,电桥的输入电压通过TL431 稳至2.5V。从电桥获取的差分信号通过两级运放放大后输入单片机。电桥的一个桥臂采用可调电阻R3,通过调节R3 可以调整输入到运放的差分电压信号大小,通常用于调整零点。 放大电路采用LM358 集成运算放大器,为了防止单级放大倍数过高带来的非线性误差,放大电路采用两级放大,如图 5.1 所示,前一级约为10 倍,后一级约为3倍。温度在0~100 度变化,当温度上升时,Pt100 阻值变大,输入放大电路的差分信号变大,放大电路的输出电压Av 对应升高。 注意:虽然电桥部分已经经过TL431 稳压,但是整个模块的电压VCC 一定要稳定,否则随着VCC 的波动,运放LM358 的工作电压波动,输出电压Av 随之波动,最后导致A/D 转换的结果波动,测量结果上下跳变。 铂热电阻阻值与温度关系为: 式中,A=0.00390802;B=-0.000000580;C=0.0000000000042735。可见Pt100 在常温0~100摄氏度之间变化时线性度非常好,其阻值表达式可近似简化为:RPt=100(1+At),当温度变化1 摄氏度,Pt100 阻值近似变化0.39 欧。 Pt100 的分度表(0℃~100℃) 程序处理 一般在使用PT100 的温度采集方案中,都会对放大器LM358 采集来的模拟信号A V进行温度采样,即进行A/D 转

热敏电阻的温度特性的研究

实验 项 目: 实验 目 的: 1、测定负温度系数热敏电阻的电阻—温度特性,并利用直线拟合的数据处理方法,求其材料常数。 2、了解以热敏电阻为检测元件的温度传感器的电路结构及电路参数的选择原则。 3、学习运用线性电路和运放电路理论分析温度传感器电压—温度特性的基本方法。 4、掌握以叠代法为基础的温度传感器电路参数的数值计算技术。 5、训练温度传感器的实验研究能力。 实验 仪 器: 热敏电阻的温度特性的研究
1. TS—B3 型温度传感综合技术实验仪; 2. 磁力搅拌电热器; 3. ZX21 型电阻箱; 4. 数字万用表; 5. 水银温度计(0-100℃); 6. 烧杯;7. 变压器油
实验 原 理: 具有负温度系数的热敏电阻广泛的应用于温度测量和温度控制技术中。这类热敏电阻大多数是由一些过度金属氧化物(主要有 Mn、Co、Ni、Fe 等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制作而成,它们具有 P 型半导体的特性。对于一般半导体材料,电阻率随 温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对来说可以忽略。但对上述过渡金属氧化物则有所不同,在室温范围内基本上已全部 电离,即载流子浓度基本与温度无关,此时主要考虑迁移率与温度的关系,随着温度升高,迁移率增加,所以这类金属氧化物半导体的电阻率下 降,根据理论分析,对于这类热敏电阻的电阻—温度特性的数学表达式通常可以表示为: Rt=R25?exp[Bn(1/T - 1/298)] (1)
其中 Rt 和 R25 分别表示环境为温度 t℃和 25℃时热敏电阻的阻值;T=273+t ;Bn 为材料常数,其大小随制作热敏电阻时选用的材料和配方而异, 对于某一确定的热敏电阻元件,它可由实验上测得的电阻—温度曲线的实验数据,用适当的数据处理方法求得。 下面对以这种热敏电阻作为检测元件的温度传感器的电路结构、工作原理、电压—温度特性的线性化、电路参数的选择和非线性误差等问题论述 如下: 一、电路结构及工作原理 电路结构如图 1a 示,它是由含 Rt 的桥式电路及差分运算放大电路两个主要部分组成。当热敏电阻 Rt 所在环境温度变化时,差分放大器的输入 信号及其输出电压 V0 均要发生变化。传感器输出电压 V0 随检测元件 Rt 环境温度变化的关系称温度传感器的电压—温度特性。为了定量分析这 一特征,可利用电路理论中的戴维南定理把图 1a 示的电路等效变换成图 1b 示的电路,在图 1b 中:
图1
电路原理图及其等效电路
(2) 它们均与温度有关,而
(3) 与温度无关。根据电路理论中的叠加原理,差分运算放大器输出电压 V0 可表示为:
(4)

热敏电阻温度特性的研究带实验数据处理

本科实验报告 实验名称:热敏电阻温度特性的研究 (略写) 实验15热敏电阻温度特性的研究 【实验目的和要求】 1. 研究热敏电阻的温度特性。 2. 用作图法和回归法处理数据。 【实验原理】 1. 金属导体电阻 金属导体的电阻随温度的升高而增加,电阻值t R 与温度t 间的关系常用以下经验公式表示: )1(320 ++++=ct bt t R R t α (1) 式中t R 是温度为t 时的电阻,0R 为00=t C 时的电阻,c b ,,α为常系数。 在很多情况下,可只取前三项: )1(20bt t R R t ++=α (2) 因为常数b 比α小很多,在不太大的温度范围内,b 可以略去,于是上式可近似

写成: )1(0t R R t α+= (3) 式中α称为该金属电阻的温度系数。 2. 半导体热敏电阻 热敏电阻由半导体材料制成,是一种敏感元件。其特点是在一定的温度范围内,它的电阻率T ρ随温度T 的变化而显著地变化,因而能直接将温度的变化转换为电量的变化。一般半导体热敏电阻随温度升高电阻率下降,称为负温度系数热敏电阻,其电阻率T ρ随热力学温度T 的关系为 T B T e A /0=ρ (4) 式中0A 与B 为常数,由材料的物理性质决定。 也有些半导体热敏电阻,例如钛酸钡掺入微量稀土元素,采用陶瓷制造工艺烧结而成的热敏电阻在温度升高到某特定范围(居里点)时,电阻率会急剧上升,称为正温度系数热敏电阻。其电阻率的温度特性为: T B T e A ?'=ρρ (5) 式中A '、 ρ B 为常数,由材料物理性质决定。 对(5)式两边取对数,得 A T B R T ln 1 ln += (6) 可见T R ln 与T 1 成线性关系,若从实验中测得若干个T R 和对应的T 值,通过作图法可求出A (由截距A ln 求出)和B (即斜率)。 3. 实验原理图

NTC热敏电阻原理及应用.

NTC热敏电阻原理及应用 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的应用需求。 NTC负温度系数热敏电阻工作原理 NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 NTC负温度系数热敏电阻专业术语 零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。 电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NT C 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数( e = 2.71828 …)。 该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。 额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度25 ℃ 时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指该值。 材料常数(热敏指数) B 值( K )

NTC 热敏电阻 MF简称相对应的产品

NTC热敏电阻MF简称相对应的产品 产品简介 型号:MF58,MF58B,MF52,PSB,SMDNTC,MF11,MF72。MF73,MF74,MF51,MF55。 负温度系数(NTC)热敏电阻材料由高纯度过渡金属MnCuNi 等元素的氧化物经共沉淀制粉,等静压成型后经过1400℃高温烧结而成,结合先进的半导体切,划片工艺及玻封,环氧工艺制成各种类型NTC热敏电阻,产品种类齐全,精度高,稳定性好。阻值范围0.5~2000kΩ,B值范围2500~5000k。 MF58测温型NTC热敏电阻,产品由Co,Mn,Ni等过渡金属元素的氧化物组成,经高温烧成半陶瓷,利用半导体毫微米的精密加工工艺,采用玻璃管封装耐温性好,高稳定,可靠性高。应用于家用电器(如空调机,微波炉,电风扇,电取暖炉,复印机,打印机,万年历等)的温度控制与温度检测,液面指示和流量测量,手机电池,仪表线圈,集成电路,石英晶体振荡器和热电偶的温度补偿;MF52珠状测温型热敏电阻器是采用新材料,新工艺生产的小体积的环氧树脂包封型NTC热敏电阻器,具有高精度和快速反应等优点。应用范围:空调设、,暖气设备、小家电、液位传感、CPU 风扇、电子台历、手机电池、充电器。测试精度高,体积小,反应速度快,良好的耐热循环能力,能长时间稳定工作,互换性,一致性好。

PSB型负温热敏电阻,产品由Co,Mn,Ni等过渡金属元素的氧化物组成,经高温烧成半陶瓷,利用半导体毫微米的精密加工工艺,采用玻璃管封装耐温性好,高稳定,可靠性高。广泛应用于空调,暖气设备,电子体温计,液位传感器,汽车电子,电子台历等MF58B型负温热敏电阻,产品由Co,Mn,Ni等过渡金属元素的氧化物组成,经高温烧成半陶瓷,利用半导体毫微米的精密加工工艺,采用玻璃管封装耐温性好,高稳定,可靠性高。应用于家用电器汽车等高精密仪器的温度控制与温度检测,液面指示和流量测量,手机电池,仪表线圈,集成电路,石英晶体振荡器和热电偶的测温。 SMD贴片型NTC热敏电阻,应用于半导体集成电路,液晶显示,晶体管及移动通讯设备用石英振荡器的温度补偿,可充电电池的温度探测,计算机微处理器的温度探测,IC和半导体器件过热保护用等需温度补偿的各种电路。 MF11,MF12补偿型NTC热敏电阻器,用于一般精度的温度测量和在计量设备,晶体管电路中的温度补偿。 MF72功率型NTC热敏电阻器,为了避免电子电路中在开机的瞬间产生的浪涌电流,在电源电路中串接一个功率型NTC热敏电阻器,能有效地抑制开机时的浪涌电流,并且在完成抑制浪涌电流作用以后,由于通过其电流的持续作用,功率型NTC热敏电阻器的电阻值将下降到非常小的程度,它消耗的功率可以忽略不计,不会对正常的工作电流造成影响,所以,在电源回路中使用功率型NTC热

测量热敏电阻的温度系数

3.5.2 用热敏电阻测量温度 (本文内容选自高等教育出版社《大学物理实验》) 热敏电阻是由对温度非常敏感的半导体陶瓷质工作体构成的元件。与一般常用的金属电阻相比,它有大得多的电阻温度系数值。根据所具有电阻温度系数的不同,热敏电阻可分三类:1.正电阻温度系数热敏电阻;2.临界电阻温度系数热敏电阻;3.普通负电阻温度系数热敏电阻。前两类的电阻急变区的温度范围窄,故适宜用在特定温度范围作为控制和报警的传感器。第三类在温度测量领域应用较广,是本实验所用的热敏元件。热敏电阻作为温度传感器具有用料省、成本低、体积小、结构简易,电阻温度系数绝对值大等优点,可以简便灵敏地测量微小温度的变化。我国有关科研单位还研制出可测量从-260℃低温直到900℃高温的一系列不同类型的热敏电阻传感器,在人造地球卫星和其他有关宇航技术、深海探测以及科学研究等众多领域得到广泛的应用。本实验旨在了解热敏电阻-温度特性和测温原理,掌握惠斯通电桥的原理和使用方法。学习坐标变换、曲线改直的技巧和用异号法消除零点误差等方法。 实验原理 1. 半导体热敏电阻的电阻——温度特性 某些金属氧化物半导体(如:Fe 3O 4、MgCr 2O 4等)的电阻与温度关系满足式(1): T B T e R R ∞= (1) 式中R T 是温度T 时的热敏电阻阻值,R ∞是T 趋于无穷时热敏电阻的阻值,B 是热敏电阻的材 料常数,T 为热力学温度。 金属的电阻与温度的关系满足(2): )](1[1212t t a R R t t -+= (2) 式中a 是与金属材料温度特性有关的系数,R t1、R t2分别对应于温度t 1、t 2时的电阻值。 根据定义,电阻的温度系数可由式(3)来决定: dt dR R a t t 1= (3) R t 是在温度为t 时的电阻值,由图3.5.2-1(a )可知,在R-t 曲线某一特定点作切线,便可求出该温度时的半导体电阻温度系数a 。 由式(1)和式(2)及图3.5.2-1可知,热敏电阻的电阻-温度特性与金属的电阻-温度特性比较,有三个特点: (1) 热敏电阻的电阻-温度特性是非线性的(呈指数下降),而金属的电阻-温度特性是线性的。

NTC热敏电阻、温度传感器产品选型方法与应用.

NTC热敏电阻/温度传感器产品选型方法与应用 NTC是Negative Temperature Coefficient的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以过渡金属氧化物为主要原材料,采用先进陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在100~1000000欧姆,温度系数-2%~-6.5%。禾用这些特性,NTC热敏电阻器/温度传感器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。 其阻值随温度变化的特性下: [A]、非线性的温度特性[B]、丫轴为对数坐标时非常接近实际的温度特性正:面方下以虑考要需器感传度/温阻电敏热CTN型选确 、首先明确产品应用功能: 1. 温度测量

2. 温度补偿 3. 浪涌电流抑制 点击了解更多:温度测量、控制用NTC 热敏电阻器/温度传感器―― 工作原理和应用电路温度补偿NTC 热敏电阻器/温度传感器―― 工作原理和应用电路浪涌电流抑制NTC 热敏电阻器/温度传感器―― 工作原理和应用电路 二.按产品应用场合分类: 1. 汽车:VT 系列——汽车温度传感器用热敏电阻 DTV 系列——汽车温度传感器用NTC 热敏芯片 VTS 系列——交通工具温度传感器/温度开关 2. 医疗:MT 系列——医疗设备温度传感器用NTC 热敏电阻 DTM 系列——医疗温度传感器用NTC 热敏芯片 IT 系列——电子温度计NTC 温度传感器 3. 家电:TS 系列——NTC 温度传感器 BT系列一一绝缘引线型NTC温度传感器 4. 通讯:CT 系列——片式负温度系数热敏电阻 AT系列一一非绝缘引线插件NTC热敏电阻 5. 计算机及办公自动化设备: OT 系列——办公自动化NTC 热敏电阻/温度传感器 GT系列一一玻璃封装NTC热敏电阻

热敏电阻的温度特性

测量热敏电阻的温度特性 热敏电阻是用半导体材料制成的热敏器件,根据其电阻率随温度变化的特性不同,大致可分为三种类型:(1)NTC (负温度系数)型热敏电阻;(2)PTC (正温度系数)型热敏电阻;(3)CTC (临界温度系数)型热敏电阻。其中PTC 型和CTC 型热敏电阻在一定温度范围内,阻值随温度剧烈变化,因此可用做开关元件。热敏电阻器在温度测控、现代电子仪器及家用电器(如电视机消磁电路、电子驱蚊器)等中有广泛用途。在温度测量中使用较多的是NTC 型热敏电阻,本实验将测量其电阻温度特性。 1.实验目的 (1)测量NTC 型热敏电阻的温度特性; (2)学习用作图法处理非线性数据。 2.实验原理 NTC 型热敏电阻特性 NTC 型热敏电阻是具有负的温度系数的热敏电阻,即随着温度升高其阻值下降,在不太宽的温度范围内(小于450℃),其电阻-温度特性符合负指数规律。 NTC 热敏电阻值R 随温度T 变化的规律由式(1-1)表示 T B T Ae R = (1-1) 其中A 、B 为与材料有关的特性常数,T 为绝对温度,单位K 。对于一定的热敏电阻, A 、 B 为常数。对式(1-1)两边取自然对数有 T B A R T + =ln ln (1-2) 从T R T 1ln -的线性拟合中,可得到A 、B 的值,写出热敏电阻温度特性 的经验公式。 3.实验内容 (1)连接电路。 (2)观察NTC 型热敏电阻的温度特性。 (3)测量NTC 型热敏电阻的温度特性。

(4)数据处理 R 特性曲线; a. 画出热敏电阻的t

b. 画出T R T 1ln 曲线,求出其直线的截距、斜率,即可求得A 、B ,写 出热敏电阻温度特性的经验公式。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

热敏电阻

热敏电阻器  袁德昌  1 前言  热敏电阻器(thermistor)是其电阻值对温度极为敏感的1种电阻器,也称为半导体热敏电阻器,属于敏感电阻器的1个种类。它用单晶材料、多晶材料以及玻璃、塑料等材料制成。热敏电阻器的主要特点是对温度灵敏度高、热惰性小、寿命长、体积小、结构简单,可以采用各种不同的外形结构。这种元件已获得广泛的应用,例如温度测量、温度控制、温度补偿、液面测定、气压测定、火灾报警、气象探测、脉冲电压抑制、开关电路、过载保护、时间延迟、稳定振幅、自动增益调整、微波和激光功率测量等。随着现代军事技术,特别是空间技术的发展,对热敏电阻器除了要求高可靠、长寿命、超高温和超低温工作外,还需要大批量灵敏度更高、不需致冷、性能更加优良的测量辐射功率的热敏元器件。   2 热敏电阻器的应用  现在,热敏电阻器能获得广泛应用的原因是它具有一系列特殊的电性能,最基本的特性是其阻值随温度的变化有极为显著的变化量,以及伏—安特性曲线的非线性。按阻值温度系数可分为负温度系数 (NTC)和正温度系数(PTC)热敏电阻器。 2.1 过电流检测  现代开关电源由于其高效率、小型化的优点而为电子设备的主流电源。但是另一方面,因高频化、微型化的要求,使得解决开关电源工作时的发热问题变得越来越重要,异常情况时过电流和大容量滤波电容器的冲击电流问题也必须得到解决。  如果将电阻值较低的PTC热敏电阻器放人开关电源电路中,电压降和功耗都很小,而当有过大的异常电流流过时,因PTC热敏电阻器自身的发热,使其电阻值迅速增加而变成大电阻器,从而实现限流作用。同样道理,PTC热敏电阻器构成的过电流保护电路具有复原的特性,解除发生过电流的原因后即可恢复到原来的电阻值,无需象电流保险丝那样进行更换。另外,因电涌而引起的误动作以及故障少是它的另一大特点。 2.2 过热检测  对于高密度、高输出的开关电源来说,解决发热问题十分重要。以前,通常采用放置能散热的元件或散热片、强制气冷、风扇等方法,但即使采用了这些方法,因为使用状况和使用环境的不同,也会发生超过容许温度值以上的情况。这时,非常需要使用温度检测元件,当达到异常温度时,能够强制抑制其输出。  PTC热敏电阻器具有正的电阻温度特性,对于想检测的过热温度有很好的敏感度。因此,用PTC热敏电阻器作为温度传感器,简单的电路结构就可以实现过热保护功能。这样,就能够防止电子设备冒烟、放火花等故障,防患于未然。而且,使用PTC热敏电阻器保护电路的另一个特点是解除异常发热的原因后,电子设备系统可以回到正常工作状态,也无需象使用温度保险丝等元件那样必须进行更换。 2.3 抑制过冲电流  每当开关电源启动时,伴随滤波电容器的初期充。 电会产生过冲电流。这种电流可以达到正常工作电流的10倍以上,可能造成二极管、开关、保险丝等电子元器件发生故障。为了抑制过冲电流,在输入端的滤波电容器处串人NTC热敏电阻器。由于其具有负的电阻温度特性,随着温度的升高,电阻值逐渐减小,因此在电源启动初期,它的电阻大能抑制过冲电流,之后,随着电流的流过、自身发热(焦耳热),从而使其电阻值降低,得以限制功耗。 除了使用NTC热敏电阻器外,还可以使用固定电阻器构成过冲电流抑制电路。但是,这种电路在正常工作状态下的功耗非常大,对节省能源很不利。当然,可以在固定电阻器上并联电磁继电器或三端双向可控硅等开关元件,当电源进入正常工作状态后将此开关接通,可以限制正常工作状态下的功耗,但这种方法将导致元件数量增多,还需要开关元件的驱动电路,这又成为一个问题。显而易见,NTC热敏电阻器是最适合节省能源的抑制过冲电流的电子元件。  2.4 热敏电阻功率计和辐射热探测器  将热敏电阻器接在电桥的1个臂上,在电桥的对角线上连接1个灵敏电流计。在高频功率辐射下,热敏电阻器的阻值会发生变化,辐射功率越大或者电阻值越低,电流表的表针偏转就越大。这种功率计采用珠式热敏电阻器作为敏感元件,与铂金丝和铋锑薄膜相比,其优点是灵敏度高,耐负苛能力强,可以调节最佳工作点,使用方便等。 热敏电阻辐射热探测器是利用热敏材料接受辐射后能引起温升而使电阻值变化的原理制成的。热敏元件通常采

有关于pt100_铂热电阻的介绍

热电阻 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。金属热电阻的感温元件有石英套管十字骨架结构,麻花骨架结构得杆式结构等。金属热电阻常用的感温材料种类较多,最常用的是铂丝。工业测量用金属热电阻材料除铂丝外,还有铜、镍、铁、铁—镍、钨、银等。 pt100 铂热电阻 设计原理: pt100是铂热电阻,它的阻值会随着温度的变化而改变。PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。它的工业原理:当PT100在0摄氏度的时候他的阻值为100欧姆,它的的阻值会随着温度上升它的阻值是成匀速增涨的。 应用范围: 医疗、电机、工业、温度计算、阻值计算等高精温度设备,应用范围非常之广泛。 组成的部分 常见的pt1oo感温元件有陶瓷元件,玻璃元件,云母元件,它们是由铂丝分别绕在陶瓷骨架,玻璃骨架,云母骨架上再经过复杂的工艺加工而成 薄膜铂电阻:用真空沉积的薄膜技术把铂溅射在陶瓷基片上,膜厚在2微米以内,用玻璃烧结料把Ni(或Pd)引线固定,经激光调阻制成薄膜元件。 ================================================================================= Pt100 温度传感器为正温度系数热敏电阻传感器,主要技术参数如下: 测量范围:-200℃~+850℃; 允许偏差值△℃:A 级±(0.15+0.002│t│), B 级±(0.30+0.005│t│); 最小置入深度:热电阻的最小置入深度≥200mm; 允通电流≤ 5mA。 另外,Pt100 温度传感器还具有抗振动、稳定性好、准确度高、耐高压等优点。 铂热电阻的线性较好,在0~100 摄氏度之间变化时,最大非线性偏差小于0.5 摄氏度。

误差分析 热敏电阻

用非平衡电桥研究热敏电阻 摘要:文本结合用非平衡电桥研究热敏电阻实例来探讨用origin 软件做数据处理的方法,并分析其优势。 关键词:非平衡电桥,直线拟合 1 热敏电阻 热敏电阻是一种电阻值随其电阻体温度变化呈现显著变化的热敏感电阻。本实验所选择为负温度系数热敏电阻,它的电阻值随温度的升高而减少。其电阻温度特性的通用公式为: T B T Ae R = (1) 式中T 为热敏电阻所处环境的绝对温度值(单位,开尔文),今为热敏电阻在温度T 时的电阻值,A 为常数,B 为与材料有关的常数。将式(l)两边取对数,可得: T B A R T +=ln ln (2) 由实验采集得到T R T -数据,描绘出T R T 1 - ln 的曲线图,由图像得出直线的斜率B ,截距A ln ,则可以将热敏电阻的参数表达式写出来。 2 平衡电桥 电桥是一种用比较法进行测量的仪器,由于它具有很高的测t 灵敏度和准确度,在电 测技术中有较为广泛的应用,不仅能测量多种电学量,如电阻、电感、电容、互感、频率及电介质、磁介质的特性;而且配适当的传感器,还能用来测量某些非电学量,如温度、湿度、压强、微小形变等。在“测量热敏电阻温度特性”实验中用平衡电桥来测量热敏电阻的阻值,其原理如下: 在不同温度下调节电阻3R 的大小,使检流计G 的示数为0,有平衡电桥的性质可知 1 2 3 R R R R x =.在实验时,调节1R 和2R 均为1000欧姆。则x R 的值即为3R 的值。 3 非平衡电桥原理 图1

非平衡电桥的原理图如图1所示。非平衡电桥在结构形式上与平衡电桥相似,但测量方法上有很大差别。非平衡电桥是使1R 2R 3R 保持不变,x R 变化时则检流计G 的示数g I 变化。再根据“g I 与x R 函数关系,通过测量g I 从而测得x R 。由于可以检测连续变化的g I ,从而可以检测连续变化的x R ,进而检测连续变化的非电量。 4 实验条件的确定 当电桥不平衡时,电流计有电流g I 流过,我们用支路电流法求出g I 与热敏电阻x R 的关系。桥路中电流计内阻g R ,桥臂电阻1R 2R 3R 和电源电动势E 为已知量,电源内阻可忽略不计。 根据基尔霍夫第一定律和基尔霍夫第二定律,通过一些列的计算可求得热敏电阻x R E R R R R R R R R R R R I R R R R R R R R R I E R R R g g g g g g x 113213132213232132)()(+++++++-= 5 用非平衡电桥测电阻的实例 已知:微安表量程Ig=100μA ,精度等级f=1.0级,温度计的量程为100 t 100 95 90 85 80 75 70 65 60 55 50 45 40 35 Ig 100.0 95.1 89.0 83.0 77.0 70.0 62.0 54.0 46.1 39.2 32.1 25.8 18.9 11.8 T 373 368 363 358 353 348 343 338 333 328 323 318 313 308 Rt 951 1032 1140 1255 1380 1541 1749 1985 2255 2527 2850 3660 3991 4398 1/T 2.68 2.72 2.76 2.79 2.83 2.87 2.92 2.96 3.00 3.05 3.10 3.15 3.20 3.25 lnR 6.86 6.94 7.04 7.14 7.23 7.34 7.47 7.59 7.72 7.84 7.96 8.21 8.29 8.39

PTC热敏电阻器命名及应用

a CHARACTERISTICS HOW TO ORDER PTC THERMISTOR FEATURES High ageing cofficient Superior withstanding voltage oxidation-resistance. Current-Time Curve Resistance-Temperature Curve. 12 3 4 5 6 10g ( ) 2345 6 T( ) PTC THERMISTOR

MZ2 MZ2TYPE THERMISTOR FEATURES Compact for telecommunicalion and AC circuit. APPLICATION ENVIROMENTAL CONDITIONS 1060 4075%(402) 86106KPa Environmental temperature:1060 Relative humidity:4075%(402) Atmosphere pressure:86106KPa (a)(b)

THE PARAMETER OF TELECIMMUNICATION FACOLITIES APPLICATION CIRCUIT MZ21MZ2210/1000s 1KV 25A; MZ2310/310s 1.5KV 37.5A. () ()a b ()Rt:PTC Rv: Varistor MZ2TYPE THERMISTOR MZ2

THE PARAMETER OF TRANSFORMER APPLICATION CIRCUIT Operating temperature range 1060 (1) (A)(b) (2) Rt Rt

热敏电阻器如何检测

热敏电阻器如何检测 1.热敏电阻器的特性及作用 热敏电阻通常是由对温度极为敏感、热惰性很小的锰、钴、镍的氧化物烧成半导体陶瓷材料制成的一种非线性电阻,其阻值会随着温度的变化而变化。 热敏电阻按温度系数分为负温度系数(NTC)、正温度系数(PTC)和临界温度系数 三类。正温度系数电阻的阻值随温度升高而增大,负温度系数电阻的阻值随温 度升高而减小,临界温度系数电阻的阻值在临界温度附近时基本为零。 热敏电阻器大多为直热式,即热源是由电阻器本身通过电流时发热而获取的。此外还有旁热式,需外加热源。常见的热敏电阻器有圆形、垫圈形、管形等, 其外形见图6 (a)。 目前应用最广泛的是负温度系数热敏电阻器(NTC),它又可分为测温型、稳 压型、普通型。其种类很多且形状各异,常见的有管状、圆片形等。国产MTC 产品有MF51~MF57 (用于温度检测)、MF11~MF17 (用于温度补偿、温度控制)、MF21~ MF22 (用于电路稳压)、MF31 (用于微波功率测量)等系列。 正温度系数敏电阻器(PTC)的应用范围越来越广,除用于温度控制和温度测 量电路外,还大量应用于彩色电视机的消磁电路及电冰箱、电驱蚊器、电熨斗 等家用电器电路中。国产PTC 产品有MZ41~MZ42(用于吹风机、驱蚊器、卷发器等)、MZ01~MZ04 (用于电冰箱的压缩机启动电路)、MZ71~MZ75 (用于彩色电视机的消磁电路)、MZ61~MZ63 (用于电动机过热保护)、MZ2A~MZ2D (用于限流电路)等系列。 2.热敏电阻器的检测方法 热敏电阻标称阻值是在温度为25 C 的条件下,用专用仪器测得的。在业余条件下,也可用万用表电阻挡进行检测,但万用表检测时由于工作电流较大而形

热敏电阻

热敏电阻介绍 1. 温度是什么 热是一种分子运动。物体越热,它的分子运动得越快,绝对零点的定义是,在这温 度下一切分子运动都停止了。可是,我们既然不能看到分子在运动,我们怎样测量温度呢?美国全国标准和技术NIST所用的基本标准是根据理想气体定律,这定律表明,温度升高时,气体的压力或者体积必须按比例增加,此数字表示,P×V=KT,其中P=压力,V=体积,T=绝对温度,而K是个常数。在固定的体积中把分子速度加倍会使每秒钟的分子碰撞次数 加倍,或者使压力加倍。在绝对零度下,理想气体会缩小到零体积和压力,图1说明固定 体积的气体温度计,理想气体并不存在,不过氦接近理想气体,利用汞压力计用来测量气 体和蒸汽的压力和可调节的容器来测量充满氦的玻璃球的气体压力。温度改变时,就调节 容器中的柱塞,使压力计的左臂保持固定的高度,因而使氦保持固定的体积。右臂上方被 抽成真空时,汞柱的温度就显示出气体的压力,因而也显示出氦的温度,原理很简单,可 是要精确地测量就困难了。温度会影响玻璃球的体积,而连接管子和无玻璃球的温度并不 相同,而且汞柱较小的变化和汞表面的弯月也限制了测量的准确度,比这些问题更重要的是,必须对氦与理想气体定律的偏离程度作出修正。因此,利用气体定律测量温度的方法 主要是国家的标准实验,如NIST才使用。 2. 温标

制造或者标准温度计的公司或实验室需要更实用的标准。因此,国际温标NIST就 产生了,此前称为国标实用温标,以便与基本的气体定律温标加以区别,由一些国家标准 实验室参与的国际会议经常对这温标加以检讨和修订。最新的修订是在1990年公布的,改为ITS-90。温标是从一系列获得公认的基本温度或者固定点开始的,与会的实验室同意指 定某些高纯度材料的凝固点或者熔点。有时是三相点作为精确的温度数值。图2是典型的 温度固定元件,盛载着高纯度金属的石墨坩锅被封存在石墨容器中,容器中还注入氩气或 者一些其它惰性气体,表1列出几个温度的固定点,例如,银的凝固点被指定为开氏绝对 温度1234.93度或者摄氏960.323度。水的三相点比其凝固点容易受到精确的控制,它被规 定为273.16K或者0.01℃。三相点很像凝固点,只不过材料是封存在抽成真空的玻璃容器中。水所受到的只是它本身的蒸汽压而不是大气压。 因为凝固点是受到空气压力和污染的影响,三相点是可以更容易地重复获得的。三 相点是指材料是处于三相平衡,气相、液相和固相,要使温标有实效,可以在规定的固定 点之间插入传感器。ITS-90规定几个这样的传感器负责测量温标的各部分,温标的中间是 在氢的三相点和它的凝固点之间,其间插入高级的电阻温度计,称为标准的全电阻温度计SIRT、SPRT是用高纯度的白金导线精心制造烧制,而且以最少的支承物装配,因而不受 拉紧。在三个或多个固定点把温度计标准后,就可以在这些温度之间使用这个温度计。温 度计的R-T方柱是非常复杂的。必须利用电脑来处理。图3是封在Pvrex玻璃套中的SPRT。温标的最低端低至0.65K,是由氦气法定律测温法规定的,几个重叠的范围是由各自的复 杂方柱和图表规定的,在温标的高端,水银的凝固点以上的温度则利用辐射测温法来规定,辐射测温法根据的原理就在于,红外或光辐射是随着温度的升高而增加的,旧式的IPTS也是利用白金合金制成的热电偶去温度规定温标的一部分,不过在1990年修订时已经被取消了。 3. 商用传感器 下面,我们来看看和比较一下商用的温度传感器:热电偶、电阻温度计、热敏电阻 以及硅IC传感器。我们先开始迅速观察一下,表1比较了它们的特性,而图4是它们的工 作范围和准确度。热电偶只不过是两根不同的金属连在一起。连接之后,它就会产生电动势,这电动势随着温度的升高而近似线性增加。热电偶的灵敏度,线性和温度范围是和所

相关主题
文本预览
相关文档 最新文档