当前位置:文档之家› Kalman滤波融合优化MeanShift的目标跟踪算法

Kalman滤波融合优化MeanShift的目标跟踪算法

Kalman滤波融合优化MeanShift的目标跟踪算法
Kalman滤波融合优化MeanShift的目标跟踪算法

混合群智能优化算法研究及应用

混合群智能优化算法研究及应用 优化问题广泛地存在于科学研究和工程实践中。群智能优化算法是优化算法中最新的一个分支,也是最热门的发展方向。群智能优化算法是通过模拟自然界中生物间相互合作、共享信息等群体行为而建立起来的随机搜索算法,相较于经典优化算法具有结构简单、易于实现等优点。不同的群智能优化算法是模拟不同生物行为形成的,所以它们各具特点和适用场景。然而,单一的群智能优化算法均有其局限性,如搜索精度不够高、收敛速度慢、性能受参数影响较大和容易陷入局部最优等。将不同群智能优化算法有机结合,设计混合群智能优化算法是一种提高算法性能的有效方法,具有重要的研究意义。本文的主要研究内容及创新点包括以下几个方面:(1)针对单目标数值优 化问题提出了一种基于跟随蜂搜索的自适应粒子群算法(Follower Bee Search Based Adapitve Particle Swarm Optimization,F-APSO)。首先在经典粒子群算法粒子飞行轨迹分析的基础上提出了一种自适 应的粒子群算法(Adapitve Particle Swarm Optimization,APSO), 提高了算法在求解单峰问题时的性能。然后提出了一种针对自适应粒子群算法的稳定性分析方法,基于该方法对APSO进行了稳定性分析,给出了能够保证算法稳定的参数取值条件。接着通过引入人工蜂群算法中的跟随蜂搜索,提高了算法的开拓性,并将APSO的稳定性条件拓展到了 F-APSO中。仿真实验表明F-APSO在求解单目标数值优化问题时在解的质量和时间消耗上都具有良好表现。将F-APSO用于解决矿山生产排程优化问题,与原有生产方案相比优化后的方案在不同铁

传统meanshift跟踪算法流程

传统meanshift 跟踪算法实现流程 一、 Meanshift 算法流程图 视频流 手动选定跟踪目标 提取目标灰度加权直方图特征hist1 提取候选目 标区域 提取候选目标的灰度加权直方图特征hist2 均值漂移得到均值漂移向量及新的候选区域位 置 是否满足迭代结束条件 第二帧之后图像 第一帧图像 得到当前帧目标位置 是 否 图1 meanshift 流程图 二、 各模块概述 1、 手动选定目标区域:手动框出目标区域,并把该区域提取出来作为目标模板 区域; 2、 提取目标灰度加权直方图特征hist1; 2.1构造距离权值矩阵m_wei ; 使用Epanechnikov 核函数构造距离加权直方图矩阵:设目标区域中像素

点(,)i j 到该区域中心的距离为dist ,则 _(,)1/m wei i j dist h =-,这里h 是核函数窗宽,h 为目标区域中离区域中心 最远的像素点到中心的距离:若所选目标区域为矩形区域,区域的半宽度为 x h ,半高度为y h ,则22()x y h sqrt h h =+; 2.2得到归一化系数C ; 1/C M =,其中M 是m_wei 中所有元素值之和; 2.3计算目标的加权直方图特征向量hist1; 若图像为彩色图像,则把图像的,,r g b 分量归一化到[0,15]之间(分量值与16取余,余数即为归化后的分量值),然后为不同的分量值赋予不同的权值得到每个像素点的特征值_q temp : _256*16*q t e m p r g b = ++ 对于像素点(,)i j ,设其特征值为_q temp ,则另 1(_1)1(_1)_(,)hist q temp hist q temp m wei i j +=++; 若图像是灰度图像,则直接利用每个像素的灰度值作为每个像素的特征值,然后统计得到hist1; 把一维数组hist1归一化:11*hist hist C =;归一化后的数组hist1即为目标的加权直方图特征向量; 3、 从第二帧开始的图像,通过迭代的方式找到该帧图像中目标的位置; 3.1提取候选目标区域:以上一帧图像中目标的位置或上一次迭代得到的目标位置为中心提取出目标模板区域大小的区域; 3.2提取候选目标区域的加权直方图特征向量hist2:提取方法同步骤2.3; 计算候选目标区域的特征值矩阵_1q temp : _1 (,)256*(,) 16*(,)q t e m p i j r i j g i j b i j =++; 3.3均值漂移到新的目标区域; 3.3.1计算候选目标区域相对于目标区域的均值漂移权值w : ( 1()/2()),2(2w s q r t h i s t i h i s t i h i s t =≠ 2() 0h i s t i =时,()0;w i = 3.3.2 根据每个像素点所占的均值漂移权值计算漂移矩阵xw : 11(_1(,)1)*[(1),(2)]a b i j xw xw w q temp i j i y j y ===++--∑∑ 3.3.2得到权值归一化后的均值漂移向量Y :

几种非线性滤波算法的研究-内附程序

2017 年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:雷达系统导论 学生所在(系):电子与信息工程学院 学生所在学科:电子与同学工程 学生姓名: 学号: 学生类别: 考核结果阅卷人 第 1 页(共页)

几种非线性滤波算法的介绍与性能分析 作者姓名:学号: 专业院系:电信学院电子工程系 电子邮件: 摘要—非线性滤波算法在雷达目标跟踪中有着重要的应用,对雷达的跟踪性能有着至关重要的影响。好的滤波算法有利于目标航迹的建立及保持,能够得到较精确的目标位置,为发现目标后的后续工作提供可靠的数据依据。本文重点介绍了雷达数据处理中的几种非线性滤波算法:扩展卡尔曼滤波(EKF)、不敏卡尔曼滤波(UKF)、粒子滤波(PF),并且给出了一个利用这三种算法进行数据处理的一个实例,通过这个实例对比分析了这三种算法的性能以及优劣。 关键字—非线性滤波算法;扩展卡尔曼滤波;不敏卡尔曼滤波;粒子滤波; I.概述(一级表题格式) 在雷达对目标进行跟踪前要先对目标进行检测。对于满足检测条件的目标就需要进行跟踪,在跟踪的过程中可以利用新获得的数据完成对目标的进一步检测比如去除虚假目标等,同时利用跟踪获得数据可以进一步完成对目标动态特性的检测和识别。因此对目标进行准确的跟踪是雷达性能的一个重要指标。在检测到满足条件的目标后,根据目标运动状态建立目标运动模型,然后对目标跟踪算法进行设计,这是雷达目标跟踪中的核心部分。 目前主要的跟踪算法包括线性自回归滤波,两点外推滤波、维纳滤波、- αβ滤波、加权最小二乘滤波、维纳滤波和卡尔曼滤波[1]。对于线性系统而言最优滤波的方法就是卡尔曼滤波,卡尔曼滤波是线性高斯模型下的最优状态估计算法。但是实际问题中目标的运动模型往往不是线性的,因此卡尔曼滤波具有很大的局限性。目前主要用的非线性滤波算法可以分为高斯滤波和粒子滤波[2]。不敏卡尔曼滤波和扩展卡尔曼滤波就是高斯滤波中的典型代表,也是应用相对较为广泛的。粒子滤波的应用范围比高斯滤波的适用范围要广,对于系统状态非线性,观测模型非高斯等问题都有很好的适用性。本文具体分析阐述了扩展卡尔曼滤波算法,不敏卡尔曼滤波算法,粒子滤波算法,并且通过一个实例利用仿真的方法分析了这三种算法在滤波性能上的优劣,最后对这三种算法做了一定的总结。 我本科毕业设计题目为《基于历史数据的路径生成算法研究》,由于我是跨专业保研到电信学院,该课题所研究内容不属于雷达系统研究范围,是一种城市路网最快路径生成算法。 II.几种非线性滤波算法 A.扩展卡尔曼滤波 扩展卡尔曼滤波是将非线性系统转换为近似的线性系统的一种方法,其核心思想是围绕滤波值将非线性函数展开成泰勒级数并略去二阶及以上的项,得到一个近似的线性化模型,然后应用卡尔曼滤波完成状态估计。 扩展卡尔曼滤波状态空间模型: k k k w x f+ = + ) ( x 1 状态方程 k k k v x h+ =) ( z观测方程 其中(.) f和(.) h为非线性函数 在扩展卡尔曼滤波中,状态的预测以及观测值的预测由非线性函数计算得出,线性卡尔曼滤波中的状态转移矩阵A阵和观测矩阵H阵由f和h函数的雅克比矩阵代替。 对 (.) f和(.) h Taylor展开,只保留一次项有: ) ? ( ) ?( ) ( k k k k k x x A x f x f- + ≈ ) ? ( ) ?( ) ( k k k k k x x H x h x h- + ≈ 其中: k k x x k k dx df A ?= =为f对 1- k x求导的雅克比矩阵 k k x x k k dx dh H ?= =为h对 1- k x求导的雅克比矩阵 ) ?( ? 1-k k x f x=,于是可以得出: k k k k k k k w x A x f x A x+ - + ≈ + ) ? ) ?( ( 1 k k k k k k k v x H x h x H z+ - + ≈ + ) ? ) ?( ( 1 通过以上变换,将非线性问题线性化。接下来EKF 滤波过程同线性卡尔曼滤波相同,公式如下: )) | (?( ) |1 ( X?k k X f k k= + ) ( ) ( ) | ( ) ( ) |1 (P k Q k k k P k k k+ Φ' Φ = + )1 ( )1 ( ) |1 ( )1 ( )1 (S+ + + ' + + = +k R k H k k P k H k )1 ( )1 ( ) |1 ( )1 ( K1+ + ' + = +-k S k H k k P k

基于meanshift的目标跟踪算法——完整版

基于Mean Shift的目标跟踪算法研究 指导教师:

摘要:该文把Itti视觉注意力模型融入到Mean Shift跟踪方法,提出了一种基于视觉显著图的Mean Shift跟踪方法。首先利用Itti视觉注意力模型,提取多种特征,得到显著图,在此基础上建立目标模型的直方图,然后运用Mean Shift方法进行跟踪。实验证明,该方法可适用于复杂背景目标的跟踪,跟踪结果稳定。 关键词:显著图目标跟踪Mean Shift Mean Shift Tracking Based on Saliency Map Abstract:In this paper, an improved Mean Shift tracking algorithm based on saliency map is proposed. Firstly, Itti visual attention model is used to extract multiple features, then to generate a saliency map,The histogram of the target based on the saliency map, can have a better description of objectives, and then use Mean Shift algorithm to tracking. Experimental results show that improved Mean Shift algorithm is able to be applied in complex background to tracking target and tracking results are stability. 1 引言 Mean Shift方法采用核概率密度来描述目标的特征,然后利用Mean Shift搜寻目标位置。这种方法具有很高的稳定行,能够适应目标的形状、大小的连续变化,而且计算速度很快,抗干扰能力强,能够保证系统的实时性和稳定性[1]。近年来在目标跟踪领域得到了广泛应用[2-3]。但是,核函数直方图对目标特征的描述比较弱,在目标周围存在与目标颜色分布相似的物体时,跟踪算法容易跟丢目标。目前对目标特征描述的改进只限于选择单一的特征,如文献[4]通过选择跟踪区域中表示目标主要特征的Harris点建立目标模型;文献[5]将初始帧的目标模型和前一帧的模型即两者的直方图分布都考虑进来,建立混合模型;文献[6]提出了以代表图像的梯度方向信息的方向直方图为目标模型;文献[7-8]提出二阶直方图,是对颜色直方图一种改进,是以颜色直方图为基础,颜色直方图只包含了颜色分布信息,二阶直方图在包含颜色信息的前提下包含了像素的均值向量和协方差。文献[9]提出目标中心加权距离,为离目标中心近的点赋予较大的权值,离目标中心远的点赋予较小的权值。文献[4-9]都是关注于目标和目标的某一种特征。但是使用单一特征的目标模型不能适应光线及背景的变化,而且当有遮挡和相似物体靠近时,容易丢失目标;若只是考虑改进目标模型,不考虑减弱背景的干扰,得到的效果毕竟是有限的。 针对上述问题,文本结合Itti 提出的视觉注意模型[5],将自底向上的视觉注意机制引入到Mean Shift跟踪中,提出了基于视觉显著图的Mean Shift跟踪方法。此方法在显著图基础上建立目标模型,由此得到的目标模型是用多种特征来描述的,同时可以降低背景对目标的干扰。 2 基于视觉显著图的Mean Shift跟踪方法

TLD目标跟踪算法

TLD目标跟踪算法 一、算法的背景 TLD(Tracking-Learning-Detection)是英国萨里大学的一个捷克籍博士生Zdenek 出的一种新的单目标长时间(long term tracking)跟踪算法。该算法与传统跟踪算法的显著区别在于将传统的跟踪算法和传统的检测算法相结合来解决被跟踪目标在被跟踪过程中发生的形变、部分遮挡等问题。同时,通过一种改进的在线学习机制不断更新跟踪模块的“显著特征点”和检测模块的目标模型及相关参数,从而使得跟踪效果更加稳定、鲁棒、可靠。 对于长时间跟踪而言,一个关键的问题是:当目标重新出现在相机视野中时,系统应该能重新检测到它,并开始重新跟踪。但是,长时间跟踪过程中,被跟踪目标将不可避免的发生形状变化、光照条件变化、尺度变化、遮挡等情况。传统的跟踪算法,前端需要跟检测模块相互配合,当检测到被跟踪目标之后,就开始进入跟踪模块,而此后,检测模块就不会介入到跟踪过程中。但这种方法有一个致命的缺陷:即,当被跟踪目标存在形状变化或遮挡时,跟踪就很容易失败;因此,对于长时间跟踪,或者被跟踪目标存在形状变化情况下的跟踪,很多人采用检测的方法来代替跟踪。该方法虽然在某些情况下可以改进跟踪效果,但它需要一个离线的学习过程。即:在检测之前,需要挑选大量的被跟踪目标的样本来进行学习和训练。这也就意味着,训练样本要涵盖被跟踪目标可能发生的各种形变和各种尺度、姿态变化和光照变化的情况。换言之,利用检测的方法来达到长时间跟踪的目的,对于训练样本的选择至关重要,否则,跟踪的鲁棒性就难以保证。 考虑到单纯的跟踪或者单纯的检测算法都无法在长时间跟踪过程中达到理想的效果,所以,TLD方法就考虑将两者予以结合,并加入一种改进的在线学习机制,从而使得整体的目标跟踪更加稳定、有效。 简单来说,TLD算法由三部分组成:跟踪模块、检测模块、学习模块;如下图所示 其运行机制为:检测模块和跟踪模块互补干涉的并行进行处理。首先,跟踪模块假设相邻视频帧之间物体的运动是有限的,且被跟踪目标是可见的,以此来估计目标的运动。 如果目标在相机视野中消失,将造成跟踪失败。检测模块假设每一个视帧都是彼此独立的,并且根据以往检测和学习到的目标模型,对每一帧图片进行全图搜索以定位目标可能出现的区域。同其它目标检测方法一样,TLD中的检测模块也有可能出现错误,且错误无非是错误的负样例和错误的正样例这两种情况。而学习模块则根据跟踪模块的结果对检测模块的这两种错误进行评估,并根据评估结果生成训练样本对检测模块的目标模型进行更新,同时对跟踪模块的“关键特征点”进行更新,以此来避免以后出现类似的

目标跟踪算法的分类

运动目标跟踪就是在一段序列图像中的每幅图像中实时地找到所感兴趣的运动目标 (包括位置、速度及加速度等运动参数)。在运动目标跟踪问题的研究上,总体来说有两种思路: a)不依赖于先验知识,直接从图像序列中检测到运动目标,并进行目标识别,最终跟踪感兴趣的运动目标; b)依赖于目标的先验知识,首先为运动目标建模,然后在图像序列中实时找到相匹配的运动目标。 一、运动目标检测 对于不依赖先验知识的目标跟踪来讲,运动检测是实现跟踪的第一步。运动检测即为从序列图像中将变化区域从背景图像中提取出来。运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测。 静态背景下运动检测就是摄像机在整个监视过程中不发生移动,只有被监视目标在摄像机视场内运动,这个过程只有目标相对于摄像机的运动;动态背景下运动检测就是摄像机在整个监视过程中发生了移动 (如平动、旋转或多自由度运动),被监视目标在摄像机视场内也发生了运动,这个过程就产生了目标与摄像机之间复杂的相对运动。 1、静态背景 背景差分法 背景差分法是利用当前图像与背景图像的差分来检测运动区域的一种技术。它一般能够提供最完全的特征数据,但对于动态场景的变化,如天气、光照、背景扰动及背景物移入移出等特别敏感,运动目标的阴影也会影响检测结果的准确性及跟踪的精确性。其基本思想就是首先获得一个背景模型,然后将当前帧与背景模型相减,如果像素差值大于某一阈值,则判断此像素属于运动目标,否则属于背景图像。背景模型的建立与更新、阴影的去除等对跟踪结果的好坏至关重要。 帧间差分法 相邻帧间差分法是通过相邻两帧图像的差值计算,获得运动物体位置和形状等信息的运动目标检测方法。其对环境的适应性较强,特别是对于光照的变化适应性强,但由于运动目标上像素的纹理、灰度等信息比较相近,不能检测出完整

目标跟踪算法的分类

目标跟踪算法的分类

主要基于两种思路: a)不依赖于先验知识,直接从图像序列中检测到运动目标,并进行目标识别,最终跟踪感兴趣的运动目标; b)依赖于目标的先验知识,首先为运动目标建模,然后在图像序列中实时找到相匹配的运动目标。 一.运动目标检测 对于不依赖先验知识的目标跟踪来讲,运动检测是实现跟踪的第一步。运动检测即为从序列图像中将变化区域从背景图像中提取出来。运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测 (一)静态背景 1.背景差 2.帧差 3.GMM 4.光流 背景减算法可以对背景的光照变化、噪声干扰以及周期性运动等进行建模,在各种不同情况下它都可以准确地检测出运动目标。因此对于固定

个关键技术: a)匹配法则,如最大相关、最小误差等 b)搜索方法,如三步搜索法、交叉搜索法等。 c) 块大小的确定,如分级、自适应等。 光流法 光流估计的方法都是基于以下假设:图像灰度分布的变化完全是目标或者场景的运动引起的,也就是说,目标与场景的灰度不随时间变化。这使得光流方法抗噪声能力较差,其应用范围一般局限于目标与场景的灰度保持不变这个假设条件下。另外,大多数的光流计算方法相当复杂,如果没有特别的硬件装置,其处理速度相当慢,达不到实时处理的要求。 二.目标跟踪 运动目标的跟踪,即通过目标的有效表达,在图像序列中寻找与目标模板最相似候选目标区位置的过程。简单说,就是在序列图像中为目标定位。运动目标的有效表达除了对运动目标建模外,目标跟踪中常用到的目标特性表达主要包括视觉特征 (图像边缘、轮廓、形状、纹理、区域)、统计特征 (直方图、各种矩特征)、变换系数特

目标跟踪算法综述

。 目标跟踪算法综述 大连理工大学卢湖川一、引言 目标跟踪是计算机视觉领域的一个重 要问题,在运动分析、视频压缩、行为识 别、视频监控、智能交通和机器人导航等 很多研究方向上都有着广泛的应用。目标 跟踪的主要任务是给定目标物体在第一帧 视频图像中的位置,通过外观模型和运动 模型估计目标在接下来的视频图像中的状 态。如图1所示。目标跟踪主要可以分为5 部分,分别是运动模型、特征提取、外观 模型、目标定位和模型更新。运动模型可 以依据上一帧目标的位置来预测在当前帧 目标可能出现的区域,现在大部分算法采用的是粒子滤波或相关滤波的方法来建模目标运动。随后,提取粒子图像块特征,利用外观模型来验证运动模型预测的区域是被跟踪目标的可能性,进行目标定位。由于跟踪物体先验信息的缺乏,需要在跟踪过程中实时进行模型更新,使得跟踪器能够适应目标外观和环境的变化。尽管在线目标跟踪的研究在过去几十年里有很大进展,但是由被跟踪目标外观及周围环境变化带来的困难使得设计一个鲁棒的在线跟踪算法仍然是一个富有挑战性的课题。本文将对最近几年本领域相关算法进行综述。 二、目标跟踪研究现状 1. 基于相关滤波的目标跟踪算法 在相关滤波目标跟踪算法出现之前,大部分目标跟踪算法采用粒子滤波框架来进行目标跟踪,粒子数量往往成为限制算法速度的一个重要原因。相关滤波提出了 一种新颖的循环采样方法,并利用循环样 本构建循环矩阵。利用循环矩阵时域频域 转换的特殊性质,将运算转换到频域内进 行计算,大大加快的分类器的训练。同时, 在目标检测阶段,分类器可以同时得到所 有循环样本得分组成的响应图像,根据最 大值位置进行目标定位。相关滤波用于目 标跟踪最早是在MOSSE算法[1]中提出 的。发展至今,很多基于相关滤波的改进 工作在目标跟踪领域已经取得很多可喜的 成果。 1.1. 特征部分改进 MOSSE[1] 算法及在此基础上引入循 环矩阵快速计算的CSK[2]算法均采用简单 灰度特征,这种特征很容易受到外界环境 的干扰,导致跟踪不准确。为了提升算法 性能,CN算法[3]对特征部分进行了优 化,提出CN(Color Name)空间,该空 间通道数为11(包括黑、蓝、棕、灰、绿、 橙、粉、紫、红、白和黄),颜色空间的引 入大大提升了算法的精度。 与此类似,KCF算法[4]采用方向梯度 直方图(HOG)特征与相关滤波算法结合, 同时提出一种将多通道特征融入相关滤波 的方法。这种特征对于可以提取物体的边 缘信息,对于光照和颜色变化等比较鲁棒。 方向梯度直方图(HOG)特征对于运 动模糊、光照变化及颜色变化等鲁棒性良 好,但对于形变的鲁棒性较差;颜色特征 对于形变鲁棒性较好,但对于光照变化不 够鲁棒。STAPLE算法[5]将两种特征进行 有效地结合,使用方向直方图特征得到相 关滤波的响应图,使用颜色直方图得到的 统计得分,两者融合得到最后的响应图像 并估计目标位置,提高了跟踪算法的准确 度,但也使得计算稍微复杂了一些。 图1 目标跟踪算法流程图

Matlab实例之MeanShift的跟踪算法程序

MeanShiftCluster.m %testDistCluters clear clc profile on nPtsPerClust = 250; nClust = 3; totalNumPts = nPtsPerClust*nClust; m(:,1) = [1 1]'; m(:,2) = [-1 -1]'; m(:,3) = [1 -1]'; var = .6; bandwidth = .75; clustMed = []; %clustCent; x = var*randn(2,nPtsPerClust*nClust); %*** build the point set for i = 1:nClust x(:,1+(i-1)*nPtsPerClust:(i)*nPtsPerClust) = x(:,1+(i- 1)*nPtsPerClust:(i)*nPtsPerClust) + repmat(m(:,i),1,nPtsPerClust); end tic [clustCent,point2cluster,clustMembsCell] = MeanShiftCluster(x,bandwidth); toc

numClust = length(clustMembsCell); figure(10),clf,hold on cVec = 'bgrcmykbgrcmykbgrcmykbgrcmyk';%, cVec = [cVec cVec]; for k = 1:min(numClust,length(cVec)) myMembers = clustMembsCell{k}; myClustCen = clustCent(:,k); plot(x(1,myMembers),x(2,myMembers),[cVec(k) '.']) plot(myClustCen(1),myClustCen(2),'o','MarkerEdgeColor','k','MarkerFaceColor',cVec(k ), 'MarkerSize',10) end title(['no shifting, numClust:' int2str(numClust)]) testMeanShift.m %testDistCluters clear clc profile on nPtsPerClust = 250; nClust = 3; totalNumPts = nPtsPerClust*nClust; m(:,1) = [1 1]'; m(:,2) = [-1 -1]'; m(:,3) = [1 -1]'; var = .6; bandwidth = .75;

MeanShift算法

核函数也称“窗口函数”。一维空间用到的核函数有高斯(Gaussian)、余弦弧(Cosinus arch)、双指数(Double Exponential)、均匀(Uniform)、三角(Trangle)、依潘涅契科夫(Epanechikov)、双依潘涅契科夫(DoubleEpanechnikov)、及双权(Biweight)函数。图2.1给出了最常用的几个核函数

给定一组一维空间的n个数据点集合令该数据集合 的概率密度函数假设为f (x),核函数取值为,那么在数据点x处的密度估计可以按下式计算: 上式就是核密度估计的定义。其中,x为核函数要处理的数据的中心点,即数据集合相对于点x几何图形对称。核密度估计的含义可以理解为:核估计器在被估计点为中心的窗口内计算数据点加权的局部平均。或者:将在每个采样点为中心的局部函数的平均效果作为该采样点概率密度函数的估计值。

MeanShift实现: 1.选择窗的大小和初始位置. 2.计算此时窗口内的Mass Center. 3.调整窗口的中心到Mass Center. 4.重复2和3,直到窗口中心"会聚",即每次窗口移动的距离小于一定的阈值,或者迭代次数达到设定值。 meanshift算法思想其实很简单:利用概率密度的梯度爬升来寻找局部最优。它要做的就是输入一个在图像的范围,然后一直迭代(朝着重心迭代)直到满足你的要求为止。但是他是怎么用于做图像跟踪的呢?这是我自从学习meanshift以来,一直的困惑。而且网上也没有合理的解释。经过这几天的思考,和对反向投影的理解使得我对它的原理有了大致的认识。 在opencv中,进行meanshift其实很简单,输入一张图像(imgProb),再输入一个开始迭代的方框(windowIn)和一个迭代条件(criteria),输出的是迭代完成的位置(comp )。 这是函数原型: int cvMeanShift( const void* imgProb, CvRect windowIn,CvTermCriteria criteria, CvConnectedComp* comp ) 但是当它用于跟踪时,这张输入的图像就必须是反向投影图了。 为什么必须是反向投影图呢?首先我们要理解什么是反向投影图。 简单理解它其实实际上是一张概率密度图。经过反向投影时的输入是一个目标图像的直方图(也可以认为是目标图像),还一个输入是当前图像就是你要跟踪的全图,输出大小与全图一样大,它上像素点表征着一种概率,就是全图上这个点是目标图像一部分的概率。如果这个点越亮,就说明这个点属于物体的概率越大。现在我们明白了这原来是一张概率图了。当用meanshift跟踪时,输入的原来是这样一幅图像,那也不难怪它可以进行跟踪了。 半自动跟踪思路:输入视频,用画笔圈出要跟踪的目标,然后对物体跟踪。用过opencv的都知道,这其实是camshiftdemo的工作过程。 第一步:选中物体,记录你输入的方框和物体。 第二步:求出视频中有关物体的反向投影图。

基于MeanShift的目标跟踪算法及实现

基于MeanShift的目标跟踪算法及实现 这次将介绍基于MeanShift的目标跟踪算法,首先谈谈简介,然后给出算法实现流程,最后实现了一个单目标跟踪的MeanShift算法【matlab/c两个版本】 csdn贴公式比较烦,原谅我直接截图了… 一、简介 首先扯扯无参密度估计理论,无参密度估计也叫做非参数估计,属于数理统计的一个分支,和参数密度估计共同构成了概率密度估计方法。参数密度估计方法要求特征空间服从一个已知的概率密度函数,在实际的应用中这个条件很难达到。而无参数密度估计方法对先验知识要求最少,完全依靠训练数据进行估计,并且可以用于任意形状的密度估计。所以依靠无参密度估计方法,即不事先规定概率密度函数的结构形式,在某一连续点处的密度函数值可由该点邻域中的若干样本点估计得出。常用的无参密度估计方法有:直方图法、最近邻域法和核密度估计法。 MeanShift算法正是属于核密度估计法,它不需要任何先验知识而完全依靠特征空间中样本点的计算其密度函数值。对于一组采样数据,直方图法通常把数据的值域分成若干相等的区间,数据按区间分成若干组,每组数据的个数与

总参数个数的比率就是每个单元的概率值;核密度估计法的原理相似于直方图法,只是多了一个用于平滑数据的核函数。采用核函数估计法,在采样充分的情况下,能够渐进地收敛于任意的密度函数,即可以对服从任何分布的数据进行密度估计。 然后谈谈MeanShift的基本思想及物理含义:此外,从公式1中可以看到,只要是落入Sh的采样点,无论其离中心x的远近,对最终的Mh(x)计算的贡献是一样的。然而在现实跟踪过程中,当跟踪目标出现遮挡等影响时,由于外层的像素值容易受遮挡或背景的影响,所以目标模型中心附近的像素比靠外的像素更可靠。因此,对于所有采样点,每个样本点的重要性应该是不同的,离中心点越远,其权值应该越小。故引入核函数和权重系数来提高跟踪算法的鲁棒性并增加搜索跟踪能力。 接下来,谈谈核函数: 核函数也叫窗口函数,在核估计中起到平滑的作用。常用的核函数有:Uniform,Epannechnikov,Gaussian等。本文算法只用到了Epannechnikov,它数序定义如下: 二、基于MeanShift的目标跟踪算法

目标跟踪算法

clc; clear; x=[0 16 25 33 50 65 75 82 100]; y=[0 172.5 227.5 324.2 330.7 286.1 237.7 201.7 0]; plot(xx,yy); 的图为 xx = 0:.01:100; yy = spline(x,y,xx); plot(xx,yy)

Matlab画平滑曲线的两种方法(拟合或插值后再用plot即可) 分类:MATLAB2012-12-02 11:15 25540人阅读评论(4) 收藏举报自然状态下,用plot画的是折线,而不是平滑曲线。 有两种方法可以画平滑曲线,第一种是拟合的方法,第二种是用spcrv,其实原理应该都一样就是插值。下面是源程序,大家可以根据需要自行选择,更改拟合的参数。 clc,clear; a = 1:1:6; %横坐标 b = [8.0 9.0 10.0 15.0 35.0 40.0]; %纵坐标

plot(a, b, 'b'); %自然状态的画图效果 hold on; %第一种,画平滑曲线的方法 c = polyfit(a, b, 2); %进行拟合,c为2次拟合后的系数 d = polyval(c, a, 1); %拟合后,每一个横坐标对应的值即为d plot(a, d, 'r'); %拟合后的曲线 plot(a, b, '*'); %将每个点用*画出来 hold on; %第二种,画平滑曲线的方法 values = spcrv([[a(1) a a(end)];[b(1) b b(end)]],3); plot(values(1,:),values(2,:), 'g');

基于MeanShift算法的目标跟踪解析

基于MeanShift算法的目标跟踪 1 算法描述 1.1 meanshift算法背景 meanShift这个概念最早是由Fukunage在1975年提出的,Fukunage等人在一篇关于概率密度梯度函数的估计中提出这一概念。其最初的含义正如其名:偏移的均值向量;但随着理论的发展,meanShift的含义已经发生了很多变化。如今,我们说的meanShift算法,一般是指一个迭代的步骤,即先算出当前点的偏移均值,然后以此为新的起始点,继续移动,直到满足一定的结束条件。 在很长一段时间内,meanShift算法都没有得到足够的重视,直到1995年另一篇重要论文的发表。该论文的作者Yizong Cheng定义了一族核函数,使得随着样本与被偏移点的距离不同,其偏移量对均值偏移向量的贡献也不同。其次,他还设定了一个权重系数,使得不同样本点的重要性不一样,这大大扩展了meanShift的应用范围。此外,还有研究人员将非刚体的跟踪问题近似为一个meanShift的最优化问题,使得跟踪可以实时进行。目前,利用meanShift进行跟踪已经相当成熟。 1.2 meanshift算法原理 Meanshift可以应用在很多领域,比如聚类,图像平滑,图像分割,还在目标跟踪领域有重要的应用。Meanshift跟踪算法是通过计算候选目标与目标模板之间相似度的概率密度分布,然后利用概率密度梯度下降的方向来获取匹配搜索的最佳路径,加速运动目标的定位和降低搜索的时间,因此其在目标实时跟踪领域有着很高的应用价值。 该算法由于采用了统计特征,因此对噪声具有很好的鲁棒性;由于是一个蛋参数算法,容易作为一个模块和其他算法集成;采用核函数直方图建模,对边缘阻挡、目标的旋转、变形以及背景运动都不敏感;同时该算法构造了一个可以用meanshift算法进行寻优的相似度函数。Meanshift本质上是最陡下降法,因此其求解过程收敛速度快,使得该算法具有很好的实用性。 Meanshift算法的思想是利用概率密度的梯度爬升来寻找局部最优。它要做的就是输入一个在图像的范围,然后一直朝着重心迭代,直到满足你的要求或者达到迭代最大次数结束。在opencv中,进行meanshift其实很简单,输入一张图像(imgProb),再输入一个开始迭代的方框(windowIn)和一个迭代条件(criteria),输出的是迭代完成的位置(comp )。这是函数原型: int cvMeanShift( const void* imgProb, CvRect windowIn, CvTermCriteria criteria, CvConnectedComp* comp ) 参数介绍: imgProb:目标直方图的反向投影 windowIn:初试的搜索框 Criteria:确定搜索窗口的终止条件 Comp:生成的结构,包含收敛的搜索窗口坐标(comp->rect 字段) 与窗口内部所有像素的和(comp->area 字段)

目标定位跟踪算法及仿真程序(修改后)

目标定位跟踪算法及仿真程序 质心算法是最简单的定位算法,如图2-1所示,四个小圆为观测站,实线三角形是目标真实的位置,假设四个圆形观测站都探测到目标的存在,则根据质心定位算法,目标的位置(x,y )可以表示为:4 4 321x x x x x +++= , 4 4 321y y y y y +++= ,这里观测站得位置为),(i i y x ,同理,当观测站数目为N 时,这时候的质心定位算法可以表示为: ???? ? ??? ????=??????∑ ∑ ==N i i N i i y N x N y x 1 1 11 图1 质心定位 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 质心定位算法Matlab 程序 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function main % 定位初始化 Length=100; % 场地空间,单位:米 Width=100; % 场地空间,单位:米 d=50; % 目标离观测站50米以内都能探测到,反之则不能 Node_number=6; % 观测站的个数 for i=1:Node_number % 观测站的位置初始化,这里位置是随机给定的 Node(i).x=Width*rand; Node(i).y=Length*rand; end % 目标的真实位置,这里也随机给定 Target.x=Width*rand; Target.y=Length*rand; % 观测站探测目标 X=[]; for i=1:Node_number

matlab基于meanshift算法行人跟踪代码

function [] = select() close all; clear all; %%%%%%%%%%%%%%%%%%根据一f幅目标全可见的图像圈定跟踪目标%%%%%%%%%%%%%%%%%%%%%%% I=imread('0201.jpg');%读取第1帧图像 figure(1); imshow(I); [temp,rect]=imcrop(I); [a,b,c]=size(temp); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%计算目标图像的权值矩阵%%%%%%%%%%%%%%%%%%%%%%% y(1)=a/2; y(2)=b/2; tic_x=rect(1)+rect(3)/2; tic_y=rect(2)+rect(4)/2; m_wei=zeros(a,b);%权值矩阵 h=y(1)^2+y(2)^2 ;%带宽 for i=1:a for j=1:b dist=(i-y(1))^2+(j-y(2))^2; m_wei(i,j)=1-dist/h; %epanechnikov profile end end C=1/sum(sum(m_wei));%归一化系数 %计算目标权值直方图qu %hist1=C*wei_hist(temp,m_wei,a,b);%target model hist1=zeros(1,4096); for i=1:a for j=1:b %rgb颜色空间量化为16*16*16 bins q_r=fix(double(temp(i,j,1))/16); %fix为趋近0取整函数 q_g=fix(double(temp(i,j,2))/16); q_b=fix(double(temp(i,j,3))/16); q_temp=q_r*256+q_g*16+q_b; %设置每个像素点红色、绿色、蓝色分量所占比重

多目标跟踪算法

多目标跟踪算法 先来回顾下卡尔曼滤波器: 假定k k x |表示当前k 时刻目标的状态,k 1k x |+表示下一个时刻目标的状态,k z 则表示k 时刻的实际观测。一般地模型都假定为线性的: 这里的1k x +为k+1时刻目标的状态,k x 为k 时刻的状态,为状态转移矩阵,而是服从均值为0方差为的正态分布,表示由噪声等引起的干扰。卡尔曼滤波采取初步估 计: 这里的估计只是初步的估计,状态估计与实际状态的误差矩阵等于状态1k x +的的方差,即: 更新(修正): 这里已知了实际观察,同样是假定观测与状态的似然关系是线性的,即满足: 服从一个均值为0方差为 的正态分布。 卡尔曼滤波器给出了经过更新后得到的比较合理的k+1时刻的估计为: 相应地得到了更新后方差的估计: 这里: 其实这些都是通过最小二乘法推出来的,即使得误差: 最小,而初步估计也是通过最小二乘法获得,即使得: 最小。有了上述估计方程后,便可以获得一个估计流程:

下面再介绍下贝叶斯公式 先看一个定义 马氏链: 设{} ,,,k j i E =为有限集或可列集,称()0n n X ≥为定义在概率空间()P F,,Ω上,取值于空间E 的马氏链,如果满足下面的马氏性:对一切n 10i i i ,,, 有 [][]1n 1n n n 1n 1n 00n n i X i X P i X i X i X P ----======|,,| 若左边的条件概率有定义,则称[]i X j X P 1n n ==-|为在n-1时刻状态为i,在n 时刻在j 的转移概率函数,若它与n 无关,则记为ij p ,并称为时齐的或齐次的。显然这里的马氏性接近于独立性,在一定程度上可以称为无记忆性或无后效性。 下面我们来推导贝叶斯公式: 容易由条件概率公式定义知 而 ()()()()()()( ) ()() ()( ) ()() ( )() ()()() 1 k 1 k 1k k k 1 k k 1k k k 1k k 1k k k 1k k k k k 1k 1k 1k k k 1k k k k k 1k 1k 1k k k 1k 1k 1k k k 1k 1k 1k 1k 1k z x f dx x f x z f x f x z f z f dx x f x z f x z f z f x f x z f x z f dx z x f x z f z x f x z f x f +++++++++++++++++++++++== ? == ?? ?||||||||||||||||||||||||| 就得到了更新后的公式如下: 这里记 于是就可以得到贝叶斯滤波器跟踪流程如下: 实际上可以证明,卡尔曼滤波器是贝叶斯滤波器的一种特殊形式,由于假定噪声服从正态分布,同样地观测与状态估计的误差也是服从正态分布,那么不难得:

meanshift优缺点和算法代码

meanshift 做跟踪的优缺点及其代码 (2012-03-28 12:45:16) 转载▼ 标签: 转载 原文地址:meanshift 做跟踪的优缺点及其代码作者:千里8848 meanShift算法用于视频目标跟踪时,采用目标的颜色直方图作为搜索特征,通过不断迭代meanShift向量使得算法收敛于目标的真实位置,从而达到跟踪的目的。 传统的meanShift算法在跟踪中有几个优势: (1)算法计算量不大,在目标区域已知的情况下完全可以做到实时跟踪; (2)采用核函数直方图模型,对边缘遮挡、目标旋转、变形和背景运动不敏感。 同时,meanShift算法也存在着以下一些缺点: (1)缺乏必要的模板更新; (2)跟踪过程中由于窗口宽度大小保持不变,当目标尺度有所变化时,跟踪就会失败;(3)当目标速度较快时,跟踪效果不好; (4)直方图特征在目标颜色特征描述方面略显匮乏,缺少空间信息; 由于其计算速度快,对目标变形和遮挡有一定的鲁棒性,所以,在目标跟踪领域,meanShift 算法目前依然受到大家的重视。但考虑到其缺点,在工程实际中也可以对其作出一些改进和调整;例如: (1)引入一定的目标位置变化的预测机制,从而更进一步减少meanShift跟踪的搜索时间,降低计算量; (2)可以采用一定的方式来增加用于目标匹配的“特征”; (3)将传统meanShift算法中的核函数固定带宽改为动态变化的带宽; (4)采用一定的方式对整体模板进行学习和更新; 代码如下,使用方法:先圈出要跟踪对象的初始位置,然后双击。输入为图片序列。

/////////////////////////////////////////////////////////////////////////////////////////// close all; clear all; rgb = imread('0015.jpeg'); figure(1); imshow(rgb); [temp,rect] = imcrop(rgb);%交互式切图 [a,b,c] = size(temp); %中心点位置 y(1) = a/2; y(2) = b/2; %带宽 h = y(1)^2 + y(2)^2; %用epanechnikov计算权值矩阵 t_weight = zeros(a,b); for i = 1:a for j = 1:b dist = (i - y(1))^2 + (j - y(2))^2; t_weight(i,j) = 1 - dist/h; end

相关主题
文本预览
相关文档 最新文档