当前位置:文档之家› 2018届高中数学苏教版 曲线与方程、圆锥曲线的综合应用 单元测试 Word版 含答案

2018届高中数学苏教版 曲线与方程、圆锥曲线的综合应用 单元测试 Word版 含答案

2018届高中数学苏教版 曲线与方程、圆锥曲线的综合应用 单元测试 Word版 含答案
2018届高中数学苏教版 曲线与方程、圆锥曲线的综合应用 单元测试 Word版 含答案

温馨提示:

此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,关闭Word 文档返回原板块。

考点36 曲线与方程、圆锥曲线的综合应用

一、解答题

1.(2016·全国卷Ⅰ高考理科·T20)设圆x 2+y 2+2x-15=0的圆心为A,直线l 过点B(1,0)且与x 轴不重合, l 交圆A 于C,D 两点,过B 作AC 的平行线交AD 于点E. (1)证明|EA|+|EB|为定值,并写出点E 的轨迹方程.

(2)设点E 的轨迹为曲线C 1,直线l 交C 1于M,N 两点,过B 且与l 垂直的直线与圆A 交于P,Q 两点,求四边形MPNQ 面积的取值范围.

【解析】(1)圆A 整理为(x+1)2+y 2=16,点A 坐标为(-1,0),如图,

∵BE ∥AC,则∠ACB=∠EBD,由|AC|=|AD|,则∠ADC=∠ACD, ∴∠EBD=∠EDB,则|EB|=|ED|, ∴|AE|+|EB|=|AE|+|ED|=|AD|=4.

所以E 的轨迹为一个椭圆,方程为2x 4+2

y 3=1(y ≠0);

(2)C 1: 2x 4 +2

y 3

=1;设l :x=my+1,

因为PQ ⊥l ,设PQ:y=-m(x-1),联立l 与椭圆C 1,

2

2

x my 1,

x y 1,43

?=+??+

=??得(3m 2+4)y 2+6my-9=0; 则

|MN|=M -y N |

=

=

()

2

2

12

m1

3m4

+

+

;

圆心A到PQ距离d=

,

所以|PQ|=2

=,

∴S MPNQ=1

2

|MN|·|PQ|=1

2

·

(

)

2

2

12m1

3m4

+

?

+

=24

).

2.(2016·全国卷Ⅰ高考文科·T20)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连接ON并延长交C 于点H.

(1)求

OH

ON

.

(2)除H以外,直线MH与C是否有其他公共点?说明理由.

【解析】(1)由已知得M(0,t),P 2t ,t 2p ?? ???,又N 为M 关于点P 的对称点,故N 2t ,t p ??

???

,

故直线ON 的方程为y=p

t x,将其代入y 2=2px 整理得px 2-2t 2x=0,解得x 1=0,x 2=2

2t p ,

因此H 22t ,2t p ??

???

,所以N 为OH 的中点,即OH ON =2. (2)直线MH 与C 除H 以外没有其他公共点.理由如下: 直线MH 的方程为y-t=

p

2t x,即x=2t p

(y-t).代入y 2=2px 得y 2-4ty+4t 2=0,解得y 1=y 2=2t,即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点.

3.(2016·全国卷Ⅲ·理科·T20)(本小题满分12分)

已知抛物线C:y 2=2x 的焦点为F,平行于x 轴的两条直线l 1,l 2分别交C 于A,B 两点,交C 的准线于P,Q 两点.

(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ.

(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.

【解析】(1)由题意可知F 1,02??

???,设l 1:y=a,l 2:y=b 且ab ≠0,A 2a ,a 2?? ???,B 2b ,b 2?? ???

P 1,a 2?

?

-

??

?,Q 1,b 2??- ???,R 1a b ,2

2??+- ???, 记过A,B 两点的直线方程为l,由点A,B 可得直线方程为2x-(a+b)y+ab=0, 因为点F 在线段AB 上,所以ab+1=0, 记直线AR 的斜率为k 1,直线FQ 的斜率为k 2, 所以k 1=

2

a b

1a -+,k 2=b 1122

--=-b,又因为ab+1=0, 所以k 1=

22

a b a b 1ab

a a 1a a ab

b ---====-+-,所以k 1=k 2,即AR ∥FQ. (2)设直线AB 与x 轴的交点为D ()1x ,0,

所以S △ABF =1111a b FD a b x 222

-=--, 又S △PQF =

a b 2

-,

所以由题意可得S △PQF =2S △ABF 即:

a b 2

- =2×12

·

11x 2

a b ?--

, 解得x 1=0(舍)或x 1=1.

设满足条件的AB 的中点为E(x,y). 当AB 与x 轴不垂直时,由k AB =k DE 可得2y

a b x 1=+-(x ≠1).而21a b y

=+,所以

y 2=x-1(x ≠1).

当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为y 2=x-1. 4.(2016·全国卷Ⅲ·文科·T20)(本小题满分12分)

已知抛物线C:y 2=2x 的焦点为F,平行于x 轴的两条直线l 1,l 2分别交C 于A,B 两点,交C 的准线于P,Q 两点.

(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ.

(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程. 【解析】(1)由题意知F 1

,02??

???

.设l 1:y=a,l 2:y=b,且ab ≠0,则

A 2a ,a 2?? ???,

B 2b ,b 2?? ???

,P 1,a 2??- ???,Q 1,b 2??- ???,

R 1a b ,22?

?

+-

??

?

. 记过A,B 两点的直线方程为l,则l 的直线方程为2x-(a+b)y+ab=0. 由于F 在线段AB 上,故1+ab=0.

记直线AR 的斜率为k 1,FQ 的斜率为k 2,则 k 1=

222

a b a b 1ab

====-b=k a a 1a a ab

---+-. 所以AR ∥FQ.

(2)设l 与x 轴的交点为D(x 1,0), 则S △ABF =

1111

b a FD b a x 222-=--,S △PQF =a b 2

-. 由题设可得2×

1a b 11

b a x 222

---=.所以x 1=0(舍去)或x 1=1. 设满足条件的AB 的中点为E(x,y). 当AB 与x 轴不垂直时,由k AB =k DE 可得

2y

a b x 1

=

+-(x ≠1).而a b 2+=y,所以y 2=x-1(x ≠1).当AB 与x 轴垂直时,E 与D(1,0)重合,所以,所求轨迹方程为y 2=x-1.

5.(2016·四川高考文科·T20)已知椭圆E: 22

22x y a b +=1(a>b>0)的一个焦点与短轴的

两个端点是正三角形的三个顶点,点P 1 3,2?

??在椭圆E 上.

(1)求椭圆E 的方程.

(2)设不过原点O 且斜率为1

2

的直线l 与椭圆E 交于不同的两点A,B,线段AB 的中点为M,直线OM 与椭圆E 交于C,D,证明:|MA|·|MB|=|MC|·|MD|.

【解题指南】(1)利用点在椭圆上,列出方程,解出b 的值,从而得到椭圆的标准方程.(2)利用椭圆的几何性质,数形结合,利用根与系数的关系,进行计算.

【解析】(1)由已知,a=2b,又椭圆2

2

22x y

a b +=1(a>b>0)过点P 1 3,2?

??,故221344b b

+=1,解得

b 2=1,所以椭圆的方程为

2

x 4

+y 2=1. (2)设直线l 的方程为y=12

x+m ()m 0≠,A ()11x ,y ,B ()22x ,y ,

由方程组2

2x y 1,41y x m,2

?+=??

??=+??得x 2+2mx+2m 2-2=0,①

方程①的判别式为Δ=4()22m -,由Δ>0,即2-m 2>0,解得

-

由①得x 1+x 2=-2m,x 1x 2=2m 2-2,

所以M 点坐标为m m,2

??

- ??

?

,直线OM 的方程为y=-12

x,

由2

2x y 1,41y x,2

?+=??

??=-??得

C ? ??

,D -??

,

所以MC MD ?

=

(

(

()

25

m m 2m 4

-+?

+=

-, 所以21

MA MB AB 4

?= =()()2212121x x y y 4?

--?+???

? =

()()

222121255x x 4x x 4m 42m 21616????+-=--???

??? =54

(2-m 2),

所以MC MD MA MB ?=?.

6.(2016·江苏高考T22)(本小题满分10分)

如图,在平面直角坐标系xOy 中,已知直线l:x-y-2=0,抛物线C:y 2=2px(p>0). (1)若直线l 过抛物线C 的焦点,求抛物线C 的方程.

(2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q. ①求证:线段PQ 的中点坐标为(2-p,-p); ②求p 的取值范围.

【解题指南】(1)求出直线与x 轴的交点坐标可得p 的值.

(2)利用对称知识及PQ 的中点坐标构造关于y 的一元二次方程,利用判别式大于零求解.

【解析】(1)因为l:x-y-2=0,所以l 与x 轴的交点坐标为(2,0),

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线 22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB 的交点为Q 。 (1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112|||| PC PD PQ +=. 2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==? (1)动点N 的轨迹方程; (2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=?AB OB OA 且,求直线l 的斜率k 的取值范围. 3. 如图,椭圆13 4: 2 21=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积 相等,求直线PD 的斜率及直线CD 的倾斜角. 4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||PM PN -=记动点P 的轨迹为W . (Ⅰ)求W 的方程;

(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ?的最小值. 5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围; (Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。 6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN += (1)求点P 的轨迹方程; (2)若2 ·1cos PM PN MPN -∠=,求点P 的坐标. 7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线 12 2 2=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3 MON π∠= ,双曲线的焦距为4。求椭圆方程。 (II )若0OM MN ?=(O 为坐标原点),1 3 FA AN =,求椭圆的离心率e 。

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

高级中学数学公式定理汇总

高中数学公式结论大全 1. ,. 2.. 3. 4.集合的子集个数共有个;真子集有个;非空子集有个;非空的真子集有 个. 5.二次函数的解析式的三种形式 (1)一般式; (2)顶点式;当已知抛物线的顶点坐标时,设为此式 (3)零点式;当已知抛物线与轴的交点坐标为时,设为此式 4切线式:。当已知抛物线与直线相切且切点的横坐标为时,设为此式 6.解连不等式常有以下转化形式 . 7.方程在内有且只有一个实根,等价于或。 8.闭区间上的二次函数的最值 二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:

(1)当a>0时,若,则; ,,. (2)当a<0时,若,则, 若,则,. 9.一元二次方程=0的实根分布 1方程在区间内有根的充要条件为或; 2方程在区间内有根的充要条件为 或或; 3方程在区间内有根的充要条件为或 . 10.定区间上含参数的不等式恒成立(或有解)的条件依据 (1)在给定区间的子区间形如,,不同上含参数的不等式(为参数)恒成立的充要条件是。 (2)在给定区间的子区间上含参数的不等式(为参数)恒成立的充要条件是 。

(3) 在给定区间 的子区间上含参数的不等式(为参数)的有解充要条件是 。 (4) 在给定区间 的子区间上含参数的不等式(为参数)有解的充要条件是 。 对于参数及函数.若恒成立,则;若恒成立,则;若有解,则 ;若 有解,则 ;若 有解,则 . 若函数无最大值或最小值的情况,可以仿此推出相应结论 11.真值表 12.常见结论的否定形式 原结论 反设词 原结论 反设词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个 大于 不大于 至少有个 至多有个 小于 不小于 至多有个 至少有 个 对所有,成立 存在某,不成立 或 且 对任何,不成立 存在某,成立 且 或 p q 非p p或q p且q 真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假 假 真 假 假

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高中数学圆锥曲线详解【免费】

解圆锥曲线问题常用方法+椭圆与双曲线的经典 结论+椭圆与双曲线的对偶性质总结 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2 =2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2 =4x 上一点P 到点A(3,42) (2)抛物线C: y 2 =4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点分析:(1)A 在抛物线外,如图,连PF ,则PF PH =

最新初高中数学公式大全

初中数学公式表

1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

(完整word版)高中数学圆锥曲线结论(最完美版本)

椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦 点在直线PT 上的射影H 点的轨迹是以 长轴为直径的圆,除去长轴的两个端 点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 221x y a b +=上,则过0 P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过 Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是 00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点 分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为1 2 2tan 2 F PF S b γ ?=. 8. 椭圆 22 22 1x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、 Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于 两点P 、Q, A 1、A 2为椭圆长轴上的顶 点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴 的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22 221x y a b -=(a >

初中高中数学定理公式大全(超全)

》 初中高中数学定理公式大全(超全) 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 ~ 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 ? 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 @ 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合

高考数学圆锥曲线综合题型归纳解析

圆锥曲线综合题型归纳解析 【知识点精讲】 一、定值问题 解析几何中定值问题的证明可运用函数的思想方法来解决.证明过程可总结为“变量——函数——定值”,具体操作程序如下: (1)变量——选择适当的量为变量; (2)函数——把要证明为定值的量表示成变量的函数; (3)定值——化简得到函数的解析式,消去变量得到定值。 求定值问题常见的方法有两种: (1)从特殊情况入手,求出定值,在证明定值与变量无关; (2)直接推理、计算,并在计算过程中消去变量,从而得到定值。 二、求最值问题常用的两种方法 (1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形的性质来解决。 (2)代数法:题中给出的条件和结论的几何特征不明显,则可以建立目标函数,在求该函数的最值。求函数的最值常见的方法有基本不等式法、单调性法、导数法、和三角换元等,这是代数法。 三、求定值、最值等圆锥曲线综合问题的“三重视” (1)重视定义在解题中的应用(优先考虑); (2)重视曲线的几何特征特别是平面几何的性质与方程的代数特征在解题中的作用; (3)重视根与系数的关系(韦达定理)在解题中的应用(涉及弦长、中点要用)。 四、求参数的取值范围 根据已知条件及题目要求建立等量或不等量关系,再求参数的范围。 题型一、平面向量在解析几何中的应用 【思路提示】解决平面向量在解析几何中的应用问题要把几何特征转化为向量关系,并把向量用坐标表示。常见的应用有如下两个: (1)用向量的数量积解决有关角的问题: ①直角12120a b x x y y ?=+=r r g ; ②钝角10||||a b a b ?-<= == r r r r g r r g 。

初中数学学与高中数学的区别

一.初中你可以刷题,运气好你可以刷到和中考很像的题,过程方法老师都帮你总结好了一套模板你就用吧,错不到哪去 高中你还想刷到高考的题?基本上没什么可能,固定过程模板套路是没有的,每道题都有区别,方法你得自己总结,它也是因人而异的。必须跳出自己的思维定势你才能在高中活下去 二、知识的差异初中数学知识少、浅、难度容易。高中数学知识广,难度大,是对初中的数学知识推广和引伸,也是对初中数学知识的完善——例如函数,将会陆续学到指数函数、对数函数、幂函数、三角函数,甚至抽象函数等;例如几何,将由初中的平面几何推广到立体几何。 1.抽象与具体的差异——高中知识抽象程度完爆初中!高中学生普遍感到数学公式枯燥难记忆、数学符号抽象难想象、数学习题晦涩难理解,以函数的概念为例,初中的“变量说”是以生活中的事例为依托通过文字的叙述给出的,抽象程度较低,而高中教材采用了抽象程度更高的“函数映射说”通过引进函数符号f(x),使得函数的众多性质可以通过形式化加以定义和证明。初高中课本的函数定义的对比:初中的定义:高中的定义:你觉得这样的定义抽象么?而且数学研究对象的抽象性还有逐层递进的特点,如果不能理解抽象程度较低的知识,学习抽象程度较高的知识就会有困难。有一个问题没听懂,后面不懂的就越来越多,致使学生丧失学习的激情,失去学习的兴趣,从而形成数学学习的恶性循环。 2.动态与静态的差异——变才是唯一不变的!在初中阶段往往习惯于“静态”思维,而高中数学无论从思维的广度和深度上都有很大的提高.所以,为了更好地感知高初中数学的区别,我们先复习圆的以下五个定理.从运动的观点看P点,如果我们允许P点可以在一条弦上自由运动,当P点运动到使圆中两弦垂直,且其中一条为直径时,其线段间的关系为定理(1),若P点运动到圆外,则两弦变成割线,即为定理(3),若其中一条割线变成切线的位置,即为定理(4) ,若另一条割线也变成切线,则成定理(5)了.尽管它们表述的容不一,但都有△APC∽△DPB这一统一关系式.辩证唯物论告诉我们,一切事物都是运动的.在解高中的有关问题时,要学会运用运动思想,善于处理动与静之间的关系. 三、知识学习过程的差异新教材高中数学体现了“螺旋式上升过程”的理念,将同一模块的知识分成片,每一片知识安排在的不同的学时或学年,例如函数,在必修1、必修4、选修2-2,分别是在高一和高二学年学习。这样的学习,要求学生循序渐进的掌握知识,提升能力。但在学习的过程中,在讲授某一知识的进阶容时,学生经常忘记之前的学习的容,这就要求在学习知识的过程中,尤其是第一次的学习时,一定要及时解决问题,不遗留问题,要不断的进行巩固。知识网络较初中知识更加复杂,需要注重知识结构的在联系。 四、学习方式的差异 1.学习时间上的差异:初中课堂教学量小、知识简单,通过教师课堂教慢的速度,争取同学全面理解知识点和解题方法,课后老师布置作业,然后通过大量的课堂、外练习、课外指导达到对知识的反反复复理解,直到学生掌握。而高中数学的学习随着课程开设多(有九门课学生同时学习),每天至少上六门课,这样分配到各科学习时间将大大减少,而教师布置课外题量相对初中减少,这样集中数学学习的时间相对比初中少,而高中数学难度广度又上了一个台阶。时间就像海绵里的水,挤一挤总是会有的——能多挤出时间学习数学,你就可以比他人获得更高的成绩。 2.解题方式的区别:初中学生更多是模仿式的做题,他们模仿老师思维推理或者甚至是机械的记忆,而到了高中,随着知识的难度大和知识面广泛,学生不能全部模仿,即就是学生全部模仿训练做题,也不能开拓学生自我思维能力,学生的数学成绩也只能是一般程度。现在高考数学考察(尤其是全国卷),旨在考察学生能力,避免学生高分低能,避免定势思维,提倡创新思维和培养学生的创造能力培养。初中学生大量地模仿和机械的训练使学生带来了不利的思维定势,对高中学生带来了保守的、僵化的思想,封闭了学生的丰富反对创造精神。高中的试题,往往涉及到的知识点较初中更多,要求对高中数学知识网络之间有着整体的把握,要求对基础知识掌握的牢固,才能产生知识点与知识点之间的连节点。 3.学生自学能力的差异:①可以自学么?初中的容比较简单直观,看书一般就能够理解,基本上可以自学。但高中的数学知识,过于抽象,难度提升,需要老师的必要的讲解与指导。②是否需要自学?大部分初中考试中所用的解题方法和数学思想,老师会不断的进行整理归纳,学生也进行反复大量的训练,学生基本上不需自学,甚至一部分学生已经养成了饭来口的习惯,只要掌握好老师归纳总结的,基本成绩都不会太差。但高中的知识面广,要全部要训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,课后还需要通过自学归纳对课堂上的容进行整理。高中生学习数学时差异程度大,还要根据自身实际情况进行适度练习。学好数学,很大程度上要靠学生本身的自觉学习。 五、对思维习惯提出更高的要求初中学生由于学习数学知识的围小,知识层次低,知识面窄,对实际问题的思维受到了局限。举几何的例子来说,我们都接触的是现实生活中三维空间,但初中只学了平面几何,那么就不能对三维空间进行严格

小学到高中的所有数学公式

小学到高中的所有数学公式 1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 2、 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数= 1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度 4、单价×数量=总价总价÷单价=数量总价÷数量=单价 5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数 9、被除数÷除数=商被除数÷商=除数商×除数=被除数 小学数学图形计算公式 1、正方形:C周长 S面积 a边长周长=边长×4C=4a 面积=边长×边长S=a×a 2、正方体:V:体积 a:棱长表面积=棱长×棱长×6 S表=a×a×6 体积=棱长×棱长×棱长V=a×a×a 3、长方形: C周长 S面积 a边长周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5、三角形 s面积 a底 h高面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高

6、平行四边形:s面积 a底 h高面积=底×高 s=ah 7、梯形:s面积 a上底 b下底 h高面积=(上底+下底)×高÷2 s=(a+b)×h÷2 8 圆形:S面 C周长∏ d=直径 r=半径 (1)周长=直径×∏=2×∏×半径C=∏d=2∏r (2)面积=半径×半径×∏ 9、圆柱体:v体积 h:高 s:底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10、圆锥体:v体积 h高 s底面积 r底面半径体积=底面积×高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者和-小数=大数) 差倍问题

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题 技巧总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

解圆锥曲线问题的常用方法大全 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。

初中数学公式大全(绝对经典)

初中数学公式大全 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

中学数学公式大全(全)

数学公式及性质(完整版) 1.乘法与因式分解 ①(a+b)(a-b)=a2-b2;②(a±b)2=a2±2ab+b2;③(a+b)(a2-ab+b2)=a3+b3; ④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab;(a-b)2=(a+b)2-4ab。2.幂的运算性质 ①a m×a n=a m+n;②a m÷a n=a m-n;③(a m)n=a mn;④(ab)n=a n b n;⑤(a b )n=n n a b ; ⑥a-n=1 n a ,特别:()-n=()n;⑦a0=1(a≠0)。 3.二次根式 ①()2=a(a≥0);②=丨a丨;③=×;④=(a>0,b≥0)。4.三角不等式 |a|-|b|≤|a±b|≤|a|+|b|(定理); 加强条件:||a|-|b||≤|a±b|≤|a|+|b|也成立,这个不等式也可称为向量的三角不等式(其中a,b分别为向量a和向量b) |a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b<=>-b≤a≤b ; |a-b|≥|a|-|b|;-|a|≤a≤|a|; 5.某些数列前n项之和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2;1+3+5+7+9+11+13+15+…+(2n-1)=n2; 2+4+6+8+10+12+14+…+(2n)=n(n+1);12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6; 13+23+33+43+53+63+…n3=n2(n+1)2/4; 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3;

高中数学圆锥曲线综合--求轨迹方程

圆锥曲线综合--求轨迹方程 教学任务 教学流程说明 教学过程设计 圆锥曲线综合--求轨迹方程 求轨迹的常用方法: (1)定义法:如果能够确定动点的轨迹满足某已知曲线的定义,则可由曲线的定义直接写出方程; (2)代入求轨法(坐标平移法或转移法):若动点P(x,y)依赖于另一动点Q(x 1,y 1)的变化而变化,并且Q(x 1,y 1) 又在某已知曲线上,则可先用x 、y 的代数式表示x 1、y 1,再将x 1、y 1带入已知曲线得要求的轨迹方程; (3)直接法:直接通过建立x 、y 之间的关系,构成F(x,y)=0,是求轨迹的最基本的方法; (4)待定系数法:所求曲线是所学过的曲线:如直线,圆锥曲线等,可先根据条件列出所求曲线的方程, 再由条件确定其待定系数,代回所列的方程即可 (5)参数法:当动点P (x,y )坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x 、y 均 用一中间变量(参数)表示,得参数方程,再消去参数得普通方程。 1、(1)一动圆过定点)0,1(A 且与定圆16)1(2 2 =++y x 相切,求动圆圆心的轨迹方程; (2)又若定点)0,2(A 定圆为4)2(22 =++y x 呢? 2、△ABC 中,B (-3,8)、C (-1,-6),另一个顶点A 在抛物线y 2=4x 上移动,求此三角形重心G 的轨迹方程.

3、在平面直角坐标系中,若}2,{},2,{-=+=y x y x 8=+。求动点),(y x M 的轨迹C 的方程; 一、填空: 1.平面内到点A (0,1)、B (1,0)距离之和为2的点的轨迹为 2.已知M (-2,0)、N (2,0),动点P 满足|PM |-|PN |=4,则动点P 的轨迹方程是____________ 3.已知lg(2),lg |2|,lg(16)x y x -成等差数列,则点(,)P x y 的轨迹方程 __ 4.P 是椭圆15 92 2=+y x 上一点,过P 作其长轴垂线,M 是垂足,则PM 中点轨迹方程为______ 5.点M 到F (3,0)的距离比它到直线x+4=0 的距离小1,则点M 的轨迹方程是 6.动点p 与定点A(-1,0), B(1,0)的连线的斜率之积为-1,则p 点的轨迹方程是 。 7、动圆与x 轴相切,且被直线y=x 所截得的弦长为2,则动圆圆心的轨迹方程为 。 8、倾斜角为 4 π 的直线交椭圆42 x +y 2=1于A 、B 两点,则线段AB 中点的轨迹方程是 9、理)两条直线ax+y+1=0和x -ay -1=0(a ≠±1)的交点的轨迹方程是 二、选择: 10、,a b 为任意实数,若(,)a b 在曲线(,)0f x y =上,则(,)b a 也在曲线(,)0f x y =上,那么曲线(,)0f x y =的几何特征是( ) (A )关于x 轴对(B )关于y 轴对称 (C )关于原点对称 (D )关于直线x -y =0对称 11、方程2 2 2 2 (1)0x x y ++-=的图象是( ) (A )y 轴或圆(B )两点(0,1)与(0,-1)(C )y 轴或直线y =1±(D )答案均不对 12、若一动圆与两圆x 2+y 2=1, x 2+y 2-8x+12=0都外切,则动圆圆心的轨迹为: ( ) A 、抛物线 B 、圆 C 、双曲线的一支 D 、椭圆 三、解答 17、已知动点p 到定点F (1,0)和直线x=3的距离之和等于4,求p 点的轨迹方程。 18、抛物线y 2=x +1,定点A (3,1),B 是抛物线上任意一点,点P 在AB 上满足 BP :P A =1:2,当点B 在抛物线上运动时,求点P 的轨迹方程并指出轨迹是什么曲线? 19、理)过原点作直线l 和抛物线642 +-=x x y 交于A 、B 两点,求线段AB 中点M 的轨迹方程。

高中数学圆锥曲线问题常用方法经典例题(含答案)

专题:解圆锥曲线问题常用方法(一) 【学习要点】 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则 有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)

高中初中数学公式大全

数学公式,是表征自然界不同事物之数量之间的或等或不等的联系,它确切的反映了事物内部和外部的关系,是我们从一种事物到达另一种事物的依据,使我们更好的理解事物的本质和内涵。 如一些基本公式 抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上bx再加上c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T 推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

相关主题
文本预览
相关文档 最新文档