当前位置:文档之家› 2014年高考数学(理)真题分类汇编:数列

2014年高考数学(理)真题分类汇编:数列

2014年高考数学(理)真题分类汇编:数列
2014年高考数学(理)真题分类汇编:数列

2014年高考数学(理)真题分类汇编:数列

D1 数列的概念与简单表示法 17.[2014·江西卷] 已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0.

(1)令c n =a n

b n ,求数列{

c n }的通项公式;

(2)若b n =3n -

1,求数列{a n }的前n 项和S n .

17.解:(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *),所以a n +1b n +1-a n

b n

=2,即c n +1

-c n =2,

所以数列{c n }是以c 1=1为首项,d =2为公差的等差数列,故c n =2n -1.

(2)由b n =3n -1,知a n =(2n -1)3n -

1,于是数列{a n }的前n 项和S n =1×30+3×31+5×32

+…+(2n -1)×3n -1,3S n =1×31+3×32+…+(2n -3)×3n -

1+(2n -1)×3n ,将两式相减得

-2S n =1+2×(31+32+…+3n -

1)-(2n -1)×3n =-2-(2n -2)×3n ,

所以S n =(n -1)3n +1.

17.[2014·新课标全国卷Ⅰ] 已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n

-1,其中λ为常数.

(1)证明:a n +2-a n =λ.

(2)是否存在λ,使得{a n }为等差数列?并说明理由.

17.解:(1)证明:由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1, 两式相减得a n +1(a n +2-a n )=λa n +1. 因为a n +1≠0,所以a n +2-a n =λ.

(2)由题设,a 1=1,a 1a 2=λS 1-1,可得 a 2=λ-1, 由(1)知,a 3=λ+1.

若{a n }为等差数列,则2a 2=a 1+a 3,解得λ=4,故a n +2-a n =4. 由此可得{a 2n -1}是首项为1,公差为4的等差数列, a 2n -1=4n -3;

{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.

因此存在λ=4,使得数列{a n }为等差数列.

17.[2014·新课标全国卷Ⅱ] 已知数列{a n }满足a 1=1,a n +1=3a n +1.

(1)证明???

???a n +12是等比数列,并求{a n }的通项公式;

(2)证明1a 1+1a 2+…+1a n <3

2

.

17.解:(1)由a n +1=3a n +1得a n +1+1

2=3?

???a n +12. 又a 1+12=32,所以????

??a n +12是首项为32,公比为3的等比数列,所以a n +12=3n

2,因此数

列{a n }的通项公式为a n =3n -1

2.

(2)证明:由(1)知1a n =2

3n -1

.

因为当n ≥1时,3n -1≥2×3n -

1,

所以13n -1≤12×3

n 1,即1a n =23n

-1≤13n 1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13

n -1=3

2???1-13n <32. 所以1a 1+1a 2+…+1a n <32.

22.[2014·重庆卷] 设a 1=1,a n +1=a 2n -2a n +2+b (n ∈N *

). (1)若b =1,求a 2,a 3及数列{a n }的通项公式.

(2)若b =-1,问:是否存在实数c 使得a 2n

(a n +1-1)2=(a n -1)2+1.

从而{(a n -1)2}是首项为0,公差为1的等差数列, 故(a n -1)2=n -1,即a n =n -1+1(n ∈N *). 方法二:a 2=2,a 3=2+1.

可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1.因此猜想a n =n -1+1. 下面用数学归纳法证明上式. 当n =1时,结论显然成立.

假设n =k 时结论成立,即a k =k -1+1,则

a k +1=(a k -1)2+1+1=(k -1)+1+1=(k +1)-1+1, 这就是说,当n =k +1时结论成立. 所以a n =n -1+1(n ∈N *).

(2)方法一:设f (x )=(x -1)2+1-1,则a n +1=f (a n ).

令c =f (c ),即c =(c -1)2+1-1,解得c =1

4

.

下面用数学归纳法证明命题 a 2n

当n =1时,a 2=f (1)=0,a 3=f (0)=2-1,所以a 2<1

4

假设n =k 时结论成立,即a 2k f (a 2k +1)>f (1)=a 2,即 1>c >a 2k +2>a 2.

再由f (x )在(-∞,1]上为减函数,得c =f (c )

故c

综上,存在 c =1

4使a 2n

方法二:设f (x )=(x -1)2+1-1,则a n +1=f (a n ). 先证:0≤a n ≤1(n ∈N *). ① 当n =1时,结论明显成立.

假设n =k 时结论成立,即0≤a k ≤1. 易知f (x )在(-∞,1]上为减函数,从而 0=f (1)≤f (a k )≤f (0)=2-1<1.

即0≤a k +1≤1.这就是说,当n =k +1时结论成立.故①成立. 再证:a 2n

当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1,所以a 2f (a 2k +1)=a 2k +2,

a 2(k +1)=f (a 2k +1)

这就是说,当n =k +1时②成立.所以②对一切n ∈N *成立. 由②得a 2n

即(a 2n +1)2

2n -2a 2n +2,

因此a 2n <1

4

. ③

又由①②及f (x )在(-∞,1]上为减函数,得f (a 2n )>f (a 2n +1),即a 2n +1>a 2n +2.

所以a 2n +1>a 22n +1-2a 2n +1+2-1,解得a 2n +1>1

4

. ④ 综上,由②③④知存在c =1

4

使a 2n

D2 等差数列及等差数列前n 项和 12.[2014·安徽卷] 数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________.

12.1

12.[2014·北京卷] 若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.

12.8

3.[2014·福建卷] 等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12 D .14 3.C

18.[2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式.

(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.

18.解:(1)设数列{a n }的公差为d ,

依题意得,2,2+d ,2+4d 成等比数列, 故有(2+d )2=2(2+4d ),

化简得d 2-4d =0,解得d =0或d =4. 当d =0时,a n =2;

当d =4时,a n =2+(n -1)·4=4n -2.

从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立.

当a n =4n -2时,S n =n [2+(4n -2)]

2

=2n 2.

令2n 2>60n +800,即n 2

-30n -400>0, 解得n >40或n <-10(舍去),

此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;

当a n =4n -2时,存在满足题意的正整数n ,其最小值为41.

20.[2014·湖南卷] 已知数列{a n }满足a 1=1,|a n +1-a n |=p n ,n ∈N *. (1)若{a n }是递增数列,且a 1,2a 2,3a 3成等差数列,求p 的值;

(2)若p =1

2

,且{a 2n -1}是递增数列,{a 2n }是递减数列,求数列{a n }的通项公式.

20.解:(1)因为{a n }是递增数列,所以a n +1-a n =|a n +1-a n |=p n .而a 1=1,因此 a 2=p +1,a 3=p 2+p +1.又a 1,2a 2,3a 3成等差数列,所以4a 2=a 1+3a 3,因而3p 2-p =0,

解得p =1

3

或p =0.

当p =0时,a n +1=a n ,这与{a n }是递增数列矛盾,故p =1

3

.

(2)由于{a 2n -1}是递增数列,因而a 2n +1-a 2n -1>0,于是(a 2n +1-a 2n )+(a 2n -a 2n -1)>0.①

因为122n <1

2

2n -1,所以|a 2n +1-a 2n |<|a 2n -a 2n -1|.②

由①②知,a 2n -a 2n -1>0,因此a 2n -a 2n -1=????122n -1=(-1)2n 22n -

1

.③ 因为{a 2n }是递减数列,同理可得,a 2n +1-a 2n <0,故a 2n +1-a 2n =-????122n

=(-1)2n +122n

.④

由③④可知,a n +1-a n =(-1)n +

1

2n

.

于是a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+12-1

22+…+(-1)n 2n -

1

=1+12·1-????-12n -11+

12

=43+13·(-1)n

2n -1

. 故数列{a n }的通项公式为a n =43+13·(-1)

n

2n -

1

.

8.[2014·辽宁卷] 设等差数列{a n }的公差为d .若数列{2a 1a n }为递减数列,则( ) A .d <0 B .d >0 C .a 1d <0 D .a 1d >0 8.C

18.[2014·全国卷] 等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式;

(2)设b n =1

a n a n +1

,求数列{b n }的前n 项和T n .

18.解:(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数. 又S n ≤S 4,故a 4≥0,a 5≤0, 于是10+3d ≥0,10+4d ≤0, 解得-103≤d ≤-52

因此d =-3.

故数列{a n }的通项公式为a n =13-3n .

(2)b n =1(13-3n )(10-3n )=13????110-3n -113-3n .于是T n =b 1+b 2+…+b n =

13????17-110+????14-17+…+????110-3n -113-3n =13????110-3n -110=

n 10(10-3n ).

17.[2014·新课标全国卷Ⅰ] 已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n

-1,其中λ为常数.

(1)证明:a n +2-a n =λ.

(2)是否存在λ,使得{a n }为等差数列?并说明理由.

17.解:(1)证明:由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1, 两式相减得a n +1(a n +2-a n )=λa n +1. 因为a n +1≠0,所以a n +2-a n =λ.

(2)由题设,a 1=1,a 1a 2=λS 1-1,可得 a 2=λ-1, 由(1)知,a 3=λ+1.

若{a n }为等差数列,则2a 2=a 1+a 3,解得λ=4,故a n +2-a n =4. 由此可得{a 2n -1}是首项为1,公差为4的等差数列, a 2n -1=4n -3;

{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1. 所以a n =2n -1,a n +1-a n =2.

因此存在λ=4,使得数列{a n }为等差数列.

19.[2014·山东卷] 已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.

(1)求数列{a n }的通项公式;

(2)令b n =(-1)n

-1

4n

a n a n +1

,求数列{b n }的前n 项和T n . 19.解: (1)因为S 1=a 1,S 2=2a 1+2×1

2×2=2a 1+2,

S 4=4a 1+4×3

2

×2=4a 1+12,

由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)由题意可知, b n =(-1)n -1

4n

a n a n +1

=(-1)n

-1

4n

(2n -1)(2n +1)

=(-1)n -

1????12n -1+12n +1.

当n 为偶数时,

T n =????1+13-????13+1

5+…+??12n -3+

??12n -1-????12n -1+12n +1 =1-1

2n +1

=2n

2n +1

. 当n 为奇数时,

T n =????1+13-???

?13+1

5+…-????12n -3+12n -1+???

?12n -1+12n +1

=1+1

2n +1

=2n +2

2n +1

. 所以T n

=????

?2n +2

2n +1,n 为奇数,2n

2n +1,n 为偶数.

? ?

?

??

或T n =2n +1+(-1)n -

12n +1

16.[2014·陕西卷] △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,求cos B 的最小值. 16.解:(1)∵a ,b ,c 成等差数列,∴a +c =2b . 由正弦定理得sin A +sin C =2sin B . ∵sin B =sin[π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ).

(2)∵a ,b ,c 成等比数列,∴b 2=ac . 由余弦定理得

cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =1

2,

当且仅当a =c 时等号成立, ∴cos B 的最小值为1

2

.

11.[2014·天津卷] 设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.

11.-12

22.[2014·重庆卷] 设a 1=1,a n +1=a 2n -2a n +2+b (n ∈N *

). (1)若b =1,求a 2,a 3及数列{a n }的通项公式.

(2)若b =-1,问:是否存在实数c 使得a 2n

(a n +1-1)2=(a n -1)2+1.

从而{(a n -1)2}是首项为0,公差为1的等差数列, 故(a n -1)2=n -1,即a n =n -1+1(n ∈N *). 方法二:a 2=2,a 3=2+1.

可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1.因此猜想a n =n -1+1. 下面用数学归纳法证明上式. 当n =1时,结论显然成立.

假设n =k 时结论成立,即a k =k -1+1,则

a k +1=(a k -1)2+1+1=(k -1)+1+1=(k +1)-1+1, 这就是说,当n =k +1时结论成立. 所以a n =n -1+1(n ∈N *).

(2)方法一:设f (x )=(x -1)2+1-1,则a n +1=f (a n ).

令c =f (c ),即c =(c -1)2+1-1,解得c =1

4

.

下面用数学归纳法证明命题 a 2n

当n =1时,a 2=f (1)=0,a 3=f (0)=2-1,所以a 2<1

4

假设n =k 时结论成立,即a 2k f (a 2k +1)>f (1)=a 2,即 1>c >a 2k +2>a 2.

再由f (x )在(-∞,1]上为减函数,得c =f (c )

故c

综上,存在 c =1

4使a 2n

方法二:设f (x )=(x -1)2+1-1,则a n +1=f (a n ). 先证:0≤a n ≤1(n ∈N *). ① 当n =1时,结论明显成立.

假设n =k 时结论成立,即0≤a k ≤1. 易知f (x )在(-∞,1]上为减函数,从而 0=f (1)≤f (a k )≤f (0)=2-1<1.

即0≤a k +1≤1.这就是说,当n =k +1时结论成立.故①成立. 再证:a 2n

当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1,所以a 2f (a 2k +1)=a 2k +2, a 2(k +1)=f (a 2k +1)

这就是说,当n =k +1时②成立.所以②对一切n ∈N *成立. 由②得a 2n

即(a 2n +1)2

2n -2a 2n +2,

因此a 2n <1

4

. ③

又由①②及f (x )在(-∞,1]上为减函数,得f (a 2n )>f (a 2n +1),即a 2n +1>a 2n +2.

所以a 2n +1>a 22n +1-2a 2n +1+2-1,解得a 2n +1

>1

4

. ④ 综上,由②③④知存在c =1

4

使a 2n

D3 等比数列及等比数列前n 项和 2.[2014·重庆卷] 对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9,成等比数列 2.D

12.[2014·安徽卷] 数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________.

12.1

13.[2014·广东卷] 若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.

13.50 10.[2014·全国卷] 等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4 D .3 10.C

18.[2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式.

(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.

18.解:(1)设数列{a n }的公差为d ,

依题意得,2,2+d ,2+4d 成等比数列, 故有(2+d )2=2(2+4d ),

化简得d 2-4d =0,解得d =0或d =4. 当d =0时,a n =2;

当d =4时,a n =2+(n -1)·4=4n -2.

从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立.

当a n =4n -2时,S n =n [2+(4n -2)]

2

=2n 2.

令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),

此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;

当a n =4n -2时,存在满足题意的正整数n ,其最小值为41. 17.[2014·新课标全国卷Ⅱ] 已知数列{a n }满足a 1=1,a n +1=3a n +1.

(1)证明???

???a n +12是等比数列,并求{a n }的通项公式;

(2)证明1a 1+1a 2+…+1a n <3

2

.

17.解:(1)由a n +1=3a n +1得a n +1+1

2=3?

???a n +12. 又a 1+12=32,所以????

??a n +12是首项为32,公比为3的等比数列,所以a n +12=3n

2,因此数

列{a n }的通项公式为a n =3n

-1

2.

(2)证明:由(1)知1a n =2

3n -1

.

因为当n ≥1时,3n -1≥2×3n -

1,

所以13n -1≤12×3

n -1,即1a n =23n

-1≤13n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13

n -1=3

2????1-13n <32. 所以1a 1+1a 2+…+1a n <32.

19.,,[2014·山东卷] 已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.

(1)求数列{a n }的通项公式; (2)令b n =(-1)n

-1

4n

a n a n +1

,求数列{b n }的前n 项和T n . 19.解: (1)因为S 1=a 1,S 2=2a 1+2×1

2×2=2a 1+2,

S 4=4a 1+4×3

2

×2=4a 1+12,

由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)由题意可知, b n =(-1)n -1

4n

a n a n +1

=(-1)n

-1

4n

(2n -1)(2n +1)

=(-1)n -

1????12n -1+12n +1.

当n 为偶数时,

T n =????1+13-????13+15+…+??12n -3+

??12n -1-????12n -1+12n +1 =1-1

2n +1

=2n

2n +1

. 当n 为奇数时,

T n =????1+13-????13+15+…-????12n -3+12n -1+????12n -1+12n +1 =1+1

2n +1

=2n +2

2n +1

. 所以T n

=?????2n +22n +1,n 为奇数,2n

2n +1

,n 为偶数.? ??

??或T n

=2n +1+(-1)

n -1

2n +1

16.,,[2014·陕西卷] △ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,求cos B 的最小值. 16.解:(1)∵a ,b ,c 成等差数列,∴a +c =2b . 由正弦定理得sin A +sin C =2sin B . ∵sin B =sin[π-(A +C )]=sin(A +C ), ∴sin A +sin C =2sin(A +C ).

(2)∵a ,b ,c 成等比数列,∴b 2=ac . 由余弦定理得

cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =1

2,

当且仅当a =c 时等号成立, ∴cos B 的最小值为1

2

.

11.[2014·天津卷] 设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.

11.-12

19.[2014·天津卷] 已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1},

集合A ={x |x =x 1+x 2q +…+x n q n -

1,x i ∈M ,i =1,2,…,n }. (1)当q =2,n =3时,用列举法表示集合A .

(2)设s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -

1,其中a i ,b i ∈M ,i =1,2,…,n .证明:若a n

19.解:(1)当q =2,n =3时,M ={0,1},A ={x |x =x 1+x 2·2+x 3·22,x i ∈M ,i =1,2,3},可得A ={0,1,2,3,4,5,6,7}.

(2)证明:由s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n q n -

1,a i ,b i ∈M ,i =1,2,…,n 及a n

s -t =(a 1-b 1)+(a 2-b 2)q +…+(a n -1-b n -1)q n -2+(a n -b n )q n -

1

≤(q -1)+(q -1)q +…+(q -1)q n -2-q n -

1

=(q -1)(1-q n -

1)1-q

-q n -1

=-1<0, 所以s

D4 数列求和 17.[2014·江西卷] 已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0.

(1)令c n =a n

b n ,求数列{

c n }的通项公式;

(2)若b n =3n -

1,求数列{a n }的前n 项和S n .

17.解:(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *),所以a n +1b n +1-a n

b n

=2,即c n +1

-c n =2,

所以数列{c n }是以c 1=1为首项,d =2为公差的等差数列,故c n =2n -1.

(2)由b n =3n -1,知a n =(2n -1)3n -

1,于是数列{a n }的前n 项和S n =1×30+3×31+5×32

+…+(2n -1)×3n -1,3S n =1×31+3×32+…+(2n -3)×3n -

1+(2n -1)×3n ,将两式相减得

-2S n =1+2×(31+32+…+3n -

1)-(2n -1)×3n =-2-(2n -2)×3n ,

所以S n =(n -1)3n +1. 18.[2014·全国卷] 等差数列{a n }的前n 项和为S n .已知a 1=10,a 2为整数,且S n ≤S 4. (1)求{a n }的通项公式;

(2)设b n =1

a n a n +1

,求数列{b n }的前n 项和T n .

18.解:(1)由a 1=10,a 2为整数知,等差数列{a n }的公差d 为整数. 又S n ≤S 4,故a 4≥0,a 5≤0, 于是10+3d ≥0,10+4d ≤0, 解得-103≤d ≤-52

因此d =-3.

故数列{a n }的通项公式为a n =13-3n . (2)b n =

1(13-3n )(10-3n )=13?

???110-3n -113-3n .于是T n =b 1+b 2+…+b n =

1

3????17-110+????14-17+…+????110-3n -113-3n =13????110-3n -110=

n 10(10-3n ).

19.,,[2014·山东卷] 已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.

(1)求数列{a n }的通项公式;

(2)令b n =(-1)n

-1

4n

a n a n +1

,求数列{b n }的前n 项和T n . 19.解: (1)因为S 1=a 1,S 2=2a 1+2×1

2×2=2a 1+2,

S 4=4a 1+4×3

2

×2=4a 1+12,

由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)由题意可知, b n =(-1)n -1

4n

a n a n +1

=(-1)n

-1

4n

(2n -1)(2n +1)

=(-1)n -

1????12n -1+12n +1.

当n 为偶数时,

T n =????1+13-????13+1

5+…+??12n -3+

??12n -1-????12n -1+12n +1 =1-1

2n +1

=2n

2n +1

. 当n 为奇数时,

T n =????1+13-????13+15+…-????12n -3+12n -1+????12n -1+12n +1 =1+1

2n +1

=2n +2

2n +1

.

所以T n

=?????2n +22n +1,n 为奇数,2n

2n +1,n 为偶数.

? ??

??或T n

2n +1+(-1)

n -1

2n +1

D5 单元综合

20.[2014·湖南卷] 已知数列{a n }满足a 1=1,|a n +1-a n |=p n ,n ∈N *. (1)若{a n }是递增数列,且a 1,2a 2,3a 3成等差数列,求p 的值;

(2)若p =1

2

,且{a 2n -1}是递增数列,{a 2n }是递减数列,求数列{a n }的通项公式.

20.解:(1)因为{a n }是递增数列,所以a n +1-a n =|a n +1-a n |=p n .而a 1=1,因此 a 2=p +1,a 3=p 2+p +1.又a 1,2a 2,3a 3成等差数列,所以4a 2=a 1+3a 3,因而3p 2-p =0,

解得p =1

3

或p =0.

当p =0时,a n +1=a n ,这与{a n }是递增数列矛盾,故p =1

3

.

(2)由于{a 2n -1}是递增数列,因而a 2n +1-a 2n -1>0,于是(a 2n +1-a 2n )+(a 2n -a 2n -1)>0.①

因为122n <1

2

2n -1,所以|a 2n +1-a 2n |<|a 2n -a 2n -1|.②

由①②知,a 2n -a 2n -1>0,因此a 2n -a 2n -1=????122n -1=(-1)2n 22n -

1

.③ 因为{a 2n }是递减数列,同理可得,a 2n +1-a 2n <0,故a 2n +1-a 2n =-????122n

=(-1)2n +122n

.④

由③④可知,a n +1-a n =(-1)n +

1

2n

.

于是a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+12-1

22+…+(-1)n 2n -

1

=1+12·1-????-12n -11+

12

=43+13·(-1)n

2n -1

. 故数列{a n }的通项公式为a n =43+13·(-1)

n

2n -

1

.

21.[2014·安徽卷] 设实数c >0,整数p >1,n ∈N *. (1)证明:当x >-1且x ≠0时,(1+x )p >1+px ;

(2)数列{a n }满足a 1>c 1p ,a n +1=p -1p a n +c p a 1-p n ,证明:a n >a n +1

>c 1

p

. 21.证明:(1)用数学归纳法证明如下.

①当p =2时,(1+x )2=1+2x +x 2>1+2x ,原不等式成立. ②假设p =k (k ≥2,k ∈N *)时,不等式(1+x )k >1+kx 成立.

当p =k +1时,(1+x )k +

1=(1+x )(1+x )k >(1+x )(1+kx )=1+(k +1)x +kx 2>1+(k +1)x . 所以当p =k +1时,原不等式也成立.

综合①②可得,当x >-1,x ≠0时,对一切整数p >1,不等式(1+x )p >1+px 均成立. (2)方法一:先用数学归纳法证明a n >c 1

p

.

①当n =1时,由题设知a 1>c 1

p

成立.

②假设n =k (k ≥1,k ∈N *

)时,不等式a k >c 1

p

成立. 由a n +1=p -1p a n +c p a 1-p n 易知a n >0,n ∈N *

. 当n =k +1时,a k +1a k =p -1p +c p a -p k =

1+1p ????c a p k

-1. 由a k >c 1p >0得-1<-1p <1p ????c a p k

-1<0. 由(1)中的结论得????a k +1a k p

=????1+1p ????c a p k -1p

>1+p · 1p ????c a p k -1=c a p k . 因此a p k +1>c ,即a k +1>c 1

p

, 所以当n =k +1时,不等式a n >c 1

p

也成立.

综合①②可得,对一切正整数n ,不等式a n >c 1

p 均成立.

再由a n +1a n =1+1p ????c a p n -1可得a n +1a n <1, 即a n +1

综上所述,a n >a n +1>c 1

p

,n ∈N *.

方法二:设f (x )=p -1p x +c p x 1-p ,x ≥c 1

p ,则x p ≥c ,

所以f ′(x )=

p -1p +c p (1-p )x -

p =

p -1p ???

?1-c x p >0. 由此可得,f (x )在[c 1p ,+∞)上单调递增,因而,当x >c 1p 时,f (x )>f (c 1p )=c 1

p .

①当n =1时,由a 1>c 1

p

>0,即a p 1>c 可知 a 2=p -1p a 1+c p a 1-p 1=a 1????1+1p ????c a p 1-1c 1p ,从而可得a 1>a 2>c 1p , 故当n =1时,不等式a n >a n +1>c 1

p

成立.

②假设n =k (k ≥1,k ∈N *)时,不等式a k >a k +1>c 1p 成立,则当n =k +1时,f (a k )>f (a k +1)>f (c 1

p ),

即有a k +1>a k +2>c 1

p

所以当n =k +1时,原不等式也成立.

综合①②可得,对一切正整数n ,不等式a n >a n +1>c 1

p

均成立.

18.[2014·湖北卷] 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式.

(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.

18.解:(1)设数列{a n }的公差为d ,

依题意得,2,2+d ,2+4d 成等比数列, 故有(2+d )2=2(2+4d ),

化简得d 2-4d =0,解得d =0或d =4. 当d =0时,a n =2;

当d =4时,a n =2+(n -1)·4=4n -2.

从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n ,显然2n <60n +800, 此时不存在正整数n ,使得S n >60n +800成立.

当a n =4n -2时,S n =n [2+(4n -2)]

2

=2n 2.

令2n 2>60n +800,即n 2

-30n -400>0, 解得n >40或n <-10(舍去),

此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;

当a n =4n -2时,存在满足题意的正整数n ,其最小值为41. 17.[2014·江西卷] 已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N *)满足a n b n +1-a n +1b n +2b n +1b n =0.

(1)令c n =a n

b n ,求数列{

c n }的通项公式;

(2)若b n =3n -

1,求数列{a n }的前n 项和S n .

17.解:(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N *),所以a n +1b n +1-a n

b n

=2,即c n +1

-c n =2,

所以数列{c n }是以c 1=1为首项,d =2为公差的等差数列,故c n =2n -1.

(2)由b n =3n -1,知a n =(2n -1)3n -

1,于是数列{a n }的前n 项和S n =1×30+3×31+5×32

+…+(2n -1)×3n -1,3S n =1×31+3×32+…+(2n -3)×3n -

1+(2n -1)×3n ,将两式相减得

-2S n =1+2×(31+32+…+3n -

1)-(2n -1)×3n =-2-(2n -2)×3n ,

所以S n =(n -1)3n +1. 17.[2014·新课标全国卷Ⅱ] 已知数列{a n }满足a 1=1,a n +1=3a n +1.

(1)证明???

???a n +12是等比数列,并求{a n }的通项公式;

(2)证明1a 1+1a 2+…+1a n <3

2

.

17.解:(1)由a n +1=3a n +1得a n +1+1

2=3?

???a n +12. 又a 1+12=32,所以????

??a n +12是首项为32,公比为3的等比数列,所以a n +12=3n

2,因此数

列{a n }的通项公式为a n =3n -1

2.

(2)证明:由(1)知1a n =2

3n -1

.

因为当n ≥1时,3n -1≥2×3n -

1,

所以13n -1≤12×3

n -1,即1a n =23n

-1≤13n -1.

于是1a 1+1a 2+…+1a n ≤1+13+…+13

n -1=3

2???1-13n <32. 所以1a 1+1a 2+…+1a n <32.

19.,[2014·四川卷] 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图像上(n ∈N *).

(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图像上,求数列{a n }的前n 项和S n ;

(2)若a 1=1,函数f (x )的图像在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列????

??

a n

b n 的前n 项和T n .

19.解:(1)由已知得,b 7=2a 7,b 8=2a 8=4b 7,所以 2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2,

所以S n =na 1+n (n -1)

2

d =-2n +n (n -1)=n 2-3n .

(2)函数f (x )=2x 在点(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 其在x 轴上的截距为a 2-1

ln 2

.

由题意有a 2-1ln 2=2-1

ln 2,解得a 2=2.

所以d =a 2-a 1=1.

从而a n =n ,b n =2n ,

所以数列{a n b n }的通项公式为a n b n =n

2n ,

所以T n =12+222+3

23+…+n -12n -1+n 2n ,

2T n =11+22+322+…+n

2

n -1,

因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12

n -1-n 2n =2n +

1

-n -2

2n .

所以,T n =2n +

1-n -2

2n

.

19.[2014·浙江卷] 已知数列{a n }和{b n }满足a 1a 2a 3…a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2.

(1)求a n 与b n .

(2)设c n =1a n -1

b n

(n ∈N *).记数列{c n }的前n 项和为S n .

(i)求S n ;

(ii)求正整数k ,使得对任意n ∈均有S k ≥S n .

19.解:(1)由题意a 1a 2a 3…a n =(2)b n ,b 3-b 2=6, 知a 3=(2)b 3-b 2=8.

又由a 1=2,得公比q =2(q =-2舍去),所以数列{a n }的通项为a n =2n (n ∈N *).

所以,a 1a 2a 3…a n =2n (n +1)2

=(2)n (n +1).

故数列{b n }的通项为b n =n (n +1)(n ∈N *).

(2)(i)由(1)知c n =1a n -1b n =1

2n -???

?1n -1n +1(n ∈N *).

所以S n =1n +1-1

2

n (n ∈N *).

(ii)因为c 1=0,c 2>0,c 3>0,c 4>0,

当n ≥5时,c n =1n (n +1)?

???n (n +1)2n -1, 而n (n +1)2n -(n +1)(n +2)2n +1=(n +1)(n -2)2n +

1>0, 得n (n +1)2n ≤5×(5+1)25

<1,

所以,当n ≥5时,c n <0.

综上,若对任意n ∈N *恒有S k ≥S n ,则k =4.

高考数学试题分类大全

2015年高考数学试题分类汇编及答案解析(22个专题) 目录 专题一集合..................................................................................................................................................... 专题二函数..................................................................................................................................................... 专题三三角函数............................................................................................................................................ 专题四解三角形............................................................................................................................................ 专题五平面向量............................................................................................................................................ 专题六数列..................................................................................................................................................... 专题七不等式................................................................................................................................................. 专题八复数..................................................................................................................................................... 专题九导数及其应用................................................................................................................................... 专题十算法初步............................................................................................................................................ 专题十一常用逻辑用语 .............................................................................................................................. 专题十二推理与证明................................................................................................................................... 专题十三概率统计 ....................................................................................................................................... 专题十四空间向量、空间几何体、立体几何...................................................................................... 专题十五点、线、面的位置关系 ............................................................................................................ 专题十六平面几何初步 .............................................................................................................................. 专题十七圆锥曲线与方程.......................................................................................................................... 专题十八计数原理 ..................................................................................................................................... 专题十九几何证明选讲 ............................................................................................................................ 专题二十不等式选讲.................................................................................................................................

高考数学数列题型专题汇总

高考数学数列题型专题 汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

高考数学数列题型专题汇总 一、选择题 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

A .{}n S 是等差数列 B .2{}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列 【答案】A 二、填空题 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 6=S _______.. 【答案】6 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 *∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4 3、设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2a n 的最大值 为 . 【答案】64 4、设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则 a 1= ,S 5= . 【答案】1 121

2015高考数学分类汇编数列

专题六 数列 1.【2015高考重庆,理2】在等差数列{}n a 中,若2a =4,4a =2,则6a = ( ) A 、-1 B 、0 C 、1 D 、6 【答案】B 【解析】由等差数列的性质得64222240a a a =-=?-=,选B . 【考点定位】本题属于数列的问题,考查等差数列的通项公式及等差数列的性质. 【名师点晴】本题可以直接利用等差数列的通项公式求解,也可应用等差数列的性质求解,主要考查学生灵活应用基础知识的能力.是基础题. 2.【2015高考福建,理8】若,a b 是函数()()2 0,0f x x px q p q =-+>> 的两个不同的零 点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于( ) A .6 B .7 C .8 D .9 【答案】D 【解析】由韦达定理得a b p +=,a b q ?=,则0,0a b >>,当,,2a b -适当排序后成等比数列时,2-必为等比中项,故4a b q ?==,.当适当排序后成等差数列时,2-必不是等差中项,当a 是等差中项时,,解得1a =,4b =;当 4 a 是等差中项时,,解得4a =,1b =,综上所述,5a b p +==,所以p q +9=,选D . 【考点定位】等差中项和等比中项. 【名师点睛】本题以零点为载体考查等比中项和等差中项,其中分类讨论和逻辑推理是解题核心.三个数成等差数列或等比数列,项及项之间是有顺序的,但是等差中项或等比中项是唯一的,故可以利用中项进行讨论,属于难题. 3.【2015高考北京,理6】设{}n a 是等差数列. 下列结论中正确的是( ) A .若120a a +>,则230a a +> B .若130a a +<,则120a a +< C .若120a a <<,则2a > D .若10a <,则()()21230a a a a --> 【答案】C

2018年高考数学试题分类汇编-向量

1 2018高考数学试题分类汇编—向量 一、填空题 1.(北京理6改)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的_________条件(从“充分而不必要”、“必要而不充分条件”、“充分必要”、“既不充分也不必要”中选择) 1.充分必要 2.(北京文9)设向量a =(1,0),b =(?1,m ),若()m ⊥-a a b ,则m =_________. 2.-1 3.(全国卷I 理6改)在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = _________. (用,AB AC 表示) 3.3144 AB AC - 4.(全国卷II 理4)已知向量a ,b 满足||1=a ,1?=-a b ,则(2)?-=a a b _________. 4.3 5.(全国卷III 理13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a+b ,则λ=________. 5. 12 6.(天津理8)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=?,1AB AD ==. 若点E 为边CD 上的动点,则AE BE ?uu u r uu u r 的最小值为_________. 6. 2116 7.(天津文8)在如图的平面图形中,已知 1.2,120OM ON MON ==∠= ,2,2,BM MA CN NA == 则· BC OM 的值为_________. 7.6- 8.(浙江9)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为π 3,向量b 满足b 2?4e · b +3=0,则|a ?b |的最小值是_________. 8.3?1 9.(上海8).在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,E 、F 是y 轴上的两个动点,且2EF = ,则AE BF ? 的最小值为_________. 9.-3

高考数学真题分类汇编专题不等式理科及答案

专题七 不等式 1.【2015高考四川,理9】如果函数()()()()21 281002 f x m x n x m n = -+-+≥≥, 在区间122?????? ,上单调递减,则mn 的最大值为( ) (A )16 (B )18 (C )25 (D )812 【答案】B 【解析】 2m ≠时,抛物线的对称轴为82n x m -=--.据题意,当2m >时,8 22 n m --≥-即212m n +≤ .26,182 m n mn +≤ ≤∴≤Q .由2m n =且212m n +=得3,6m n ==.当2m <时,抛物线开口向下,据题意得,81 22 n m -- ≤-即218m n +≤ .281 9,22 n m mn +≤ ≤∴≤Q .由2n m =且218m n +=得92m =>,故应舍去.要使得mn 取得最大值,应有218m n +=(2,8)m n <>.所以 (182)(1828)816mn n n =-<-??=,所以最大值为18.选B.. 【考点定位】函数与不等式的综合应用. 【名师点睛】首先弄清抛物线的开口方向和对称轴,结合所给单调区间找到m 、n 满足的条件,然后利用基本不等式求解.本题将函数的单调性与基本不等式结合考查,检测了学生综合运用知识解题的能力.在知识的交汇点命题,这是高考的一个方向,这类题往往以中高档题的形式出现. 2.【2015高考北京,理2】若x ,y 满足010x y x y x -?? +??? ≤, ≤,≥,则2z x y =+的最大值为( ) A .0 B .1 C . 3 2 D .2 【答案】D 【解析】如图,先画出可行域,由于2z x y = +,则11 22 y x z =- +,令0Z =,作直线1 2 y x =- ,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z 取

最新高考数学数列题型专题汇总

1. 高考数学数列题型专题汇总 1 一、选择题 2 1、已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且S S n n =∞ →lim .下列 3 条件中,使得()*∈q a (B )6.07.0,01-<<-q a (D )7.08.0,01-<<-

2. 4、如图,点列{A n },{B n }分别在某锐角的两边上,且 19 1122,,n n n n n n A A A A A A n ++++=≠∈*N , 20 1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合). 21 若1n n n n n n n d A B S A B B +=,为△的面积,则 22 23 A .{}n S 是等差数列 B .2{}n S 是等差数列 24 C .{}n d 是等差数列 D .2{}n d 是等差数列 25 【答案】A 26 27 28 29 30 二、填空题 31 1、已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则 32 6=S _______.. 33 【答案】6 34 35 2、无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意 36

2018年高考数学试题分类汇编数列

2018试题分类汇编---------数列 一、填空题 1.(北京理4改)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理 论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为__________. 1.1272f 2.(北京理9)设{}n a 是等差数列,且a 1=3,a 2+a 5=36,则{}n a 的通项公式为__________. 2.63n a n =- 3.(全国卷I 理4改)设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a __________. 3.10- 4.(浙江10改).已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则13,a a 的大小关系是_____________,24,a a 的大小关系是_____________. 4.1324,a a a a >< 5.(江苏14).已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有元素从小到大依 次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为__________. 5.27 二、解答题 6.(北京文15)设{}n a 是等差数列,且123ln 2,5ln 2a a a =+=. (1)求{}n a 的通项公式; (2)求12e e e n a a a +++. 6.解:(1)设等差数列{}n a 的公差为d ,∵235ln 2a a +=,∴1235ln 2a d +=, 又1ln 2a =,∴ln 2d =.∴1(1)ln 2n a a n d n =+-=. (2)由(I )知ln 2n a n =,∵ln2ln2e e e =2n n a n n ==, ∴{e }n a 是以2为首项,2为公比的等比数列.∴2 12ln2ln2ln2e e e e e e n n a a a ++ +=++ + 2=222n +++1=22n +-.∴12e e e n a a a +++1=22n +-. 7.(全国卷I 文17)已知数列{}n a 满足11a =,()121n n na n a +=+,设n n a b n = . (1)求123b b b , ,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式. 7.解:(1)由条件可得a n +1=2(1) n n a n +.将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12.从而b 1=1,b 2=2,b 3=4. (2){b n }是首项为1,公比为2的等比数列. 由条件可得121n n a a n n +=+,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得12n n a n -=,所以a n =n ·2n -1. 8.(全国卷II 理17)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值. 8. 解:(1)设{}n a 的公差为d ,由题意得13315a d +=-.由17a =-得d =2.所以{}n a 的通项公式为 29n a n =-.(2)由(1)得228(4)16n S n n n =-=--,所以当n =4时,n S 取得最小值,最小值为?16.

历年高考数学试题分类汇编

2008年高考数学试题分类汇编 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距 离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 4 1 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和 22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22 221x y a b -=(a >0,b >0)上横坐标为32a 的点到右焦点 的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞)

最新高考数学分类理科汇编

精品文档 2018 年高考数学真题分类汇编 学大教育宝鸡清姜校区高数组2018 年7 月

1.(2018 全国卷 1 理科)设Z = 1- i + 2i 则 Z 1+ i 复数 = ( ) A.0 B. 1 C.1 D. 2 2(2018 全国卷 2 理科) 1 + 2i = ( ) 1 - 2i A. - 4 - 3 i B. - 4 + 3 i C. - 3 - 4 i D. - 3 + 4 i 5 5 5 5 5 5 5 5 3(2018 全国卷 3 理科) (1 + i )(2 - i ) = ( ) A. -3 - i B. -3 + i C. 3 - i D. 3 + i 4(2018 北京卷理科)在复平面内,复数 1 1 - i 的共轭复数对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 5(2018 天津卷理科) i 是虚数单位,复数 6 + 7i = . 1+ 2i 6(2018 江苏卷)若复数 z 满足i ? z = 1 + 2i ,其中 i 是虚数单位,则 z 的实部为 . 7(2018 上海卷)已知复数 z 满足(1+ i )z = 1- 7i (i 是虚数单位),则∣z ∣= . 2

集合 1.(2018 全国卷1 理科)已知集合A ={x | x2 -x - 2 > 0 }则C R A =() A. {x | -1 2} B. {x | -1 ≤x ≤ 2} D. {x | x ≤-1}Y{x | x ≥ 2} 2(2018 全国卷2 理科)已知集合A={(x,y)x2 元素的个数为() +y2 ≤3,x ∈Z,y ∈Z}则中 A.9 B.8 C.5 D.4 3(2018 全国卷3 理科)已知集合A ={x | x -1≥0},B ={0 ,1,2},则A I B =() A. {0} B.{1} C.{1,2} D.{0 ,1,2} 4(2018 北京卷理科)已知集合A={x||x|<2},B={–2,0,1,2},则A I B =( ) A. {0,1} B.{–1,0,1} C.{–2,0,1,2} D.{–1,0,1,2} 5(2018 天津卷理科)设全集为R,集合A = {x 0

历年高考数学真题(全国卷整理版)

参考公式: 如果事件A 、B 互斥, 那么 球的表面积公式 ()()()P A B P A P B +=+ 24S R π= 如果事件A 、B 相互独立, 那么 其中R 表示球的半径 ()()()P A B P A P B =g g 球的体积公式 如果事件A 在一次试验中发生的概率是p , 那么 33 4 V R π= n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径 ()(1)(0,1,2,)k k n k n n P k C p p k n -=-=… 普通高等学校招生全国统一考试 一、选择题 1、 复数 131i i -++= A 2+I B 2-I C 1+2i D 1- 2i 2、已知集合A ={1.3. m }, B ={1, m} ,A U B =A, 则m= A 0或3 B 0或3 C 1或3 D 1或3 3 椭圆的中心在原点, 焦距为 4 一条准线为x=-4 , 则该椭圆的方程为 A 216x +212y =1 B 212x +28y =1 C 28x +24y =1 D 212x +24 y =1 4 已知正四棱柱ABCD- A 1B 1C 1D 1中 , AB=2, CC 1=22 E 为CC 1的中点, 则直线AC 1与平面BED 的距离为 A 2 B 3 C 2 D 1 (5)已知等差数列{a n }的前n 项和为S n , a 5=5, S 5=15, 则数列的前100项和为 (A) 100101 (B) 99101 (C) 99100 (D) 101 100 (6)△ABC 中, AB 边的高为CD , 若 a·b=0, |a|=1, |b|=2, 则 (A) (B ) (C) (D)

【高考真题】2016---2018三年高考试题分类汇编

专题01 直线运动 【2018高考真题】 1.高铁列车在启动阶段的运动可看作初速度为零的均加速直线运动,在启动阶段列车的动能() A. 与它所经历的时间成正比 B. 与它的位移成正比 C. 与它的速度成正比 D. 与它的动量成正比 【来源】2018年全国普通高等学校招生统一考试物理(新课标I卷) 【答案】 B 2.如图所示,竖直井中的升降机可将地下深处的矿石快速运送到地面。某一竖井的深度约为104m,升降机运行的最大速度为8m/s,加速度大小不超过,假定升降机到井口的速度为零,则将矿石从井底提升到井口的最短时间是 A. 13s B. 16s C. 21s D. 26s 【来源】浙江新高考2018年4月选考科目物理试题 【答案】 C

【解析】升降机先做加速运动,后做匀速运动,最后做减速运动,在加速阶段,所需时间 ,通过的位移为,在减速阶段与加速阶段相同,在匀速阶段所需时间为:,总时间为:,故C正确,A、B、D错误;故选C。 【点睛】升降机先做加速运动,后做匀速运动,最后做减速运动,根据速度位移公式和速度时间公式求得总时间。 3.(多选)甲、乙两汽车同一条平直公路上同向运动,其速度—时间图像分别如图中甲、乙两条曲线所示。已知两车在t2时刻并排行驶,下列说法正确的是() A. 两车在t1时刻也并排行驶 B. t1时刻甲车在后,乙车在前 C. 甲车的加速度大小先增大后减小 D. 乙车的加速度大小先减小后增大 【来源】2018年普通高等学校招生全国统一考试物理(全国II卷) 【答案】 BD 点睛:本题考查了对图像的理解及利用图像解题的能力问题

4.(多选)地下矿井中的矿石装在矿车中,用电机通过竖井运送至地面。某竖井中矿车提升的速度大小v随时间t的变化关系如图所示,其中图线①②分别描述两次不同的提升过程,它们变速阶段加速度的大小都相同;两次提升的高度相同,提升的质量相等。不考虑摩擦阻力和空气阻力。对于第①次和第②次提升过程, A. 矿车上升所用的时间之比为4:5 B. 电机的最大牵引力之比为2:1 C. 电机输出的最大功率之比为2:1 D. 电机所做的功之比为4:5 【来源】2018年全国普通高等学校招生统一考试物理(全国III卷) 为2∶1,选项C正确;加速上升过程的加速度a1=,加速上升过程的牵引力F1=ma1+mg=m(+g),减速上升过程的加速度a2=-,减速上升过程的牵引力F2=ma2+mg=m(g -),匀速运动过程的牵引力F 3=mg。第次提升过程做功W1=F1××t0×v0+ F2××t0×v0=mg v0t0;第次提升过 程做功W2=F1××t0×v0+ F3×v0×3t0/2+ F2××t0×v0 =mg v0t0;两次做功相同,选项D错误。

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案 一、2019年高考数学上海卷:(本题满分18分) 已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合 {}*|,n S x x b n N ==∈. (1)若120,3 a d π ==,求集合S ; (2)若12 a π = ,求d 使得集合S 恰好有两个元素; (3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的 值. 二、2019年高考数学浙江卷:(本小题满分15分) 已知实数0a ≠,设函数()=ln 0.f x a x x +> (Ⅰ)当34 a =-时,求函数()f x 的单调区间; (Ⅱ)对任意21[ ,)e x ∈+∞均有()2f x a ≤ 求a 的取值范围. 注: 2.71828e =为自然对数的底数.

设2 *012(1),4,n n n x a a x a x a x n n +=+++ +∈N .已知2 3242a a a =. (1)求n 的值; (2)设(1n a =+*,a b ∈N ,求223a b -的值. 四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。 (1)设{}n a 是首项为1,公比为1 2 的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由; (2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ; (3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在 2132201200,,,b b b b b b ﹣﹣﹣中至少有100个为正数,求d 的取值范围.

2019年高考数学真题分类汇编专题18:数列

2019年高考数学真题分类汇编 专题18:数列(综合题) 1.(2019?江苏)定义首项为1且公比为正数的等比数列为“M-数列”. (1)已知等比数列{a n }()* n N ∈满足:245324,440a a a a a a =-+=,求证:数列{a n }为 “M-数列”; (2)已知数列{b n }满足: 111221,n n n b S b b +==- ,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式; ②设m 为正整数,若存在“M-数列”{c n }()* n N ∈ ,对任意正整数k , 当k ≤m 时,都有1k k k c b c +≤≤成立,求m 的最大值. 【答案】 (1)解:设等比数列{a n }的公比为q , 所以a 1≠0,q ≠0. 由 ,得 ,解得 . 因此数列 为“M—数列”. (2)解:①因为 ,所以 . 由 得 ,则 . 由 ,得 , 当 时,由 ,得 , 整理得 . 所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n . ②由①知,b k =k , . 因为数列{c n }为“M–数列”,设公比为q , 所以c 1=1,q >0. 因为c k ≤b k ≤c k +1 , 所以 ,其中k =1,2,3,…,m .

当k=1时,有q≥1; 当k=2,3,…,m时,有. 设f(x)= ,则. 令,得x=e.列表如下: x e(e,+∞) +0– f(x)极大值 因为,所以. 取,当k=1,2,3,4,5时,,即, 经检验知也成立. 因此所求m的最大值不小于5. 若m≥6,分别取k=3,6,得3≤q3,且q5≤6,从而q15≥243,且q15≤216,所以q不存在.因此所求m的最大值小于6. 综上,所求m的最大值为5. 【考点】导数在最大值、最小值问题中的应用,等比数列的通项公式,等差关系的确定 【解析】【分析】(1)利用已知条件结合等比数列的通项公式,用“M-数列”的定义证出数列{a n}为“M-数列”。(2)①利用与的关系式结合已知条件得出数列为等差数列,并利用等差数列通项公式求出数列的通项公式。②由①知,b k=k, .因为数列{c n}为“M–数列”,设公比为q,所以c1=1,q>0,因为c k≤b k≤c k+1,所以,其中k=1,2,3,…,m ,再利用分类讨论的方法结合求导的方法判断函数的单调性,从而求出函数的极值,进而求出函数的最值,从而求出m的最大值。

2020年高考试题分类汇编(集合)

2020年高考试题分类汇编(集合) 考法1交集 1.(2020·上海卷)已知集合{1,2,4}A =,{2,3,4}B =,求A B = . 2.(2020·浙江卷)已知集合{14}P x x =<<,{23}Q x x =<<,则P Q = A.{|12}x x <≤ B.{|23}x x << C.{|34}x x ≤< D.{|14}x x << 3.(2020·北京卷)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B = A.{1,0,1}- B.{0,1} C.{1,1,2}- D.{1,2} 4.(2020·全国卷Ⅰ·文科)设集合2{340}A x x x =--<,{4,1,3,5}B =-,则A B = A .{4,1}- B .{1,5} C .{3,5} D .{1,3} 5.(2020·全国卷Ⅱ·文科)已知集合{3,}A x x x Z =<∈,{1,}A x x x Z =>∈,则A B = A .? B .{3,2,2,3}-- C .{2,0,2}- D .{2,2}- 6.(2020·全国卷Ⅲ·文科)已知集合{1,2,3,5,7,11}A =,{315}B x x =<<,则A B 中元素的个数为 A .2 B .3 C .4 D .5 7.(2020·全国卷Ⅲ·理科)已知集合{(,),,}A x y x y N y x *=∈≥, {(,)8}B x y x y =+=,则A B 中元素的个数为 A .2 B .3 C .4 D .6 8.(2020·全国卷Ⅰ·理科)设集合2{40}A x x =-≤,{20}B x x a =+≤,且 {21}A B x x =-≤≤,则a = A .4- B .2- C .2 D .4 考法2并集 1.(2020·海南卷)设集合{13}A x x =≤≤,{24}B x x =<<,则A B =

高考数学真题汇编数列理(解析版)

2012高考真题分类汇编:数列 一、选择题 1.【2012高考真题重庆理1】在等差数列}{n a 中,12=a ,54=a 则}{n a 的前5项和5S = A.7 B.15 C.20 D.25 【答案】B 【解析】因为12=a ,54=a ,所以64251=+=+a a a a ,所以数列的前5项和1562 52)(52)(542515=?=+=+=a a a a S ,选B. 2.【2012高考真题浙江理7】设n S 是公差为d (d ≠0)的无穷等差数列﹛a n ﹜的前n 项和,则下列命题错误的是 A.若d <0,则数列﹛S n ﹜有最大项 B.若数列﹛S n ﹜有最大项,则d <0 C.若数列﹛S n ﹜是递增数列,则对任意*N n ∈,均有0>n S D. 若对任意*N n ∈,均有0>n S ,则数列﹛S n ﹜是递增数列 【答案】C 【解析】选项C 显然是错的,举出反例:—1,0,1,2,3,….满足数列{S n }是递增数列,但是S n >0不成立.故选C 。 3.【2012高考真题新课标理5】已知{} n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) ()A 7 ()B 5 ()C -5 ()D -7 【答案】D 【解析】因为}{n a 为等比数列,所以87465-==a a a a ,又274=+a a ,所以2474-==a a ,或4274=-=a a ,.若2474-==a a ,,解得18101=-=a a ,,7101-=+a a ;若4274=-=a a ,,解得18110=-=a a ,,仍有7101-=+a a ,综上选 D. 4.【2012高考真题上海理18】设25 sin 1πn n a n =,n n a a a S +++= 21,在

2019年高考真题分类汇编(全)

2019年高考真题分类汇编 第一节 集合分类汇编 1.[2019?全国Ⅰ,1]已知集合{} }2 42{60M x x N x x x =-<<=--<,,则M N ?= A. }{43x x -<< B. }{42x x -<<- C. }{22x x -<< D. }{23x x << 【答案】C 【解析】【分析】 本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题. 【详解】由题意得,{}{} 42,23M x x N x x =-<<=-<<,则 {}22M N x x ?=-<<.故选C . 【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分. 2.[2019?全国Ⅱ,1]设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B = A. (-∞,1) B. (-2,1) C. (-3,-1) D. (3,+∞) 【答案】A 【解析】【分析】 本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题. 【详解】由题意得,{}{} 2,3,1A x x x B x x ==<或,则{} 1A B x x ?=<.故选A . 【点睛】本题考点为集合的运算,为基础题目,难度偏易.不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分. 3.[2019?全国Ⅲ,1]已知集合{}{} 2 1,0,1,21A B x x ,=-=≤,则A B ?=( ) A. {}1,0,1- B. {}0,1 C. {}1,1- D. {}0,1,2 【答案】A 【解析】【分析】 先求出集合B 再求出交集. 【详解】由题意得,{} 11B x x =-≤≤,则{}1,0,1A B ?=-.故选A . 【点睛】本题考查了集合交集的求法,是基础题. 4.[2019?江苏,1]已知集合{1,0,1,6}A =-,{} 0,B x x x R =∈,则A B ?=_____. 【答案】{1,6}.

2020年高考数学试题分类汇编之立体几何

2018年高考数学试题分类汇编之立体几何 一、选择题 1.(北京卷文)(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )。 (A )1 (B )2 (C )3 (D )4 2.(北京卷理)(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为 (A )1 (B )2 (C )3 (D )4 3.(浙江)(3)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是 A .2 B .4 C .6 D .8 4.(全国卷一文)(5)已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122π B .12π C .82π D .10π 5.(全国卷一文)(9)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3 D .2 6.(全国卷一文)(10)在长方体1111ABCD A B C D -中, 2AB BC ==,1AC 与平面11BB C C 所成的角为30?,则该长方体的体积为 A .8 B .62 C .82 D .83 7.(全国卷一理)(7)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .172 B .52 C .3 D .2 8.(全国卷一理)(12)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方 体所得截面面积的最大值为 A . 33 B .23 C .324 D .3 9.(全国卷二文)(9)在正方体1111ABCD A B C D -中, E 为棱1CC 的中点,则异面直线AE 与CD 所成角

相关主题
文本预览
相关文档 最新文档