当前位置:文档之家› DNA浓度和纯度的测定--分光光度法

DNA浓度和纯度的测定--分光光度法

DNA浓度和纯度的测定--分光光度法
DNA浓度和纯度的测定--分光光度法

DNA浓度和纯度的测定--分光光度法

一、目的

熟练掌握分光光度法检测DNA纯度和浓度的方法。

二、原理

DNA或RNA链上碱基的苯环结构在紫光区具有较强吸收,其吸收峰在

260nm处。波长为260nm时,DNA或RNA的光密度OD260不仅与总含量有关,也随构型而有差异。

对标准样品来说,浓度为1μg /ml时,DNA钠盐的OD260=0.02当OD260=1时,dsDNA浓度约为50μg / ml

ssDNA浓度约为37μg / ml

RNA浓度约为40μg / ml

寡核苷酸浓度约为30μg /ml(youyu底物例外有差异)

当DNA样品中含有蛋白质、酚或其他小分子污染物时,会影响DNA吸光度的确凿测定。大凡情况下同时检测同一样品的O

D260、OD280和OD230,计算其比值来衡量样品的纯度。

经验值:

纯DNA:

OD260/OD280≈1.8(>1.9,表明有RNA污染;<1。6,表明有蛋白质、酚等污染)

纯RNA:1.7<OD260/OD280<2.0(<1.7时表明有蛋白质或酚污染;>2.0时表明可能有异硫氰酸残存)

OD260/OD280的比值用于估计核酸的纯度,OD260/OD230估计去盐的程度。

对于RNA纯制品,其OD260/OD280≈2.0,OD260/OD230应大于2。

OD260/OD280<2.0可能是蛋白污染所致,可以增加酚抽提;OD260/OD230<2说明去盐不充分,可能是GIT污染所致,可以再次沉淀和70%乙醇洗涤。

三、材料、试剂及器具

1、材料

提取的PUC19样品、PUC19标准样品

2、试剂

灭菌重蒸水,TE缓冲液

3、器皿

xx比色皿;UV-240紫外分光光度计

四、操作步骤

1、UV-240紫外分光光度计开机预热10min.

2、用重蒸水洗涤比色皿,吸水纸吸干,加入TE缓冲液后,放入样品室的S 池架上,关上盖板。

3、设定狭缝后校零。

4、将标准样品和待测样品合适稀释(DNA5μl或RNA4μl用TE缓冲液稀释至1000μl)后,记录编号和稀释度。

5、把装有标准样品或待测样品的比色皿放进样品室的S架上,关闭盖板。

6、设定紫外光波长,分别测定230nm、260nm、280nm波长时的OD值。

7、计算待测样品的浓度与纯度。DNA样品的浓度(μg / μl):OD260×稀释倍数×

RNA样品的浓度(μg / μl):

OD260×稀释倍数×

分光光度法测定水中铁离子含量.

专业项目课程课例 项目十二分光光度法测定水中铁离子含量 一、项目名称:分光光度法测定水中铁离子含量 二、项目背景分析 课程目标:本课程是培养分析化学操作技能和操作方法的一门专业实践课,以定量分析的基本理论为基础,以实验强化理论,以期提高化工工作者的分析操作能力。 功能定位:在定量分析中我们常常用到分光光度分析法,它具有操作简便、快速、准确等优点,在工农业生产和科学研究中具有很大的实用价值。是仪器分析的基础实验,也是一种重要的定量分析方法。分光光度法测定水中铁离子含量的测定项目综合训练了学生分光光度计使用、系列标准溶液配制、标准曲线绘制等多个技能。 学生能力:学生通过相关基础学科的学习已经具备了相应的化学知识和定量分析知识,也具备一定的独立操作和思维能力。 项目实施条件:该项目是仪器分析的基础实验,一般中职学校具备相关的实训实习条件,学生有条件完成相应的实习任务。 三、教学目标 1、了解721可见分光光度计的构造 2、了解分光光度法测定原理 3、掌握721可见分光光度计的操作方法 4、掌握分光光度法测定分析原始记录的设计 5、掌握分光光度法测定分析报告的设计 6、掌握分光光度法测定水中铁离子含量的测定方法 7、掌握分光光度法测定水中铁离子含量的分析原始记录和分析报告的填写 四、工作任务 1

2 五、参考方案 参考方案一 1、邻二氮杂菲-Fe 2+ 吸收曲线的绘制 用吸量管吸取铁标准溶液(20μg/mL )0.00、2.00、4.00mL ,分别放入三个50mL 容量瓶中,加入1mL 10%盐酸羟胺溶液,2mL 0.1%邻二氮杂菲溶液和5mL HAc-NaAc 缓冲溶液,加水稀释至刻度,充分摇匀。放置10min ,用3cm 比色皿,以试剂空白(即在0.0mL 铁标准溶液中加入相同试剂)为参比溶液,在440~560nm 波长范围内,每隔20~40nm 测一次吸光度,在最大吸收波长附近,每隔5~10nm 测一次吸光度。在坐标纸上,以波长λ为横坐标,吸光度A 为纵坐标,绘制A 和λ关系的吸收曲线。从吸收曲线上选择测定Fe 的适宜波长,一般选用最大吸收波长λmax 。 2、标准曲线的制作 用吸量管分别移取铁标准溶液(20μg/mL )0.00、2.00、4.00、6.00、8.00、10.00mL ,分别放入6个50mL 容量瓶中,分别依次加入1.00mL 10%盐酸羟胺溶液,稍摇动;加入2.00mL 0.1%邻二氮杂菲溶液及5.00mL HAc-NaAc 缓冲溶液,加水稀释至刻度,充分摇匀。放置10min ,用1cm 比色皿,以试剂空白(即在0.00mL 铁标准溶液中加入相同试剂)为参比溶液,选择λmax 为测定波长,测量各溶液的吸光度。在坐标纸上,以含铁量为横坐标,吸光度A 为纵坐标,绘制标准曲线。 3、水样中铁含量的测定 取三个50mL 容量瓶,分别加入5.00mL (或10.00mL 铁含量以在标准曲线范围内为合适)未知试样溶液,按实验步骤2的方法显色后,在λmax 波长处,用1cm 比色皿,以试剂空白为参比溶液,平行

分光光度计测量误差来源分析

分光光度计测量误差来源分析 分光光度计是利用物质对光的选择性吸收进行物质的定性或定量分析的仪器,在各行各业得到了广泛应用,主要用于物质纯度检查、定量分析、物质结构鉴别等。可测量结果总会出现可接受或不可接受的误差,误差来源于测量过程的各个方面,我认为主要来源于仪器本身性能和测量条件的选择两个方面。 1仪器本身性能带来的误差 1.1复色光对比耳定律的偏离 比耳定律成立的前提条件是人射光是单色光,但是精度再高的仪器,即使是双单色器的分光光度计,也只能获得近乎单色的光,无法获得纯单色光,它仍然含有狭窄光通带,具有复色光的性质。而复色光会导致比耳定律的正或负偏离。固定狭缝的紫外分光光度计光谱带宽一般为1nm或2nm,可调狭缝的可以做到0.Inm;可见分光光度计带宽6nm、snm,甚至十几纳米。光谱带宽应该是越小越好,但是随着光谱分辨率的提高,仪器的灵敏度降低,所以选择仪器时要综合考虑各种条件的影响。当溶液浓度较小且单色光较纯时,可近似认为符合比耳定律。 1.2杂散光的影响 杂散光是指进人检测器的处于待测波长光谱带宽范围外的其他波长组分,它是光谱测量中误差的主要来源。产生原因有:分光光度计的色散元件、反射镜、透镜及单色器内壁灰尘等。在分光光度计工作波段边缘波长处,由于单色器透光率、光源辐射强度、检测器灵敏度都较低,杂散光的影响更为显著。杂散光限制仪器的分析上限可引起严重的测量误差,实际工作中,在定量分析时,一般在吸收峰或其附近处测量样品吸光度,如果在分析波长处含有杂散光,这时样品的透光率较小,而杂散光大部分透过,使测量吸光度低于真实吸光度。 1.3仪器噪声对测t的影响 仪器噪声也是仪器的一个重要指标,它表征仪器做稀溶液的能力。是叠加在待测量的分析信号中的不需要的信号,扫描100%T和0%T线,可观察到分光光度计的绝对噪声水平,如果仪器噪声较大,会掩盖较小的测量信号,一般用噪音的二倍来表示仪器的灵敏度。 1.4波长和吸光度准确度 样品的每一个值都是在一定的波长下测得的,如果波长误差很大,测出的值肯定不准。吸光度准确度也是用户对仪器的直接要求,更应引起足够的重视。国家计量检定规程规定双光束紫外可见分光光度计透射比准确度为A级士0.6%,B级土1.0%。 2测量条件的选择

紫外分光光度法测定蛋白质含量

上海百贺仪器科技有限公司提供www.southhk.cn 紫外分光光度法测定蛋白质含量 摘要: 考马斯亮兰G250与蛋白质结合,在0-1000ug/ml范围内,于波长595nm 处的吸光度与蛋白质含量成正比,可用于蛋白质含量的测定。考马斯亮兰G250 与蛋白质结合迅速,结合产物在室温下10分钟内较为稳定,是一种较好的蛋白 质定量测定方法。 1.实验部分 1.1仪器与试剂: Labtech UV POWER紫外分光光度计;玻璃比色皿一套;考马斯亮蓝G250; 牛血清蛋白;超纯水。 1.2试液的制备: 牛血清蛋白标准溶液(1000ug/ml)的制备称取100mg牛血清蛋白置100ml 容量瓶中,加入超纯水溶解并定容。 考马斯亮兰G250试剂称取100mg考马斯亮兰G250,溶于50ml95%的乙 醇后,加入120ml85%的磷酸,用水稀释至1升。 2.结果与讨论 2.1校正曲线的绘制 准确吸取1000ug/ml牛血清蛋白标准溶液0.0、0.02、0.04、0.06、0.08、0.1ml 分别加入到6只10ml试管中,然后用超纯水补充到0.1ml,各试管分别加入5ml 考马斯亮兰G250试剂,混合均匀后,即可依次在595nm处测定吸光度。以浓度 为横坐标,吸光度为纵坐标绘制校正曲线如下图,校正曲线方程为 A=0.613556C+0.001008,R=0.9994。

上海百贺仪器科技有限公司www.southhk.cn 2.2精密度 配制0.6mg/ml牛血清蛋白的考马斯亮兰溶液连续进样6次,得到吸光度的 相对标准偏差。 表1精密度测定结果 次数123456RSD% A0.26260.26220.26200.26280.26290.26260.13 2.3稳定性 取1mg/ml牛血清蛋白标准溶液每十分钟测定一次,50分钟内的吸光度变化 如下表2。 表2稳定度测定结果 时间(min)A1A2A3A平均 00.55110.55230.55160.5517 100.52040.51840.51680.5185 200.49100.49010.49030.4905 300.47650.47160.47210.4734 400.45240.44750.44400.4480 500.39820.39350.40310.3983 3.结论 该方法测定快速、简便,干扰物少,是目前灵敏度较高的蛋白质含量测定 的紫外分光光度法。

分光光度法(附答案)

分光光度法(附答案) 一、填空题1. 分光光度法测定样品的基本原理是利用朗伯-比尔定律,根据不同浓度样品溶液对光信号具有不同的_____,对待测组分进行定量测定。答案:吸光度(或吸光性,或吸收) 2. 分光光度法测定样品时,比色皿表面不清洁是造成测量误差的常见原因之一,每当测定有色溶液后,一定要充分洗涤。可用_____涮洗,或用_____浸泡。注意浸泡时间不宜过长,以防比色皿脱胶损坏。 答案:相应的溶剂(1+3)HNO 3 3. 分光光度法测定土壤中总砷时,制备土壤样品过程中,需取过2mm筛的土样,用玛瑙研钵将其研细至全部通过_____mm筛后,备用。答案:0.149 4. 光度法测定森林土壤全磷的样品,在碱熔完成后,应加入_____℃的水溶解熔块,并用硫酸和热水多次洗涤坩埚。答案:80 二、判断题 1. 应用分光光度法进行试样测定时,由于不同浓度下的测定误差不同,因此选择最适宜的测定浓度可减少测定误差。一般来说,透光度在20%~65%或吸光值在0.2~0.7之间时,测定误差相对较小。( ) 答案:正确 2. 分光光度法主要应用于测定样品中的常量组分含量。( ) 答案:错误正确答案为:分光光度法主要应用于测定样品中的微量组分。 3. 应用分光光度法进行样品测定时,同一组比色皿之间的差值应小于测定误差。( ) 答案:错误正确答案为:测定同一溶液时,同组比色皿之间吸光度相差应小于0.005,否则需进行校正。4. 应用分光光度法进行样品测定时,摩尔吸光系数随比色皿厚度的变化而变化。( ) 答案:错误正确答案为:摩尔吸光系数与比色皿厚度无关。 5. 分光光度法测定土壤中总砷时,在样品中加入酸,并在电热板上加热,目的是分解有机物和氧化样品中各种形态存在的砷,使之成为可溶态的砷。()答案:正确 6. 分光光度法测定土壤中总砷时,应直接称取新鲜的土样进行测定。()答案:错误正确答案为:应称取风干或冷冻干燥的样品测定。 7. 分光光度法测定土壤样品中总砷时,有机物会干扰测定,应加酸并加热分解,以消除其于扰。() 答案:正确 8. 硼氢化钾-硝酸银分光光度法测定土壤中总砷时,样品消解过程中所加的酸分别是盐酸、硝酸和磷酸。()答案:错误正确答案为:样品消解所加的酸分别是盐酸、硝酸和高氯酸。 9. 分光光度法测定生活垃圾或土壤中砷时,若所用试剂中含有少量氰化物,可用乙酸铅脱脂棉吸收去除。()答案:错误正确答案为:乙酸铅脱脂棉吸收去除的是试剂中的硫化物。 10. 光度法测定土壤中全氮时,如需提供烘干基含量,则应测定土壤水分,并进行折算。(答案:正确 11. 光度法测定土壤中包括硝态和亚硝态氮的全氮时,若铁粉中含有大量的碳会干扰测定,所以在选择时应注意。()答案:错误正确答案为:若铁粉含有大量的氮会干扰测定,所以在选择时应注意。

分光光度计

第六章 吸光光度法 例6-1 铁(Ⅱ)-邻菲罗啉的摩尔吸光系数4 101.1?=ε,计算桑德尔灵敏度。 解 24 0050.010 1.185 .55-?=?= =cm g M S με 例6-2 一种含有+ 2Mn 、+ 3Cr 的未知试液,经氧化处理后得MnO ,CrO 试液,分别 在440nm ,545nm 测得吸光度为0.385,0.653,b=1cm ,求试液中+ 2Mn ,+ 3Cr 浓度。 (已知5092,201,23,786545440545440====Mn Mn Cr Cr εεεε) 解 =--=+++ Mn Cr Cr Mn Mn Cr Cr Mn Cr Cr Mn A A c 440 5454405454405455454402εεεεεε 141024.1201 237865092385 .023653.0786--??=?-??-?L mol =??-=-= -++786 1024.1201385.04440 4404403Cr Mn Mn Cr Mn Cr c A c εε 141058.4--??L mol 对于吸收曲线有重叠的混合物试样、混浊样品或其他北京吸收较大的试样,由于存在很强的散射和非特征吸收,难以找到一个合适的参比消除其影响。利用双波长技术可以从分析波长的信号中减去来自参比波长的信号,以消除散射以在测定波长时吸收的其它物质的干扰,从而提高选择性灵敏度,并简化了分析混合物的手续,扩大了光度分析的应用范围。双波长分光光度计测得值为两波长下吸光度差值定量测定依据为 bc A A A I I )(lg 12121 2 λλλλεε-=?=-=- 标准曲线c A -?曲线表示,试样溶液在两个波长1λ,2λ处的吸光度差值与试样溶液中待测物质浓度呈正比。用双波长测定时,作为参比的不是另外参比液而是试液本身对某一波长的吸光度,这样抵消了样品混浊与基本不一致的误差,提高了灵敏度及选择性。 例6-3 某有色溶液在2.00cm 吸收池中,测得百分透光率T=50%,若改用(1)1cm ,(2)3cm 厚的吸收池时,其T 和A 各为多少? 解 先求有色溶液在2cm 吸收池中吸光度A ,由公式可得 30.0%50lg lg =-=-=T A 由吸光度与液层厚度成正比,可求得厚度为1cm 和3cm 时有色溶液的吸光度,又据公式可求各自的T :

紫外-可见分光光度法测定有色溶液 (2)

紫外-可见分光光度法测有色溶液最大吸收波波长 一、实验目的 1.学习紫外-可见分光光度法的原理; 2.掌握紫外-可见分光光度法测定的实验技术; 3.了解掌握U-3010型紫外-可见分光光度仪的构造及使用方法。 二、实验原理 1.紫外-可见吸收光谱法(称紫外-可见分光光度法)以溶液中物质的分子或离 子对紫外和可见光谱区辐射能的选择性吸收为基础而建立起来的一类分析法。根据最大吸收波长可做定性分析;根据朗伯-比尔定律(标准曲线法和标准加入法)可做定量分析。紫外-可见分光光度法定性分析原理:根据吸收曲线中吸收峰的数目、位置、相对强度以及吸收峰的形状进行定性分析。 2.紫外-可见分光光度法定量分析原理,根据朗伯-比耳定律:A=εbc,当入 射光波长λ及光程b一定时,在一定浓度范围内,有色物质的吸光度A与该物质的浓度c成正比。定量分析常用的方法是标准曲线法即只要绘出以吸光度A为纵坐标,浓度c为横坐标的标准曲线,测出试液的吸光度,就可以由标准曲线查得对应的浓度值,即未知样的含量。 3.仪器由五个部分组成:即光源、单色器、吸收池、检测器和信号显示记录装 置。 三、仪器与试剂 日立U-3010型紫外-可见分光光度仪;吸量管;乙醇;待测溶液;烧杯等。 四、实验步骤 1.接通电源,启动计算机,打开主机电源开关,启动工作站并初始化仪器,预 热半小时。 2.在工作接口上选择测量项目为光谱扫描,设置扫描参数(起点:650nm,终 点:250nm,速度:中,间隔:1.0nm,单次扫描) 3.将两个均装有无水乙醇的1cm石英比色皿放入测量池中,进行基线扫描。 4.基线做好后,按下面的顺序进行操作:做Baseline→换样(换上待测样品置 于Sample池)→进入Analysis Method对相关的参数进行设定→Sample命名→Ready→Measure进行测量,寻找待测溶液的最大吸收波长,再在最大吸收波长处分别测定待测溶液的吸光度。

紫外可见分光光度法含量测定

【含量测定】照紫外-可见分光光度法(附录V A)测定。 1.仪器与测定条件:室温:____℃相对湿度:____% 分析天平编号:;水浴锅编号:; 紫外可见分光光度计编号:; 2.对照品溶液的制备: 取西贝母碱对照品适量,精密称定,加三氯甲烷制成每1ml含_______mg的溶液,即得。 3. 供试品溶液的制备: 取本品粉末(过三号筛)约______g,精密称定,置具塞锥形瓶中,加浓氨试液3ml,浸润1小时。加三氯甲烷-甲醇(4:1)混合溶液40ml,置80℃水浴加热回流2小时,放冷,滤过,滤液置50ml量瓶中,用适量三氯甲烷-甲醇(4:1)混合溶液洗涤药渣2~3次,洗液并入同一量瓶中,加三氯甲烷-甲醇(4:1)混合溶液至刻度,摇匀,即得。 4.标准曲线的制备: 精密量取对照品溶液0.1ml、0.2ml、0.4ml、0.6ml、1.0ml,置25ml具塞试管中,分别补加三氯甲烷至10.0ml,精密加水5ml、再精密加0.05%溴甲酚绿缓冲液(取溴甲酚绿0.05g,用0.2mol/L氢氧化钠溶液6ml使溶解,加磷酸二氢钾1g,加水使溶解并稀释至100ml,即得)2ml,密塞,剧烈振摇,转移至分液漏斗中,放置30分钟。取三氯甲烷液,用干燥滤纸滤过,取续滤液,以相应的试剂为空白。 5.测定法: 照紫外-可见分光光度法(附录ⅤA),在nm波长处测定吸光度,以吸光度为纵坐标,浓度为横坐标,绘制标准曲线。依法测定吸光度,从标准曲线上读出供试品溶液中含西贝母碱的重量,计算,即得。 6.结果与计算 6.1 标准曲线制备:

对照品批号 纯 度 S 对照品来源 干燥条件 对照品称重W 对(mg) 各浓度点稀释倍数f 对 溶液浓度C 对(ug/ml) 吸光度A 对 线性回归方程 A=( )C +/-( ) r =( ) 计算公式: W S C f ?= 对对对 C 对= 6.2 样品测定: 水分Q 取样量W 样(g ) 样品稀释倍数f 样 样品吸光度A 样 样品平均吸光度A 样 浓度C(ug/ml) 含量X (%) 平均含量X (%) 计算公式:() %100Q 110W f C X 6 ?-???= 样样 样 X 1= X 2= 7.本品按干燥品计算,含总生物碱以西贝母碱(C 27H 43NO 3)计,不得少于0.050%。 结果: 规定 检验人: 检验日期: 复核人: 复核日期:

紫外分光光度计测定水中的六价铬

紫外分光光度计测定水中的六价铬 六价铬为吞入性毒物/吸入性极毒物,皮肤接触可能导致敏感;更可能造成遗传性基因缺陷,吸入可能致癌,对环境有持久危险性。但这些是六价铬的特性,铬金属、三价或四价铬并不具有这些毒性。 铬是生物体必需的微量元素之一。铬的缺乏会导致糖、脂肪等物质的代谢紊乱,但摄入量过高对生物和人类有害。铬的毒性与其存在形态有极大的关系: 三价铬化合物几乎无毒,且是人和动物所必需的; 相反,六价铬化合物具有强氧化性,且有致癌性。一般来说,六价铬的毒性要比三价铬大100倍。我国规定铬在地面水中最高允许浓度: 三价铬为0.5 mg/L,六价铬为0.1 mg/L,生活饮水最高允许浓度( 六价铬) 为0.055 mg/L。因此对六价铬需要一种简单、有效的分析方法。六价铬的测定方法有很多: 如二苯碳酰二肼可见分光光度法、示波极谱滴定法、原子吸收分光光度法、动力学光度法、流动注射光度法等,但大多由于仪器价昂难以普及使用。分光光度法则以仪器价廉,操作简单等优点,目前在我国仍具有广泛的实用价值。本文研究了在碱性条件下对六价铬的测定,碱性条件下六价铬在紫外区有一较强的吸收峰,因此建立了对六价铬的测定方法。 1 主要仪器和试剂配制紫外可见分光光度计,可见分光光度计,酸度计。 六价铬标准溶液: 称取于120℃干燥2 h 的K2Cr2O7( 优级纯) 0.282 9 g,溶于少量水中并稀释定容至1 L,摇匀得浓度为0.100 mg/mL 的储备液。2%(m/V) 氢氧化钾溶液: 称取2 g 氢氧化钾溶于100 mL蒸馏水中。1∶1 硫酸溶液: 将浓硫酸缓慢加入到等体积水中,混合均匀。 所用试剂均为分析纯,实验用水为二次蒸馏水。所用的玻璃器皿均在1 mol /L 的HNO3 溶液中浸泡12 h 以上。 2 方法与结果 2.1 六价铬的吸收光谱准确移取1 mL 铬标准和适量的氢氧化钾溶液置于25 mL 容量瓶中,定容后用1 cm 比色皿在波长200~400 nm 范围内扫描吸收曲线,结果产物的λmax 为372 nm; 故本文选372 nm 作为测试波长。 用移液管分别移取铬标准溶液0.00、0.50、1.00、2.00、3.00、4.00、5.00 mL 于50 mL 容量瓶中,分别加适量氢氧化钾溶液,然后用蒸馏水稀释至刻度,摇匀; 得到Cr(VI) 的浓度分别是0.00、1.00、2.00、4.00、6.00、8.00、10.00 mg/L,用1 cm 比色皿以蒸馏水为参比,在波长372 nm 处测定其吸光度分别为0.002、0.078、0.158、0.309、0.452、0.587、0.745 mg/L,得到六价铬

常用紫外分光光度法测定蛋白质含量

6种方法测定蛋白质含量 一、微量凯氏(kjeldahl)定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下:nh2ch2cooh+3h2so4——2co2+3so2+4h2o+nh3 (1) 2nh3+h2so4——(nh4)2so4 (2) (nh4)2so4+2naoh——2h2o+na2so4+2nh3 (3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入cuso4作催化剂,k2so4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白 氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 二、双缩脲法(biuret法) (一)实验原理 双缩脲(nh3conhconh3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与cuso4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。 紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材 1. 试剂: (1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正

紫外分光光度法测定未知物

紫外分光光度法测定未知物 1.仪器 1.1紫外分光光度计(UV-1801型);配石英比色皿(1cm)2个 1.2容量瓶(100mL):10个;容量瓶(250mL)1个 1.3吸量管(10mL、5mL):各1支 1.4移液管(20mL、25mL、50mL):各1支 2.试剂 2.1标准溶液(1mg/mL):维生素C、水杨酸、苯甲酸、山梨酸、邻二氮菲分别配成1mg/mL的标准溶液,作为储备液。 2.2未知液:浓度约为(40~60ug/mL)。(其必为给出的五种物质之一) 3.实验操作 3.1比色皿配套性检查 石英比色皿装蒸馏水,以一只比色皿为参比,在测定波长下调节透射比为100%,测定其余比色皿的透射比,其偏差应小于0.5%,可配成一套使用。 3.2未知物的定性分析 将五种标准储备液均稀释成10ug/mL的试液(配制方法由选手自定)。以蒸馏水为参比,于波长200~350nm范围内扫描五种溶液,绘制吸收曲线,根据所得到的吸收曲线对照标准谱图,确定被测物质的名称,并依据吸收曲线确定测定波长。五种标准物质溶液的吸收曲线参五种标准物质溶液的吸收曲线参五种标准物质溶液的吸收曲线参五种标准物质溶液的吸收曲线参考考考考附图附图附图附图。。。。 3.3未知物定量分析 根据未知液吸收曲线上测定波长处的吸光度,确定未知液的稀释倍数,并配制待测溶液3份,进行平行测定。 推荐方法 3.3.1维生素C含量的测定:准确吸取1mg/mL的维生素C标准储备液50.00mL,在250mL容量瓶中定容(此溶液的浓度为200ug/mL)。再分别准确移取1、2、4、6、8、10mL上述溶液,在100mL容量瓶中定容(浓度分别为2、4、8、12、16、20 ug/mL)。准确移取20.00mL维生素C未知液,在100mL容量瓶中定容,于

分光光度计测定铁的含量

邻二氮杂菲分光光度法的测定铁 摘要:本文主要研究了用分光光度计测定溶液中铁的含量的分析方法。采用7220型分光光度计,选用邻二氮杂菲做显色剂,以工作曲线法测定溶液中铁的含量,且讨论测定铁的最佳条件。本法简单,可靠,灵敏,易掌握,分析成本低,其准确度、精密度均复合测定要求,结果令人满意。 This paper studies the solution by spectrophotometer analysis of iron content. By 7220 spectrophotometer, used to do phenanthroline reagent to the working curve method for the determination of iron content in solution, and discuss the best conditions for determination of iron. The method is simple, reliable, sensitive and easy to grasp, analyze, low cost, its accuracy, precision measurement requirements are complex, with satisfactory results. 基荧光酮——乳化剂分光光法测定铁的含量,在乳化剂(OP)存在在条件下,基于Fe(Ⅲ)与苯基荧光酮的显色反应,建立了分光光度法测定铁的新方法。测定出的表观摩尔吸光系数为ε=2.6*10-5ml*mol-1*cm-1,铁的含量在0.035~4.0ug/25ml范围内复合比尔定律,线性回归方程为A=0.268C(ug/25ml)+0.0373,r=0.9991,干扰离子较少。结论:以用于网管水铁的含量铁的测定结果令人满意。本实验用邻二氮杂菲分光光度法测定铁,不仅灵敏度高、稳定性好,而且选择性高。相当于铁量40倍的Sn(Ⅱ)、Al(Ⅲ)、Ca(Ⅱ)、Mg(Ⅱ)、Zn(Ⅱ)、Si(Ⅳ),20倍的Cr(Ⅵ)、V(Ⅴ)、P(Ⅴ),5倍的Co(Ⅱ)、Ni(Ⅱ)、Cu(Ⅱ)不干扰测定。分光光度测定物质含量时,通常要经过取样、显色、测量等步骤。为了使测定有较高的灵敏度和准确度,必须选择适宜的显色的反应条件和测量吸光度的条件。通常所研究的显色反应条件有溶液的酸度、显色剂用量、显色时间、温度、溶剂以及共存离子干扰及其消除方法等。测量吸光度的条件主要是测量波长、吸光度范围和参比溶液的选择 关键词:7220型分光光度计;邻二氮杂菲;简单;可靠;灵敏;准确度;精密度; Keywords:7220 Spectrophotometer;Phenanthroline; Simple; reliable; sensitive; accuracy; precision; 1 实验试剂和仪器 1.1、试剂:20ug/mL的铁标准溶液、100ug/mL盐酸羟胺溶液(因其不稳定,需临用时配制)、1g/L邻二氮杂菲溶液、1mol/LNaOAc溶液、2mol/L HCl溶液、 0.4mol/LNaOH溶液 1.2、7220型分光光度计、精密pH试纸、25mL容量瓶8只、100mL容量瓶1只、50mL碱 式滴定管1支、1mL吸量管1支2mL1支5mL4支

紫外分光光度法测定蛋白质含量实验报告.docx

紫外分光光度法测定蛋白质含量 一、实验目的 1.学习紫外光度法测定蛋白质含量的原理; 2.掌握紫外分光光度法测蛋白质含量的实验技术。 二、实验原理 1.测蛋白质含量的方法主要有:①测参数法:折射率、相对密度、紫外吸收等;②基于化学反应:定氮法、双缩脲法、Folin―酚试剂法等。本实验采用紫外分光光度法。 2.蛋白质中的酪氨酸和色氨酸残基的苯环中含有共轭双键,因此,蛋白质具有吸收紫外光的性质,其最大吸收峰位于280nm附近(不同蛋白质略有不同)。在最大吸收波长处,吸光度与蛋白质溶液的浓度服从朗伯―比尔定律。 利用紫外吸收法测蛋白质含量的准确度较差,原因有二:①对于测定那些与标准蛋白质中酪氨酸和色氨酸含量差异较大的蛋白质,有一定误差,故该法适于测定与标准蛋白质氨基酸组成相似的蛋白质;②样品中含有的嘌呤、嘧啶等吸收紫外光的物质,会出现较大干扰。 三、仪器与试剂 TU―1901紫外可见分光光度计、标准蛋白质溶液3.00mg·mL-1、0.9%NaCl 溶液、试样蛋白质溶液。 10mL比色管、1cm石英比色皿、吸量管。 四、实验步骤 1.绘制吸收曲线 用吸量管吸取2mL3.00mg·mL-1标准蛋白质溶液于10mL比色管中,用0.9%NaCl溶液稀释至刻度,摇匀。用1cm石英比色皿,以0.9%NaCl溶液作参比溶液,在190~400nm间每隔5nm测一次吸光度Abs,记录数据并作图。 2.绘制标准曲线 用吸量管分别吸取1.0、1.5、2.0、2.5、3.0mL3.00mg·mL-1标准蛋白质溶液于10mL比色管中,用0.9%NaCl溶液稀释至刻度,摇匀。用1cm石英比色皿,以0.9%NaCl溶液作参比溶液,在波长280nm处分别测其吸光度,记录数据并作图。 3.样品测定 取适量浓度试样蛋白质溶液,在波长280nm处测其吸光度,重复三次。在已经得到标准曲线的情况下,为了使测量结果准确度高,待测溶液的浓度需在标准曲线的线性范围内,所以,先测定试样蛋白质原液的吸光度(1.363),估算浓度为2.0960 mg·mL-1,再将原试液稀释至5倍(即取2mL试液,用0.9%NaCl 溶液稀释至刻度,摇匀),估算浓度为0.4192 mg·mL-1,测吸光度,重复三次五、数据处理与结果分析

用紫外分光光度计测定溶液溶度的实验步骤

用紫外分光度计测定溶液的浓度 一、实验材料与仪器 罗丹明B,蒸馏水,紫外分光度计,10ml比色皿(2个),250ml容量瓶,烧杯,移液管,比色管(若干) 二、实验步骤 ①用称量纸称取0.0025g的罗丹明B,放入烧杯中加入适量的蒸馏水 溶解,并用玻璃棒搅拌均匀,然后转入250ml容量瓶中,贴上标签待用(此时的溶液的溶度为10mg/L)。 ②取5支25ml的比色管,用量液管分别加入1.00,2.00,3.00,4.00, 5.00ml的已配好的罗丹明B溶液。然后加入蒸馏水稀释至10ml, 此时的比色管中溶液的浓度分别为1,2,3,4,5mg/L。 ③打开紫外分光光度计,预热30分钟,让机器稳定下来,然后以蒸 馏水作为参比溶液,加入比色皿中(适量),然后用吸水纸把比色皿表面的溶液吸干,放入五联池中,盖上盖,在电脑界面上点击,“基线”图标,进行消除基线,由于罗丹明B的最大吸收峰为554,故把波长扫描范围定在400~650nm。 ④消除基线后,取出盛参比溶液的比色皿,把未知浓度的溶液加入 比色皿中,用紫外分光光度计进行测定。 三、数据处理与matlab绘图 x=1:5; y=[0.242 0.507 0.788 1.044 1.254] p=polyfit(x,y,1);

xi=0:6; yi=polyval(p,xi); plot(x,y,'ob',xi,yi,'r') ylabel('吸光度值') xlabel('罗丹明B 的浓度(mg/L)') 01234 56-0.20 0.2 0.4 0.6 0.811.2 1.4 1.6 罗丹明B 的浓度(mg/L)吸光度值 实际值点拟合曲线

分光光度法测定DNA的浓度和纯度Word版

分光光度法测定DNA的浓度和纯度 【目的要求】: 了解:分光光度法测定DNA浓度和纯度的原理; 掌握:分光光度法测定DNA浓度和纯度的技术方法; 熟悉:分光光度法测定DNA浓度和纯度的实验操作步骤和注意事项。 【实验原理】: 前面提取得到的DNA的浓度和纯度都是未知的,在后续的DNA酶切、连接及转化等实验中需要一定的浓度和纯度要求,因此要测定DNA的浓度和纯度。 测定DNA的方法通常有:紫外分光光度法;琼脂糖凝胶电泳法(也叫荧光光度法) (1)紫外分光光度法: 组成DNA的碱基均具有一定的吸收紫外线特性,最大吸收值在波长为250~270nm之间,腺嘌呤的最大紫外线吸收值在260.5nm,胞嘧啶:267nm,鸟嘌呤:276nm,胸腺嘧啶:264.5nm,尿嘧啶:259nm。这些碱基与戊糖、磷酸形成核苷酸后其最大吸收峰不会改变,但核酸的最大吸收波长是260nm,吸收低谷在230nm。这个物理特性为测定核酸溶液浓度提供了基础。在波长260nm紫外线下,10OD值的光密度相当于双链DNA浓度为 50μg/ml;单链DNA或RNA为40μg/ml;单链寡聚核苷酸为20μg/ml。可以此来计算核酸样品的浓度。 分光光度法不但能够确定核酸的浓度,还可以通过测定在260nm和280nm的紫外线吸收值的比值(A260/A280)估计核酸的纯度。DNA的比值为1.8,RNA的比值为2.0。若DNA比值高于1.8,说明制剂中RNA尚未除尽。RNA、DNA溶液中含有酚和蛋白质将导致比值降低。270nm存在高吸收表明有酚的干扰。当然也会出现既含蛋白质又含RNA的DNA溶液比值为1.8的情况,所以有必要结合凝胶电泳等方法鉴定有无RNA,或用测定蛋白质的方法检测是否存在蛋白质。紫外分光光度法只用于测定浓度大于0.25μg/ml的核酸溶液。 (2)琼脂糖凝胶电泳法(荧光光度法):

可见—紫外分光光度法测定浓度-Word整理

一.目的(Objective) 1.初步熟悉可见-紫外分光光度仪的使用方法。 2.熟悉测绘吸收曲线的方法。 3.学会利用可见-紫外分光光度仪进行未知物的浓度分析。 二、基本原理(Principle) 亚甲基蓝溶液在665nm下有最大光度吸收值,利用此性质绘制亚甲基蓝的吸收曲线,并测定未知亚甲基蓝溶液的浓度。 三、仪器与试剂(Equipment and Reagents) 1.仪器:上海棱光技术有限公司Spectrumlab 22 pc 紫外可见分光光度计,1cm 石英吸收池。 2.试剂:亚甲基蓝溶液(25ppm)、亚甲基蓝溶液(未知浓度) 四.实验步骤(Procedure) 1.打开样品室的仓盖(预热20min),调节好测定波长。 2.利用亚甲基蓝标准液(25ppm)配制亚甲基蓝溶液(1ppm)、亚甲基蓝标准液(2ppm) 亚甲基蓝标准液(3ppm)、亚甲基蓝标准液(4ppm)、亚甲基蓝标准液(5ppm)。3.关上样品室仓盖,按100%键至显示器显示100按再打开样品室仓盖0键归零,. 4.将空白比色皿放入样品池一号位,再依次放入装有不同浓度亚甲基蓝溶液的比色皿,盖好样品室仓盖进行测量,先测出亚甲基蓝标准液的吸光度,再测出亚甲基蓝未知液的吸光度。 5.绘制出亚甲基蓝标准液的吸光度——浓度吸收曲线,再利用吸光度——浓度吸收曲线与测得的测出亚甲基蓝未知液的吸光度算出亚甲基蓝未知液的浓度度。

五、实验数据及处理(Data and Calculations) 亚甲基蓝标准液浓度—吸光度表

由图可得该曲线线性拟合的线性函数为:A= 实验测得未知浓度亚甲基蓝溶液的吸光度A x= ,根据上述线性函数可计算的该溶液浓度为C x= ppm 六、误差分析 1、配制得到的亚甲基蓝溶液浓度与实验要求的浓度有一定的偏差,导致了 实验结果的误差; 2、含有杂原子的有机溶剂,通常均具有很强的末端吸收。因此,当作溶剂使用时,它们的使用范围均不能小于截止使用波长。 七、实验总结 1、实验过程中要保持谨慎、实事求是的态度,配制溶液时应严格按照实验操作要求来进行以减小实验误差,尊重实验结果,认真分析误差。 2、测定时,除另有规定外,应以配制供试品溶液的同批溶剂为空白对照,采用1cm的石英吸收池,在规定的吸收峰波长±2nm 以内测试几个点的吸光度,或由仪器在规定波长附近自动扫描测定,以核对供试品的吸收峰波长位置是否正确。 3、当吸光度和浓度关系不呈良好线性时,应取数份梯度量的对照品溶液,用溶剂补充至同一体积,显色后测定各份溶液的吸光度,然后以吸光度与相应的浓度绘制标准曲线,再根据供试品的吸光度在标准曲线上查得其相应的浓度,并 求出其含量。 4、由于环境因素对机械部分的影响,仪器的波长经常会略有变动,因此除应定期对所用的仪器进行全面校正检定外,还应于测定前校正测定波长。

实验一 紫外分光光度法测定苯甲酸

实验一紫外分光光度法测定苯甲酸 一、实验目的 学习、了解紫外分光光度法原理 了解紫外分光光度计的结构和使用方法 二、实验原理 当辐射能(光)通过吸光物质时,物质的分子对辐射能选择性的吸收而得到的光谱称为分子吸收光谱。分子吸收光谱的产生与物质的分子结构、物质所在状态、溶剂和溶液的PH等因素有关。分子吸收光谱的强度与吸光物质的浓度有关。表示物质对光的吸收程度,通常采用“吸光度”这一概念来量度。 根据朗伯-比尔定律,在一定的条件下,吸光物质的吸光度A 与该物质的浓度C和液层厚度成正比。即A= LC 因此,只要选择一定的波长测定溶液的吸光度,即可求出该溶液浓度,这就是紫外-可见分光光度计的基本原理。 在碱性条件下,苯甲酸形成苯甲酸盐,对紫外光有选择性吸收,其吸收光谱的最大吸收波长为225nm。因此,采用紫外分光光度计测定苯甲酸在225nm处的吸收度就能进行定量分析。 三、仪器与主要试剂 TU-1810紫外可见分光光度计1cm石英比色皿 0.1M氢氧化钠溶液 苯甲酸(AR) 四、实验步骤 1、苯甲酸标准溶液的制备 称取苯甲酸(105℃烘干)100mg,用0.1M氢氧化钠溶液100ml溶解后,转入1000ml容量瓶中,用蒸馏水稀释至刻度.此溶液1ml含0.1mg 苯甲酸. 2、制作苯甲酸吸收曲线,选择最大吸收波长 ①移取苯甲酸标准溶液4.00ml于50ml容量瓶中,用0.01M氢氧化钠溶液定容,摇匀,此溶液1ml含苯甲酸8ug. 以氘灯为光源,用0.01M氢氧化钠溶液作为参比,改变测量波长(从210-240nm)测量8ug/ml苯甲酸的吸光度. ②以波长为横坐标,吸光度为纵坐标,绘制苯甲酸的紫外吸收曲线,并找出最大的吸收波长 (是否是225nm). 3﹑样品的测定 ①取10.00ml苯甲酸样品,放入50ml容量瓶中,用0.01M氢氧化钠

分光光度计基本原理

分光光度计基本原理 分光光度计主要用于反射和透射测量。 分三种光源:S偏振光、P偏振光和自然光。 现有设备7台(2台日立U4100、1台JACSO-V650、1台JACSO-V570、2台KT1100、1台瞬间7700)主要由是由分光光度计和电脑组成,由电脑程序驱动。 1 基本部件 光源: 用于提供足够强度和稳定的连续光谱。分光光度计中常用的光源有热辐射光源和气体放电光源两类。 热辐射光源用于可见光区,如钨丝灯和卤钨灯;气体放电光源用于紫外光区,如氢灯和氘灯。钨灯和碘钨灯可使用的范围在340 -- 2500 nm。氢灯和氘灯。它们可在180 -- 375 nm范围内产生连续光源。 紫外—可见分光光度计通常都配有可见和紫外两种光源。 单色器:是从连续光谱中获得所需单色光的装置。 (1)入射狭缝 (2)准直镜(透镜或凹面反射镜),它使入射光束变为平行光束。 (3)色散元件,棱镜或光栅,它使不同波长的入射光色散开来。 (4)聚焦透镜或聚焦凹面反射镜聚焦,它使不同波长的光聚焦在焦面的不同位置。 (5)出射狭缝。 积分球:它主要用途是测定光源发出的总光通量。它的制造:首先在球内壁上涂一层腻子,作为底层;然后喷点白漆,作为中间层;最后喷一层白涂料(硫酸钡或氧化镁)作为表层。 检测器:检测器的作用是检测光信号。常用的检测器有光电管和光电倍增管。电脑,就是微处理机。一方面可对分光光度计进行操作控制,另一方面可进行数据处理。 2、先用3台光度计的特点 U4100的 V650能测位相

3、日常测量 改参数 1.光源要求(.自然光) 2、扫描速度 3、狭缝 基本的步骤 设备测量种类 U4100测量:合色棱镜(成品、PL、2P)等 V650:单层,小DVD,带位相的零件,AR的反射测量等 4.测量的原理,影响准确性的因素 单光路分光光度计V650 双光路分光光度计 U4100 它的优点:光电传感器就可以交替探测到经过样品的探测光束的强度与参考光束的光强度,然后将两束光强信号进行相除,就可以得到样品的透过率。它可以降低光源稳定性对光谱测试精度的影响。 测量的原则:入射光轴重合,出射光轴重合,难在后着。 商用的光谱仪都有很好的性能,但是如果操作测试不当,就会获得错误的光谱测试结果。主要影响准确性的因素: 透射因素: 1、测量样品口径的影响 在测量中应保证仪器的测量光束全部穿过样品。 1)、在样品室的测量光路和参考光路中同时添加小孔光阑。 2)、只在样品池添加小孔光阑。

DNA浓度和纯度的测定--分光光度法

DNA浓度和纯度的测定--分光光度法 一、目的 熟练掌握分光光度法检测DNA纯度和浓度的方法。 二、原理 DNA或RNA链上碱基的苯环结构在紫光区具有较强吸收,其吸收峰在 260nm处。波长为260nm时,DNA或RNA的光密度OD260不仅与总含量有关,也随构型而有差异。 对标准样品来说,浓度为1μg /ml时,DNA钠盐的OD260=0.02当OD260=1时,dsDNA浓度约为50μg / ml ssDNA浓度约为37μg / ml RNA浓度约为40μg / ml 寡核苷酸浓度约为30μg /ml(youyu底物例外有差异) 当DNA样品中含有蛋白质、酚或其他小分子污染物时,会影响DNA吸光度的确凿测定。大凡情况下同时检测同一样品的O D260、OD280和OD230,计算其比值来衡量样品的纯度。 经验值: 纯DNA: OD260/OD280≈1.8(>1.9,表明有RNA污染;<1。6,表明有蛋白质、酚等污染) 纯RNA:1.7<OD260/OD280<2.0(<1.7时表明有蛋白质或酚污染;>2.0时表明可能有异硫氰酸残存) OD260/OD280的比值用于估计核酸的纯度,OD260/OD230估计去盐的程度。

对于RNA纯制品,其OD260/OD280≈2.0,OD260/OD230应大于2。 OD260/OD280<2.0可能是蛋白污染所致,可以增加酚抽提;OD260/OD230<2说明去盐不充分,可能是GIT污染所致,可以再次沉淀和70%乙醇洗涤。 三、材料、试剂及器具 1、材料 提取的PUC19样品、PUC19标准样品 2、试剂 灭菌重蒸水,TE缓冲液 3、器皿 xx比色皿;UV-240紫外分光光度计 四、操作步骤 1、UV-240紫外分光光度计开机预热10min. 2、用重蒸水洗涤比色皿,吸水纸吸干,加入TE缓冲液后,放入样品室的S 池架上,关上盖板。 3、设定狭缝后校零。 4、将标准样品和待测样品合适稀释(DNA5μl或RNA4μl用TE缓冲液稀释至1000μl)后,记录编号和稀释度。 5、把装有标准样品或待测样品的比色皿放进样品室的S架上,关闭盖板。 6、设定紫外光波长,分别测定230nm、260nm、280nm波长时的OD值。 7、计算待测样品的浓度与纯度。DNA样品的浓度(μg / μl):OD260×稀释倍数× RNA样品的浓度(μg / μl):

分光光度计的性能检查

分光光度计的性能检查 (1)波长校正:使用光电比色计或分光光度计,在更换光源灯、重新安装、搬运或检修后,以及仪器工作不正常时,都要进行波长校正。就是正常工作的仪器,每隔一个月也要检查一次波长,必要时进行校正,这样才能保证波长读数与通过样品的波长符合,保证仪器的最大灵敏度。方法常用谱钕滤光片校正法,适用于721型仪可见光区的波长校正,常以585nm 或529nm处的吸收峰或T%为标准。鉴于721型仪器的出射光波长较宽,不易将573nm和585nm 的两峰或两谷分开,校正时易产生误差,故推荐用529nm处的峰或谷为标准来进行波长校正。校正时,将仪器按要求预热。要求电源电压稳定。波长度盘置580nm处,T%调至最大,在比色杯处放一白纸条,观察是否有光强均匀、边缘无光晕或杂光的光斑,如不符合要求,可调节灯泡位置使其符合要求,是为波长校正的粗调。再把灵敏度扭置于“1”(最低档),波长度盘对准529nm,电表机械零点为零,在光路空白时调T%为100%T,并反复查零点和100%T 稳定情况。将谱钕滤光片插入光路,慢慢旋转波长度盘,找到透光率最低的一点(向左右微旋波长度盘时,该点透光率值均增加),这一点即为波长529nm。检查波长度盘的指示值是不是529nm,如指示值为534nm,此时波长工误差为5nm,超出规定(±1nm)必须进行调整。 调整方法:将波长度盘对准529nm,从光路取出谱钕滤光片,光路空白时调电表指针到100%T,再将谱钕滤光片插入光路。打开仪器左侧小盖板,找到波长校正螺丝(3个中左侧柄长的一个);反时针方向微微调节(负误差时顺时针方向),使电表指针的指示T%为最低。反复检查波长误差情况,直到符合仪器技术指标为止。盖好左侧小盖板,校正结束。 有些高档仪器如岛津UV-260型双光束分光光度计,可使用氢灯或置谱钕滤光片于测定比色槽内,编入滤工扫描程序后,仪器即可自动地在一定波长范围内进行波长校正。高档分光光度仪的光学系统密封在一个单元组件内,若发生故障,波长不准,常须请制造商派专人修理。其它尚有谱线校正法、干涉滤光片校正法和有色溶液校正法等,可参考有关资料。 (2)线性检查:线性检查包括仪器线性及测定方法线性两个方面的检查。线性误差表现为溶液的浓度与吸光度不成线性关系,出现正偏离或负偏离的现象。这种偏离,按比耳定

相关主题
文本预览
相关文档 最新文档