当前位置:文档之家› 高一物理必修1知识集锦及典型例题

高一物理必修1知识集锦及典型例题

高一物理必修1知识集锦及典型例题
高一物理必修1知识集锦及典型例题

高一物理必修1知识集锦及典型例题

典型例题

例l. 在下图甲中时间轴上标出第2s末,第5s末和第2s,第4s,并说明它们表示的是时间还是时刻。

解析:如图乙所示,第2s末和第5s末在时间轴上为一点,表示时刻

甲乙

第2s在时间轴上为一段线段,是指第1s末到第2s末之间的一段时间,即第二个1s,表示时间。第4s在时间轴上也为一段线段,是指第3s末到第4s末之间的一段时间,即第四个ls,表示时间。

答案:见解析

例2. 关于位移和路程,下列说法中正确的是

A. 在某一段时间内质点运动的位移为零,该质点不一定是静止的

B. 在某一段时间内质点运动的路程为零,该质点一定是静止的

C. 在直线运动中,质点位移的大小一定等于其路程

D. 在曲线运动中,质点位移的大小一定小于其路程

解析:位移的大小为起始与终了位置的直线距离,而与运动路径无关。路径是运动轨迹的长度。路程为零,质点肯定静止。选项B 正确。位移为零,在这段时间内质点可以往返运动回到初始位置,路程不为零,所以选项A 正确。位移大小在非单向直线运动中总小于路程,所以选项D 正确。直线运动包括单向直线运动和在直线上的往返运动,所以选项C 错误。

答案:A 、B 、D

例3. 从高为5m 处以某一初速度竖直向下抛出一个小球,在与地面相碰后弹起,上升到高为2m 处被接住,则在这段过程中

A. 小球的位移为3m ,方向竖直向下,路程为7m

B. 小球的位移为7m ,方向竖直向上,路程为7m

C. 小球的位移为3m ,方向竖直向下,路程为3m

D. 小球的位移为7m ,方向竖直向上,路程为3m

解析:本题考查基本知识在实际问题中的应用。理解位移和路程概念,并按要求去确定它们。题中物体初、末位置高度差为3m ,即位移大小,末位置在初位置下方,故位移方向竖直向下,总路程则为7m 。

答案:A

例4. 判断下列关于速度的说法,正确的是

A. 速度是表示物体运动快慢的物理量,它既有大小,又有方向。

B. 平均速度就是速度的平均值,它只有大小没有方向。

C. 汽车以速度1v 经过某一路标,子弹以速度2v 从枪口射出,1v 和2v

均指平均速度。 D. 运动物体经过某一时刻(或某一位置)的速度,叫瞬时速度,它是矢量。

解析:速度的物理意义就是描写物体运动的快慢,它是矢量,有大小,也有方向,故A 选项正确;平均速度指物体通过的位移和通过这段位移所用时间的比值,它描写变速直线运动的平均快慢程度,不是速度的平均值,它也是矢量,故B 选项不对;C 中1v 、2v 对应某一位置,为瞬时速度,故C 不对;D 为瞬

时速度的定义,D 正确。

答案:A 、D

例5. 一个物体做直线运动,前一半时间的平均速度为1v ,后一半时间的平均速度为2v ,则全程的平均

速度为多少?如果前一半位移的平均速度为

1v ,后一半位移的平均速度为2v ,全程的平均速度又为多少?

解析:(1)设总的时间为2t ,则

2

22

1212211v v t x x v t v x t v x +=+=

==,

(2)设总位移为2x ,

1122121212

,22x v t x v t v v x

v t t v v ===

=

++

例6. 打点计时器在纸带上的点迹,直接记录了 A. 物体运动的时间

B. 物体在不同时刻的位置

C. 物体在不同时间内的位移

D. 物体在不同时刻的速度

解析:电火花打点计时器和电磁打点计时器都是每隔0.02s 在纸带上打一个点。因此,根据打在纸带上的点迹,可直接反映物体的运动时间。因为纸带跟运动物体连在一起,打点计时器固定,所以纸带上的点迹就相应地记录了物体在不同时刻的位置。虽然用刻度尺量出各点迹间的间隔,可知道物体在不同时间内的位移,再根据物体的运动性质可算出物体在不同时刻的速度,但这些量不是纸带上的点迹直接记录的。综上所述,正确的选项为AB 。

答案:A 、B

例7. 如图所示,打点计时器所用电源的频率为50Hz ,某次实验中得到的一条纸带,用毫米刻度尺测量的情况如图所示,纸带在A 、C 间的平均速度为 m /s ,在A 、D 间的平均速度为 m /s ,B 点的瞬时速度更接近于 m /s 。

解析:由题意知,相邻两点间的时间间隔为0.02s 。AC 间的距离为14mm =0.014m ,AD 间的距离为25mm=0.025m 。

由公式

t x v ??=

得 0.014/0.35/20.02AC v m s m s

==? 0.025/0.42/30.02AD v m s m s

==?

答案:0.35 0.42 0.35

例8. 关于加速度,下列说法中正确的是 A. 速度变化越大,加速度一定越大

B. 速度变化所用时间越短,加速度一定越大

C. 速度变化越快,加速度一定越大

D. 速度为零,加速度一定为零

解析:由加速度的定义式

v

a t ?=

?可知,加速度与速度的变化量和速度变化所用的时间两个因素有关。

速度变化越大,加速度不一定越大;速度变化所用时间越短,若速度变化量没有确定,也不能确定加速度一定越大。加速度是描述速度变化快慢的物理量,速度变化越快,加速度一定越大;速度为零,并不是速度的变化量为零,故加速度不一定为零。

答案:C

例9. 如图所示是某矿井中的升降机由井底到井口运动的图象,试根据图象分析各段的运动情况,并计算各段的加速度。

解析:(1)0~2s ,图线是倾斜直线,说明升降机是做匀加速运动,根据速度图象中斜率的物理意义

可求得加速度2

16/a m s =。

(2)2s ~4s ,图线是平行于时间轴的直线,说明升降机是做匀速运动,根据速度图象中斜率的物理意义可求得加速度20

a =。

(3)4s ~5s ,图线是向下倾斜的直线,说明升降机是做匀减速运动,根据速度图象中斜率的物理意义

可求得加速度2

312/a m s =-。

答案:见解析

例10. 一质点从静止开始以1m /s 2的加速度匀加速运动,经5s 后做匀速运动,最后2s 的时间质点做匀减速运动时的速度是多大?减速运动直至静止,则质点匀减速运动时的加速度是多大?

解析:质点的运动过程包括加速→匀速→减速三个阶段,如图所示。

图示中AB 为加速,BC 为匀速,CD 为减速,匀速运动的速度即为AB 段的末速度,也是CD 段的初

速度,这样一来,就可以利用公式方便地求解了,

由题意画出图示,由运动学公式知:

0(015)/5/B v v at m s m s =+=+?= 5/C B v v m s ==

0v v at =+应用于CD 段(0D v =)得

22

05

/ 2.5/2D C v v a m s m s t --=

==-

负号表示a 方向与0v 方向相反 答案:5m/s -2.5m/s 2

说明:解决运动学问题要善于由题意画出运动简图,利用运动简图解题不论是从思维上还是解题过程的叙述上都变得简洁,可以说能起到事半功倍的作用。事实上,能够正确地画出运动简图说明你对题目中交待的物理过程有了很清楚的认识,这是对同学们要求比较高而且难度比较大的基本功,务必注意这一点。

例11. 汽车以l0m /s 的速度在平直公路上匀速行驶,刹车后经2s 速度变为6m /s ,求: (1)刹车后2s 内前进的距离及刹车过程中的加速度; (2)刹车后前进9m 所用的时间; (3)刹车后8s 内前进的距离。

解析:(1)汽车刹车后做匀减速直线运动,由

v v a t

-=

可求得。

22/a m s =-,再由

2

012x v t a t =+

,可求得16x m =。

(2)由2

01

2x v t at =+可得2

910t t =-

解得1

1t s =,29t s =。 要注意汽车刹车后经

0010

52v t s s a =

==-停下,故时间应为1s 。

(3)由(2)可知汽车经5s 停下,可见在8s 时间内,汽车有3s 静止不动,因此

()22011

105252522x v t at m

=+=?+?-?=

例12. 证明

(1)在匀变速直线运动中连续相等时间(T )内的位移之差等于一个恒量。

证明:2

012n x v T aT =+

2

101

()2n x v aT T aT +=++

所以

21aT x x x n n =-=?+(即2aT 为恒量)

由此结论可用来求匀变速直线运动的加速度,即

2T x a ?=

2. 在匀变速直线运动中,某段时间内中间时刻的瞬时速度等于这段时间内的平均速度。

证明:如图所示:

2B A at v v =+

C A v v at =+

222A C A A AC A v v v v at at v v +++===+

所以AC B v v = 3.

在匀变速直线运动中,某段位移中点位置处的速度为2

x v =

证明:如图所示:

22

02B v v ax -= ①

222B v v ax -= ②

由①②两式结合的:

B v =

例13. 一个作匀速直线运动的质点,在连续相等的两个时间间隔内,通过的位移分别是24m 和64m ,每一个时间间隔为4s ,求质点的初速度和加速度。

解析:匀变速直线运动的规律可用多个公式描述,因而选择不同的公式,所对应的解法也不同。如: 解法一:基本公式法:画出运动过程示意图,如图所示,因题目中只涉及位移与时间,故选择位移公式:

2

11

2A x v t at =+

22211

(2)(2)()

22A A x v t a t v t at =+-+

将1x =24m 、2x =64m ,代入上式解得: 22.5/a m s =,1/A v m s =

解法二:用平均速度公式:

连续的两段时间t 内的平均速度分别为1

124/4/6/v x m s m s ===

2264/4/16/v x t m s m s ===

B 点是A

C 段的中间时刻,则

12A B

v v v +=

22C B

v v v += 1261611(/)

222A C B v v v v v m s +++====

得1/A v m s = 21/C v m s = 211 2.5(/)248C A v v a m s --===?

解法三:用推论式:

由2aT x

=?得

)

/(5.2440

222s m T x a ==?=

再由2

11

2A x v t at =+

解得:1/A

v m s =

答案:1/m s 2.52

/m s

说明:对一般的匀变速直线运动问题,若出现相等的时间间隔问题,应优先考虑公式2aT x

=?求

例14. 物体从静止开始做匀加速直线运动,已知第4s 内与第2s 内的位移之差是12m ,则可知: A. 第1 s 内的位移为3 m B. 第2s 末的速度为8 m /s C. 物体运动的加速度为2m /s 2

D. 物体在5s 内的平均速度为15 m /s

解析:本题全面考查匀变速直线运动规律的应用,以及掌握的熟练程度,本题涉及到四个物理量的确定,要求对这些物理量的关系能融会贯通,并能抓住加速度这一关键。由题意,可利用2x

aT ?=先求出

a 。

设第1 s 内、第2 s 内、第3 s 内、第4 s 内的位移分别为x 1、x 2、x 3、x 4,则

x 3-x 2=aT 2, x 4-x 3=aT 2 所以x 4-x 2=2aT 2 故a =42

2

2x x T -=2

1221

?=6m/s 2

又x 1=aT 2/2=6?1/2=3m

第2s 末的速度v 2=at 2=6?2=12m/s

5s 内的平均速度25/2at v t =

=62525??=15m/s

答案:AD

例15. 一滑块由静止开始,从斜面顶端匀加速下滑,第5s 末的速度是6m/s 。求: (1)第4s 末的速度;(2)头7s 内的位移;(3)第3s 内的位移。 解析:根据初速度为零的匀变速直线运动的比例关系求解。 (1)因为

123:::v v v ……=1:2:3:……

所以45

:4:5v v =

第4s 末的速度为

4544

6/ 4.8/55v v m s m s

==?=

(2)由t v x ?=得前5s 内的位移为:

m

m t v x 15526

2=?=?=

因为1

23:::x x x ……2231:2:3=……

所以22

57:5:7x x =

前7s 内的位移为:27527715

29.455x x m m

?===

(3)由(2)可得22

15:1:5x x =

1522115

0.655x x m m =

== 因为1

3:x x ……=1:5:……

所以

13:x x =1:5

第3s 内的位移31550.63x x m m

==?=

例16. 汽车以10m/s 的速度在平直公路上匀速行驶,突然发现前方xm 处有一辆自行车正以4m/s 的速度同方向匀速行驶,汽车司机立即关闭油门并以6m/s 2的加速度做匀减速运动。如果汽车恰好撞不上自行车,则x 应为多大?

解析:这是一道很典型的追及问题,开始阶段汽车的速度大,在相同时间内汽车的位移大于自行车的位移,所以它们之间的距离逐渐减小,到速度相等时距离最小,如果此时汽车恰好没碰上自行车,以后它们的距离就会变大,再也不会碰上了。

解法1:利用速度相等这一条件求解。

当汽车的速度v 1和自行车的速度v 2相等时二者相距最近, v 1=v 0+at v 2=v 自

当v 1=v 2时,即v 0+at = v 自,即时间为

t =

0v 410

a 6v --=-自=1s 若此时恰好相撞,则位移相等,

x 1=v 0t +1

2at 2 x 2= v 自

t +x

由x 1=

x 2得v 0t +1

2at 2= v 自

t +x

解得 x =3m

所以汽车撞不上自行车的条件是:x>3m 解法2:利用二次方程判别式求解

如果两车相撞,则v 0t +1

2

at 2= v 自t +x

带入数据并整理得 3t 2-6t +x =0

t 有解即能相撞的条件是

?≥0

即62-4?3x ≥0 x ≤3m

所以二者不相撞的条件是:x>3m

例17. 公共汽车由停车站从静止出发以0.5m/s 2的加速度作匀加速直线运动,同时一辆汽车以36km/h 的不变速度从后面越过公共汽车。求:

(1)经过多长时间公共汽车能追上汽车?

(2)后车追上前车之前,经多长时间两车相距最远,最远是多少? 解析:(1)追上即同一时刻二者处于同一位置,由于它们出发点相同,所以相遇时位移相同,即 x 汽=x 公 at 2/2=v 汽t t =2v 公/a =2?10/0.5=40s

(2)在汽车速度大于公共汽车速度过程中,二者距离逐渐增大,速度相等时距离最大,之后公共汽车速度将大于汽车速度,二者距离就会减小,所以速度相等时相距最远。 则 v 汽=v 公 at = v 汽 t = v 汽/a =10/0.5=20s

最远距离x = v 汽t - at 2/2=10?20-0.5?202/2=100m

【例1】在光滑的水平面上静止一物体,现以水平恒力甲推此物体,作用一段时间后换成相反方向的水平恒力乙推物体,当恒力乙作用时间与恒力甲的作用时间相同时,物体恰好回到原处,此时物体的速度为v 2,若撤去恒力甲的瞬间物体的速度为v 1,则v 2∶v 1=? 【解析】

s s '-=,而t v s 21=

,t v v s 2

)(21-+='- 得v 2∶

v 1=2∶1

思考:在例1中,F 1、F 2大小之比为多少?(答案:1∶3)

【例2】一辆汽车沿平直公路从甲站开往乙站,起动加速度为2m/s 2,加速行驶5秒,后匀速行驶2分钟,然后刹车,滑行50m ,正好到达乙站,求汽车从甲站到乙站的平均速度?

解析:起动阶段行驶位移为:

s 1=

2

12

1at ... (1)

匀速行驶的速度: v = at 1 ……(2) 匀速行驶的位移为: s 2 =vt 2 ……(3) 刹车段的时间为: s 3 =

32

t v

……(4) 汽车从甲站到乙站的平均速度为:

v =

s m s m s m t t t s s s /44.9/135

1275

/10120550120025321321==++++=++++

【例3】一物体由斜面顶端由静止开始匀加速下滑,最初的3秒内的位移为s 1,最后3秒内的位移为

s 2,若s 2-s 1=6米,s 1∶s 2=3∶7,求斜面的长度为多少?

解析:设斜面长为s ,加速度为a ,沿斜面下滑的总时间为t 。则:

斜面长: s =

2

1at 2 …… ( 1) 匀加速 匀速 匀减速 甲 t 1 t 2 t 3 乙

s 1 s 2 s

3

前3秒内的位移:s 1 =

21at 12 ……(2) 后3秒内的位移: s 2 =s -2

1

a (t -3)2 (3)

s 2-s 1=6 …… (4) s 1∶s 2 = 3∶7 …… (5) 解(1)—(5)得:a =1m/s 2 t = 5s s =12 . 5m

【例4】物块以v 0=4米/秒的速度滑上光滑的斜面,途经A 、B 两点,已知在A 点时的速度是B 点时的速度的2倍,由B 点再经0.5秒物块滑到斜面顶点C 速度变为零,A 、B 相距0.75米,求斜面的长度及物体由D 运动到B 的时间?

解析:物块匀减速直线运动。 vc

A 到

B : v B 2 - v A 2 =2as AB ……(1) v A = 2v B ……(2) B 到

C : 0=v B + at 0 ……..(3) 解(1)(2)(3)得:v B

=1m/s a = -2m/s 2

D 到C 0 - v 02

=2as (4) s= 4m

从D 运动到B 的时间: D 到B : v B =v 0+ at 1 t 1=1.5秒

D 到C 再回到B :t 2 = t 1+2t 0=1.5+2?0.5=2.5(s)

【例5】一质点沿AD 直线作匀加速直线运动,如图,测得它在AB 、BC 、CD 三段的时间均为t ,测得位移AC =L 1,BD =L 2,试求质点的加速度?

解:设AB =s 1、BC =s 2、CD =s 3 则: s 2-s 1=at 2 s 3-s 2=at 2 两式相加:s 3-s 1=2at 2

由图可知:L 2-L 1=(s 3+s 2)-(s 2+s 1)=s 3-s 1 则:a =

2

122t L L -

【例7】一个做匀加速直线运动的物体,连续通过两段长为s 的位移所用的时间分别为t 1、t 2,求物体的加速度?

解:方法(1):设前段位移的初速度为v 0,加速度为a ,则:

前一段s : s =v 0t 1 +

2

12

1at ……(1) 全过程2s : 2s =v 0(t 1+t 2)+2

21)(2

1t t a + (2)

消去v 0得: a = )

()

(2212121t t t t t t s +-

方法(2):设前一段时间t 1的中间时刻的瞬时速度为v 1,后一段时间t 2的中间时刻的瞬时速度为v 2。所以:

v 1=

1

t s ……(1) v 2=

2

t s ……(2)v 2=v 1+a (

2

22

1t t +) (3)

解(1)(2)(3)得相同结果。 方法(3):设前一段位移的初速度为v 0,末速度为v ,加速度为a 。 前一段s : s =v 0t 1 + 2

12

1at ……(1) 后一段s : s =vt 2 +

2

22

1at ……(2) v = v 0 + at ……(3) 解(1)(2)(3)得相同结果。

A B C D

牛顿运动定律:

(一)牛顿物理学的基石——牛顿第一定律(即惯性定律)

1. 牛顿第一定律也叫惯性定律。内容:一切物体总保持静止或匀速直线运动状态,直到作用在它上面的力迫使它改变这种状态为止。

2. 惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫惯性。

3. 惯性与质量:质量是惯性大小的唯一量度。

4. 物体运动快慢的改变和运动方向的改变,即速度的改变叫运动状态的改变。

如何正确理解牛顿第一定律?

对牛顿第一定律应从以下几个方面来理解:

1. 明确了惯性的概念:

定律的前半句话“一切物体总保持匀速直线运动状态或静止状态”,揭示了物体所具有的一个重要的属性——惯性,即物体保持匀速直线运动状态或静止状态的性质,牛顿第一定律指出一切物体在任何情况下

都具有惯性。

2. 确定了力的含义:

定律的后半句话“直到有外力迫使它改变这种运动状态为止”,实际上是对力的定义,即力是改变物体运动状态的原因,并不是维持物体运动的原因,这一点要切实理解。 3. 定性揭示了力和运动的关系:

牛顿第一定律指出物体不受外力作用时的运动规律,它描述的只是一种理想状态,而实际中不受外力作用的物体是不存在的,当物体所受合外力为零时,其效果跟不受外力作用相同。因此,可以把“不受外力作用”理解为“合外力为零”。 如何理解惯性?

1. 惯性是物体的固有属性:一切物体都具有惯性。

2. 惯性与运动状态无关:不论物体是处于怎样的运动状态,惯性总是存在的,当物体原来静止时,它一直“想”保持这种静止状态;当物体运动时,它一直“想”以那一时刻的速度做匀速直线运动。

3. 惯性与物体是否受力无关,与速度大小无关。

(二)实验:探究加速度与力、质量的关系

<一>方法探究

研究“牛顿第二定律”实验所研究的是物体运动的加速度与物体所受外力F 的关系,物体运动的加速度与物体的质量m 的关系,即a 、F 、m 间的关系。由于加速度a 随F 、物体的质量m 的变化而同时发生变化,所以它们间的关系难以确定。实验中为了研究三者的关系可采用控制变量法,所谓控制变量法,就是将具有某种相互联系的三个或多个物理量中的一个或几个加以控制,使之保持不变,研究另外两个物理量之间的关系;此后再控制另一个物理量,使之保持不变,研究剩余的两个物理量之间的关系。

本实验在研究a 、F 、m 之间的关系时,先控制物体的质量m 不变,改变力F 的大小,研究a 与F 的关系;再控制物体所受的外力F 不变,改变物体的质量m ,研究a 与m 的定量关系;最后将二者加以归纳综合,得出a 、F 、m 三者之间的定量关系。

<二>实验装置(参考课本案例)

如图所示,取两个质量相同的小车,放在光滑的水平板上,小车的前端各系上细绳,绳的另一端跨过定滑轮各挂一个小盘,盘里分别放上砝码,使两小车在绳的拉力作用下做匀加速运动。实验时,要求砝码跟小车相比质量较小,则小车所受的水平拉力F 的大小可以认为等于砝码(包括砝码盘)所受重力的大小,车的后端也分别系上细绳,用一只夹子夹住这两根绳,以同时控制两辆小车,使它们同时运动和停止运动。

<三>实验说明(参考课本案例)

1. 本实验中是将小车放在光滑的水平板上,忽略了小车所受木板对它的滑动摩擦力F 。事实上,水平板是很难做到光滑的,且小车所受木板对它的滑动摩擦力F ,随小车质量的变化而变化,这样给验证实验过程带来了不必要的麻烦。一方面需要测定滑动摩擦因数,另一方面还要测量、计算每次改变小车的质量后的摩擦力,显然大大增加了实验的难度。因此,实际操作中常采用平衡摩擦力的方法将实验简化。即将表面平整的木板的一端垫起,使放在它上表面的小车所受重力沿斜面的分量θ

sin 'mg G =

与摩擦阻力

cos F mg μμθ=相等,即tan μθ=,此时无论物体的质量怎样变化只要tan μθ=成立,就一定存

在μF

G =',于是实现了化“变”为“不变”,即平衡了摩擦力之后的实验就等效于物体不受摩擦阻力作

用,这样小车受到的合外力就是细线对小车的拉力。

注意 平衡摩擦力时要使小车拖着纸带,使纸带通过打点计时器,并且使打点计时器处于工作状态,通过打出的纸带判断小车是否做匀速直线运动,从而判断是否已经平衡了摩擦力。 2. 怎样提供和测量物体所受恒力

可以用小盘和砝码牵引小车,使小车做匀加速运动的力近似地与小盘和砝码的重力相等。 注意:

(1)砝码(及盘)跟小车相比质量很小,细绳对小车的拉力可近似地等于砝码所受的重力。 (2)实验是通过改变盘中砝码的数目来改变绳对小车拉力的大小的。

(三)牛顿第二定律

<一>1. 内容:物体的加速度跟作用力成正比,跟物体的质量成反比。加速度的方向跟作用力的方向相同。当物体受多个力作用时,牛顿第二定律可表述为:物体的加速度跟合外力成正比,跟物体的质量成反

比。加速度的方向跟合外力的方向相同。

2. 数学表达式:F合=ma。

注意公式的同体性、矢量性、瞬时性

3. 物理意义:反映了物体的加速度与所受外力的合力及物体的质量间的关系。说明物体的加速度由合外力和物体的质量决定。

4. 牛顿第二定律的适用范围:宏观低速物体。

<二>力的单位

1. 牛顿的含义:在国际单位制中,力的单位是牛顿,符号。它是根据牛顿第二定律定义的:使质量为1kg的物体产生1m/s2加速度的力,叫做1N。

2. 比例关系k的含义:根据F=kma知,k=F/ma,因此k在数值上等于使单位质量的物体产生单位加速度的力的大小。k的大小由F、m、a三者的单位共同决定,三者取不同的单位k的数值不一样,在国际单位制中,k=1,由此可知,在应用公式F=ma进行计算时,F、m、a的单位必须统一为国际单位制中相应的单位。

(四)牛顿第三定律:

1. 内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一直线上。这就是牛顿第三定律。

2. 理解作用力与反作用力的关系时,要注意以下几点:

(1)作用力与反作用力同时产生,同时消失,同时变化,无先后之分。

(2)作用力与反作用力总是大小相等,方向相反,作用在同一直线上(与物体的大小,形状,运动状态均无关系。)

(3)作用力与反作用力分别作用在施力物体和受力物体上,其作用效果分别体现在各自的受力物体上,所以作用力与反作用力产生的效果不能抵消。(作用力与反作用力能否求和?不能)

(4)作用力与反作用力一定是同种性质的力。(平衡力的性质呢?)

3. 对于牛顿第三定律要明确

(1)定律揭示了相互作用的两个物体之间的作用力与反作用力的关系。

(2)作用力与反作用力具有“四个相同”。即大小相同,性质相同、出现、存在、消失的时间相同,作用线在同一条直线上。“三个不一样”即方向不一样。施力物体和受力物体不一样,效果不一样。

(3)相互作用力与平衡力的区别关键点是平衡力作用在同一物体上,不一定同时产生或同时消失,也不一定是同性质的力。

(五)牛顿定律的应用

一、力学单位制

1. 基本单位和导出单位

我们选定几个物理量的单位作为基本单位,基本单位是人为规定的。利用物理公式由基本单位推导出来的其他物理量的单位,叫做导出单位。

注:物理公式在确定物理量的数量关系的同时,也确定了物理量的单位关系。

2. 单位制

基本单位和导出单位一起组成单位制,例如国际单位制。

3. 力学单位制

在力学中选定长度、质量和时间这三个物理量的单位作为基本单位,根据力学公式就可以推导出其余物体量(如速度、加速度、力等)的单位,它们一起组成了力学单位制。

注:在国际单位制(S1)中,力学的三个基本单位分别长度单位是米,质量单位是千克,时间单位是秒。另外,国际单位制在热学、电学、光学中还有四个基本单位,以后将进一步学习。

4. 单位制在物理计算中的作用

在物理计算中,如果所有已知量都用同一单位制中的单位表示,计算结果就一定是用该单位制中的单位表示的,所以,在计算过程中就不必一一写出各个量的单位,直接在结果中写出所求物理量的单位即可。计算前注意先要把各已知量的单位统一为同一单位制中的单位。在物理计算中,一般采用国际单位制。

单位制的意义是什么

对一个物理量进行定量描述,仅仅用一个数是不够的,一定得在数后带有单位,同一个物理量,选用不同单位其数不同。在研究物理问题中,用物理概念、物理规律研究物理与物理量的关系时,物理单位要跟随物理量参与运算。物理单位进入物理关系的数学表达式,对准确理解物理概念、物理关系很有帮助,但表达式繁杂。选用了统一的单位制后,每一个物理量在这一单位制中有确定的单位,进行物理运算时,可以只计算数据,不必带单位,从而使物理运算简化。“kg、m、s”在力学中有最基本的地位,用这些物理量的单位做基本单位后,可使基本单位的数目最少,所以在力学中规定m、kg、s为国际单位制的基本单位。

二、超重和失重

1. 弹簧秤是测量力的仪器,用弹簧秤来测量物体的重力。只有在物体处于平衡时,弹簧的弹力才等于物体重力的大小。

2. 超重:当物体具有向上的加速度时,物体对支持物的压力(或对悬线的拉力)大于物体所受的重力的现象称为超重(overweigh)现象。

由此可知:产生超重现象的条件是物体具有向上的加速度,它与物体运动速度的大小和方向无关。超重包括加速上升和减速下降两种情况。

3. 失重:当物体具有向下的加速度时,物体对支持物的压力(或对悬挂物的拉力)小于物体所受的重力的现象,称为失重(weightlessness)现象。

由此可知:产生失重现象的条件是物体具有向下的加速度,它与物体运动速度的大小和方向无关。失重现象包括加速下降和减速上升两种情况。

4. 完全失重:物体对支持物的压力(或对悬挂物的拉力)等于0的状态,叫做完全失重状态。

产生完全失重现象的条件:当物体竖直向下的加速度等于g 时,就产生完全失重现象。

如何正确理解“超重”、“失重”的本质

超重不是重力增加,失重不是重力减小,完全失重不是重力消失。在超、失重现象中,重力不变,仅是“视重”的变化。在完全失重状态下,平常重力产生的一切物理现象都不存在。

三、关于轻绳、轻弹簧的问题

1. 轻绳

(1)拉力的方向一定沿绳。(2)同一根绳上各处的拉力大小都相等。

(3)认为受力形变极微,看作不可伸长。(4)弹力可作瞬间变化。

2. 轻弹簧

(1)各处的弹力大小相等,方向与弹簧形变的方向相反。

(2)弹力的大小遵循F=kx的关系。

(3)弹簧的弹力不能发生突变。

四、关于临界问题处理的基本方法是

1. 要详细分析物理过程,根据条件变化或过程的发展分析引起的受力情况的变化和状态的变化,找到临界点或临界条件。

2. 常用极限分析法分析临界点或临界条件,即利用放大或缩小的思想使问题暴露得更明显,更突出。

五、连接体问题

1. 连接体:两个或两个以上相互联系的物体组成连接体。

2. 整体法:当两个或两个以上有相互联系的物体相对同一参考系具有相同加速度时,可选整体为研究对象。

3. 隔离法:把题目中每一物体隔离出来分别进行受力分析、列方程

4. 选取研究对象的原则有两点:

(1)受力情况简单,与已知量、未知量关系密切。

(2)先整体后隔离。

构成连接体的各部分之间的重要的联系纽带之一就是加速度,当两个或两个以上的物体相对同一参考系具有相同加速度时,有些题目也可采用整体与隔离相结合的方法,一般步骤用整体法或隔离法求出加速度,然后用隔离法或整体法求出未知力。

例18. 下列说法中正确的是

A. 同学甲用力把同学乙推倒,说明只是甲对乙有力的作用,乙对甲没有力的作用

B. 只有有生命的物体才会施力,无生命的物体只能受到力,不会施力

C. 任何一个物体,一定既是受力物体,也是施力物体

D. 在几组力的图示中,长的线段所对应的力一定比短的线段所对应的力大

解析:力的作用是相互的。但效果可以不同,故A错。

不管物体是否有生命,当它与别的物体发生相互作用时,它既是施力物体,同时也是受力物体。不存在只施力不受力的物体,也不存在只受力不施力的物体,故B错。

自然界中的物体都不是孤立的,而是相互联系着的,每一个物体总会受到别的物体的作用,是受力体,同时也对别的物体施加力的作用,又是施力体,故C正确。

在同一个标度下,说法D没有错,但在没有指明力的标度或采用不同标度时,线段的长度就失去了表示力的大小的意义,故D错。

答案:C

说明:本题考查了力的概念。力是物体间的相互作用。

一方面说明了力不能脱离物体而存在,另一方面说明了力的相互性,一个物体既是施力物体,同时也是受力物体。

例19. 请在下图画出杆和球所受的弹力。

(a)杆在重力作用下对A、B两处都产生挤压作用,故A、B两点处对杆都有弹力,弹力方向与接触点的平面垂直,如下图(a)所示。

(b)杆对C、D两处有挤压作用,因C处为曲面,D处为支撑点,所以C处弹力垂直其切面指向球心,D处弹力垂直杆向上。如下图(b)所示。

(c)挤压墙壁且拉紧绳子,所以墙对球的弹力与墙面垂直;绳子对球的弹力沿绳斜向上。如下图(c)所示。

说明:面接触时的压力和支持力与接触面垂直,但不一定竖直,点接触的压力和支持力与过切点的切面垂直,沿球面的半径方向。

例20. 用水平推力F=20N把一个质量为5kg的物体压在竖直墙壁上下滑,墙壁与物体的动摩擦因数为

0.2,判断物体所受摩擦力的方向,求摩擦力的大小。

解析:物体对墙壁的压力F N=F=20N,所受摩擦力F’= F

N

=0.2×20N=4N,物体相对于墙下滑,

物体受到的摩擦力的方向向上。

答案:向上4N

说明:物体对接触面的压力不一定等于物体受的重力。

例21. 如图所示,地面上叠放着A、B两个物体,力F分别作用于A、B两物体上时,A、B静止不动,试分别分析A、B受到的摩擦力的情况。

解析:(1)F作用于A物体,A相对B有向右的运动趋势,B相对A有向左的运动趋势,故A受到向左的静摩擦力,其大小等于F。B受到A给它的向右的静摩擦力,其大小也等于F。由于A、B相对静止,B有向右运动的趋势,因此B受到地面给它的向左的静摩擦力,大小也等于F,如下图所示。

(2)F 作用于B 物体上,B 相对地有向右的运动趋势,故B 受到地面给它的向左的静摩擦力,大小等于F 。而A 物体若受到B 物体给它的摩擦力,则不可能静止,故A 、B 之间没有摩擦力的作用。如下图所示。

答案:见解析。

说明:在判断物体之间有无静摩擦力时,也可以先假设两物体之间有静摩擦力的作用,而实际情况与判断的结果不符,则无此静摩擦力。

例22. 关于两个力的合力,下列说法错误的是 A. 两个力的合力一定大于每个分力

B. 两个力的合力可能小于较小的那个分力

C. 两个力的合力一定小于或等于两个分力

D. 当两个力大小相等时,它们的合力可能等于分力大小

解析:设分力F 1与分力F 2的夹角为θ,根据力的平行四边形定则,合力为F ,以F 1、F 2为邻边的平行四边形所夹的对角线,如图所示。当0

θ

=时,F =F 1+F 2;当180

θ

=时,F =|F 1-F 2|,以上分别为

合力F 的最大值和最小值。当F 1=F 2且夹角180

θ=时,合力F =0,小于任何一个分力,当F 1=F 2,夹

角120

θ

=时,合力F =F 1=F 2,故本题的正确答案为AC 。

答案:A C

例23. 在电线杆的两侧常用钢丝绳把它固定在地上(如图)。如果钢丝绳与地面的夹角

60

A B ∠=∠=,每条钢丝绳的拉力都是300N ,求两根钢丝绳作用在电线杆上的合力。

解析:由图可知,两根钢丝绳的拉力F 1和F 2之间的夹角为60,可根据平行四边形定则用作图法和解三角形法求出电线杆受到的合力。

方法一:作图法。 自O 点引两条有向线段OC 和OD ,夹角为60。设定每单位长度表示100N ,则OC 和OD 的长度都是3个单位长度,作出平行四边形OCED ,其对角线OE 就表示两个拉力F 1、F 2的合力F ,量得OE 长为5.2个单位长度。

所以合力F =100×5.2N =520N

用量角器量得30COE DOE ∠=∠=

所以合力方向竖直向下。

方法二:计算法。先画出力的平行四边形,如图所示,由于OC =OD ,得到的是菱形。连结CD 、OE ,两对角线垂直且平分,OD 表示300N ,

30'=∠COO 。在三角形'OCO 中,

30cos 'OC OO =。在

力的平行四边形中,各线段的长表示力的大小,则有

1c o s 302F

F =,所以合力

13

2c o s 302

300519.6

F F N N ==

??=

说明:力的合成有“作图法”和“计算法”,两种解法各有千秋。“作图法”形象直观,一目了然,但不够精确,误差大;“计算法”是用平行四边形先作图,再解三角形,似乎比较麻烦,但计算结果更准确。今后我们遇到的求合力的问题,多数都用计算法,即根据平行四边形定则作出平行四边形后,通过解其中的三角形求合力。在这种情况下作的是示意图,不需要很严格,但要规范,明确哪些该画实线,哪些该画虚线,箭头应标在什么位置等。

例24. 物体受到三个力的作用,其中两个力的大小分别为5N 和7N ,这三个力的合力最大值为21N ,则第三个力的大小为多少?这三个力的合力最小值为多少?

解析:当三个力的合力最大时,这三个力一定是在同一直线上,且方向相同,即合力F 合=F 1+F 2+F 3,则F 3= F 合-F 1-F 2=9N. 关于三个力的合力的最小值问题,有些同学仍受标量代数求和的干扰,不能真正理解矢量运算法则,而错误地认为合力最小值F’合=F 1+F 2-F 3=3N ,正确的方法应是:看三个力的大小是否能构成一个封闭三角形,即任取一个力,看这个力是否处在另外两个力的差和之间。若三个力满足上述条件,则合力的最小值为零;若不满足上述条件,则合力的最小值为较小的两个力先同方向合成,再和较大的一个力反方向合成的合力。

答案:第三个力大小是9N ,三个力合力的最小值为零。

例25. 将一个力F 分解为两个分力F 1和F 2,则下列说法中正确的是 A. F 是物体实际受到的力

B. F 1和F 2两个分力在效果上可以取代力F

C. 物体受到F 1、F 2和F 三个力的作用

D. F 是F 1和F 2的合力

解析:由分力和合力具有等效性可知B 正确,分力F 1和F 2并不是物体实际受到的力,故A 对C 错。 答案:A 、B 、D

说明:合力与分力是一种等效替代关系,在力的合成中,分力是物体实际受到的力。在力的分解中,分力不是物体实际受到的力。 例26. 如图所示,电灯的重力G =10N ,AO 绳与顶板间夹角为45,BO 绳水平,则AO 绳所受的拉力F 1= ;BO 绳所受的拉力F 2= 。

解析:先分析物理现象:为什么绳AO 、BO 受到拉力呢?原因是由于OC 绳的拉力产生了两个效果,一是沿AO 向下的拉紧AO 的分力F l ;二是沿BO 向左的拉紧BO 绳的分力F 2,画出平行四边形,如图所示,因为OC 拉力等于电灯重力,因此由几何关系得

1sin 102F G N θ==,N G F 10tan /2==θ

答案:210N 10N

说明:将一个已知力分解,在理论上是任意的,只要符合平行四边形定则就行,但在实际问题中,首先要弄清所分解的力有哪些效果,再确定各分力的方向,最后应用平行四边形定则求解。 例27. 在倾角30α=的斜面上有一块竖直放置的挡板,在挡板和斜面之间放有一个重为G =20N 光滑圆球,如图甲所示,试求这个球对斜面的压力和对挡板的压力。

解析:先分析物理现象,为什么挡板和斜面受压力呢?原因是球受到向下的重力作用,这个重力总是欲使球向下运动,但是由于挡板和斜面的支持,球才保持静止状态,因此球的重力产生了两个作用效果,如图乙所示,故产生两个分力:一是使球垂直压紧挡板的力F 1,二是使球垂直压紧斜面的力F 2;由几何关系得:

1tan F G α=,2cos F G α=。F

1和F 2分别等于球对挡板和斜面的压力。

答案:1tan F G α

=,2cos F G α

=

说明:根据力实际产生的效果分解是同学们应该掌握的—项很重要的方法。

例28 在车厢内光滑的水平桌面上放一小球,当火车突然启动向右运动时,相对于车厢小球将怎样运动?相对于地面小球又将怎样运动?如果桌面是粗糙的,小球的运动情况又如何改变?

解析 小球原来与车厢一起处于静止状态,当火车突然启动向右运动时,由于小球具有惯性,还要保持原来的相对地面的静止状态,所以小球相对于车厢要向左运动。

如果此时桌面是光滑的,小球的水平方向就不受力,将相对于车厢以火车相对地面的速度大小向相反方向运动,只要桌面足够大,小球的运动就不会停止。因而,小球相对于车厢运动的距离和火车相对于地面运动的距离始终是相等的,所以,小球在这一瞬间将是相对于车厢向左运动的,而相对于地面是静止的。

如果此时桌面是粗糙的,小球虽然相对于车厢向左运动,但由于水平方向受到了摩擦阻力,不断地改变着小球向左的运动速度的大小,使得小球向左的速度越来越小,最终停止运动,相对于车厢保持静止,所以小球在火车启动瞬间将相对于车厢向左运动,相对于地面却在向右运动。

答案见解析。

说明分析惯性现象问题时,要注意掌握正确的分析方法,通常解决这类问题的一般思路为:

(1)分析物体原来处于何种状态;

(2)发生了什么特殊情况;

(3)找到哪个物体还要保持原来的什么运动状态;

(4)产生了什么现象;

(5)最终会导致什么样的结果。

值得注意的是:静止是速度为零的一种运动状态。

例29 有哪些方法可以验证a与F的正比例关系?

解析方法一直接验证

(1)比例法:验证:

11

22

F a

F a

=

12

12

F F

a a

=

(2)图象法:作a—F图象,看其是否为过原点的直线方法二间接验证

根据本实验设计,两车同时运动,同时停止,具有相同的运动时间,因为

2

1

2

x at

=

,所以

11

22

x a

x a

=

由此可见,只要验证x与F的正比例关系即可。

答案见解析。

说明这种方法可以推导验证物理学中的各种正比例关系。

例30 静止在光滑水平面上的物体,受到一个水平拉力,在力刚开始作用的瞬间,下列说法中正确的是

A. 物体立即获得加速度和速度

B. 物体立即获得加速度,但速度仍为零

C. 物体立即获得速度,但加速度仍为零

D. 物体的速度和加速度均为零

解析由牛顿第二定律的瞬时性可知,力作用的瞬时即可获得加速度,但无速度。

答案 B

说明力是加速度产生的原因,加速度是力作用的结果,加速度和力之间,具有因果性、瞬时性、矢量性。

例31 如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向37o角,球和车厢相对静止,球的质量为1kg。(g=10m/s2,sin37o=0.6,cos37o=0.8)

(1)求车厢运动的加速度并说明车厢的运动情况。

(2)求悬线对球的拉力。

解析(1)球和车厢相对静止,它们的速度情况相同,由于对球的受力情况知道的较多,故应以球为研究对象,球受两个力作用:重力mg和线的拉力F,由于球随车一起沿水平方向做匀变速直线运动,故其加速度沿水平方向,合外力沿水平方向,做出平行四边形如图所示。球所受的合外力为

tan 37

F mg

=合

由牛顿第二定律

F ma =合可求得

球的加速度为

2tan 377.5/F a g m s m =

==合

加速度方向水平向右。

车厢可能水平向右做匀加速直线运动,也可能水平向左做匀减速直线运动。 (2)由图示可得,线对球的拉力大小为

110

12.5cos370.8

mg F N N

?=

==

答案 见解析。

说明 本题解题的关键是根据小球的加速度方向,判断出物体所受合外力的方向,然后画出平行四边形,解其中的三角形就可求得结果。

例32 如图所示,一物体质量为m=100kg ,放于汽车上,随车一起沿平直公路匀加速运动,加速度大小为21.0/a

m s =,已知物体与车底板间的动摩擦因数为0.3μ=,求物体所受的摩擦力。

解析 物体随车一起向右作匀加速运动,其加速度水平向右,由加速度与合力方向相同可知,此时,物体所受的静摩擦力方向必水平向右,则物体受力如图所示,据牛顿第二定律得。

在水平方向上有:

100 1.0100F m a N N ==?=。

即物体所受静摩擦力大小为100N ,方向水平向右。 答案 100N 水平向右

说明 (1)利用牛顿第二定律求静摩擦力的大小和方向较方便。

(2)同学们可以自己利用牛顿第二定律分析一下,当汽车刹车时(货物在车上不滑动)时,货物所受静摩擦力的大小和方向。与用假设接触面光滑法判断静摩擦力方向相比较,利用牛顿第二定律法往往会更方便!

题型1 已知物体的受力情况,求解物体的运动情况 例33. 质量m =4kg 的物块,在一个平行于斜面向上的拉力F =40N 作用下,从静止开始沿斜面向上运动,如图所示,已知斜面足够长,倾角θ=37°,物块与斜面间的动摩擦因数μ=0.2,力F 作用了5s ,求物块

在5s 内的位移及它在5s 末的速度。(g =10m/s 2

,sin37°=0.6,cos37°=0.8)

解析:

如图,建立直角坐标系,把重力mg 沿x 轴和y 轴的方向分解

G X

G x =mgsin θ G y =mgcos θ y 轴 F N =mgcos θ F μ=μF n =μmgcos θ

x 轴 由牛顿第二定律得 F -F μ-G X =ma 即 F -μmgcos θ-mgsin θ=ma

a =m mg mg F θ

θμsin cos --

=46

.01048.01042.040??-???-

=2.4m/s 2

5s 内的位移 x =21at 2=21

×2.4×52=30m

5s 末的速度 v =at =2.4×5=12m/s

题型2 已知运动情况求物体的受力情况 例34. 如图所示,质量为0.5kg 的物体在与水平面成300角的拉力F 作用下,沿水平桌面向右做直线运动,经过0.5m 的距离速度由0.6m/s 变为0.4m/s ,已知物体与桌面间的动摩擦因数μ=0.1,求作用力F 的大小。(g =10m/s 2)

F

解析:对物体受力分析,建立直角坐标系如图

F

由v t 2

-v 02

=2ax

a =(v t 2-v 02)/2x

=(0.42-0.62)/2×0.5 =-0.2m/s 2

负号表示加速度方向与速度方向相反,即方向向左。

高一物理典型例题

高一物理典型例题 关联速度1光滑水平面上有A、B两个物体,通过一根跨过定滑轮的轻绳子相连,如图,它们的质量分别为m A和m B,当水平力F拉着A向右运动,某时绳子与水平面夹角为θA=45?,θB=30?时,A、B两物体的速度之比VA:VB应该是________ 小船过河1若河宽仍为100m,已知水流速度是5m/s,小船在静水中的速度是4m/s,即船速(静水中)小于水速。求:1.欲使船渡河时间最短,求渡河位移? 2.欲使航行距离最短,船应该怎样渡河?求渡河时间? 平抛1小球从斜面上方一定高度处向着水平抛出,初速度v0,已知传送带的倾角为θ。1.若小球垂直撞击斜面,求飞行时间t1 ,求水平位移x1; 2.若小球到达斜面的位移最小,求飞行时间t2 求速度偏转角的正切值; 3.反向平抛,何时离斜面最远; 平抛实验1如右图所示在“研究平抛物体的运动”实验中用方格纸记录了小球的运动轨迹,a、 b、c和d为轨迹上的四点,小方格的边长为L,重力加速度为g。求: 1.小球做平抛运动的初速度大小为v0 2.b点时速度大小为vb

3.从抛出点到c点的飞行时间Tc 4.已知a点坐标(xy)求抛出点坐标 水平圆周1如图所示,在光滑的圆锥顶用长为L的细线悬挂一质量为m的小球,圆锥体固定在水平面上不动,其轴线沿竖直方向,母线与轴线之间的夹角为30°,小球以一定速率绕圆锥体轴线做水平匀速圆周运动,求恰好离开斜面时线速度 竖直圆周1如图所示,光滑水平面AB与竖直面内的半圆形导轨在B点相切,半圆形导轨的半径为R.一个质量为m的物体将弹簧压缩至A点后由静止释放,在弹力作用下物体获得某一向右的速度后脱离弹簧,当它经过B点进入导轨的瞬间对轨道的压力为其重力的8倍,之后向上运动恰能到达最高点C.(不计空气阻力)试求: 1.物体在A点时弹簧的弹性势能; 2.物体从B点运动至C点的过程中产生的内能. 开普勒第三定律赤道卫星中同步轨道半径大约是中轨道半径的2倍,则同步卫星与中轨道卫星两次距离最近间隔时间_________。 万有引力两个完全相同的均匀球体紧靠在一起万有引力是F,用相同材料制成两个半径为原来一半的小球紧靠在一起的万有引力________。 黄金代换若分别在地球和某行星上相对于各自的水平地面附近相同的高度处、以相同的速率平抛一物体,其水平距离之比为k,且已知地球与该行星半径之比也为k,则地球的质量与该行星的质量之比_________。

高一物理必修一测试题(含答案)

高一物理试题 (考试时间:90分钟 总分:100分) 一、单项选择题(本题共10小题,每小题3分,共30分。在每小题给出的四个选项中,只有一个选项正确,选对的得3分,选错或不答的得0分。) 1.下列图1的四个图中,各运动物体不能.. 看作质点的是() A .研究投出的篮球运动路径 B .研究书本在桌面上移动L 的距离所需的时 间 C .研究地球绕太阳公转 D .研究子弹头射过扑克牌 2.两辆汽车在平直公路上行驶,甲车内一个人看乙车没有动,而乙车内的一个人看见路旁的树木向西运动,如果以大地为参照物,上述观察说明() A . 甲车不动,乙车向东运动 B . 乙车不动,甲车向东运动 C . 甲车向西,乙车向东运动 D . 甲、乙两车以相同的速度向东运动 3.以下计时数据指的是时间的是() A .中央电视台新闻联播节目每天19时开播 B .20XX 年10月24日18时5分5秒“嫦娥一号”在西昌卫星发射中心发射升空 C .足球比赛上下半场各45分钟 D .在某场足球赛中,甲队于开赛9分26秒时攻入一球 4.上体育课时,某同学沿着半径为R 的水平圆周跑道跑了1.75圈时,他的() A .路程和位移的大小均为3.5πR B .路程和位移的大小均为2R C .路程为3.5πR 、位移的大小为2R D .路程为0.5πR 、位移的大小为2R 5.某质点的位移随时间变化的关系式是:s = 4t —2t 2,s 和t 的单位分别是m 和s ,则质点的 A .4m/s 和2m/s 2 B .4m/s 和—4m/s 2 A B C D 图1

C.4m/s 和4m/s2 D.4m/s 和0 6.足球以8m/s的速度飞来,运动员把足球以12m/s的速度反向踢出,踢球时间为0.2s,设足球飞来的方向为正方向,则这段时间内足球的加速度是() A.- 200m/s2B.200m/ s2C.- 100m/ s2 D .100m/ s2 7.如图2所示,表示物体做匀变速直线运动的图象是() 8.关于速度、速度改变量、加速度,正确的说法是() A.物体运动的速度改变量越大,它的加速度一定越大 B.速度很大的物体,其加速度可以很小,可以为零 C.某时刻物体速度为零,其加速度也为零 D.加速度很大时,运动物体的速度一定很快变大 9.汽车以20m/s的速度做匀速直线运动,刹车后的加速度大小为5m/s2,那么开始刹车后2s与开始刹车后6s汽车通过的位移之比为( ) A.1:1 B.3:1 C.3:4 D.4:3 10.一个物体从静止出发以加速度a做匀加速直线运动.经过时间t后,改作以t时刻末的速度做匀速直线运动,则在2t时间内的平均速度是( ) A.3 4 at B. 4 3 at C.3at D. 1 2 at 二、不定项选择题(本题共4小题,每小题4分,共16分。每小题至少有一个选项符合题意,全部选对的得4分,选对但不全的得2分,错选或不答的得0分。) 图2

2010高中物理易错题分析集锦——11电磁感应

第11单元电磁感应 [内容和方法] 本单元内容包括电磁感应现象、自感现象、感应电动势、磁通量的变化率等基本概念,以及法拉第电磁感应定律、楞次定律、右手定则等规律。 本单元涉及到的基本方法,要求能够从空间想象的角度理解法拉第电磁感应定律。用画图的方法将题目中所叙述的电磁感应现象表示出来。能够将电磁感应现象的实际问题抽象成直流电路的问题;能够用能量转化和守恒的观点分析解决电磁感应问题;会用图象表示电磁感应的物理过程,也能够识别电磁感应问题的图像。 [例题分析] 在本单元知识应用的过程中,初学者常犯的错误主要表现在:概念理解不准确;空间想象出现错误;运用楞次定量和法拉第电磁感应定律时,操作步骤不规范;不会运用图像法来研究处理,综合运用电路知识时将等效电路图画错。 例1在图11-1中,CDEF为闭合线圈,AB为电阻丝。当滑动变阻器的滑动头向下滑动时,线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,电源的哪一端是正极? 【错解分析】错解:当变阻器的滑动头在最上端时,电阻丝AB因被短路而无电流通过。由此可知,滑动头下移时,流过AB中的电流是增加的。当线圈CDEF中的电流在G处产生的磁感强度的方向是“·”时,由楞次定律可知AB中逐渐增加的电流在G处产生的磁感强度的方向是“×”,再由右手定则可知,AB中的电流方向是从A流向B,从而判定电源的上端为正极。 楞次定律中“感生电流的磁场总是要阻碍引起感生电流的磁通量的变化”,所述的“磁通量”是指穿过线圈内部磁感线的条数,因此判断感应电流方向的位置一般应该选在线圈的内部。 【正确解答】 当线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,它在线圈内部产生磁感强度方向应是“×”,AB中增强的电流在线圈内部产生的磁感强度方向是“·”,所以,AB中电流的方向是由B流向A,故电源的下端为正极。 【小结】 同学们往往认为力学中有确定研究对象的问题,忽略了电学中也有选择研究对象的问题。学习中应该注意这些研究方法上的共同点。 例2长为a宽为b的矩形线圈,在磁感强度为B的匀强磁场中垂直于磁场的OO′轴以恒定的角速度ω旋转,设t= 0时,线圈平面与磁场方向平行,则此时的磁通量和磁通量的变化率分别是[ ]

高一物理必修一试题及答案

高一物理测试题2017.11一.选择题 1.下列说法正确的是() A.研究和观察日食时,可把太阳当作质点。 B.研究地球的公转时,可把地球当作质点。 C、高考理科综合的考试时间为:150min 指的是时间间隔 D.形状规则的物体的重心必与其几何中心重合 2、关于位移和路程的说法中正确的是() A、位移的大小和路程的大小总是相等的,只不过位移是矢量,而路程是标量 B、位移是描述直线运动的,路程是描述曲线运动的 C、位移取决于始末位置,路程取决于实际运动的路线 D、运动物体的位移大小总大于或等于路程 3.下面有关平均速度、瞬时速度的说法中正确的是 A.火车以70km/h的速度从广州开往上海,这里的70km/h是指平均速度B.子弹以600m/s的速度从枪口射出,这里的600m/s是指平均速度 C.小球在第5s 内的速度是6m/s ,这里的6m/s 是指瞬时速度 D.汽车通过站牌时的速度是36km/h ,这里的36km/h 是指瞬时速度 4.下列所描述的直线运动,可能的是() A.速度变化很小,加速度很大 B.速度越来越大,加速度越来越小 C.速度变化越来越快,加速度越来越小 D.某瞬间速度为零,加速度很大5, 下列说法中正确的是() A B C D也可以相反。 6. 下列关于力的叙述中,正确的是() A.力是使物体位移增加的原因 B.力是维持物体运动速度的原因 C.合力的大小可能比一个分力大,而比另一个分力小 D.力是使物体产生加速度的原因

7.下列说法正确的是() A.甲乙两队拔河,甲队获胜的原因是甲队拉绳子的力大于乙队拉绳子的力 B.以卵击石,鸡蛋破碎,原因是鸡蛋对石头的作用力比石头对鸡蛋的作用力小 C.汽车牵引力产生的原因是由于驱动轮向后推地面,地面给车轮一个向前的反作用力 D.放在水平桌面上的书,其重力和桌面对它的支持力是作用力和反作用力 8.以下列说法中正确的是() A.高速运动的物体不容易停下来,所以物体运动速度越大,惯性越大 B.物体只有运动时才体现出惯性 C.乒乓球可以快速抽杀,是因为乒乓球的惯性小的缘故 D.物体的惯性与物体的运动状态无关 9、唐代大诗人李白的“飞流直下三千尺,疑是银河落九天”,描述了庐山瀑布的美景,如果三尺为 1 米,则水落到地面的速度约为(设初速度为零)() A.100m/s ; B、140m/s ; C、 200m/s ; D、 2000m/s ;10.如图所示, 一同学沿一直线行走,现用频闪照相记录了他行走中的9 个位置,观察图片,能比较正确 反映该同学运动的速度—时间图象的是() 11.甲、乙两个质点同时、同地、向同一个方向做直线运动,它们在0-4s 内运动的 v-t 图象如图所示,由图 像可知() V/m/s A.在第 2 秒末,两车处于同一位置20 甲 B.在第 2 秒末,两车的速度相同 10 C.在 0-4s 内,甲的加速度和乙的加速度的大小相等乙 D.在 0-4s 内,甲、乙两车的平均速度相等0 123 4t/s 12、在水平面上放一个物体,用水平的力推物体,物体仍然静止不动。如图所示, 对于物体这时的受力情况,以下说法正确的是() A.该物体受到四个力,重力、地面的支持力、推力和对地面的压力 B.该物体受到四个力,重力、地面的支持力、推力和摩擦力

高中物理电磁学经典例题

高中物理典型例题集锦 (电磁学部分) 25、如图22-1所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板 的中央各有小孔M、N。今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N三点在同一竖直线上),空气阻力不计,到达N点时速度恰好 为零,然后按原路径返回。若保持两板间的电压不变,则: A.若把A板向上平移一小段距离,质点自P点下落仍能返回。 B.若把B板向下平移一小段距离,质点自P点下落仍能返回。 C.若把A板向上平移一小段距离,质点自P点下落后将穿过 N孔继续下落。 图22-1 D.若把B板向下平移一小段距离,质点自P点下落后将穿过N 孔继续下落。 分析与解:当开关S一直闭合时,A、B两板间的电压保持不变,当带电质点从M向N 运动时,要克服电场力做功,W=qU AB,由题设条件知:带电质点由P到N的运动过程中,重力做的功与质点克服电场力做的功相等,即:mg2d=qU AB 若把A板向上平移一小段距离,因U AB保持不变,上述等式仍成立,故沿原路返回, 应选A。 若把B板下移一小段距离,因U AB保持不变,质点克服电场力做功不变,而重力做功 增加,所以它将一直下落,应选D。 由上述分析可知:选项A和D是正确的。 想一想:在上题中若断开开关S后,再移动金属板,则问题又如何(选A、B)。 26、两平行金属板相距为d,加上如图23-1(b)所示的方波形电压,电压的最大值为U0,周期为T。现有一离子束,其中每个 离子的质量为m,电量为q,从与两板 等距处沿着与板平行的方向连续地射 入两板间的电场中。设离子通过平行 板所需的时间恰为T(与电压变化周图23-1 图23-1(b)

人教版高中物理必修一第一章测试题(含答案)

1.下列几个速度中,指瞬时速度的是() A.上海磁悬浮列车行驶过程中的速度为400 km/h B.乒乓球运动员陈玘扣出的乒乓球速度达23 m/s C.子弹在枪膛内的速度为400 m/s D.飞机起飞时的速度为300 m/s 2.在公路上常有交通管理部门设置的如图2-3-8所示的限速标志,这是告诫驾驶员在这一路段驾驶车辆时() 图2-3-8 A.平均速度的大小不得超过这一规定数值 B.瞬时速度的大小不得超过这一规定数值 C.必须以这一规定速度行驶 D.汽车上的速度计指示值,有时还是可以超过这一规定值的 3.短跑运动员在100 m比赛中,以8 m/s的速度迅速从起点冲出,到50 m处的速度是9 m/s,10 s末到达终点的速度是10.2 m/s,则运动员在全程中的平均速度是() 图2-3-9 A.9 m/s B.10.2 m/s C.10 m/s D.9.1 m/s 4.2012伦敦奥运会上,中国游泳名将孙杨以3分40秒14的成绩,夺得男子400米自由泳冠军,并打破奥运会记录,改写了中国男子泳坛无金的历史,高科技记录仪测得他冲刺终点的速度为3.90 m/s,则他在400米运动过程中的平均速率约为() 图2-3-6 A.2.10 m/s B.3.90 m/s C.1.67 m/s D.1.82 m/s 5.(2013·临高一中高一检测)晓宇和小芳同学从网上找到几幅照片,根据照片所示情景

请判断下列说法正确的是() 大炮水平发射炮弹轿车紧急刹车 高速行驶的磁悬浮列车13秒15!刘翔出人 意料完成复出之战 图2-3-10 A.当点燃火药炮弹还没发生运动瞬间,炮弹的加速度一定为零 B.轿车紧急刹车时速度变化很快,所以加速度很大 C.高速行驶的磁悬浮列车的加速度可能为零 D.根据图中数据可求出110 m栏比赛中任意时刻的速度 6.一物体自原点开始在x轴上运动,其初速度v0>0,加速度a>0,当加速度不断减小直至为零时,物体的() A.速度不断减小,位移不断减小 B.速度不断减小,位移不断增大 C.速度不断增大,当a=0时,速度达到最大,位移不断增大 D.速度不断增大,当a=0时,位移达到最大值 7.一个物体以恒定加速度做变速直线运动,某时刻速度的大小为4 m/s,1 s后的速度大小为10 m/s,在这1 s内该物体的() A.速度变化的大小可能小于4 m/s B.速度变化的大小可能大于10 m/s C.加速度的大小可能小于4 m/s2 D.加速度的大小可能大于10 m/s2 8.(2012·郑州高一检测)物体做加速直线运动,已知第1 s末的速度大小是6 m/s,第3 s 末的速度大小是10 m/s,则该物体的加速度可能是() A.2 m/s2B.4 m/s2 C.-4 m/s2D.-2 m/s2 9.(2013·福州三中高一检测)小明同学在学习了DIS实验后,设计了一个测物体瞬时速度的实验,其装置如图2-3-11所示.在小车上固定挡光片,使挡光片的前端与车头齐平,将光电门传感器固定在轨道侧面,垫高轨道的一端.小明同学将小车从该端同一位置由静止释放,获得了如下几组实验数据.

高一物理必修1典型例题

高一物理必修1典型例题 例l. 在下图甲中时间轴上标出第2s末,第5s末和第2s,第4s,并说明它们表示的是时间还是时刻。 甲乙 例2. 关于位移和路程,下列说法中正确的是 A. 在某一段时间内质点运动的位移为零,该质点不一定是静止的 B. 在某一段时间内质点运动的路程为零,该质点一定是静止的 C. 在直线运动中,质点位移的大小一定等于其路程 D. 在曲线运动中,质点位移的大小一定小于其路程 例3. 从高为5m处以某一初速度竖直向下抛出一个小球,在与地面相碰后弹起,上升到高为2m处被接住,则在这段过程中 A. 小球的位移为3m,方向竖直向下,路程为7m B. 小球的位移为7m,方向竖直向上,路程为7m C. 小球的位移为3m,方向竖直向下,路程为3m D. 小球的位移为7m,方向竖直向上,路程为3m 例4. 判断下列关于速度的说法,正确的是 A. 速度是表示物体运动快慢的物理量,它既有大小,又有方向。 B. 平均速度就是速度的平均值,它只有大小没有方向。 C. 汽车以速度1v经过某一路标,子弹以速度2v从枪口射出,1v和2v均指平均速度。 D. 运动物体经过某一时刻(或某一位置)的速度,叫瞬时速度,它是矢量。 例5. 一个物体做直线运动,前一半时间的平均速度为1v,后一半时间的平均速度为2v,则全程的平均速度为多少?如果前一半位移的平均速度为1v,后一半位移的平均速度为2v,全程的平均速度又为多少? 例6. 打点计时器在纸带上的点迹,直接记录了 A. 物体运动的时间 B. 物体在不同时刻的位置 C. 物体在不同时间内的位移 D. 物体在不同时刻的速度 例7.如图所示,打点计时器所用电源的频率为50Hz,某次实验中得到的一条纸带,用毫米刻度尺测量的情况如图所示,纸带在A、C间的平均速度为m/s,在A、D间的平均速度为m/s,B点的瞬时速度更接近于m/s。 例8. 关于加速度,下列说法中正确的是 A. 速度变化越大,加速度一定越大 B. 速度变化所用时间越短,加速度一定越大 C. 速度变化越快,加速度一定越大 D. 速度为零,加速度一定为零

高中物理必修一测试题

新课标高一物理同步测试(1) 运动的描述 一、选择题(每小题4分,共40分) 1.某校高一的新同学分别乘两辆汽车去市公园游玩。两辆汽车在平直公路上运动,甲车内一同学看见乙车没有运动,而乙车内一同学看见路旁的树木向西移动。如果以地面为参考系,那么,上述观察说明 () A.甲车不动,乙车向东运动B.乙车不动,甲车向东运动 C.甲车向西运动,乙车向东运动D.甲、乙两车以相同的速度都向东运动 2.下列关于质点的说法中,正确的是()A.质点是一个理想化模型,实际上并不存在,所以,引入这个概念没有多大意义 B.只有体积很小的物体才能看作质点 C.凡轻小的物体,皆可看作质点 D.如果物体的形状和大小对所研究的问题属于无关或次要因素时,即可把物体看作质点 3.某人沿着半径为R的水平圆周跑道跑了圈时,他的()A.路程和位移的大小均为πR B.路程和位移的大小均为2R C.路程为πR、位移的大小为2R D.路程为πR、位移的大小为2R 4.甲、乙两小分队进行军事演习,指挥部通过现代通信设备,在屏幕上观察到两小分队的具体行军路线如图所示,两小分队同时同地由O点出发,最后同时到达A点,下列说法中正确的是 () A.小分队行军路程s甲>s乙 B.小分队平均速度v甲>v乙 C.y-x图象表示的是速率v-t图象 D.y-x图象表示的是位移s-t图象 5.某中学正在举行班级对抗赛,张明明同学是短跑运动员,在百米竞赛中,测得他在5 s末的速度为10.4 m/s, 10 s末到达终点的速度为10.2 m/s,则他在全程中的平均速度为() A.10.4 m/s B.10.3 m/s C.10.2 m/s D.10m/s 6.下面的几个速度中表示平均速度的是()A.子弹射出枪口的速度是800 m/s,以 790 m/s的速度击中目标 B.汽车从甲站行驶到乙站的速度是40 km/h C.汽车通过站牌时的速度是72 km/h D.小球第3 s末的速度是6 m/s. 7.如图所示为甲、乙两质点的v-t图象。对于甲、乙两质点的运动,下列说法中正确的是()

高中物理典型例题集锦

高中物理典型例题集锦(一) 山东贾玉兵 编者按:笔者结合多年的高三教学经验,记录整理了部分高中物理典型例题,以2003年《考试说明》为依据,以力学和电学为重点,编辑如下,供各校教师、高三同学参考。实践证明,考前浏览例题,熟悉做过的题型,回顾解题方法,可以提高复习效率,收到事半功倍的效果。 力学部分 1、如图1-1所示,长为5米的细绳的两端分别系于竖立在地面上相距为4米的两杆顶端A、B。绳上挂一个光滑的轻质挂钩。它钩着一个重为12牛的物体。平衡时,绳中 张力T=____

分析与解:本题为三力平衡问题。其基本思路为:选对象、分析力、画力图、列方程。对平衡问题,根据题目所给条件,往往可采用不同的方法,如正交分解法、相似三角形等。所以,本题有多种解法。 解法一:选挂钩为研究对象,其受力如图1-2所示 设细绳与水平夹角为α,由平衡条件可知:2TSinα=F,其中F=12牛 将绳延长,由图中几何条件得:Sinα=3/5,则代入上式可得T=10牛。 解法二:挂钩受三个力,由平衡条件可知:两个拉力(大小相等均为T)的合力F’与F大小相等方向相反。以两个拉力为邻边所作的平行四边形为菱形。如图1-2所示, 其中力的三角形△OEG与△ADC相似,则:得: 牛。 想一想:若将右端绳A 沿杆适当下移些,细绳上张力是否变化? (提示:挂钩在细绳上移到一个新位置,挂钩两边细绳与水平方向夹角仍相等,细绳的张力仍不变。) 2、如图2-1所示,轻质长绳水平地跨在相距为2L的

两个小定滑轮A、B上,质量为m的物块悬挂在绳上O点,O与A、B两滑轮的距离相等。在轻绳两端C、D分别施加竖直向下的恒力F=mg。先托住物块,使绳处于水平拉直状态,由静止释放物块,在物块下落过程中,保持C、D两端的拉力F不变。 (1)当物块下落距离h为多大时,物块的加速度为零? (2)在物块下落上述距离的过程中,克服C端恒力F 做功W为多少? (3)求物块下落过程中的最大速度Vm和最大距离H? 分析与解:物块向下先作加速运动,随着物块的下落,两绳间的夹角逐渐减小。因为绳子对物块的拉力大小不变,恒等于F,所以随着两绳间的夹角减小,两绳对物块拉力的合力将逐渐增大,物块所受合力逐渐减小,向下加速度逐渐减小。当物块的合外力为零时,速度达到最大值。之后,因为两绳间夹角继续减小,物块所受合外力竖直向上,

高一物理必修一期末考试题(含答案)

高一物理必修一期末测试题(含答案) A 类题《满分60分,时间40分钟,g 均取10m/s 2》姓名 座号 一、选择题(每小题2分,共20分,各小题的四个选项中只有一个选项是最符合题意的) 1.下列叙述中正确的是( ) A.我们所学过的物理量:速度、加速度、位移、路程都是矢量 B.物体从静止开始的下落运动叫自由落体运动 C.通常所说的压力、支持力和绳的拉力都是弹力 D.任何有规则形状的物体,它的重心一定与它的几何中心重合,且也一定在物体内 2.如上图所示,地面上有一个物体重为30N ,物体由于摩擦向右做减速运动,若物体与地面间 的动摩擦因素为0.1,则物体在运动中加速度的大小为( ) A.0.1m /s 2 B.1m /s 2 C.3m /s 2 D.10m /s 2 3.下列关于惯性的说法正确的是( ) A.速度越大的物体越难让它停止运动,故速度越大,惯性越大 B.静止的物体惯性最大 C.不受外力作用的物体才有惯性 D.行驶车辆突然转弯时,乘客向外倾倒是由于惯性造成的 4.某同学为了测出井口到井里水面的深度,让一个小石块从井口落下,经过2s 后听到石块落到 水面的声音,则井口到水面的深度大约为(不考虑声音传播所用的时间)( ) A.10m B.20m C.30m D.40m 5.作用在同一物体上的三个共点力,大小分别为6N 、3N 和8N ,其合力最小值为( ) A.1N B.3N C.13N D.0 6.如图所示,物体静止于水平桌面上,则( ) A.桌面对物体的支持力的大小等于物体的重力,这两个力是一对平衡力 B.物体所受的重力和桌面对它的支持力是一对作用力与反作用力 C.物体对桌面的压力就是物体的重力,这两个力是同一种力 D.物体对桌面的压力和桌面对物体的支持力是一对平衡的力 7.力F 1单独作用于一物体时,使物体产生的加速度大小为a 1=2m/s 2,力F 2单独作用于同一物 体时,使物体产生的加速度大小为a 2=4m/s 2。当F 1和F 2共同作用于该物体时,物体具有的加速度大小不可能...是( ) A .2m/s 2 B .4m/s 2 C .6m/s 2 D .8m/s 2 8.如图所示,在倾角为θ的斜面上,放一质量为m 的光滑小球,小球被竖直挡板挡住,则球对 挡板的压力为( ) A.mgco s θ B. mgtan θ C. mg/cos θ D. mg 9.如图所示,质量为50kg 的某同学站在升降机中的磅秤上,某一时刻该同学发现磅秤的示数为 40kg ,则在该时刻升降机可能是以下列哪种方式运动?( ) A.匀速上升 B.加速上升 C.减速上升 D.减速下降 10.如图所示为初速度v 0沿直线运动的物体的速度图象,其末速度为v ,在时间t 内,物体的平 均速度- v 和加速度a 是( ) A.20v v v +>-,a 随t 减小 B.20v v v +=-,a 恒定 C.2 v v v +<-,a 随t 减小D.无法确定 二、计算题(共40分) 11.(10分)如图所示,质量为m =10kg 的物体,在F =60N 水平向右的拉力作用下,由静止开始 v t v v 0 t v

高一物理典型例题汇总

高一物理必修1知识集锦及典型例题 各部分知识网络 (一)运动的描述: -(D 表示物体位置的变动,可用从起点到终点的有向线段表示,是矢量 1(2》位移的大小小于或等于路程 Q )物理意义:表示物休位置变化的快慢 [平均速度严巻方向与位移方向相同 瞬时速度*当加-0时山二号^方向为那一刻的运动方向 「①速厦是 矢童,而逋率是标量 平均速率=遐遅 时何艸砲卒时间 ③瞬时速度的大小等于瞬时速率 [■物理意义:表示物体速度变化的快慢 I 加速度峠定小=汪汽速度的变化率人单位m/乳是矢量 ' 〔方向:与速度变化的方向相同■与速度的方向关系不确定 [意义:表示位移随时何的变化规律 应用:①判断运动性质〔匀速、变速、静止) 俨一E 图象丿 ②判斯运动方向(正方向、负方向) 1 ③比较运动快慢 I ④确定也移或时间等 图象] (意义:表示速度随时间的变化规律 应用:①确定某时刻的速度 ②求位移(面积) I 图象] ③判斷运匪性质(静止、匀速、匀变速、非匀变速) ④ 判断运动方向(正方向、负方向〉 ⑤ 出较加速度大小等 X [根据纸带上点谨的疏密判断运动情况 '实验:用打点计时器测速度{求两点间的平均速度卫=善 .粗略求瞬时速度’当心取很小的值时,瞬时速度釣等于平均速度 x=aT 2 , o (a 6 a 5 a 』(a 3 a ? aJ a 2 (3T) (推述运动的物理量v 速度 ⑶与速率的区别与联系2②平均速度二 运 动的描 述 测匀变速直线运动的加速度:△

「物理意义:表不物体速度蛮化的快馒 定义2=耳^(速度的变化率人单位m/d 矢量. 其方向与速度变化的方向相同,与速度方向的关系不确定 、速度、速度变化量 与加速度的区别 '意义;表示位移随时间的变化规律 应用:①判斯运动性质(匀速、变速、静止) 卩一£图象」②判断运动方向(正方向、负方向) ③比较运动快慢 、④确定位務或时间 靈臾匸表示速度随时间的变化规律 应用:①确定某时刻的速度 ② 求位移(面积) ③ 判断运动性质(静止、匀速、匀变速、非匀变速) ④ 判断运动方向(正方向、负方向) ?⑤比较加速度大小等 ,加速度恒定?速度均匀变化] Vt = v^+at 工=Sf+*亦 < —说=2a 工 一 询+讪 吟一y-二叫 a 与v 同向,加速运动;a 与v 反 向,减速运动。 咽 —II 匀变速 直线运€ 动 的规律 咱由落体运动 la=g

人教版高中物理必修一高一单元测试题

高中物理学习材料 (马鸣风萧萧**整理制作) 2011级高一物理单元测试题 选择题涂在答题卡上(注意三涂、两写) 一.选择题(共60分。每小题至少有一个选项正确,每题5分,选不全得3分,不选或多选得0分) 1.下列物理量中属于矢量的是( ) A.速率B.速度C.路程D.加速度 2.敦煌曲子词中有这样的诗句“满眼风波多闪烁,看山恰似走来迎,仔细看山山不动,是船行”。其中“看山恰似走来迎”和“是船行”所选择的参考系分别是( ) A.船和山 B.山和船 C.地面和山 D.河岸和流水 3.关于质点,下列说法不.正确 ..的是()

A.物体能否看作质点,不能由体积的大小判断 B.物体能否看作质点,不能由质量的大小判断 C.物体能否看作质点,不能由物体是否做直线运动判断 D.研究地球自转时,可以把地球视为质点 4.关于瞬时速度、平均速度、平均速率下列说法正确的是() A.瞬时速度是物体在某一个位置或某一时刻的速度 B.平均速度等于某段时间内物体运动的位移与所用时间的比值 C.平均速率就是平均速度 D.平均速度的大小一定等于平均速率 5.足球守门员在发门球时,将一个静止的足球以10 m/s的速度踢出,若守门员踢球的时间为0.1s,则足球的加速度为() A、100m/s2 B、10m/s2 C、1m/s2 D、50m/s2 6、 2008年北京奥运会上美国游泳名将菲尔普斯一举拿下了8枚金牌并刷新了7项世界纪录,成为奥运会历史上最伟大的运动员。“水立方”的泳池长50m,在100米蝶泳中,测得菲尔普斯游完全程的时间为 50.58s,则他所通过的位移和路程(将运动员看成质点)分别是()

高中物理圆周运动典型例题解析1

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)m g m v /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)m g m v /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)m g m v /R v m g 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v =0时,支承物对小球的支撑力等于小球的重力mg ,这是有支承物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO ′旋转,盘上的水平杆上穿着两个质量相等的小球A 和B .现将A 和B 分别置于距轴r 和2r 处,并用不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m .试分析角速度ω从零逐渐增大,两球对轴保持相对静止过程中,A 、B 两球的受力情况如何变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A 和B 均只靠自身静摩擦力提供向心力. A 球:m ω2r =f A ; B 球:m ω22r =f B . 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B =f m ,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.12m 112r f T f m r m /2 A 球:m ω2r =f A +T ;B 球:m ω22r =f m +T . 由B 球可知:当角速度ω增至ω′时,绳上张力将增加△T ,△T =m ·2r(ω′2-ω2).对于A 球应有m ·r(ω′2-ω2)=△f A +△T =△f A +m ·2r(ω′2-ω2). 可见△f A <0,即随ω的增大,A 球所受摩擦力将不断减小,直至f A =0

高中物理必修一《相互作用》测试题

高一物理第三章《相互作用》单元测试题 本试卷共分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分100分。考试时间60分钟。 第Ⅰ卷(选择题共40分) 一、本大题共10小题。每小题4分,共40分。在每小题给出的四个选项中,至少有一个选项符合题目要求。全部选对的得4分,选不全的得2分,有选错或不答的得0分。 1.从科学方法角度来说,物理学中引入“合力”概念运用了 A.控制变量方法 B.等效替代方法 C.理想实验方法 D.建立模型方法 2.关于力的下述说法中正确的是 A.力是物体对物体的作用 B.只有直接接触的物体间才有力的作用 C.力可以离开物体而独立存在 D.力的大小可以用天平测量 3.静止在水平桌面上的书,会受到弹力的作用,该弹力产生的直接原因是 A.书发生了形变 B.桌面发生了形变 C.书和桌面都发生了形变 D.书受到了重力作用 4.下列关于滑动摩擦力的产生的说法中,正确的是 A.相互接触且发生相对运动的物体间一定能产生滑动摩擦力 B.只有运动的物体才可能受到滑动摩擦力 C.受弹力作用的物体一定会受到滑动摩擦力 D.受滑动摩擦力作用的物体一定会受到弹力作用 5.在水平桌面上放着一小球,小球保持静止状态,在下列说法中正确的是 A.桌面对小球的支持力垂直于桌面和桌面的形变方向相反 B.小球对桌面的压力大小等于小球的重力大小,所以压力就是重力 C.小球对桌面的压力施力物体是小球,小球的重力的施力物体是地球 D.水平桌面发生了微小弹性形变,小球没有发生弹性形变

F 图1 6.沿光滑斜面自由下滑的物体,其受到的力有 A .重力、斜面的支持力 B .重力、下滑力和斜面的支持力 C .重力、下滑力 D .重力、下滑力、斜面的支持力和紧压斜面的力 7.如图1所示,一木块放在水平桌面上,在水平方向上共受到三个力即F 1、F 2和摩擦力作用,木块处于静止状态,其中F 1=10N ,F 2=2N 。若撤去力F 1,则木块在水平方向受到的合力为 A .10N ,方向向左 B .8N ,方向向右 C .2N ,方向向左 D .0 8.重为500 N 的木箱放在水平地面上,木箱与地面间最大静摩擦力为105 N ,动摩擦因数是0.2,如果分别用80 N 和120 N 的水平力推木箱,经过一·段时间后,木箱受到的摩擦力分别是 A .80 N 120 N B .80 N 100 N C .0 N 100 N D .80 N 105 N 9.如图2所示,细绳MO 与NO 所能承受的最大拉力相同,长度MO >NO ,则在不断增加重物G 重力的过程中(绳OC 不会断) A .NO 绳先被拉断 B .MO 绳先被拉断 C .NO 绳和MO 绳同时被拉断 D .因无具体数据,故无法判断哪条绳先被拉断 10.如图3所示,用水平力F 把一铁块紧压在竖直墙壁上静止不动,当F 增大时 A .墙对铁块的弹力增大 B .墙对铁块的摩擦力增大 C .墙对铁块的摩擦力不变 D .墙与铁块间的摩擦力减小 第Ⅱ卷(非选择题 共60分) 二、本题共3小题,共 27分.把答案填在答题纸的横线上或按题目要求作答。 图2

高一物理典型例题

高一物理必修1知识集锦及典型例题 一. 各部分知识网络 (一)运动的描述: 测匀变速直线运动的加速度:△x=aT 2 ,6543212 ()()(3) a a a a a a a T ++-++=

a与v同向,加速运动;a与v反向,减速运动。

(二)力: 实验:探究力的平行四边形定则。 研究弹簧弹力与形变量的关系:F=KX.

(三)牛顿运动定律: . 改变

(四)共点力作用下物体的平衡: 静止 平衡状态 匀速运动 F x 合=0 力的平衡条件:F 合=0 F y 合=0 合成法 正交分解法 常用方法 矢量三角形动态分析法 相似三角形法 正、余弦定理法 物 体 的平衡

二、典型例题 例题1..某同学利用打点计时器探究小车速度随时间变化的关系,所用交流电的频率为50 Hz,下图为某次实验中得到的一条纸带的一部分,0、1、2、3、4、5、6、7为计数点,相邻两计数点间还有3个打点未画出.从纸带上测出x1=3.20 cm,x2=4.74 cm,x3=6.40 cm,x4=8.02 cm,x5=9.64 cm,x6=11.28 cm,x7=12.84 cm. (1)请通过计算,在下表空格内填入合适的数据(计算结果保留三位有效数字); (2)根据表中数据,在所给的坐标系中作出v-t图 象(以0计数点作为计时起点);由图象可得,小车 运动的加速度大小为________m /s2 例2. 关于加速度,下列说法中正确的是 A. 速度变化越大,加速度一定越大 B. 速度变化所用时间越短,加速度一定越大 C. 速度变化越快,加速度一定越大 D. 速度为零,加速度一定为零 例3. 一滑块由静止开始,从斜面顶端匀加速下滑,第5s末的速度是6m/s。求:(1)第4s末的速度;(2)头7s内的位移;(3)第3s内的位移。 例4. 公共汽车由停车站从静止出发以0.5m/s2的加速度作匀加速直线运动,同时一辆汽车以36km/h的不变速度从后面越过公共汽车。求: (1)经过多长时间公共汽车能追上汽车? (2)后车追上前车之前,经多长时间两车相距最远,最远是多少? 例5.静止在光滑水平面上的物体,受到一个水平拉力,在力刚开始作用的瞬间,下列说法中正确的是 A. 物体立即获得加速度和速度

高中物理必修一期中测试题及答案

必修一期中试题 一、单项选择题 1.从离地面3 m高处竖直向上抛出一个小球,它上升5 m后回落,最后到达地面。此过程中() A.小球通过的路程是8 m B.小球的位移大小是13 m C.小球的位移大小是3 m D.小球的位移方向是竖直向上 2.以下说法正确的是() A.列车员说:“火车8点42分到站,停车8分。”8点42分和8分均指时刻 B.列车员说:“火车8点42分到站,停车8分。”8点42分和8分均指时间 C.出租车的收费标准有“2.00元/公里”,其中的“公里”指的是路程 D.出租车的收费标准有“2.00元/公里”,其中的“公里”指的是位移 3.下列表述中,所指的速度为平均速度的是() A.子弹射出枪口时的速度为800 m/s B.一辆公共汽车从甲站行驶到乙站,全过程的速度为40 km/h C.某段高速公路限速为90 km/h D.小球在第3s末的速度为6 m/s 4.甲、乙两车沿平直公路通过同样的位移。甲车在前半段位移以30 km/h的速度运动,后半段位移以60 km/h的速度运动;乙车在前半段时间内以30 km/h的速度运动,后半段时间内以60 km/h的速度运动,则甲、乙两车在整个位移中的平均速度和的大小关系是() A.= B.< C.> D.由于不知道位移和时间,所以无法比较 5.关于物体运动的加速度,下列说法正确的是()

A .速度越大,加速度越大 B .速度变 化量越大,加速度越大 C .末速度越大,加速度越大 D .速度变化越快, 加速度越大 6.物体沿某方向做匀加速直线运动,某时刻速度为5 m/s ,经2 s 速度变为11 m/s ,则物体的加速度大小为( ) A .3 m/s 2 B .6 m/s 2 C .8 m/s 2 D .16 m/s 2 7.物体由静止开始沿斜面滑下,做匀加速直线运动,3 s 末开始在水平地面上做匀减速直线运动,9 s 末停止。则物体在斜面上的位移和水平面上的位移大小之比是( ) A .1∶1 B .1∶2 C .1∶3 D .3∶1 8.如图为根据龟兔赛跑故事画出的位移-时间图象,由图可知下列说法正确的是( ) A .乌龟和兔子赛跑是同时从同地点出发的 B .乌龟和兔子赛跑是同时出发,但出发点是不同的 C .兔子虽然中途休息了一会儿,但最终先到达终点 D .乌龟中途落后,但最终比兔子先到终点 9.如图所示的两条斜线,分别代表A 、B 两物体同时从同一地点出发向同一方向做直线运动时的速度-时间图象。下列说法中正确的是( ) A .A 的初速度比 B 的初速度大 B .在前10 s 内,A 的位移比B 的位移大 C .B 的加速度比A 的加速度大 D .10 s 末两物体的瞬时速度相等 10.一小球从空中由静止释放,不计空气阻力(g 取10 m/s 2)。下列说法正确的是( )

高一物理动能定理经典题型汇总(全)

高一物理动能定理经典题型汇总(全)

————————————————————————————————作者:————————————————————————————————日期:

1、动能定理应用的基本步骤 应用动能定理涉及一个过程,两个状态.所谓一个过程是指做功过程,应明确该过程各外力所做的总功;两个状态是指初末两个状态的动能. 动能定理应用的基本步骤是: ①选取研究对象,明确并分析运动过程. ②分析受力及各力做功的情况,受哪些力?每个力是否做功?在哪段位移过程中做功?正功?负功?做多少功?求出代数和. ③明确过程始末状态的动能E k1及E K2 ④列方程 W=E K2一E k1,必要时注意分析题目的潜在条件,补充方程进行求解. 2、应用动能定理的优越性 (1)由于动能定理反映的是物体两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这一过程中物体运动性质、运动轨迹、做功的力是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制. (2)一般来说,用牛顿第二定律和运动学知识求解的问题,用动能定理也可以求解,而且往往用动能定理求解简捷.可是,有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解.可以说,熟练地应用动能定理求解问题,是一种高层次的思维和方法,应该增强用动能定理解题的主动意识. (3)用动能定理可求变力所做的功.在某些问题中,由于力F 的大小、方向的变化,不能直接用W=Fscos α求出变力做功的值,但可由动能定理求解. 一、整过程运用动能定理 (一)水平面问题 1、一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s ,在这段时间内,水平力做功为( ) A. 0 B. 8J C. 16J D. 32J 2、 一个物体静止在不光滑的水平面上,已知m=1kg ,u=0.1,现用水平外力F=2N ,拉其运动5m 后立即撤去水平外力F ,求其还能滑 m (g 取2 /10s m ) 3、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵 S L V V

相关主题
文本预览
相关文档 最新文档