当前位置:文档之家› 示波器原理及使用

示波器原理及使用

示波器原理及使用
示波器原理及使用

附录1 示波器原理及使用

一、示波器的基本结构

示波器的种类很多,但它们都包含下列基本组成部分,如附图1—1所示。

附图1—1示波器的基本结构框图

1.主机

主机包括示波管及其所需的各种直流供电电路,在面板上的控制旋钮有辉度、聚焦、水平移位和垂直移位等。

2.垂直通道

垂直通道主要用来控制电子束按被测信号的幅值大小在垂直方向上的偏移。

它包括Y轴衰减器、Y轴放大器和配用的高频探头。通常示波管的偏转灵敏度比较低,因此在一般情况下,被测信号往往需要通过Y轴放大器放大后加到垂直偏转板上,才能在屏幕上显示出一定幅度的波形。Y轴放大器的作用提高了示波管Y轴偏转灵敏度。为了保证Y 轴放大器不失真,加到Y轴放大器的信号不宜太大,但是实际的被测信号幅度往往在很大范围内变化,此Y轴放大器前还必须加一个Y轴衰减器,以适应观察不同幅度的被测信号。示波器面板上设有“Y轴衰减器”(通常称“Y轴灵敏度选择”开关)和“Y轴增益微调”旋钮,分别调节Y轴衰减器的衰减量和Y轴放大器的增益。

对Y轴放大器的要求是:增益大,频响好,输入阻抗高。

为了避免杂散信号的干扰,被测信号一般都通过同轴电缆或带有探头的同轴电缆加到示波器Y轴输入端。但必须注意,被测信号通过探头将幅值衰减(或不衰减),其衰减笔为10:1(或1:1)。

3.水平通道

水平通道主要是控制电子束按时间值在水平方向上偏移。

主要由扫描发生器、水平放大器和触发电路组成。

(1)扫描发生器:扫描发生器又叫锯齿波发生器,用来产生频率调节范围宽的锯齿波,作为x 轴偏转板的扫描电压。锯齿波的频率(或周期)调节是由“扫描速率选择”开关和“扫速微调”旋钮控制的。使用时,调节“扫速选择”开关和“扫速微调’’旋钮,使其扫描周期为被测信号周期的整数倍,保证屏幕上显示稳定的波形。

(2)水平放大器:其作用与垂直放大器一样,将扫描发生器产生的锯齿波放大到X 轴偏转板所需的数值。

(3)触发电路:用于产生触发信号以实现触发扫描的电路。为了扩展示波器应用范围,一般示波器上都设有触发源控制开关,触发电平与极性控制旋钮和触发方式选择开关等。

二、示波器的二踪显示

1.二踪显示原理

示波器的二踪显示是依靠电子开关的控制作用来实现的。

电子开关由“显示方式”开关控制,共有5种工作状态,即1Y 、2Y 、1Y +2Y 、交替和

断续。当开关置于“交替”或“断续”位置时,荧光屏上便可同时显示两个波形。当开关置于“交替”位置时,电子开关的转换频率受扫描系统控制,工作过程如附图1—2所示。即电子开关首先接通2Y 通道,进行第一次扫描,显示由2Y 通道送入的被测信号的波形;然后

电子开关接通1Y 通道,进行第二次扫描,显示由1Y 通道送入的被测信号的波形;接着再接

通2Y 通道……这样便轮流地对2Y 和1Y 两通道送入的信号进行扫描、显示。由于电子开关转

换速度较快,每次扫描

的回扫线在荧光屏上又不显示出来,借助于荧光屏的余辉作用和人眼的视觉暂留特性,使用者便能在荧光屏上同时观察到两个清晰的波形。这种工作方式适宜于观察频率较高的输入信号场合。

当开关置于“断续”位置时,相当于将一次扫描分成许多个相等的时间间隔。在第一次扫描的第一个时间间隔内显示2Y 信号波形的某一段;在第二个时间时隔内显示1Y 信号波形

的某一段;以后各个时间间隔轮流地显示2Y 、1Y 两信号波形的其余段,经过若干次断续转

换,使荧光屏上显示出两个由光点组成的完整波形如附图1—3(a)所示。由于转换的频率很高,光点靠得很近,其间隙用肉眼几乎分辨不出,再利用消隐的方法使两通道间转换过程的过渡线不显示出来,见附图1—3(b),因而同样可达到同时清晰地显示两个波形的目的。这种工作方式适合于输入信号频率较低时使用。

附图l一2交替方式显示波形附图1—3断续方式显示波形

2.触发扫描

在普通示波器中,X轴的扫描总是连续进行的,称为“连续扫描”。为了能更好地观测各种脉冲波形,在脉冲示波器中,通常采用“触发扫描”。采用这种扫描方式时,扫描发生器将工作在待触发状态。它仅在外加触发信号作用下,时基信号才开始扫描,否则便不扫描。这个外加触发信号通过触发选择开关分别取自“内触发”(Y轴的输入信号经由内触发放大器输出触发信号),也可取自“外触发”输入端的外接同步信号。其基本原理是利用这些触发脉冲信号的上升沿或下降沿来触发扫描发生器,产生锯齿波扫描电压,然后经X轴放大后送X轴偏转板进行光点扫描。适当地调节“扫描速率”开关和“电平”调节旋钮,能方便地在荧光屏上显示出具有合适宽度的被测信号波形。

上面介绍了示波器的基本结构,下面将结合使用来介绍电子技术实验中常用的CA8020型双踪示波器。

三、CA8020型双踪示波器

1.概述

CA8020型示波器为便携式双通道示波器。本机垂直系统具有O~20 MHz的频带宽度和5 mV/div~5 V/div的偏转灵敏度,配以10:1探极,灵敏度可达5 V/div。本机在全频带范围内可获得稳定触发,触发方式设有常态、自动、TV和峰值自动,尤其是“峰值自动,,方式给使用者带来了极大的方便。“内触”设置了交替触发,可以稳定地显示两个频率不相关的信号。本机水平系统具有0.5 s/div~0.2 s/div的扫描速度,并设有扩展×10挡,可将最快扫描速

度提高到20 ns/div。

2.面板控制件介绍

CA8020面板图如附图l-4所示。附表1-1所列。

附图1—4 CA8020型双踪示波器面板图

附表1-1

续附表1-1

3.操作方法

(1)电源检查:cA8020双踪示波器电源电压为220 V±10%。接通电源前,检查当地电源电压,如果不相符合,则严格禁止使用。

(2)面板的一般功能检查。

①将有关控制件按下附表1—2所列置位。

附表1-2

②接通电源,电源指示灯亮,稍预热后,屏幕上出现扫描光迹,分别调节亮度、聚焦、辅助聚焦、迹线旋转、垂直和水平移位等控制件,使光迹清晰并与水平刻度平行。

③用10:1探极将校正信号输入至CH1输入插座。

④调节示波器有关控制件,使荧光屏上显示稳定且易观察方波波形。

⑤将探极换至CH2输入插座,垂直方式置于“CH2”,内触发源置于“CH2”,重复④操作。

(3)垂直系统的操作

①垂直方式的选择:当只须观察一路信号时,将“垂直方式”开关置于“CH1”或“CH2”,此时被选中l的通道有效,被测信号可从通道端口输入。当需要同时观察两路信号时,将“垂直方式”开关置于“交替”方式。该方式使两个通道的信号被交替显示,交替显示的频率受扫描周期控制。当扫速低于一定频率时,交替方式显示会出现闪烁,此时应将开关置于“断续”位置。当需要观察两路信号代数和时,将“垂直方式”开关置于“代数和”位置。在选择这种方式时,两个通道的衰减设置必须一致,CH2移位处于常态时为CHl+CH2,CH2移位拉出时为CH1—CH2。

②输入耦合方式的选择:直流(DC)耦合适用于观察包含直流成分的被测信号,如信号的逻辑电平和静态信号的直流电平。当被测信号的频率很低时,也必须采用这种方式。交流

(AC)耦合:信号中的直流分量被隔断,用于观察信号的交流分量,如观察较高直流平上的小信号。

接地(GND):通道输入端接地(输入信号断开),用于确定输入为零时光迹所处位置。

③灵敏度选择 (V/div)的设定:按被测信号幅值的大小选择合适挡级。“灵敏度选择”开关外旋钮为粗调,中心旋钮为细调(微调)。微调旋钮按顺时针方向旋足至校正位置时,可根据粗调旋钮的示值(V/div)和波形在垂直轴方向上的格数读出被测信号幅值。

(4)触发源的选择

①触发源选择:当触发源开关置于“电源”触发,机内50 Hz信号输入到触发电路。当触发源开关置于“常态’’触发,有两种选择:一种是“外触发”,由面板上外触发输入插座输入触发信号;另一种是“内触发”,由内触发源选择开关控制。

②内触发源选择

“CH1”触发:触发源取自通道1。

“CH2”触发:触发源取自通道2。

“交替触发”:触发源受垂直方式开关控制,当垂直方式开关置于“CH1 ”,触发源自动切换到通道1;当垂直方式开关置于“CH2”,触发源自动切换到通道2;当垂直方式开关置于“交替”,触发源与通道1、通道2同步切换,在这种状态使用时,两个不相关的信号其频率不应相差很大,同时垂直输入耦合应置于“AC”,触发方式应置于“自动”或“常态”。当垂直方式开关置于“断续”和“代数和”时,内触发源选择应置于“CH1”或“CH2”。

(5)水平系统的操作

①扫描速度选择(t/div)的设定:按被测信号频率高低选择合适挡级,“扫描速率”开关外旋钮为粗调,中心旋钮为细调(微调),微调旋钮按顺时针方向旋足至校正位置时,可根据粗调旋钮的示值(t/div)和波形在水平轴方向上的格数读出被测信号的时间参数。当需要观察波形的某一个细节时,可进行水平扩展×10挡,此时原波形在水平轴方向上被扩展10倍。

②触发方式的选择:“常态”:无信号输入时,屏幕上无光迹显示;有信号输入时,触发电平调节在合适位置上,电路被触发扫描。当被测信号频率低于20 Hz时,必须选择这种方式。“自动”:无信号输入时,屏幕上有光迹显示;一旦有信号输入时,电平调节在合适位置上,电路自动转换到触发扫描状态,显示稳定的波形,当被测信号频率高于20 Hz时,最常用这一种方式。

“电视场”:对电视信号中的场信号进行同步,如果是正极性,则可以由CH2输入,借助于CH2移位拉出,把正极性转变为负极性后测量。

“峰值自动”:这种方式同自动方式,但无须调节电平即能同步。它一般适用于正弦波、对称方波或占空比相差不大的脉冲波。对于频率较高的测试信号,有时也要借助于电平调节,它的触发同步灵敏度要比“常态”或“自动”稍低一些。

③“极性”的选择:用于选择被测试信号的上升沿或下降沿去触发扫描。

④“电平”的位置:用于调节被测信号在某一合适的电平上启动扫描,当产生触发扫描后,触发指示灯亮。

4.测量电参数

(1)电压的测量:示波器的电压测量实际上是对所显示波形的幅度进行测量,测量时应使被测波形稳定地显示在荧光屏中央,幅度一般不宜超过6 div,以避免非线性失真造成的测量误差。

①交流电压的测量

A .将信号输入至CH1或cH2插座,将垂直方式置于被选用的通道。

B .将Y 轴“灵敏度微调”旋钮置校准位置,调整示波器有关控制件,使荧光屏上显示稳定、易观察的波形,则交流电压幅值为

P P V =垂直方向格数(div)×垂直偏转因数(V /div)

②直流电平的测量

A .设置面板控制件,使屏幕显示扫描基线;

B .设置被选用通道的输入耦合方式为“GND ”;

C .调节垂直移位,将扫描基线调至合适位置,作为零电平基准线;

D .将“灵敏度微调”旋钮置校准位置,输入耦合方式置“DC ”,被测电平由相应Y 输入端输入,这时扫描基线将偏移,读出扫描基线在垂直方向偏移的格数(div),则被测电平为 V= 垂直方向偏移格数(div)×垂直偏转因数(V /div)×偏转方向(+或-)

式中,基线向上偏移取正号,基线向下偏移取负号。

(2)时间测量

时间测量是指对脉冲波形的宽度、周期、边沿时间及两个信号波形间的时间间隔(相位差)等参数的测量。一般要求被测部分在荧光屏x 轴方向应占(4~6)div 。

①时间间隔的测量:对于一个波形中两点间的时间间隔的测量,测量时先将“扫描微调”旋钮置校准位置,调整示波器有关控制件,使荧光屏上波形在x 轴方向大小适中,读出波形中需测量两点间水平方向格数,则时间间隔

t ?=两点之间水平方向格数(div)×扫描时间因数(t /div)

②脉冲边沿时间的测量:上升(或下降)时间的测量方法和时间间隔的测量方法一样,只不过是测量被测波形满幅度的10%和90 %两点之间的水平方向距离,如附图1—5所示。

用示波器观察脉冲波形的上升边沿、下降边沿时,必须合理选择示波器的触发极性(用触发极性开关控制)。显示波形的上升边沿用“+”极性触发,显示波形下降边沿用“一”极性触发。如波形的上升沿或下降沿较快则可将水平扩展×10,使波形在水平方向上扩展10倍,则上升(或下降)时间为

r t (或f t )=div t/div ?水平方向格数()扫描时间因素()水平扩展倍数

③相位差的测量:

A .参考信号和一个待比较信号分别馈人“CH2”和“CH2”输入插座。

B .根据信号频率,将垂直方式置于“交替”或“断续”。

C .设置内触发源至参考信号那个通道。

D .将CH1 和CH2输入耦合方式置“上”,调节CH1 、CH2移位旋钮,使两条扫描基线重合。

E .将CH2、CH2耦合方式开关置于“AC ”,调整有关控制件,使荧光屏显示大小适中,便于观察两路信号,如附图1—6所示。读出两波形水平方向差距格数D 及信号周期所占格数T ,则相位差为0

D 360T θ?=

附图1—5上升时间的测量附图1—6相位差的测量

TDS 220 数字实时示波器使用指导

我公司现在提供给新产品工程部工程师使用的示波器为美国Tektronix

公司产品TDS 220,该产品具有100MHz带宽,采样速率为1GS/s,2500

点记录长度,为双通道数字实时示波器(超取样率至少为10倍),有光

标读数功能、波形持续显示功能,示波器操作温度0℃~50℃,能够满足

SYNLOCK对漂移产生、抖动产生、相位瞬变的测试需要。

示波器控制面板上有如下功能区:

●右上角3个键:分别执行AUTOSET、HARDCOPY、RUN/STOP

功能;

●MENUS区:该区6个键负责示波器主功能菜单选择;

●菜单子项选择区:该区5个键负责显示屏上某一主菜单各功能子项

选择;由控制面板最左面一排按键控制;

●通道垂直位置及分辨率调节区:通道1、通道2垂直位置与分辨率由

VERTICAL区各键及旋钮选择调节;

●通道水平位置及分辨率调节区:HORIZONAL区负责调整水平位置

及水平分辨率;

TRIGGER区:一个旋钮及4个按键负责对触发作调整。

一、现以测漂移产生为例说明示波器使用基本操作规范及步骤:

1)为了防止电击,示波器一定要用三脚插座,以保证可靠接入大地;

2) 为使观察到的波形客观、准确,在某一环境第一次测试前应对示

波器进行自校正:按MENUS框中的UTILITY钮,选择自校正

项既可(一定将所有探棒或导线从通道CH1、CH2 及EXT TRIG

断开;如果环境温度变化范围达到或超过5℃时,您必须执行此

项操作);

3)示波器在规定操作温度(0℃~50℃)下持续运行10分钟后,进

入稳定工作状态,既需预热10分钟;

4)将TOG板输出的2.048MHz信号与示波器CH1相连,铷钟自由振

荡的2.048MHz输出与示波器CH2相连;

5)按AUTOSET键;

6)按TRIGGER MENU按钮,将“信源”设置成“CH2”,如波形

不稳定,调节TRIGGER LEVEL旋钮,应使示波器屏幕右方“←”

符号位于所选触发源波形最大与最小值范围内,使波形稳定(示波器上方“↓”表示水平触发位置即触发时间;右上方Pos时间值表明示波器触发水平位置距显示屏中心位置的时间差;示波器右方“←”表示垂直触发位置即触发电平高度);

7)这时如不想观察CH2通道触发信号波形,可按CH2的MENU键两

次,以关闭CH2通道波形(该键为通道是否显示波形开关键);

8)调节CH1通道VERTICAL项下的 POSITION旋钮,将波形的调

节到屏幕中间(相对垂直坐标);

9)将 CH1的VOLTS/DIV旋钮旋到最右端即2mV/格;

10)先向左旋HORIZONIAL项下的POSITION钮使屏幕中心上升沿

向左移动一个周期,此时右上方 Pos=1UI=448ns,即所测信号位置距触发位置一个周期,也就是使所测的上升沿处于屏幕中心位置,再向右调SEC/DIV钮直至10ns/格;

11)按DISPLAY按钮,将持续选项设置成无限(波形的所有变化将会

记录在显示屏上);

12)记录测试开始时间,测试30分钟后,按STOP键(注意这时除了

按如下说明操作外,不要动任何钮及键,否则测试结果波形有被刷新可能);

13)按CURSOR按钮,将类型设置成时间,用VERTICAL项下CH1通道

的POSITION旋钮调节CURSOR1光标与波形阴影左边对齐,用VERTICAL项下CH2通道的POSITION旋钮调节CURSOR2与波形阴影右边对齐(光标读数位置应为阴影水平值最宽处);

14)读出显示屏右区菜单项增量下的ns时间值,此值即为漂移产生

时间值;

15)示波器在安装了TDS200系列扩展模块的情况下,具有硬拷贝功

能(打印)功能,可以在几种示波器支持的打印格式(LaserJet、Epson、BMP、PCX、EPSIMAGE、INTERLEAF、DPU411、DPU412、ThinkJet、DeskJet)下将测试波形打印出来;

16)测试前应在示波器与HPLaserJet 打印机皆断电情况下,将打印

电缆连到示波器上的Centronics口;

17)按UTILITY键,在显示屏的菜单上选择“选件”项;

18)显示屏的菜单上选择“硬拷贝”,然后将“版面格式”选为“竖

向”,“拷贝格式”选为“LaserJet”(以HP激光打印机为例),“拷贝接口”选为“Centronics”;

19)按HARDCOPY键,数十秒钟后测试结果从打印机输出。

做其它测试也以如上所述操作为参考,如操作过程中出现操作错误,而

无法得到预期显示效果,感到很迷惑时,请从第5步开始从新按步骤进

行即可解决问题(既第5步对示波器设置作了复位)。

二、抖动产生测试操作步骤:

1) 将TOG板输出的2.048MHz信号与示波器CH1相连;

2) 按AUTOSET键;

3) 如波形不稳定,按TRIGGER MENU按钮,调节TRIGGER LEVEL旋钮,应

使示波器屏幕右方“←”符号位于所选触发源波形最大与最小值范围内,使波

形稳定(示波器上方“↓”表示水平触发位置即触发时间;右上方Pos时间

值表明示波器触发水平位置距显示屏中心位置的时间差;示波器右方“←”表

示垂直触发位置即触发电平高度);

4) 调节CH1通道VERTICAL项下的POSITION旋钮,将波形的调节到屏幕中

间(相对垂直坐标);

5) 将CH1的VOLTS/DIV旋钮旋到最右端即2mV/格;

6) 先向左旋HORIZONIAL项下的POSITION钮使屏幕中心上升沿向左移动一个

周期,此时右上方Pos=1UI=448ns,即所测信号位置距触发位置一个周期,

也就是使所测的上升沿处于屏幕中心位置,再向右调SEC/DIV钮直至5ns/格;

7) 按DISPLAY按钮,将持续选项设置成无限(波形的所有变化将会记录在显示

屏上);

8) 记录测试开始时间,测试10秒钟后,按STOP键(注意这时除了按如下说明

操作外,不要动任何钮及键,否则测试结果波形有被刷新可能);

9) 按CURSOR按钮,将类型设置成时间,用VERTICAL项下CH1通道的

POSITION旋钮调节CURSOR1光标与波形阴影左边对齐,用VERTICAL项

下CH2通道的POSITION旋钮调节CURSOR2与波形阴影右边对齐(光标

读数位置应为阴影水平值最宽处);

10) 读出显示屏右区菜单项:增量下的ns时间值,此值即为抖动产生时间值;

三、相位瞬变测试操作步骤:

1) 将TOG板输出的2.048MHz信号与示波器CH1相连;

2) 按AUTOSET键;

3) 如波形不稳定,按TRIGGER MENU按钮,调节TRIGGER LEVEL旋钮,应

使示波器屏幕右方“←”符号位于所选触发源波形最大与最小值范围内,使波

形稳定(示波器上方“↓”表示水平触发位置即触发时间;右上方Pos时间

值表明示波器触发水平位置距显示屏中心位置的时间差;示波器右方“←”表

示垂直触发位置即触发电平高度);

4) 如波形不在纵轴中间位置,调节CH1通道VERTICAL项下的POSITION旋

钮,将波形的调节到屏幕中间(相对垂直坐标);

5) 将CH1的VOLTS/DIV旋钮旋到最右端即2mV/格;

6) 先向左旋HORIZONIAL项下的POSITION钮使屏幕中心上升沿向左移动一个

周期,此时右上方Pos=1UI=448ns,即所测信号位置距触发位置一个周期,也就是使所测的上升沿处于屏幕中心位置,再向右调SEC/DIV钮直至5ns/格;

7) 按DISPLAY按钮,将持续选项设置成无限(波形的所有变化将会记录在显示

屏上);

8) 在终端上作切换操作,应马上可以观察到相位瞬变,按STOP键(注意这时

除了按如下说明操作外,不要动任何钮及键,否则测试结果波形有被刷新可能);

9) 按CURSOR按钮,将类型设置成时间,用VERTICAL项下CH1通道的

POSITION旋钮调节CURSOR1光标与波形阴影左边对齐,用VERTICAL项下CH2通道的POSITION旋钮调节CURSOR2与波形阴影右边对齐(光标读数位置应为阴影水平值最宽处);

10) 读出显示屏右区菜单项:增量下的ns时间值,此值即为相位瞬变时间值;

示波器的基础学习知识原理和使用

示波器的原理和使用 示波器是一种用途广泛的基本电子测量仪器,用它能观察电信号的波形、幅度和频率等电参数。用双踪示波器还可以测量两个信号之间的时间差,一些性能较好的示波器甚至可以将输入的电信号存储起来以备分析和比较。在实际应用中凡是能转化为电压信号的电学量和非电学量都可以用示波器来观测。 【实验目的】 1.了解示波器的基本结构和工作原理,掌握使用示波器和信号发生器的基本方法。2.学会使用示波器观测电信号波形和电压幅值以及频率。 3.学会使用示波器观察李萨如图并测频率。 图1-1 示波器结构图 【实验原理】 不论何种型号和规格的示波器都包括了如图1-1所示的几个基本组成部分:示波管(又称阴极射线管,cathode ray tube,简称CRT)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号发生电路(锯齿波发生器)、自检标准信号发生电路(自检信号)、触发同步电路、电源等。 1.示波管的基本结构

示波管的基本结构如图1-2所示。主要由电子枪、偏转系统和荧光屏三部分组成,全都密封在玻璃壳体内,里面抽成高真空。 (1)电子枪:由灯丝、阴极、控制栅极、第一阳极和第二阳极五部分组成。灯丝通电后加热阴极。阴极是一个表面涂有氧化物的金属圆筒,被加热后发射电子。控制栅极是一个顶端有小孔的圆筒,套在阴极外面。它的电位比阴极低,对阴极发射出来的电子起控制作用,只有初速度较大的电子才能穿过栅极顶端的小孔然后在阳极加速下奔向荧光屏。示波器面板上的“辉度”调整就是通过调节电位以控制射向荧光屏的电子流密度,从而改变了屏上的光斑亮度。阳极电位比阴极电位高很多,电子被它们之间的电场加速形成射线。当控制栅极、第一阳极与第二阳极电位之间电位调节合适时,电子枪内的电场对电子射线有聚集作用,所以, H-灯丝;K-阴极;G1,G2- 控制栅极;A1-第一阳极;A2-第二阳极;Y-竖直偏转板;X-水平偏转板 图1-2 示波管结构图 第一阳极也称聚集阳极。第二阳极电位更高,又称加速阳极。面板上的“聚集”调节,就是调第一阳极电位,使荧光屏上的光斑成为明亮、清晰的小圆点。有的示波器还有“辅助聚集”,实际是调节第二阳极电位。 (2)偏转系统:它由两对互相垂直的偏转板组成,一对竖直偏转板,一对水平偏转板。在偏转板上加以适当电压,电子束通过时,其运动方向发生偏转,从而使电子束在荧光屏上产生的光斑位置也发生改变。 (3)荧光屏:屏上涂有荧光粉,电子打上去它就发光,形成光斑。不同材料的荧光粉发光的颜色不同,发光过程的延续时间(一般称为余辉时间)也不同。荧光屏前有一块透明的、带刻度的坐标板,供测定光点的位置用。在性能较好的示波管中,将刻度线直接刻在荧光屏玻璃内表面上,使之与荧光粉紧贴在一起以消除视差,光点位置可测得更准。2.波形显示原理

示波器原理及其应用分析解析

示波器原理及其应用 示波器介绍 示波器的作用 示波器属于通用的仪器,任一个硬件工程师都应该了解示波器的工作原理并能够熟练使用示波器,掌握示波器是对每个硬件工程师的基本要求。 示波器是用来显示波形的仪器,显示的是信号电压随时间的变化。因此,示波器可以用来测量信号的频率,周期,信号的上升沿/下降沿,信号的过冲,信号的噪声,信号间的时序关系等等。 在示波器显示屏上,横坐标(X)代表时间,纵坐标(Y)代表电压,(注,如果示波器有测量电流的功能,纵坐标还代表电流。)还有就是比较少被关注的-亮度(Z),在TEK的DPO示波器中,亮度还表示了出现概率(它用16阶灰度来表示出现概率)。 1.1.示波器的分类 示波器一般分为模拟示波器和数字示波器;在很多情况下,模拟示波器和数字示波器都可以用来测试,不过我们一般使用模拟示波器测试那些要求实时显示并且变化很快的信号,或者很复杂的信号。而使用数字示波器来显示周期性相对来说比较强的信号,另外由于是数字信号,数字示波器内置的CPU或者专门的数字信号处理器可以处理分析信号,并可以保存波形等,对分析处理有很大的方便。

1.2.1 模拟示波器 模拟示波器使用电子枪扫描示波器的屏幕,偏转电压使电子束从上到下均匀扫描,将波形显示到屏幕上,它的优点在于实时显示图像。 模拟示波器的原理框图如下: 见上图所示,被测试信号经过垂直系统处理(比如衰减或放大,即我们拧垂直按钮-volts/div),然后送到垂直偏转控制中去。而触发系统会根据触发设置情况,控制产生水平扫描电压(锯齿波),送到水平偏转控制中。 信号到达触发系统,开始或者触发“水平扫描”,水平扫描是一个是锯齿波,使亮点在水平方向扫描。触发水平系统产生一个水平时基,使亮点在一个精确的时间内从屏幕的左边扫描到右边。在快速扫描过程中,将会使亮点的运动看起来

示波器的原理与使用

实验七示波器的使用 【目的与任务】 1、了解低频信号发生器、交流毫伏表和示波器的结构和工作原理; 2、学会用示波器,观测电信号的波形并测量其电压、频率和周期; 3、学习用共振干涉法(即驻波法)测定声速。 【仪器与设备】 双踪示波器,声速测量仪,低频信号发生器(其上带有数字频率计),交流毫伏表,温度计等。 1、示波器 GOS—620型双踪示波器:频带宽度为0~20 MHz。有两垂直输入通道"CHl”和"CH2'’,可同时显示两个不同的电压信号波形以便进行分析比较,也可以把两个信号相加或相减后显示出来,还可以任选一个通道单独工作。可以从荧光屏上直接测出信号电压的幅度、频率(周期)。具有“X—Y工作方式”,将"CHI"作为水平通道、“CH2"作为垂直通道,可以观察由两通道输入的水平和垂直信号的合成图样,测出信号的频率和位相差。面板及各控制器件的作用简介见附录一。 2、低频信号发生器 MDl643/4函数信号发生器是一种小型便携式通用函数信号发生器,内部采用大规模精密函数信号发生集成电路,单片机控制,具有正弦波、三角波、方波、锯齿波、脉冲波等多种波形输出、频率范围0.2Hz~2MHz(7档调节)以及外部测频功能。它的结构和使用方法见附录二 3、交流毫伏表 现以GB—9B型电子管毫伏表说明交流毫伏表的使用方法。它可以测定正弦波电压的有效值,还可用来对无线电接收机、放大器和其它设备的电路进行测量。仪器带有分贝标尺,可用来作电平指示。 使用时,将两个输入接线柱短路。在核对仪器电源正确后,接通电源,待2-3分钟,此时电表指针将稍微偏转,看它是否回到零点,若指针不返回零点,则调节面板上的“零点校准”旋钮,调到零位,随后将面板上量程转换开关扳至所需的测量范围。再过十分钟后重调零点一次,即可进行测量。为降低测量误差和干扰,连接导线时应可靠地使毫伏表的地线接线柱与被测电路的零电位点相连。 4、声速测量仪 声速测量仪如图6所示,其上装有两个压电换能器S1、S2和螺旋测微器,转动手轮可以改变S1和S2的位置,它们之间的距离可由标尺读出。 【原理与方法】 示波器是一种用途广泛的电子测量仪器,用它能直接观察电压信号的波形,测定电压信号的幅度、频率等参数。一切能转化为电压信号的电学量(如电流、电功率、阻抗等)、非电学量(如温度、位移、速度、压力、光强、磁场、频率等)以及它们随时间的变化过程,都可用示波器进行观察和研究。由于电子射线的惯性小,又能在荧光屏上显示可见的图像,所以示波器特别适合于观察与测量瞬时变化过程。 示波器的种类型号很多,一般分为单踪示波器和双踪示波器,功能也各不相同,但都是由电子示波管、衰减电路、放大电路、扫描与整步电路、触发器选择逻辑电路、电源等部分

常见示波器的原理和使用方法

示波器的原理和使用方法 在数字电路实验中,需要使用若干仪器、仪表观察实验现象和结果。常用的电子测量仪器有万用表、逻辑笔、普通示波器、存储示波器、逻辑分析仪等。万用表和逻辑笔使用方法比较简单,而逻辑分析仪和存储示波器目前在数字电路教学实验中应用还不十分普遍。示波器是一种使用非常广泛,且使用相对复杂的仪器。本章从使用的角度介绍一下示波器的原理和使用方法。 1 示波器工作原理 示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像,显示在荧光屏上以便测量的电子测量仪器。它是观察数字电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器。示波器由示波管和电源系统、同步系统、X轴偏转系统、Y轴偏转系统、延迟扫描系统、标准信号源组成。 1.1 示波管 阴极射线管(CRT)简称示波管,是示波器的核心。它将电信号转换为光信号。正如图1所示,电子枪、偏转系统和荧光屏三部分密封在一个真空玻璃壳内,构成了一个完整的示波管。

图1 示波管的内部结构和供电图示 1.荧光屏 现在的示波管屏面通常是矩形平面,内表面沉积一层磷光材料构成荧光膜。在荧光膜上常又增加一层蒸发铝膜。高速电子穿过铝膜,撞击荧光粉而发光形成亮点。铝膜具有内反射作用,有利于提高亮点的辉度。铝膜还有散热等其他作用。 当电子停止轰击后,亮点不能立即消失而要保留一段时间。亮点辉度下降到原始值的10%所经过的时间叫做“余辉时间”。余辉时间短于10μs为极短余辉,10μs—1ms为短余辉,1ms—0.1s为中余辉,0.1s-1s为长余辉,大于1s为极长余辉。一般的示波器配备中余辉示波管,高频示波器选用短余辉,低频示波器选用长余辉。 由于所用磷光材料不同,荧光屏上能发出不同颜色的光。一般示波器多采用发绿光的示波管,以保护人的眼睛。 2.电子枪及聚焦 电子枪由灯丝(F)、阴极(K)、栅极(G1)、前加速极(G2)(或称第二栅极)、第一阳极(A1)和第二阳极(A2)组成。它的作用是发射电子并形成很细的高速电子束。灯丝通电加热阴极,阴极受热发射电子。栅极是一个顶部有小孔的金属园筒,套在阴极外面。由于栅极电位比阴极低,对阴极发射的电子起控制作用,一般只有运动初速度大的少量电子,在阳极电压的作用下能穿过栅极小孔,奔向荧光屏。初速度小的电子仍返回阴极。如果栅极电位过低,则全部电子返回阴极,即管子截止。调节电路中的W1电位器,可以改变栅极电位,控制射向荧光屏的电子流

示波器的使用实验报告

示波器的使用实验报告 一、实验目的 二、1. 了解示波器的基本结构和工作原理,掌握示波器的调节和使用方法; 三、2. 学会利用双踪示波器观测电信号波形; 四、3. 学会利用双踪示波器观察李萨如图形,并利用其测量正弦信号的频率。 五、二、实验仪器 六、EE1642B型函数信号发生器、GDS-2062型双踪示波器、导线。 七、三、实验原理 双踪示波器包括两部分:示波管和控制示波管工作的电路。 1. 示波管 如下图所示,示波管是呈喇叭形的玻璃泡,抽成高真空,内部装有电子枪和两对相互垂直的偏转板,喇叭口的球面壁上涂有荧光物质,构成荧光屏。高速电子撞击在荧光屏上会使荧光物质发光,在荧光屏上就能看到一个亮点。Y偏转板是水平放置的两块电极。X偏转板是垂直放置的两块电极。在Y 偏转板和X偏转板上分别加电压,可以在荧光屏上得到相应的图形。 2. 双踪示波器的原理

双踪示波器控制电路主要包括:电子开关、垂直放大电路、水平放大电路、扫描发生器、同步电路、电源等。 电子开关将两个待测的电压信号Y CH1和Y CH2周期性的轮流作用在Y偏转板上。由于视觉滞留效应,能在荧光屏上看到两个波形。 由示波器的原理功能方框图可见,被测信号电压加到示波器的Y轴输入端,经垂直放大电路加于示波管的垂直偏转板。示波管的水平偏转电压,虽然多数情况都采用锯齿电压(用于观察波形时),但有时也采用其它的外加电压(用于测量频率、相位差等时),因此在水平放大电路输入端有一个水平信号选择开关,以便按照需要选用示波器内部的锯齿波电压,或选用外加在X轴输入端上的其它电压来作为水平偏转电压。 此外,为了使荧光屏上显示的图形保持稳定,要求锯齿波电压信号的频率和被测信号的频率保持同步。这样,不仅要求锯齿波电压的频率能连续调节,而且在产生锯齿波的电路上还要输入一个同步信号。这样,对于只能产生连续扫描(即产生周而复始、连续不断的锯齿波)一种状态的简易示波器(如国产SB10型等示波器)而言,需要在其扫描电路上输入一个与被观察信号频率相关的同步信号,以牵制锯齿波的振荡频率。对于具有等待扫描功能(即平时不产生锯齿波,当被测信号来到时才产生一个锯齿波,进行一次扫描)功能的示波器(如国产ST-16型示波器、SR-8型双踪示波器等而言,需要在其扫描电路上输入一个与被测信号相关的触发信号,使扫描过程与被测信号密切配合。为了适应各种需要,同步(或触发)信号可通过同步或触发信号选择开关来选择,通常来源有3个:①从垂直放大电路引来被测信号作为同步(或触发)信号,此信号称为“内同步”(或“内触发”)信号;②引入某种相关的外加信号为同步(或触发)信号,此信号称为“外同步”(或“外触发”)

示波器的原理和使用

示波器的原理和使用 实验目的 (1) 了解示波器的主要结构和显示波形的基本原理; (2) 掌握模拟示波器和函数信号发生器的使用方法; (3) 观察正弦、矩形、三角波等信号发生器的使用方法; (4) 通过示波器观察李萨如图形,学会一种测量正弦振动频率的方法,并加深对互相垂直振动合成理论的理解。 实验方法原理 (1) 模拟示波器的基本构造 示波器主要由示波管、垂直放大器、水平放大器、扫描信号放大器、触发同步等几个基本部分组成。 (2) 示波器显示波形原理 如果只在垂直偏转板上加一交变正弦电压,则电子束的亮点随电压的变化在竖直方向上按正弦规律变化。要想显示波形,必须同时在水平偏转板上加一扫描电压,使电子束所产生的亮点沿水平方向拉开。 (3) 扫描同步 当扫描电压的周期T x 是被观察周期信号的整数倍时,扫描的后一个周期扫绘的波形与前一个周期完全一样,荧光屏上得到清晰而稳定的波形,这叫做信号与扫描电压同步。 (4) 多踪显示 根据开关信号的转换频率不同,有两种不同的时间分割方式,即“交替”和“断续”方式。 (5) 观察李萨如图形并测频率 x y y x f f N Y N X =数方向切线对图形的切点数方向切线对图形的切点 实验步骤 (1) 熟悉示波器各控制开关的作用,进行使用前的检查和校准。 (2) 将信号发生器的输出信号连接到示波器的CH1或CH2,观察信号波形。 (3) 用示波器测量信号的周期T 、频率f 、幅值U 、峰-峰值Up-p 、有效值Urms,频率和幅值任选。 (4) 观察李萨如图形和“拍”。 (5) 利用多波形显示法和李萨如图形判别法观测两信号的相位差 ① 多波形显示法观测相位差。 ② 李萨如图形判别法观测相位差。 数据处理 0p p u p p =-= --显显U U U E 000=-=T T T E T π 2 4 44 2 4 π2 0 频率相同位相不同时的李萨如图形

实验1 示波器函数信号发生器的原理及使用(实验报告之实验数据表)

实验1 示波器、函数信号发生器的原理及使用 【实验目的】 1. 了解示波器、函数信号发生器的工作原理。 2. 学习调节函数信号发生器产生波形及正确设置参数的方法。 3. 学习用示波器观察测量信号波形的电压参数和时间参数。 4. 通过李萨如图形学习用示波器观察两个信号之间的关系。 【实验仪器】 1. 示波器DS5042型,1台。 2. 函数信号发生器DG1022型,1台。 3. 电缆线(BNC 型插头),2条。 【实验内容与步骤】 1. 利用示波器观测信号的电压和频率 (1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-1所示的正余弦波形,显示在示波屏上。 图1-1 函数信号发生器生成的正、余弦信号的波形 学生姓名/学号 指导教师 上课时间 第 周 节

(2)用示波器对图1-1中所示的正余弦波形进行测量并填写下表 表1-1 正余弦信号的电压和时间参数的测量 电压参数(V)时间参数 峰峰值最大值最小值频率(Hz)周期(ms)正弦信号 3sin(200πt) 余弦信号 3cos(200πt) 2. 用示波器观测函数信号发生器产生的正余弦信号的李萨如图形 (1)参照“实验1 示波器函数信号发生器的原理及使用(实验指导书)”相关内容,产生如图1-2所示的正余弦波形的李萨如图形,调节并正确显示在示波屏上。 图1-2 正弦信号3sin(200πt)和余弦信号3cos(200πt)的李萨如图形 3. 观测相同幅值、相同频率、不同相位差条件下的两正弦信号的李萨如图形 (1)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+45o),观测并记录两正弦信号的李萨如图形于图1-3中。 (2)在函数信号发生器CH1通道产生的正弦信号3sin(200πt)保持不变的情况下,调节函数信号发生器CH2通道产生正弦信号3sin(200πt+135o),观测并记录两正弦信号的李萨如图形于图1-3中。

示波器的工作原理与使用

河南科技大学实验教学教案 课程名称大学物理实验A 指导教师李海生

河南科技大学实验教学教案首页

预习及实验课前提问: 1.示波器中第一阳极和第二阳极的作用分别是什么? 解答:第二阳极电位比第一阳极高,当第一阳极与第二阳极间电位差调节合适时,电子枪内的电场对电子射线有聚焦作用,使屏上光斑成为明亮、清晰的小圆点,面板上的“聚焦”旋钮是用来调节第一阳极电位的,所以,第一阳极又称为聚焦阳极。第二阳极称为加速阳极。有些示波器还有“辅助聚焦”旋钮,是用来调节第二阳极电位的。 2.锯齿波如何形成? 解答:如果只在竖直偏转板上加一交变的正弦电压,则电子束的亮点将随电压的变化在竖直方向来回运动,如果电压频率较高,则看到的将是一条竖直亮线。要显示出波形,必须同时在水平偏转板上加一个扫描电压,使电子束的亮点同时沿着水平方向拉开。这种扫描电压的特点是电压随时间成线性关系增加到最大值,然后突然回到最小,此后再重复地变化。扫描电压随时间变化的关系曲线形同“锯齿”,故称“锯齿波”。 3.扫描图形在荧光屏上显示向左或向右移动的波形,为什么?如何使其稳定? 解答:要在示波器荧屏上获得稳定的波形,被测信号的频率Y f 必须为扫描电压(锯齿波)频率X f 的整数(N )倍,即有 X Y Nf f ,如果被测信号与锯齿波两者频率不满足上述整倍数的关系,每次扫描显示的图形就不能重合,结果荧光屏上呈现向左或向右移动的波形,这样就难以对信号进行观察和测量。必须设法调节使两者频率自动保持整数比。 实验原理: 示波器的结构主要由示波管、垂直放大器、水平放大器、扫描发生器、触发同步电路等组成。示波管是示波器的心脏部分,它是由电子枪、偏转系统、荧光屏构成。从电子枪发射出的电子束,经过加速电极和聚焦电极打到荧光屏上,形成一亮点。在偏转板上加适当电压,电子束的运动方向将发生偏转。当在y 板上加一交变信号时,在屏上将看到一条竖直亮线。若要观察交变信号的波形,需在x 板上加一锯齿波(扫描)电压,此电压由示波器内部提供。由于采用触发扫描方式,使得每一次扫描的起点位置都相同,因而得到的波形是稳定的。若在x 板和y 板上分别加上正弦信号,当他们的频率比为整数比时,屏上显示的稳定波形称为李萨如图形。频率比不同,李萨如图形的形状也不同。该图形在水平方向的切点数x n 和图形在垂直方向的切点数y n 与频率之间存在下列规律:

示波器的原理与使用实验报告

大学物理实验报告 实验名称示波器的原理与使用 实验目的与要求: (1)了解示波器的工作原理 (2)学习使用示波器观察各种信号波形 (3)用示波器测量信号的电压、频率和相位差 主要仪器设备: YB4320G 双踪示波器,EE1641B型函数信号发生器 实验原理和内容: 1.示波器基本结构 示波器主要由示波管、放大和衰减系统、触发扫描系统和电源四部分组成,其中示波管是核心部分。 示波管的基本结构如下图所示,主要由电子枪、偏转系统和荧光屏三个部分组成,由外部玻璃外壳密封在真空环境中。 电子枪的作用是释放并加速电子束。其中第一阳极称为聚焦阳极,第二阳极称为加速阳极。通过调节两者的共同作用,可以使电子束打到荧光屏上产生明亮清晰的圆点。 偏转系统由X、Y两对偏转板组成,通过在板上加电压来使电子束偏转,从而对应地改变屏上亮点的位置。 荧光屏上涂有荧光粉,电子打上去时能够发光形成光斑。不同荧光粉的

发光颜色与余辉时间都不同。 放大和衰减系统用于对不同大小的输入信号进行适当的缩放, 使其幅度适合于观测。 扫描系统的作用是产生锯齿波扫描电压(如左上图所示), 使电子束在其作用下匀速地在荧光屏周期性地自左向右运动, 这一过程称为扫描。 扫描开始的时间由触发系统控制。 2. 示波器的显示波形的原理 如果只在竖直偏转板加上交变电压而X 偏转板上五点也是, 电子束在竖直方向上来回运动而形成一条亮线, 如左图所示: 如果在Y 偏转板和X 偏转板上同时分别加载正弦电压和锯齿波电压, 电子受水平竖直两个方向的合理作用下, 进行正弦震荡和水平扫描的合成运动, 在两电压周期相等时, 荧光屏上能够显示出完整周期的正弦电压波形, 显像原理如右图所示: 3. 扫描同步 为了完整地显示外界输入信号的周期波形, 需要调节扫描周期使其与外界信号周期相同或成合适的关系。 当某些因素改变致使周期发生变化时,使用扫描同步功能, 能够使扫描起点自动跟踪外界信号变化, 从而稳定地显示波形。 步骤与操作方法: 1. 示波器测量信号的电压和频率 对于一个稳定显示的正弦电压波形, 电压和频率可以由以下方法读出 h a U p p ?=-, 1)(-?=l b f 其中a 为垂直偏转因数(电压偏转因数)(从示波器面板的衰减器开关上可以直接读出)单位为V/div 或mV/div ; h 为输入信号的峰-峰高度, 单位div ; b 为扫描时间系数, 从主扫描时间系数选择开关上可以直接读出, 单位s/div 、ms/div 或μs/div ; l 为输入信号的单个周期宽度, 单位div 。 (1) 打开电源开关并切换到DC 档, 拨动垂直工作方式开关,选择未知信号所在的通道。 (2) 通过调节“扫描时间系数选择开关”和“垂直偏转系数开关”, 以及它们对应的微调开

数字示波器及其简单原理图

数字示波器及其简单原理图 数字示波器可以分为数字存储示波器(DSO)数字荧光示波器(DP09、混合信 号示波器(MSO9和米样示波器。 数字式存储示波器与传统的模拟示波器相比,其利用数字电路和微处理器来增强对信号的处理能力、显示能力以及模拟示波器没有的存储能力。数字示波器的基本工 作原理如上图所示当信号通过垂直输入衰减和放大器后,到达模-数转换器(ADC。ADC 将模拟输入信号的电平转换成数字量,并将其放到存贮器中。存储该值得速度由触发电路和石英晶振时基信号来决定。数字处理器可以在固定的时间间隔内进行离散信号的幅值采样。接下来,数字示波器的微处理器将存储的信号读出并同时对其进行数字信号处理,并将处理过的信号送到数-模转换器(DAC、,然后DAC的输出信号去驱动垂直偏转放大器。DAC也需要一个数字信号存储的时钟,并用此驱动水平偏转放大器。与模拟示波器类似的,在垂直放大器和水平放大器两个信号的共同驱动下,完成待测波形的测量结果显示。数字存储示波器显示的是上一次触发后采集的存储在示波器内存中的波形,这种示波器不能实时显示波形信息。其他几种数字示波器的特点,请参考相关书籍。

Agile nt DSO-X 2002A 型数字示波器面板介绍 Rm — "P SiD (l#~j a o o o a 二 Mr 强 ; A T ef kiLol&£i^ li^fiiu]\'ioan Svaixli | Analiif] PnOi 伽 Fui£ Dto-X :ua ;A [*■4■討心十!?山皿町 p . * 3 ? ? ? 山唤附■血品 1 lnlensity(^fe ) 2 Entry HW 3 LCD^TF ◎IWI 控制 S

示波器的原理和使用

清华大学实验报告 系别:机械工程系班号:机械72班姓名:车德梦(同组姓名:)作实验日期2008年11月19日教师评定: 实验3.12 示波器的原理和使用 一、示波器的原理 示波器的规格和型号很多,就其显示方式来说主要有阴极射线示波管和液晶显示两种。阴极射线示波器一般都包括示波管(阴极射线管,CRT)、竖直放大器、水平放大器、扫描发生器、触发同步和直流电源等。 1.示波管的基本结构 示波管主要包括电子枪、偏转系统和荧光屏三个部分,全都密封在玻璃外壳内,里面抽成高真空。 (1)电子枪:由灯丝、阴极、控制栅极、第一阳极和第二阳极五部分组成。灯丝通电后加热阴极,阴极是一个表面涂有氧化物的金属圆筒,被加热后发射电子。控制栅极是野鸽顶端有小孔的圆筒,套在阴极外面。它的电位比阴极低,对阴极发射出来的电子起控制

作用,只有初速度较大的电子才能穿过其顶端的小孔然后在阳极加速下奔向荧光屏。可以通过调节札记电位来控制射向荧光屏的电子流密度从而改变荧光屏的光斑亮度。当控制栅极、第一阳极和第二阳极三者的电位调节合适时,电子枪内的电场对电子射线有聚焦的作用,所以第一阳极也称聚焦阳极,第二阳极电位更高,又称加速阳极。 (2)偏转系统:它有两队互相垂直的偏转板组成,一对竖直偏转板和一对水平偏转板,加以适当电压可以使电子束运动方向发生偏转,从而使电子束在荧光屏上产生的光斑位置发生改变。 (3)荧光屏:屏上涂有荧光粉,电子打上去它就发光,形成光斑。不同材料的荧光粉发光的颜色不同,发光过程的延续时间(一般成为余辉时间)也不同。在性能好的示波管中,荧光屏玻璃内表面上直接刻有坐标刻度,供测定光点位置用。荧光粉紧贴坐标刻度以消除视差,光点位置可测得准确。 2.示波器显示波形的原理 如果在竖直偏转板上加一交变的正弦电压,同时在水平偏转板上加一扫描电压(锯齿波电压),电子受竖直、水平两个方向的力的作用,电子的运动是相互垂直的运动的合成。当锯齿波电压与正弦电压的变化周期相等时,在荧光屏上将能显示出完整周期的所加正弦电压的波形图。 3.同步的概念 如果正弦波和锯齿波电压的周期稍不同,屏上出现的将是一移动着的不稳定图形。如果T x稍小于T y,屏上显示的波形每次都不重叠,好像波形在向右移动。同理,如果T x比T y稍大,则好像在向左移动。以上描述的情况在示波器使用过程中经常会出现。其原因是扫描电压的周期与被测信号的周期不相等或不呈整数倍,以致每次扫描开始时波形曲线上的起点均不一样所造成的。 为了获得一定数量的完整周期波形,示波器上设有“TIME/DIV”(时间分度)调解旋钮,用来调节锯齿波电压的周期T x(或频率f x),使之与被侧信号的周期T y(或频率f y)呈合适的关系,从而,在示波器屏上得到所需数目的完整的被测波形。 输入Y轴的被测信号与示波器内部的锯齿波电压是互相独立的。由于环境或其它因素的影响,它们的周期会发生微小的改变。为此示波期内装有扫描同步装置,在适当调节后,让锯齿波电压的扫描起点自动跟着被测信号改变,这就称为整步(或同步)。调节示波器面板上的“TRIG LEVER(触发电平)”一般能使波形稳定下来。 4.利萨如图形的基本原理 如果示波器的X和Y输入时频率相同或者简单整数比的两个正弦电压,则屏上的光点将呈现特殊形状的轨迹,这种轨迹图形称为利萨如图形。如果做一个限制光点x、y方向变化范围的假象方框,则图形与此框相切时,横边上的切点数n x与竖边上的切点数n y 之比恰好是Y和X输入的两正弦信号的频率之比。若出现有端点与假想边框相接时,,应把一个端点计为半个切点。所以利用利萨如图形可以方便地比较出两个正弦信号的频率。若已知其中一个信号的频率,数出图上的切点数n x和n y,便可算出另一待测信号的频率。

示波器的原理和使用实验报告

大连理工大学 大 学 物 理 实 验 报 告 院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2008 年 11 月 18 日,第13周,星期 二 第 5-6 节 实验名称 示波器的原理与使用 教师评语 实验目的与要求: (1) 了解示波器的工作原理 (2) 学习使用示波器观察各种信号波形 (3) 用示波器测量信号的电压、频率和相位差 主要仪器设备: YB4320G 双踪示波器, EE1641B 型函数信号发生器 实验原理和内容: 1. 示波器基本结构 示波器主要由示波管、放大和衰减系统、触发扫描系统和电源四部分组成, 其中示波管是核心部分。 示波管的基本结构如下图所示, 主要由电子枪、偏转系统和荧光屏三个部分组成, 由外部玻璃外壳密封在真空环境中。 成 绩 教师签字

电子枪的作用是释放并加速电子束。 其中第一阳极称为聚焦阳极, 第二阳极称为加速阳极。 通 过调节两者的共同作用, 可以使电子束打到荧光屏上产生明亮清晰的圆点。 偏转系统由X 、Y 两对偏转板组成, 通过在板上加电压来使电子束偏转, 从而对应地改变屏上亮点的位置。 荧光屏上涂有荧光粉, 电子打上去时能够发光形成光斑。 不同荧光粉的发光颜色与余辉时间都不同。 放大和衰减系统用于对不同大小的输入信号进行适当的缩放, 使其幅度适合于观测。 扫描系统的作用是产生锯齿波扫描电压(如左上图所示), 使电子束在其作用下匀速地在荧光屏周期性地自左向右运动, 这一过程称为扫描。 扫描开始的时间由触发系统控制。 2. 示波器的显示波形的原理 如果只在竖直偏转板加上交变电压而X 偏转板上五点也是, 电子束在竖直方向上来回运动而形成一条亮线, 如左图所示: 如果在Y 偏转板和X 偏转板上同时分别加载正弦电压和锯齿波电压, 电子受水平竖直两个方向的合理作用下, 进行正弦震荡和水平扫描的合成运动, 在两电压周期相等时, 荧光屏上能够显示出完整周期的正弦电压波形, 显像原理如右图所示: 3. 扫描同步 为了完整地显示外界输入信号的周期波形, 需要调节扫描周期使其与外界信号周期相同或成合适的关系。 当某些因素改变致使周期发生变化时,使用扫描同步功能, 能够使扫描起点自动跟踪外界信号变化, 从而稳定地显示波形。 步骤与操作方法: 1. 示波器测量信号的电压和频率 对于一个稳定显示的正弦电压波形, 电压和频率可以由以下方法读出 h a U p p ?=-, 1)(-?=l b f

示波器的调节与使用

数字示波器的调节与使用 一、实验目的 1.了解示波器的结构与示波原理 2.掌握示波器的使用方法,学会用示波器观测各种电信号的波形 3.学会用示波器测正弦交流信号的电压幅值及频率 4.学会用李萨如图法,测量正弦信号频率 二、实验仪器 RIGOL DS1000E型数字存储示波器,DG1022函数波形发生器 三、实验原理 1、双踪示波器的原理: 双踪示波器控制电路主要包括:电子开关、垂直放大电路、水平放大电路、扫描发生器、同步电路、电源等。 Y CH1 Y CH2 图1. 双踪示波器原理方框图 其中,电子开关使两个待测电压信号YCH1和YCH2周期性地轮流作用在Y偏转板,这样在荧光屏上忽而显示YCH1信号波形,忽而显示YCH2信号波形。由于荧光屏荧光物质的余辉及人眼视觉滞留效应,荧光屏上看到的是两个波形。 如果正弦波与锯齿波电压的周期稍不同,屏上出现的是一移动的不稳定图形,这是因为扫描信号的周期与被测信号的周期不一致或不呈整数倍,以致每次扫描开始时波形曲线上的起点均不一样所造成的。为了获得一定数量的完整周期波形,示波器上设有“time/div”调节旋钮,用来调节锯齿波电压的周期,使之与被测信号的周期呈合适的关系,从而显示出完整周期的正弦波形。

当扫描信号的周期与被测信号的周期一致或是整数倍,屏上一般会显示出完整周期的正弦波形,但由于环境或其他因素的影响,波形会移动,为此示波器内装有扫描同步电路,同步电路从垂直放大电路中取出部分待测信号,输入到扫描发生器,迫使锯齿波与待测信号同步,此称为“内同步”。如果同步电路信号从仪器外部输入,则称为“外同步”。 2.示波器显示波形原理: 如果在示波器的YCH1或YCH2端口加上正弦波,在示波器的X偏转板加上示波器内部的锯齿波,当锯齿波电压的变化周期与正弦电压的变化周期相等时,则在荧光屏上将显示出完整周期的正弦波形,如图2所示。如果在示波器的YCH1、YCH2端口同时加上正弦波,在示波器的X偏转板加上示波器内部的锯齿波,则在荧光屏上将得到两个正弦波。 图2.示波器显示正弦波形的原理 3、数字存储示波器的基本原理 数字存储示波器的基本原理框图如图3所示: 图3.数字存储示波器的基本原理框图 数字示波器是按照采样原理,利用A/D变换,将连续的模拟信号转变成离散的数字序列,然后进行恢复重建波形,从而达到测量波形的目的。 输入缓冲器放大器(AMP)将输入的信号作缓冲变换,起到将被测体与示波器隔离的作用,示波器工作状态的变换不会影响输入信号,同时将信号的幅值切换至适当的电平范围(示波器可以处理的范围),也就是说不同幅值的信号在通过输入缓冲放大器后都会转变成相同电压范围内的信号。 A/D单元的作用是将连续的模拟信号转变为离散的数字序列,然后按照数字序列的先后顺序重建波形。所以A/D单元起到一个采样的作用,它在采样时钟的作用下,将采样脉冲到来时刻的信号幅值的大小转化为数字表示的数值。这个点我们称为采样点。A/D转换器是波形采集的关键部件。 多路选通器(DEMUX)将数据按照顺序排列,即将A/D变换的数据按照其在模拟波形上的先后顺序存入存储器,也就是给数据安排地址,其地址的顺序就是采样点在波形上的顺序,采样点相邻数据之间的时间间隔就是采样间隔。 数据采集存储器(Acquisition Memory)是将采样点存储下来的存储单元,他将

示波器的原理及使用

实验4—11 示波器的原理及使用 示波器是一种用途十分广泛的电子测量仪器,它可以直接观察电信号的波形,测量电压的幅度、周期(频率)等参数。用双踪示波器还可以测量两个信号之间的时间差或相位差,一些性能较好的示波器甚至可以将输入的电信号存储起来以备分析和比较。在实际应用中凡是能转化为电压信号的电学量和非电学量(如压力、温度、磁感应强度、光强等)都可以用示波器来观测。 【实验目的】 1.了解示波器的基本结构和工作原理,掌握示波器和信号发生器的基本使用方法。 2.学会使用示波器观察电信号波形,测量电压幅值及频率。 3.掌握利用李萨如图形测量频率的实验方法。 【实验原理】 不论何种型号和规格的示波器都包括了如图4-11-1所示的几个基本组成部分:示波管(又称阴极射线管,cathode ray tube,简称CRT)、垂直放大电路(Y放大)、水平放大电路(X放大)、扫描信号发生电路(锯齿波发生器)、自检标准信号发生电路(自检信号)、触发同步电路、电源等。 图4-11-1 示波器基本组成框图 1.示波原理 在中学物理课中有一个演示振动图形的沙斗实验,装置如图4-11-2所示。图中P为平面板,能在X方向上作匀速直线运动。S为沙斗,斗内装上细沙,细沙能从斗的下端慢慢漏出,沙斗通过细绳连接在支架H上,构成单摆。假定此单摆在与X的垂直方向Y上振动,P在X

实验4—11 示波器的原理及使用 95 方向匀速运动,那么在平面板上将有漏沙的径迹,这就是单摆的振动图线——正弦曲线。根据曲线和匀速运动的速率v 不难求得振动周期(或频率)和振幅等物理量的大小。 示波器的示波原理和沙斗实验中平面板上漏沙径迹的道理相同。 1) 如果仅在垂直偏转板上(Y 偏转板)加正弦交变电压U ()y t ,则电子束在荧光屏上所产生的亮点位置随着电压在y 方向作往复运动。如果电压频率较高,由于人眼的视觉暂留现象,则看到的是一条竖直 亮线,其长度与正弦交变电压的峰—谷值P P V 成正比。如图4-11-3所示。 图4-11-3 垂直偏转板加正弦交变电压 图4-11-4 水平偏转板加锯齿电压 图4-11-5 波形显示原理图 2)如果在水平偏转板(X 偏转板)加上扫描发生器所输出的扫描(锯齿)电压()x U t ,则能使y 轴方向所加的被观察信号电压()y U t 在空间展开,与沙斗实验中的平面板P 有同样 图4-11-2 沙斗实验

《示波器的的原理和使用》物理实验报告

《示波器的的原理和使用》物理实验报告 一、实验目的及要求: 了解示波器的基本工作原理。 学习示波器、函数信号发生器的使用方法。 学习用示波器观察信号波形和利用示波器测量信号频率的方法。 二、实验原理: 1) 示波器的基本组成部分:示波管、竖直放大器、水平放大器、扫描发生器、触发同步和直流电源等。 2) 示波管左端为一电子枪,电子枪加热后发出一束电子,电子经电场加速以高速打在右端的荧光屏上,屏上的荧光物发光形成一亮点。亮点在偏转板电压的作用下,位置也随之改变。在一定范围内,亮点的位移与偏转板上所加电压成正比。 3) 示波器显示波形的原理:如果在X轴偏转板加上波形为锯齿形的电压,在荧光屏上看到的是一条水平线,如果在Y轴偏转板上加正弦电压,而X轴偏转板不加任何电压,则电子束的亮点在纵方向随时间作正弦式振荡,在横方向不动。我们看到的将是一条垂直的亮线,如果在Y轴偏转板上加正弦电压,又在X轴偏转板上加锯齿形电压,则荧光屏上的亮点将同时进行方向互相垂直的两种位移,两个方向的位移合成就描出了正弦图形。如果正弦波与锯齿波的周期相同,这个正弦图形将稳定地停在荧光屏上。但如果正弦波与锯齿波的周期稍有不同,则第二次所描出的曲线将和第一次的曲线位置稍微错开,在荧

光屏上将看到不稳定的图形或不断地移动的图形,甚至很复杂的图形。要使显示的波形稳定,扫描必须是线性的,即必须加锯齿波;Y 轴偏转板电压频率与X轴偏转板电压频率的比值必须是整数。示波器中的锯齿扫描电压的频率虽然可调,但光靠人工调节还是不够准确,所以在示波器内部加装了自动频率跟踪的装置,称为“同步”。在人工调节接近满足式频率整数倍时条件下,再加入“同步”的作用,扫描电压的周期就能准确等于待测电压周期的整数倍,从而获得稳定的波形。 4) 李萨如图形的基本原理:如果同时从示波器的x轴和y轴输入频率相同或成简单整数比的两个正弦电压,则屏幕上将呈现出特殊形状的、稳定的光点轨迹,这种轨迹图称为李萨如图形。李萨如图形的形成规律为:如果沿x,y分别作一条直线,水平方向的直线做多可得的交点数为N,竖直方向最多可得的交点数为N,则x和y方向输入的两正弦波的频率之比为 f:f=N:N。 三、实验仪器: 示波器、函数信号发生器。 四、实验操作的主要步骤: (一) 示波器的使用与调节 1) 将各控制旋钮置于相关位置。 2) 接通电源,按下面板左下角的“POWER”钮,指示灯亮,稍待片刻,仪器进入正常工作状态。 3) 经示波管灯丝预热后,屏上出现绿色亮点,调节INTEN、FOCUS、

示波器的原理和使用(仿真实验)

示波器的原理和使用(仿真实验) 示波器是一种多用途的现代测量工具,它可直接观察电信号的波形,也能测定电压信号的幅度、周期和频率等参数。双踪示波器不仅能独立观察两种信号的波形,以便对它们进行对比、分析和研究,还能测量两个信号之间的时间差和相位差。一切可以转化为电压的其他电学量(如电流、电功率、阻抗、位相等)和非电学量(如温度、位移、压强、磁场、频率等)都可以用示波器来进行观测。用示波器研究物理现象与规律已经形成一种物理实验方法——示波法。 [预习提要] 1.示波器由哪几部分组成弄清楚示波管的结构与作用。 2.示波器是怎样显示波形的显示完整而稳定波形的条件是什么 3.扫描有哪两种形式弄清它们的意义。 4. “同步”是什么意思如何使用与同步有关的“电平”旋钮 5.电压、频率如何测量 [实验目的] 1. 了解示波器的基本原理和结构; 2. 学习使用试播观察波形和如何用示波器进行相关测量。 [实验原理] 详细原理请参考教材第148页《示波器的原理和使用》及实验指导书相关内容。 [实验内容] 1.校准示波器; 2.直接法测量未知信号电压; 3.利用直接测量法与李萨如图测量法测量未知信号频率;

4.观测两个通道信号的组合。 [仿真实验操作方法] 1.系统的启动 在系统主界面上选择“示波器”并单击,即可进入示波器仿真实验平台,显示平台主窗口——实验室场景(图1)。单击鼠标右键可弹出实验主菜单,用鼠标单击菜单选项,即可进入相应的实验内容(若单击“退出”,则退出示波器实验)。 图1 2.系统主菜单 (1)示波器原理: 单击主菜单上的“示波器原理”,打开示波器原理窗口。在窗口中单击鼠标右键,可弹出示波器触发方式选择菜单,如图2所示。分别选择不同的触发方式将显示示波器的成象原理,选择“退出”将返回示波器实验平台主窗口。 (2)示波器方框图 选择主菜单的“示波器方框图”,弹出示波器方框图窗口,如图3所示。单击鼠标,将返回示波器实验平台主窗口。

实验一、示波器的原理及使用

电子测量实验 --示波器的原理和应用 学生姓名: 学号: 院(系): 专业:

示波器的原理和应用 【目的】 1. 了解示波器的主要组成部分,扫描和同步的作用原理,加深对信号合成的理解。 2. 熟练使用示波器观察信号特征(正弦波、三角波、方波),利用李萨如图形测量信号频率。 【重点】 了解示波器的基本结构、工作原理及使用方法。 【难点】 1.熟练掌握示波器各主要旋钮的作用和用法。 2.能使用示波器观察信号特征(正弦波、三角波、方波),且会利用李萨如图形测量信号频率。【预习问题】 1. 示波器的工作原理以及主要组成部分是什么?其主要用途有哪些? 2. 如何使用示波器观察各种信号特征以及测量信号频率? 一、实验原理 示波器动态显示随时间变化的电压信号思路是将电压加在电极板上,极板间形成相应的变化电场,使进入这变化电场的电子运动情况相应地随时间变化,最后把电子运动的轨迹用荧光屏显示出来。示波器主要由示波管(见图1))和复杂的电子线路构成。示波器的基本结构见图2。 图1 示波管示意图

1.偏转电场控制电子束在视屏上的轨迹 偏转电压U 与偏转位移Y (或X )成正比关系。如图3所示:y U Y 。 图3偏转电压U 与偏转位移Y 如果只在竖直偏转板(Y 轴)上加一正弦电压,则电子只在竖直方向随电压变化而往复运动,见图4a 。要能够显示波形,必须在水平偏转板(X 轴)上加一扫描电压,见图4b 。 图4a 信号随时间变化的规律 (加在Y 偏转板) 图4b 锯齿波电压(加在X 偏转板) 示波器显示波形实质:见图5,沿Y 轴方向的简谐运动与沿X 轴方向的匀速运动合成的一种合运动。显示稳定波形的条件:扫描电压周期应为被测信号周期的整数倍,即T x =nT y ( n=1,2,3…)(见图6) 2.同步扫描(其目的是保证扫描周期是信号周期的整数倍) (1)同步的概念:为了显示如图5所示的稳定图形,只有保证正弦波到I y 点时,锯齿波正好到i 点,从而亮点扫完了一个周期的正弦曲线。由于锯齿波这时马上复原,所以亮点又回到A 点,再次重复这一过程。光点所画的轨迹和第一周期的完全重合,所以在荧光屏上显示出一个稳定的波形,这就是所谓的同步。 由此可知同步的一般条件为: T x = nT y ,n = 1,2,3… 图2 示波器的基本结构简图

相关主题
文本预览
相关文档 最新文档